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Abstract. Ideal memristor is a resistor with a memory, 
which adds dynamics to its behavior. The most usual char-
acteristics describing this dynamics are the constitutive 
relation (i.e. the relation between flux and charge), or 
Parameter-vs-state map (PSM), mostly represented by the 
memristance-to-charge dependence. One of the so far 
unheeded tools for memristor description is its differential 
equation (DEM), composed exclusively of instantaneous 
values of voltage, current, and their derivatives. The article 
derives a general form of DEM that holds for any ideal 
memristor and shows that it is always a nonlinear equation 
of the first order; the PSM forms are found for memristors 
which are governed by DEMs of the Bernoulli and the 
Riccati types; a classification of memristors according to 
the type of their dynamics with respect to voltage and cur-
rent is carried out. 

Keywords 
Memristor, differential equation, parameter-vs-state 
map (PSM)  

1. Introduction 
In [1], the memristor was originally defined as a one-

port establishing a unique relation between charge q = ∫idt 
and flux  = ∫vdt, where i and v are memristor voltage and 
current. The unalterable relations  = (q) and q = q(), 
called constitutive relations of the memristor, are exclusive 
attributes of the element. The memristor always enforces 
their validity, irrespective of the instantaneous voltage and 
current relations, and independently of how it is connected 
to the rest of the circuit. The result is that the memristor 
appears as a resistor dependent only on the charge q pass-
ing through or on the flow . That is why two mutually 
dual forms of Ohm's law apply to the memristor 
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are the differential memristances and memductances, 
which can be calculated as the slopes of the corresponding 

constitutive relations at the current operating points. The 
functions (2) are two mutually compatible forms of the 
PSM (Parameter-vs-state map) characteristics. The pa-
rameter is memristance or memductance, and the state of 
the memristor is the charge or flux as the integral quantity.  

Over time, the designation “memristor” began to be 
used also for memristive systems originally introduced in 
[2]. They are resistors that are non-linear with respect to 
voltage/current and that are also dependent on a general 
vector state of the associated dynamical system. According 
to the terminology introduced in [3], memristive systems 
are considered extended memristors. This paper concerns 
the memristor in the sense of [1], which we will call, in 
accordance with [3], an ideal memristor. 

A general dynamical one-port can be described by the 
differential equation 
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where v(t) is the one-port voltage and i(t) is the current 
flowing through it. Type (3) equation is the standard basis 
of modeling techniques in the circuit theory. It does not 
have to be limited to one-ports, i.e. v and i can be vectors 
of the input and output variables. In [4], an algorithm is 
described that converts the state and the output equations 
of a nonlinear dynamical system into an equivalent de-
scription, consisting of three sets of equations. The first 
one describes the dynamics of the unobservable part of the 
system; the second expresses the observable states as func-
tions of input and output variables; the third defines the 
external behavior of the system using a general vector 
equation of the form (3). 

Research into differential equations of memristor 
(DEM) is of practical importance. A specific type of equa-
tion (3) may lead to a structure of the state-based model 
which can exhibit better properties than the state space 
model based on a physical variable which is directly con-
nected with the memory mechanism [5], [6]. Finding the 
type of DEM can also answer the question whether the 
memristor response to a known excitation can be computed 
analytically. However, there is no satisfactory explanation 
as to what equation (3) looks like in the case of an ideal 
memristor. Probably the first significant attempt in this 
respect was made in [7]. This work started a series of pub-
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lications about the so-called Bernoulli dynamics of mem-
ristor, and it is the source of the still prevailing opinion [8], 
[9] that the Bernoulli differential equation (BDE) is a char-
acteristic of the ideal memristor and, consequently, that 
“ideal memristors obey the Bernoulli dynamics“. On the 
contrary, other publications [10], [11] point out that the 
BDE is only compatible with a certain special class of ideal 
memristors.  

This paper deals with the problem of the differential 
equations of ideal memristors as follows. The general form 
of DEM of ideal memristor is derived in Sec. 2, starting 
from the memristor PSM in the form of (2). Section 3 
shows examples of memristors with various PSMs, leading 
to various DEMs. It is demonstrated that the type of DEM 
depends on what variable, voltage or current is used as the 
input or output variable. Examples of the PSMs are given 
that lead to linear differential equations with a variable 
parameter, to the Bernoulli and the Riccati differential 
equations, to the Abel differential equation of the first kind, 
and also to equations of other types. It is proved in Sec. 4 
that the so-called Bernoulli dynamics has its limits, and 
PSM forms are found that must comply with memristors 
exhibiting such dynamics. Sections 5 and 6 are devoted to 
similar issues but for cases of the Riccati and the Abel 
dynamics. Section 7 provides the classification of memris-
tors in terms of their dynamics which is exbibited by their 
voltage and current. 

2. General Form of Differential 
Equation of Ideal Memristor 
Consider a memristor with current i(t) flowing 

through it and with voltage v(t) across its terminals. De-
pending on how the charge q(t) and the flux (t) change, 
its memristance and memductance also vary. Their deriva-
tives with respect to time will be 
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i.e. the rate of change of RM or GM  is directly proportional 
to the slope of the respective PSM at the current operating 
point. Expressing the instantaneous memristance and 
memductance using the instantaneous values of voltage 
and current according to (1), performing differentiations on 
the left-hand sides of (4), and making slight arrangements, 
we get 
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It is not yet possible to say that equations (5) are in the 
form of (3) because the slopes of PSMs are generally de-
pendent on charge or flow. Suppose now that the current 
operating point is in such a position of the PSM function 
that its inverse function exists in some its neighborhood, 
i.e. the function q = q(RM) or  =  (GM). The inverse PSM  

 
Fig. 1. Example of PSM of RM(q) = R0 + R sin(2πq/Q). There 

exists an SPM characteristic q = q(RM) in the red 
marked area around the operating point. 

is in fact a state-to-parameter map. We will therefore refer 
to it as SPM. The layout is shown in Fig. 1. 

For each operating point in whose neighborhood the 
SPM exists (5) can be rewritten to the form 
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where 
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Equations (6) are ordinary differential equations of the type 
(3). 

Both forms of DEM (6) are equivalent and one equa-
tion follows from the other. We can check this easily by 
adding up the left sides and the right sides of two original 
equations (5). We get directly the well-known conversion 
[11] between the slopes of both dual forms of the PSM 
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which can be used for a quick transition from one form of 
equation (6) to the other. In practice, we use an option that 
better matches the given PSM. 

Equations (6) represent the general form of the DEM 
of any ideal memristor. It is therefore obvious that the 
voltage and current of the ideal memristor with arbitrary 
PSM always satisfy the first-order nonlinear differential 
equation. It follows from (6) that if the unknown quantity 
is voltage, the DEM may be of a different type than in the 
case when the unknown quantity is current. 

The following section presents several examples 
clarifying the process of obtaining the DEM from the PSM 
of an ideal memristor. 

3. Examples of DEMs of Ideal 
Memristors 
The so-called HP memristor is one of the frequently 

discussed types of memristors [12]–[14]. Its linear model 
assumes that the memristance linearly depends on the 
charge that passed through. Its PSM can therefore be ex-
pressed, for example, as follows: 
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   kqRqRM   (9) 

where R and k are constants. In order to derive DEM (6), it 
is necessary to determine the form of the SPM in the first 
step. In this case it is the inversion of a linear PSM, which 
also gives a linear SPM 

    RR
k

Rq MM 
1 . (10) 

The reciprocal value of the slope of SPM (10) gives the 
function f( ) from (7) 

   kRf M  , (11) 

thus DEM (6) has the form 
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It is obvious that if the current i(t) is the known variable 
and the voltage v(t) is unknown, the memristor is governed 
by a linear differential equation with time-varying coeffi-
cients 

     0 tvt
dt

dv   (13) 

where α(t) = –i –1(t) di(t)/dt, β(t) = –ki2(t). A memristor 
whose voltage is governed by a linear equation of the type 
of (13) will be denoted a class vL memristor. Equation (13) 
has an analytical solution [8], [11]. 

If the known quantity is the voltage v(t) and the 
unknown variable is the current i(t), the memristor is 
governed by the Bernoulli differential equation [15] 

     0 nitit
dt

di   (14) 

where n = 3, χ(t) = –v–1(t)dv(t)/dt, δ(t) = kv–1(t). A memris-
tor whose current is governed by the Bernoulli equation of 
the type of (14) will be denoted a memristor of class iB. 
This equation also has an analytical solution [8], [11]. 
Memristors belonging simultaneously to the classes vL and 
iB will be denoted memristors of the (vL iB) type. This and 
other examples are described in Tab. 1. 

The original ideas of how the HP memristor works 
led to a simple model of the linear dependence of resis-
tance on the charge that passed through [12], [13]. This 
corresponds with row 1 in Tab. 1, which summarizes the 
results of (13) and (14) regarding the types of DEM. The 
second row represents a memristor whose conductance is 
directly proportional to the flow. For this memristor, the 
voltage is governed by the BDE and the current by the 
LDE. The third row of Tab. 1 shows another variant, when, 
unlike with the “HP memristor”, the conductance and not 
the resistance is linearly dependent on the charge. When 
excited by a known current, the memristor would, the same 
as the “HP memristor”, comply with the Bernoulli differ-
ential equation with respect to voltage. Compared to the 
classical variant, however, the constant n from (14) would 
change from 3 to 2. Row 4 refers to a memristor with linear 
resistance–to-flow characteristic. It is noteworthy that if we 
interchange the resistance and the conductance and simul-
taneously the charge and the flux in the starting conditions, 
the result leads to the same type of DEM. The PSM of the 
(a + bq)n type leads to memristors of the type of (vB iB) if 
n  {–1;–0.5;1};  for n = –1 a n = –1/2  we  obtain  (vB iL)- 
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LDE The Linear Differential Equation RDE The Riccati Differential Equation 

BDE The Bernoulli Differential Equation ADE The Abel (first kind) Differential Equation 

XDE Another Differential Equation 

Tab. 1. Relation between PSM and class of DEM. 
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type memristor, and for n = 1 it would be a (vL iB)-type 
memristor. 

Table 1 shows that there are memristors whose DEMs 
are not of the BDE type with respect to both voltage and 
current. As an example, one can mention PSMs that lead to 
the Abel differential equation of the first kind (ADE, row 
6) or to an equation of quite a different type (rows 8 and 9). 
A frequently held view [7], [8] that ideal memristors are 
inseparably adherent to the Bernoulli dynamics, is there-
fore incorrect. The next section provides a derivation of the 
limits of the Bernoulli dynamics, i.e. the conditions for the 
PSM of the memristor such that the dynamics of its voltage 
or current would comply with the Bernoulli differential 
equation. 

4. Bernoulli Dynamics 
Denote vB (or iB) a class of all the memristors that 

exhibit the Bernoulli dynamics with respect to voltage (or 
current), i.e. when equation (6) is a Bernoulli differential 
equation for voltage (or current). The question of what type 
of PSM all the memristors in classes vB and iB must have 
can be changed to another question: What conditions must 
the respective functions f( ) or g( ) from equation (6) meet? 

Just like the PSM of ideal memristor (2) does not 
explicitly depend on the voltage or current but exclusively 
on the charge or flow, its SPM also depends exclusively on 
the memristance or memductance. The function f( ) or g( ) 
from (6) is therefore always a function of the ratio v/i, i.e. 
voltage and current cannot figure therein separately or in 
any other form than the above ratio. This fact makes the 
next steps easier, because those forms of f( ) or g( ) are 
sought which cover all the possibilities of generating the 
BDE from equations (6) with respect to voltage or current. 

The function f( ) or g( ) will generally have different 
forms for memristors of classes vB and iB. We will denote 
the first one fv() or gv() and the other fi() or gi(). If equations 
(6) are to be BDEs with respect to current i, the function 
fi() must fulfill the condition 
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where n is the constant from (14), k1, k2  R, k1 ≠ 0. The 
first summand in (15), after multiplying by i3 from (6), 
generates the element k1v

3 – nin. For a BDE with respect to i 
it is required that n  {0;1} [15]. The second summand in 
(15) may or may not contribute to the element (idv/dt) in 
(6) with a contribution k2v

2i without violating the format of 
the BDE (14) with respect to i. Taking into account the 
condition (7) and the fact that v/i = RM, then 
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Relation (16) is a differential equation that generates 
a PSM of the RM(q) type of all the memristors of class iB. 

After the separation of variables, the appropriate SPM 
function can be expressed as the integral 
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whose general solution can be found in terms of the hyper-
geometric function 
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The resulting form of the PSM for the special case of 
k2 = 0 can be expressed in terms of standard functions: 
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where q0  R. 

The general form of the PSM of RM(q) type that 
would cover the entire set of iB cannot be expressed via the 
elementary functions, but we can get its dual form GM(). 
Utilizing relations (8) and (16) and a simple rearrangement 
yield that all the PSMs of the GM() type that lead to mem-
ristors of class iB must be solutions of the differential 
equation 
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which is a Bernoulli differential equation with constant 
parameters. Substituting the function gi() = –k1()

n– k2() into 
the second equation in (6), we get the DEM form for any 
memristor of class iB  
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It follows from (21) that each memristor of class iB must 
with respect to voltage exhibit the dynamics governed by 
the differential equation 
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It is an equation that, for special combinations of k2 and n, 
becomes the BDE, RDE, or ADE of the first kind, or the 
LDE with time-varying parameters. 

Equation (20) has an analytic solution. For k2 = 0 it is 
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where 0  R.  

The solution of (20) for k2 ≠ 0 is as follows: 
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For some combinations of the constants k1 and k2, the 
function (24) will show singularities at points where the 
argument of the abs ( ) function acquires zero. Therefore, 
the resulting formula for GM() is ambiguous: 
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The sign of the exponential term depends on the sign of the 
argument of the abs ( ) function in (24).  

Memristors of class iB with the BDE (21) must there-
fore have the GM() characteristic in the form of (23) or 
(25). Since the constants k1, k2, 0 and n are, with discrete 
exceptions (e.g. k1 ≠ 0, etc.), arbitrary real numbers, the 
basic forms (23) and (25) can be transposed, with the help 
of other constants, into other forms. All adjustments that 
lead to the original structure of the source equation (20) but 
with different, mutually independent constants are accept-
able, i.e. 
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For example, considering the term 1/(1 – n) in (25) as 
an independent constant N, then, due to the fact that 
n  {0;1}, there is only one limitation for N, namely N ≠ 1. 
Similarly, since k2 in (25) is an arbitrary nonzero constant, 
the expression A = –k2(n – 1) can be considered a nonzero 
independent constant. Based on these facts, (23) and (25) 
can be converted to the basic forms given in Tab. 2.  

In Tab. 2, we can also find analogous results for class 

vB memristors, which we would get via the same procedure 
we used to get conclusions (15)÷(25). Note that current i 
and voltage v, charge q and flux , and memristance RM 
and memductance GM mutually interchange their roles. 
Table 2 contains all the possible forms of GM () of mem- 
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equation for GM 

2
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3
1 M

n
M

M GkGk
d

dG
 


 

GM() form 
Non-standard function 

   N
vM GG 0  , N=1/(n-2), N{-1/2;-1} 

Tab. 2. Boundary of the Bernoulli dynamics of ideal 
memristor. 

ristors of class iB and all the possible forms of RM (q) of 
memristors of the vB class. The general form of RM (q) for 
class iB and GM () for class vB cannot be expressed via 
standard functions. We will succeed only with special 
combinations of parameters in the generating equations. 

The linear model of the HP memristor [13] not em-
ploying any window functions is the well-known repre-
sentative of the “Bernoulli dynamics“. According to our 
classification, it is a memristor of the (vL iB) type with the 
BDE constant n = 3, see row 1 in Tab. 1. 

5. Riccati Dynamics 
Row 7 in Tab. 1 represents the case of a memristor 

whose current is governed by the Riccati differential equa-
tion. The class of memristors complying with this dy-
namics will be denoted by the symbol iR. Let us examine 
the requirements for the PSM that lead to the classes vR 
and iR.  

In accordance with [15], regarded as a Riccati differ-
ential equation is an equation of the type of 

      tfytfytf
dt

dy
01

2
2  . (27) 

For our purposes, y(t) will be either the memristor voltage 
or current.  

On the basis of (6), (7) and (27), it can easily be 
found that belonging to the dynamics of class vR is 
equivalent to the condition 

 
32

2
1 kRkRk

dq

dR
MM

M  , (28) 

k1, k2, k3  R, k1 ≠ 0, k3 ≠ 0. Then the voltage will comply 
with the differential equation 

 2
32

2
1

1
ikv

dt

di

i
ikvk

dt

dv







  , (29) 

which is formally identical to the Riccati equation (27). 
The SPM q = q(RM) can be calculated as the integral 
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32
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. (30) 

The result depends on the sign of the discriminant 
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as follows: 
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The PSM is derived by inverting the formula (32)  
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(33) 

Relations (33) represent the complete set of the forms of 
RM(q) leading to the Riccati dynamics vR. 

Since the hyperbolic tangent can be expressed using 
the exponential functions, the memristance for D > 0 can 
also be written as 

  
  










 01

2
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22 11

2

qqDM
ek

D

k

k
qR . (34) 

Note that this relation employs the well-known sigmoid 
function [5]. 

Applying (8) to (28) yields an equation generating the 
PSMs of the GM() type 

 3
3

2
21 MMM

M GkGkGk
d

dG



 (35) 

whose general solution lies outside the area of standard 
functions. A particular solution, however, can be found for 
k2 = 0, k1k3 < 0 in the form of 
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3
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where 0R. 

Another solution is available for D = 0 in the form of 
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where W( ) is the Lambert function. 

General forms of the PSM that belong to memristors 
of classes vR and iR are summarized in Tab. 3. Table 3 
contains all the possible forms of the GM() of the class iR 
memristors and all the possible forms of the RM(q) of the 
class vR memristors. The general form of the RM(q) for 
class iR and the GM() for class vR cannot be expressed 
using standard functions. We will only succeed for special 
combinations of the parameters in the generating equations. 

The well-known model of the HP memristor with the 
Joglekar window function with the parameter p = 1 [13] 
exhibits the Riccati dynamics with respect to voltage. Its 
PSM is derived in [5] 

  
14 
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offM ae
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RR
a




  (38) 

where Roff, Ron, and Rini are the maximum, minimum, and 
the initial memristor resistances, and k is the technological 
constant. According to Tab. 3, it is the RM(q) of the 
memristor of class vR. 
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W() is the Lambert function 
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Memristors of class vR  
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G ,  
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G , b≠0 

Tab. 3. Boundary of the Riccati dynamics of ideal memristor. 

6. Abel Dynamics 
Consider the differential equation of the form  

         n
n ytfytfytftf

dt

dy
 ..2

210
 (39) 

where n is a positive integer. Equation (39) is the general-
ized Abel differential equation (ADE) of the first kind [16]. 
Its basic form is given for n = 3 [15]. If n = 2 and simulta-
neously f0(t) ≠ 0, (39) changes to the Riccati differential 
equation. For n > 1 and simultaneously fi(t) = 0, 
i  {0,2,3,..,n – 1}, (39) becomes the Bernoulli differential 
equation for integer-type n. 

If the current/voltage of the memristor is governed by 
the basic form of (39), i.e. for n = 3, then it belongs to the 
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iA/vA class. A specific case of the iA class memristor is 
shown in row 6 of Tab. 1. 

Let us examine the requirements for the PSM of the 
memristors of class vA. The generating equation for the 
PSM of RM (q) type can be obtained the same way as for 
the Bernoulli and the Riccati dynamics. It is the ADE of 
the first kind 

 n
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M RkRkRkk
dq
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210
, (40) 

with the voltage conforming to the differential equation 
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Note that this equation is of type (39). The current will be 
the solution of the equation 
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which is of type (39) only for n = 3. 

The generating equations for the PSM of memristors 
of classes iA and vA, together with the relevant differential 
equations, are shown in Tab. 4. The general closed-form 
solution of the generating equations is complicated, being 
available only in particular cases. That is why it is not 
given in Tab. 4. 
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Tab. 4. Boundary of the Abel dynamics of ideal memristor. 

The modification of the HP memristor proposed in 
[11], which is based on the exponential change in the 
cross-section of the memristor, leads to the memristor of 
the (vL iA) type, see row 6 in Tab. 1. Neither the voltage 
nor the current of the memristor is in compliance with the 
BDE. 

7. Possible Types of Memristor in 
Terms of DEM 
Consider the differential equation 

          N
N

R
R ytfytfytftfytf

dt

dy
 ..2

210
 (43) 

where n is a positive integer and R is a non-integer real 
number. If some of the functions fR(), f0(), .., fN() were 
identically zero, then (43) could become the LDE, BDE, 
RDE, ADE or generalized ADE.  

If y(t) is the voltage, then the generating equation for 
the PSM of the RM (q) type will be 
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with the voltage conforming to the differential equation 
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Note that this equation is of type (43). The current will be 
a solution of the equation 
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This equation is of type (43) only for n = 3.  

Analogous results hold for y(t) representing the cur-
rent. The analysis of these results yields all the possible 
combinations of classes that are represented as a matrix in 
Fig. 2. 

 
Fig. 2. Overview of the types of memristor according to the 

type of differential equation. The types that are funda-
mentally impossible are crossed out. 

Some of the combinations of classes are not realizable 
in principle. If, for example, the memristor voltage is gov-
erned by the Bernoulli differential equation, then its current 
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cannot be governed by a type of equation other than LDE, 
BDE or RDE. If we observe that the memristor voltage is 
governed by a linear differential equation, then we can be 
confident that the current must follow either the Bernoulli 
differential equation or the Abel differential equation of the 
first kind. If the voltage and current are to be governed by 
the same type of DEM, then it must be only the Bernoulli 
differential equation. 

It is evident that there are memristors of different 
types outside the matrix. Examples can be found in Tab. 1 
in rows 8 and 9. However, the scheme exhibits the sym-
metry (vX iY)  (vY iX) with regard to the main diagonal. 
It means that the classes vX and iY, presented in the matrix, 
cannot occur for any memristor that lies outside the matrix. 
To put it concisely: if, for example, the memristor current 
complies with a linear differential equation with time-
varying coefficients, then the voltage cannot be governed 
by other than the Bernoulli or the Abel of the first kind 
dynamics. Likewise, the voltage or current of a memristor 
whose type is outside the matrix cannot exhibit linear dy-
namics (i.e. dynamics governed by a linear differential 
equation). 

8. Conclusions 
The voltage and current of the ideal memristor are, 

under all circumstances, governed by an ordinary differen-
tial equation of the first order (6). This equation can be 
linear with variable coefficients, Bernoulli, Riccati, Abel of 
the first kind or a differential equation of quite a different 
type. 

The methodology for determining the type of the dif-
ferential equation from the memristor PSM is given by 
equations (6) to (8). This methodology is successful if it is 
possible to invert the given PSM analytically in terms of 
standard functions. It was used for determining the differ-
ential equations of all the types of memristors that are 
given in Tab. 1. 

A method has been found for generating the PSM 
which must apply to memristors with a given type of 
dynamics with respect to voltage or current. For a pre-
scribed type of the dynamics, the generating differential 
equation is found which generates all the PSMs sought. It 
is noteworthy that the generating differential equation is of 
the same type as the original differential equation that 
determines the type of the dynamics, but it is simpler in the 
sense that it has constant parameters. It should also be 
noted that the generating equations generate all the possi-
ble PSM functions that would lead to the prescribed type of 
the dynamics. In the case of the synthesis, for example, of 
only passive memristors, the free constants in the generat-
ing equations or directly in the resulting PSMs would be 
correspondingly limited. Another remarkable observation: 
it is possible to find all the closed-form PSMs of the 
RM (q)/GM () type in terms of the standard functions for 
the Bernoulli and the Riccati dynamics with respect to 

voltage/current. Finding the corresponding counterpart 
from the pair RM(q) - GM() analytically is generally im-
possible, as shown in [11].  

The overview of the memristor types in Fig. 2 indi-
cates one of the possible reasons why the Bernoulli dy-
namics is still mistakenly considered a feature of every 
ideal memristor. This dynamics is mentioned if it governs 
at least one quantity of the pair of variables voltage - cur-
rent [7], [8]. It is apparent from the matrix in Fig. 2 that if 
the memristor voltage (current) exhibits the linear, Ber-
noulli, or Riccati dynamics, it can lead to the Bernoulli 
dynamics with respect to the current (voltage). The current 
(voltage) cannot exhibit the Bernoulli dynamics only if the 
voltage (current) is governed by the Abel differential equa-
tion of the first kind. As a result, three of the four types of 
dynamics with respect to the current (voltage) can lead to 
the Bernoulli dynamics. The Bernoulli dynamics is there-
fore likely to be abundantly represented in textbook exam-
ples. For instance, there is a mention in [17] of a Bernoulli 
memristor with RM(q) = αq2. According to Tab. 1, row 5, it 
is really of the (vB iB) type, thus the memristor exhibits the 
Bernoulli dynamics even with respect to voltage and 
current simultaneously. But a “slight” change of the PSM 
to RM(q) = 1 + αq2 would cause that the memristor would 
not only cease to be “Bernoulli” but its dynamics would 
put it completely outside the matrix of dynamics in Fig. 2. 

As is obvious from Tab. 2, only memristors with 
RM (q) of the R(q – q0)

N or R(a + exp(q – q0))
N types or with 

GM () of the G( – 0)
N or G(a + exp( – 0))

N types, 
N ≠ 1, a ≠ 0, are governed by the vB/iB Bernoulli dynamics 
with respect to voltage/current. Coincidentally, according 
to the same table, the HP memristor from [13] with the 
PSM of the RM (q) = R(q – q0) type also belongs to the class 
iB. The belief that ideal memristors must obey the Ber-
noulli dynamics is nothing but a chimera, which is buried 
symbolically by the example of one of the most discussed 
types of memristor: The HP memristor with the Joglekar 
window function [13] for p = 1 is a memristor of the 
(vR iA) type, thus neither its voltage nor its current exhibits 
the Bernoulli dynamics. 
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