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ABSTRACT.  The problem of existence of solutions to the initial value

problem x' = f(t, x), x(t0) = xQ e F, where /e C[[f0, f0 + a|  X F, E], F is

a locally closed subset of a Banach space E is considered.   Nonlinear comparison

functions and dissipative type conditions in terms of Lyapunov-like functions

are employed.   A new comparison theorem is established which helps in sur-

mounting the difficulties that arise in this general setup.

1. Introduction.  Recently, in an interesting paper, Martin [4] considers the

initial value problem

x'=f(t,x),   x(t0) = xQ,

in a closed subset of a Banach space employing a dissipative type condition

terms of a generalized pairing, namely,

(1.1) (f(t,x) -f(t, y),x-y)+ <L\\x -y\\2.

The results obtained in [4] crucially depend on the properties of (x, y)+ and the

linearity of the comparison function g(t, u) = Lu and are technical. Even to

replace the right-hand side of (1.1) by a nonlinear comparison function poses a

difficult problem.

In this paper, we extend the existence results in [4], [5] using nonlinear

comparison functions and dissipative type conditions in terms of Lyapunov-like

functions. A new comparison result (Theorem 2.4) needed to surmount the

difficulties is established and employed to prove the general results. The use of

Lyapunov-like functions instead of the norm also raises nontrivial problems. For

recent results dealing with similar problems see the references in [2], [3], [4].

2. Preliminary results. Let F be a real Banach space and let || • || denote the

norm on F. Let F C F be a locally closed set, that is, for each x0 G F, there

exists a b > 0 such that F0= Fn B(x0, b) is closed in F where B(x0, b) =

[x E E: \\x - jf0|| < b]. Let R+ denote the nonnegative real line and let

Received by the editors October 22, 1974.

AMS (MOS) subject classifications (1970).   Primary 34G05; Secondary 47H15.

Key words and phrases.   Banach space, nonlinear differential equation, dissipative

type conditions. Copyright e 1976. American Mathematical Society

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



104 V. LAKSHMIKANTHAM, A. R. MITCHELL AND R. W. MITCHELL

t0 ER + . We consider the differential equation

(2.1) x'=f(t,x),   x(/0)=x0GF.

We list the following assumptions which we use frequently.

(Aj) /G C[[t0, t0 + a] x F, E] and the numbers a, b > 0, M > 1 are

chosen such that \\f(t, x)\\ <M - 1, on [/0, i0 + a] x F0.

(A2) lim,,^,, «_1c/[x + hf(t, x), F] = 0, (t, x) G [t0, t0 + a] x F, where

d(pc,F) = af[llx-y\\:yeF].

(A3) g E C[[t0, t0 +a] x R+,R],g(t, 0) = 0 and u = 0 is the unique

solution of

(2.2) u=g(t, u),   «(/„) = 0,

on [tQ,t0 +a].

(A4)   V E C[ [t0 ,t0+a] x B(x0, b) x B(x0, b),R+], V(t, x, x) = 0,

V(t, x,y)>0ifx*y,

\Kt, xx,yx) - V(t, x2, y2)\<L[\\x - xx\\ + \\y -yx\\],

if {x„}, {yn} are sequences in B(x0, b) such that lim,,^«, V(t, xn,yn) = 0, then

lim,,^«,\\x„ -yn\\ = 0 and for tE [t0,t0 + a],x,y EF0,

D+ V\t, x, y) = lim sup j- [V(t + h, x + hf(t, x), y + h(t, y))- V\t, x, y)]

(2.3)
<g(t, V(t,x,y)).

(As)   VE C[B(x0, b), R+], V(0) = 0, V(x) > 0, x * 0, if lim^» V(xn)

= 0 with xn E B(x0, b), then limw_>00||xn|| = 0 and there exists a mapping

M: B(x0, b) x E-*R such that:

(a) M[x, y] is upper semicontinuous, i.e., if limn^.a>(xn,yn) = (x, y) then

lim sup,,^ M[xn,y„] <M[x, y] ;

(b) V(x +y)- V(x) < M[x, y] + o(\]y\\), x, x + y E B(x0, b);

(c) M[x, \y] < XM [x, y], X > 0, x E B(x0, b), y G E;

(d) M[x,yx +y2] <M[x,yx] + N\\x\\\\y2\\,N>0,x EB(x0,b),yx,

y2EE

(e) M[x-y, f(t, x) - f(t, y)] < g(t, V(x ~y)),x,yEF0,tE[t0,t0+a].

The construction of a sequence of approximate solutions for (2.1) and the

proof that the limit function, when it exists, is a solution of (2.1) is assured by

the following results.

Lemma 2.1. Suppose that assumptions (Ax) and (A2) hold.  Let {en} be

a sequence of numbers such that en G (0, 1) and lim^^.« e„ = 0. 77ze« for each
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DIFFERENTIAL EQUATIONS ON SUBSETS OF BANACH SPACE 105

positive integer n, problem (2.1) has an en-approximate solution xn from

[t0, t0 + a] into B(x0, b) in the following sense:  There exists a nondecreasing

sequence {t¡} in [tQ,t0 + a] such that

(i)  tn0 = t0,t"<t"+x ift"<t0 +a, fi+x - tf <e„ and lim t¡ = t0 +a;

(ii) xn(t0) = xQ and \\xn(t) -x„(s)\\ <M\t - s\, t,se[i0,f0+a];

(iii) xn(t") G F0 and xn(t) is linear on [t¡, ti+x] for each i;

(iv) ift"<t0+a and tE(tn, tn+x), then \\x'n(t) -f(tn, xn(tn))\\ < e„;

(v)  if(t, y) E [t", tn+x] x F with \\y - xn(tn)\\ < (t"+x - f¡)M, then

Wf(t,y)-f(t1,xn(tn))\\<en.

Lemma 2.2. Suppose that the assumptions of Lemma 2.1 hold and that

limn_i.00 xn(f) = x(t) for each tE [t0,t0 + a]. Then x(t) is a solution for prob-

lem (2.1)on [t0,t0 +a).

For a proof of Lemmas 2.1 and 2.2 see [4].

Lemma 2.3. Let g G C[R+ x R+, R] and let the maximal solution r(t)

of the scalar differential equation

(2.4) "' = g(t, u),   u(t0) = u0>0,      t0ER+,

exist on [t0, °°). Suppose that [t0,tx] C R+.   Then there exists an e0 > 0

such that for 0 <e <e0, the maximal solution r(t, e) of

u = g(t, u) + e,   «(r0) = «0 + e,

exists on [t0, tx ] and lime_>00 r(t, e) = r(t) uniformly on [t0, t,].

Theorem 2.1. LetgEC[R+ x R+, R],mEC[R+,R+] andDm(t)<

g(t, m(t)), t E [t0, °°) - S, where S is a countable subset of [t0, °°) and D is any

one of the DM derivatives.  Suppose that the maximal solution r(t) of (2.4)

exists on [t0, °°) and m(t0) < uQ.   Then m(t) < r(t), t>t0.

For a proof of Lemma 2.3 and Theorem 2.1 see [1, pp. 13, 15].

Theorem 2.2. Let m(t) >0be right continuous on [t0, °°) with isolated

discontinuities at tk, k = 1,2, ... ,tk> t0, such that \m(tk) - m(tk)\ < Xk,

where 2^=1 Xfc is convergent.  Let g E C[R+ x R+, R], g(t, u) nondecreasing

in u for each t, and

Dm(t)<g(t,m(t)),   tE[tk,tk+x],      k = 0,1,2,...

77ze?T7 TTî(r0) < uQ implies that

/77(0 < rlt, t0, u0 +   ¿  Xk),      t> t0,

\ k=l    I
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where r(t, t0, u0) is the maximal solution of (2 A) existing on [f0, °°).

Proof.  By Theorem 2.1, we have

(2.5) m(t)<rQ(t),     tE[t0,tx),

and 777(f) < rx(t), t G [tx, t2), where r0(t) and rx(t) are the maximal solutions of

(2.6) u'=g(t,u),

starting at (t0, m(t0)) and (tx, m(tx)) respectively. Since m(tx) < (tx) + Xx and

r[(t) <g(t, rx(t)), by Theorem 2.1, it follows that m(t) <rxx(t), t E [tx, t2),

where rxx(t) is the maximal solution of (2.6) through (tx, m(tx) + X,). By (2.5),

m(tx) < r0(tx ) and therefore, again applying Theorem 2.1, we get m(t) < rx2(t),

t E [tx, t2), whererx2(t) is the maximal solution of (2.6) through (tx,rQ(tx) + X,).

Define a function p0(t) as follows:

r0(t) + Xx,     tE[t0,tx],

Po(0 =
rl2(t), t E [tx, t2).

Note that pQ(t) is well defined. Now, by the monotonicity of g(t, u),

PÓO = '0(0 = *(f> 'o«) <S(t, r0(t) + Xx) = g(t, p0(t)),      tE[t0,tx],

and

P0(t) - r'x2(t) = g(t, rX2(t)) = g(t, p0(t)),      tE[tx, t2).

Hence p'0(t) <g(t, p0(t)), t E [r0, t2), which yields, by Theorem 2.1,

p0(t)<R0(t),     tE[t0,t2),

where R0(t) is the maximal solution of (2.6) with R0(tQ) = m(t0) + Xx. Clearly

m(t) < p0(t) <R0(t), t G [r0, t2). Proceeding in the same way and arguing as

before, we obtain 777(f) < Rx(t), t E [t0, t3), where Fj(f) is the maximal solution

of (2.6) through (f0,777(f0) + Xx + X2). It therefore follows, repeating the

arguments successively,

mi(t)<r(t,t0,m(t0)+  Z x/c).     f>*o«
k=l

where r(t, f0, w0) is the maximal solution of (2.4) and the proof is complete.

To prove an existence result in a general case, it becomes necessary to con-

struct an appropriate sequence of right continuous functions with isolated discon-

tinuities and then employ Theorem 2.2. The next lemma serves this purpose but

employs (As) since (A4) is not strong enough.
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Lemma 2.4. Let m, n be positive integers and let the sequence {tk} be

the minimal refinement of the sequences {/"}, {t-"}. Assume that (Ax), (A2),

(A3), and (As) hold.  Then there exists a sequence of functions {yp} from

[t0, t0 + a] into B(x0, b) satisfying the following properties:

(i)  \\yp(t) - x0|| <M(t - /0) and \\yp(t) -yp(s)\\ <M\t - s\, t, s E

[tk,tk+x],m<p<n;

09 yp(tk+i)eFo>P = m>n>

(in) for all but a countable number of t E [tk, tk+x),y'p(t) exists such

that

M[yn(t)-ym(f),y'n(t)-y'm(t)]

<g(t, V(yn(t)-ym(t)))+(l +m\y„(t)-ym(t)\\)(en+em);

(iv) ift", tj"<tk< tk+x <tn+x, tp+x, then

(a) yÁtk+x) = xn(tk+x)   iftk+x=t?+x,

yn(.(k+1 )=yn({k+1 ) iftk+i<t?+i,

and \\yn(t) - xn(t)\\ < 3(i - t")e„, t E [tk, tk+x);

... ym^k+1 ) = xm({k+1 )    *ftk+l=t?+l>

ym(tk + l)=ym(tk+l)    '/'*+l <#1'

and \\ym(t) - xm(t)\\ < 3(t - tpem, t E [tk, tk+x);

(v) \\yp(tf+1) - yp(t?+ ,)ll < 3(tf+ j - tf )ep, p = m,n, i being an
integer.

This lemma is an extension of Lemma 1 in [4] and consequently we only

indicate changes in the proof.

Proof. Let A: be a nonnegative integer and suppose that yp(t), p = n, m,

is defined on [r0, tk] satisfying the properties on [/0, tk]. To show that yp(t)

can be suitably extended to [t0,tk+x], we define inductively the sequence {s }

and.yp(r) on [tk,sq + x] as follows:  if sq = tk+x, then sq + x = tk+x and if

sq < tk+x, we let sq+j = s9 + 7^ where yq > 0 is such that

0) sq+yq<tk+x;

(2) d[yp(sq) + yqf(sq, yp(sq)), F] < yqepl2,     p = m, n;

(3) M[(y„(sq) + x) - (ym(sq) + y), f(sq,yn(sq)) - f(sq,ym(sq))]

<g(sq + o, V(yn(sq) + x -ym(sq) -y)) + en+em,

whenever ||x||, ||^|| <yqM and 0 < a <ya.

(4, yq is the largest number satisfying (1) to (3).

The condition (A2), (a) and (e) of (As) imply that yq > 0.  Using (2), for

p = m, n, let yp(sq + x)EF such that

(2.7)    \\yp(sq) + (sq+x - sq)f(sq, yp(sq)) -yp(sq+x)\\ < (sq+x - sq)ep,
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and for f E(sq,sq + X) define

(2.8) yp(t) = [(f - sq)yp(sq + x) + (sq + x - t)yp(sq)](sq+x -sq)~l.

It is easy to see that yp(sq + x) G F0, \\yp(t) -yp(s)\\ <M\t - s\, and

\\yp(t)-x0\\<M(t-t0),t, sE [tk,sq + x). Thus (1) holds for f G [tk, sq + x).

Moreover, by (2.7) and (2.8), it follows that

(2.9) \\y'p(t) - f(sq,yp(sq))\\ <ep,      tE (sq, sq + x).

Since ||yp(t) -yp(sq)\\ < yqM and |f - sq\ < yq, we get from (2.9), (3) and

(d)of(A5),

M[yn(t)-yn(t),y'ÁO-y'm(.0]

<M[yn(t) -ym(t), f(sq, yn(sq)) - f(sq, ym(sq))]

+ m\yn(t)-ym(t)\\(en+em)

<g(t, V(yn(t) - ym(t))) + (1 + N\\yn(t) - ym(t)\\)(en + em),

for f G (sq, s +,). Hence (iii) is true for f G [tk, sq +,). The rest of the proof

is very much the same as the proof of Lemma 1 in [4] with appropriate changes.

In particular (x, y)+ has to be replaced by M[x, y]. We therefore omit the

remaining details.

Finally we need the following result which relates M[x(t), x'(t)] to

D+ V(x(t)) for any differentiable function x(t). This is required relative to con-

dition (As).

Lemma 2.5. Assume (A5). Let x(t) be any differentiable function on

[t0,t0 + a] into B(x0, b).  Then

D+ V(x(t)) <M[x(t), x'(t)],      f G [f0, f0 + a].

For a proof of this lemma and use of assumptions like (As) see [6, pp. 142,

144].

3. Main existence results. We begin with a simple but illustrative existence

result which is in the spirit of Wazewski [5].

Theorem 3.1. Assume that conditions (AX),(A2) and (A3) hold. Suppose

further that for t G [t0,t0 + a], x, y G F0,

(3.1) ||/(f, x) - f(t, y)\\ <g(t, \\x - y\\),

and g(t, u) is nondecreasing in u for each t.   Then problem (2.1) has a unique

solution on [t0 ,t0+a].

Proof. Let tî, ttî be positive integers and let 777(f) = \\xn(t) - xm(f)||,

f G [f0, f0 + a].  If f G (tn, tn+x) n (tj", tj"+l), then
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D+«2(o<iix;(/)-x;(oii

< m. *„('?» - /& xm(tp))w + \\f(t, xB(ff)) - fit?, *„(/r))ii

+ \\f(t, xm(tp) - f(t?,xm(Ç))\\ + \\x'n(t) - f(t», xn(t?))\\

+ \\x'm(t)-f(t¡",xm(t¡"))\\.

By (iv) of Lemma 2.1 and (3.1), we get

(3.2) D+m(t) < g(t, ![*„(*?) - xm(tp\\) + 2(en + em).

Now using (i) and (ii) of Lemma 2.1, we see that

IWP -*m('f )ll < Uxn(tï)-Xn(t)\\ + \\xn(t) -Xm(t)\\

(33) +\\xm(tr)-xm(t)u

<M(e„+em) + \\xn(t)-xm(t)\\.

Inequality (3.2) yields, in view of the monotony of g(t, u) in u and (3.3),

D+m(t) <g(t, m(t) + ßm>n) + 7jm „,

where ßm.n = M(en + O and V« = 2(en + em>-   Setting KO = m(t) + ßmn,

we have D+v(t) <g(t, v(t)) + "t\mn. This inequality holds for all but a countable

number of t G [t0, t0 + a]. Also, v(t0) = ßmn. Hence by Theorem 2.1, we

have

m(t) <v(t)<rmn(t),      tE[t0,t0+a],

where rm n(t) is the maximal solution of«' = g(t, u), u(t0) = ßmn- Since

ßm,n> Vm.n ~* ° as "' m ~* °°' we see> bv Le1111113 2.3, that lim„ „,_,„, rmn(t)

— r(t) uniformly on [t0, t0 + a], where r(t) is the maximal solution of (2.2).

By (A3) it follows that m(t) = 0 on [/0, t0 + a], as «, m -*■ °°. Thus the

sequence [xn(t)} is uniformly Cauchy on [t0, t0 + a] and the existence of a

solution for problem (2.1) follows by Lemma 2.2. The proof of uniqueness of

solutions is standard. Hence the proof is complete.

The improvement of (3.1) even to

lim sup |[||x - y + [f(t, x) - f(t, y)] || - ||x - y\\] <g(t, \\x - y\\),
h-*0 +

for x, y E F0 and t G [t0, t0 + a], creates several difficulties that demand

additional assumptions. In view of this, we wish to utilize better candidates than

||x - y\\. Consequently, the results that follow employ Lyapunov-like functions

and the theory of differential inequalities in a variety of ways.

Theorem 3.2. Suppose that assumptions (Ax) to (A4) hold.  Then the

convexity of F0 implies that problem (2.1) has a unique solution on [t0,t0 +a].
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Proof.  The convexity of F0 implies by (iii) of Lemma 2.1 that xn(t) E F0

for all f G [f0, f0 + a]. Let m, n be positive integers and let

7t2(f) = V(t, xn(t), xm(t)), tE[t0,t0+a].

If f G (tn, t"+x) n (tj", iy+i), then using the Lipschitzian character of V, we

have

D+m(t) < lim sup jfV(t + h, xn(t) + hf(t, xn(t)), xm(t)
7l->-0 +

(3 + hf(t, xm(t))) - V(t, xn(t), XJM

+ L[\\x'n(t) - f(t, x„(t, xn)))\\  + \\x'm(t) - f(t, xm(t))\\].

Since ||jc„(f) - xn(t")\\ < M(t - t"), by (iv) and (v) of Lemma 2.1,

K(t) -fit, xtt(t))\\ < \\x'n(t) -f(tf,xn(t"))\\

+ UW,xn(t?))-f(t,xn(t))\\

<2e„.

Similarly ||x^(r) - /(f, xm(0)ll < 2em. Consequently, we get, because of (2.3)

and (3.4), the different inequality

D+m(t) <g(t, m(t)) + 2L(en + em),

which is true for all but a countable number of f G [t0, t0 + a]. Since m(tQ)

= 0, Theorem 2.1 gives

™(0 < rn,nSt> f0> 0).       * G [?0' 'o + fl] •

where rnm(t, t0, 0) is the maximal solution of u' = g(t, u) + 2L(en + em),

u(t0) m 0.  By Lemma 2.3, lim„ „,_„ rnm(t, t0,0) = r(t, t0, 0) uniformly on

[f0, f0 + a], where r(t, f0, 0) is the maximal solution of (2.2). But by (A3),

r(t, f0, 0) = 0 on [f0, f0 + a]. It therefore follows that

lim     V(t,xn(t),xm(t)) = 0

and consequently by (A4), the sequence {xn(t)} is uniformly Cauchy on

[f0, f0 + a]. Hence problem (2.1) has a solution on [f0, f0 + a).

To prove uniqueness, if x(t) and/(f) are two solutions of (2.1), we let

7T7(f) " Ht, x(t),y(t)) to obtain

D+ T77(i) < i(t, 777(f)), tE[t0,tQ+a].

The fact m(t0) = 0 implies, by Theorem 2.1, that 7n(f) < r(t, f0, 0), f G

[f0, f0 + a] where t(í, tQ, 0) is the maximal solution of (2.2) which is identi-

cally zero by (A3). Thus T77(f) - 0 on [f0, f0 + a] and this completes the proof

of Theorem 3.2.
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The assumption F0 is convex was crucial in the proof of Theorem 3.2. In

general, we have to use different approaches.

Theorem 3.3. Let assumptions (Ax) to (A4) hold except that condition

(2.3) in (A4) is replaced by

Urn sup ^[V(t + h, x + hf(t, xx), y + hf(x, yx)) - V(t, x, y)]

(3.5)     "^0+
<g(t, V(t, x, y)) + P(\t -s\ + ||x -xx\\ + ||v -yx\\),

for s, t E [tQ, t0 + a], x, y EF and xx,yx E FQ, where p: R+ -*■ R+ is non-

decreasing and lim^o p(u) = 0. Then problem (2.1) has a unique solution on

['o. to + «)•

Proof.  Let n, m be positive integers and let m(f) = V(t, xn(t), xm(t)),

t E [t0, t0 + a]. If tE (tn, tn+x) n (Ç, tf+x), using the Lipschitzian character

of V, Lemma 2.1(iv), and (3.5), we get

D+m(t) < lim sup ±[F(f + h, xn(t) + hf(tn, xn(tn)), xm(t)

h-<-0 +

+ hf(tf,xm(tf)) - Vif, xn(t),xm(t)))\ + L(en + em)

<g(t, m(t))+p[\t" - tf | + ||x„(i) -xn(tn)\\ +\\xm(t)-xm(tj,)\\]

+ L(en+em).

Since \tn -t?\<en+em, \\xn(t) - xn(tn)\\ < Me„ and ||x„(i) - xm(/ym)||

< Mem, and p(u) is nondecreasing in u, we have

D+m(t)<g(t,m(t))+ ßmiH,

where K,n = PÍO + ^)(e„ + em)] + L(en + em). Notice that lim„ m^.<x> ßnm

= 0 in view of the property of p(«), we proceed as in the corresponding part of

the proof of Theorem 3.2, to complete the proof as before.

Theorem 3.4. Let assumptions (A,), (A2), (A3) and (A5) hold and let

g(t, u) be nondecreasing in u for each t E [r0, r0 + a]. Then problem (2.1)

has a unique solution on [t0, t0 + a].

Proof. Let m, n he positive integers and let m(t) = V(yn(t) - ym(t)) for

/ G [t0, t0 + a], whereyp(t) are the functions constructed in Lemma 2.4. Using

Lemma 2.4(iii) and Lemma 2.5, we have

D+m(t) <M[yn(t) -ym(t),y'n(t) -y'm(t)]

<g(t, m(t)) + (1 +N\\yn(t) -ym(t)\\)(en + em),

for t E [tk, tk+x). Also, \\yn(t) -ym(t)\\ < 2(b + \\xQ\\) = L.  Moreover, for

each k > 1,

\m(tk) -m(tk)\ <L[\\yn(tk) -yn(tk)\\ + \\ym(tk) -ym(tk)\\].
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Hence, in view of (iv) and (v) of Lemma 2.4, we obtain

¿ |m(ffc) - m(ffc-)| < 3L\£(t?+x - t1)en + ¿('£1 - '/>
k=l \J=0 /=0

<3La(en+em) = nmn.

Furthermore, m(t0) = 0. An application of Theorem 2.2 yields

mO < rm,n(t. *o> nm,„),       t G [f0, t0+a],

where rmn(t, t0, uQ) is the maximal solution of

u' = g(t, u) + (L + l)(em + e„),   u(t0) = T?m„.

As before, we can conclude by Lemma 2.1, (A3) and (As),

»m  \\yn(t)-ym(t)\\ = o
n,m-*"

and this implies by Lemma 2.4(iv) that limn „¡^Jhxjf) — xm(f)|| = 0. Hence

{x„(t)} is uniformly Cauchy on [f0, f0 + a] and the proof is complete.

Remarks.   In the boundary condition (A2), "lim" may be replaced by

"lim inf". Similarly, in (A4), one could employ other generalized derivatives

D~ V, D_ V and D+ V in place of D+ V. The proofs work without any difficulty.

However, we need conditions (A2) and (As) as stated, both of which are used in

Theorem 3.4.

Consider the special case V(t, x, y) = |)jc - y||. Condition (2.3) becomes

lim sup |[||* - y +h[f(t, x) -f(t, y)] || - ||x - y\\] <g(t, \\x - y\\),
h-*0 +

which is clearly satisfied when one assumes Perron's type uniqueness condition

(3.1) in Theorem 3.1.

Let F* be the dual space of F and let J: E -* 2E* be the duality map

defined by

/(*) = [x*EE*: ||;c*|| = M andx*(x) = ||jc||2].

For each jc, y E E define the generalized pairings

(x, y)_ = inf[**(x): x* E J(y)]    and   (x, y)+ = sup[**(;c): x* E J(y)].

If x, y, z E E, we have

(x+y,z)± <(x,z)± +\\y\\\\z\\.

Also, if x(t) is a differentiable function on [tQ, t0 + a] and 772(f) = ||x(f)||2,

then £rm(f) < 2(x'(f), x(t))_ and D+m(t) < 2(x'(t), x(t))+.  Consequently,

the assumptions (f(t, x) - f(t, y), x - y)± < L\\x - y\\2 imply that the choice

V(t, x, y) = \\x - y\\e~2Lt is admissible in Theorems 3.2 and 3.3 with g(t, «)= 0

-
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and DA V(t, x, y). For Theorem 3.4 we take V(x) = \\x\\2 and M[x, y] = (x, y)+

so that (As) is satisfied since (x, y)+ is upper semicontinuous. These considera-

tions show that our results contain Theorems 1, 2 and 3 in [4] which in turn

include many earlier results.
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