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1 Introduction

Multiloop massive sunrise and watermelon integrals (see figure 1) are ubiquitous in various

physical applications. Being seemingly simple, they, in fact, bring with themselves a lot of

complexity in any calculation. The reason is that their ε-expansion can not be expressed in

terms of the standard functional basis, viz., multiple polylogarithms [1, 2]. Already starting

from two loops one observes complicated iterated integrals involving modular forms and/or

elliptic curves [3, 4]. For L loops, the ε expansion of massive sunrise integrals is likely to

involve periods of certain (L− 1)-dimensional Calabi-Yau varieties (cf. refs. [5, 6]).

For the general case of different masses the closed expressions for these integrals are

known since ref. [7] (see also ref. [8]) in terms of Lauricella functions F
(L)
C defined via mul-

tiple hypergeometric series. Although these functions have a long history of investigation,

starting from [9], and much is known about their properties, still many questions remain

unanswered. In particular, the functions which appear in coefficients of their expansion in

the Laurent series in parameters are not well investigated. Meanwhile, these coefficients

are the most important from the point of view of multiloop calculations. From the purely
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mathematical point of view, among the four flavors of Lauricella functions FA, FB, FC ,

and FD, the functions F
(L)
C are the only ones for which the differential system in Pfaffian

form is not yet known for L > 2.

In the present paper we derive the Pfaffian system of the differential equations for the

L-loop watermelon and sunrise graphs with arbitrary masses regularized both dimensionally

and analytically. Similar to refs. [7, 8], we find the fundamental system of solutions in terms

of the Lauricella functions F
(L)
C with generic parameters and arguments. In this way, our

results give a Pfaffian system for Lauricella F
(L)
C for all L, to the best of our knowledge,

for the first time.1

In addition to the differential system, we also derive the operators shifting dimension

or the powers of denominators. From the point of view of F
(L)
C functions these operators

provide a certain form of the contiguity relations. Near D = 1 we reduce the differen-

tial system to canonical form which allows one to obtain the coefficients of expansion in

dimension and analytic regulators in terms of the Goncharov’s polylogarithms.

Last but not least, we observe that the matrix in the right-hand side of the obtained

differential system has special features which result in the existence of the bilinear relations

for the solutions of the systems that differ in the sign of the right-hand side (cf. ref. [11]).

Combined with the shift operators, these relations allow us to obtain the infinite set of the

quadratic relations for the coefficients of expansion in dimension and analytic regulators

near any integer point, including the most interesting case of even D.

2 Differential equations in Pfaffian form

We consider the L-loop watermelon integral, figure 1, with different masses and powers of

denominators (exponents),

T (m0, . . . ,mL) = 2D−1iπD/2Γ

(
D

2

)∫
δ

(
L∑
l=0

pl

)
L∏
l=0

[
dDpl
iπD/2

mlΓ (αl)(
m2
l − p2

l − i0
)αl
]
. (2.1)

Here we imply the Lorentzian signature, so that p2 = p2
0− p2. Note that we have chosen a

somewhat unconventional overall normalization factor 2D−1Γ
(
D
2

)∏
lmlΓ (αl) in order to

simplify some expressions below.

Before moving any further let us discuss the applicability of our present consideration

to the sunrise integral

S(m0, . . . ,mL|q2) = 2D−1iπD/2Γ

(
D

2

)∫
δ

(
q +

L∑
l=0

pk

)
L∏
l=0

[
dDpl
iπD/2

mkΓ (αl)(
m2
l − p2

l − i0
)αl
]
.

(2.2)

1For the case L = 2 a Pfaffian system was found in ref. [10].
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Figure 1. L-loop two-point massive tadpole. Each line corresponds to the propagator with arbi-

trary mass and power.

The obvious relation between S and T is S|q2=0 = T . However, we can also represent the

(L− 1)-loop sunrise integral as an L-loop watermelon integral with one cut line:

(m0)D−1S(m1, . . . ,mL|m2
0) = 2D−2iπD/2−1Γ2

(
D

2

)
×
∫
δ

(
L+1∑
l=0

pk

)
dDp0

iπD/2

[
m0

m2
0 − p2

0 − i0
− m0

m2
0 − p2

0 + i0

]

×
L∏
l=1

[
dDpl
iπD/2

mkΓ (αl)(
m2
l − p2

l − i0
)αl
]
, (2.3)

where m0 =
√
q2. The two terms in square brackets on the last line correspond to two

different deformations of the integration contour over p0
0. As the differential system we are

looking for is not aware of the integration contours, it is clear that mD−1
0 S(m1, . . . ,mL|m2

0)

satisfies the same differential equations as T (m0, . . . ,mL) with α0 = 1. Therefore, in the

rest of the paper we will concentrate on the watermelon integral T only.

After the Wick rotation we can rewrite eq. (2.1) as

T = 2D−1πD/2Γ

(
D

2

)∫
δ

(
L∑
l=0

pk

)
L∏
l=0

[
dDpl
πD/2

mkΓ (αl)(
p2
l +m2

l

)αl
]
, (2.4)

where now p2 = p2
0 + p2. Representing the function δ(p) as

∫
dDx

(2π)D
eipx, we obtain

T =

∞∫
0

dxxD−1
L∏
l=0

∫
dDp

πD/2
mkΓ(αk)e

ipx

(p2 +m2
k)
αk

=

∞∫
0

dxxD−1
L∏
l=0

P0(µk,mk, x) . (2.5)

As we shall see immediately, the integral
∫ dDp
πD/2

mΓ(α)eipx

(p2+m2)α
depends on D and α only via

the combination µ = D − 2α+ 1 and we have, therefore, introduced

P0(µ,m, x) = mΓ(α)

∫
dDp

πD/2
eipx

(p2 +m2)α
= m

∞∫
0

dλλα−1

∫
dDp

πD/2
eipx−λ(p

2+m2)

= m

∞∫
0

dλλ
1−µ
2
−1e−λm

2−x
2

4λ = 2m
( x

2m

) 1−µ
2
Kµ−1

2
(mx) . (2.6)

Here Kν(y) is the Macdonald function.
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In order to derive the differential equations for this integral, we introduce the set of

2L+1 functions labeled by a binary number (a string of zeros and ones) a = a0a1 . . . aL,

Ta (D,µ,m) =

∞∫
0

dxxD−1ta , (2.7)

where

ta =

L∏
l=0

Pal(µl,ml, x) , (2.8)

P0 is defined in eq. (2.6), and

P1(µ,m, x) =
1

m
∂xP0(µ,m, x) = −x

2

∞∫
0

dλλ−
1+µ
2
−1e−λm

2−x
2

4λ

= −2m
( x

2m

) 1−µ
2
Kµ+1

2
(mx) . (2.9)

The original integral (2.4) is recovered as T = T0 (D,µ,m). The rationale behind introduc-

ing auxiliary 2L+1−1 functions is that it turns out to be possible to derive a closed system

of linear differential equations for Ta. Note that all components of Ta can be expressed via

T with shifted dimension and indices:

Ta(D,µ) =
∏
l

(
−1

2ml

)al
T (D → D + |a|, µl → µl + 2al)

=
∏
l

(
−1

2ml

)al
T (D → D + |a|, αl → αl + |a|/2− al) , (2.10)

where |a| =
∑

l al. It is convenient to treat the 2L+1 quantities Va as components of the

vector V in C2 ⊗ . . .⊗ C2︸ ︷︷ ︸
L+1 factors

, where Va can be either Ta or ta. In what follows, we assume

that the factors in C2⊗. . .⊗C2 are numbered starting from zero, so that, e.g., L-th factor is

the right-most one. Besides, to lighten notation we often omit the arguments of functions.

In order to derive the differential system for Ta we differentiate P0,1(µ,m, x) with

respect to m and use the differential equation for Kν(y). We obtain

m∂mP0 = mxP1 + µP0 ,

m∂mP1 = mxP0 . (2.11)

In matrix notations we may rewrite this as

m∂mP = (mxσ + µn̄)P , (2.12)

where P =

(
P0

P1

)
, σ = σx =

(
0 1

1 0

)
, and n̄ = 1− n = 1

2(1 + σz) =

(
1 0

0 0

)
.

Using these formulae, we see that the expression for the derivative of T , in addition to

T multiplied by a matrix, contains the integrals of the form
∫∞

0 dxxD t. Note the additional
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factor x in the integrand as compared to the definition (2.7). In order to get rid of this

factor, we consider the identity
∫
dx∂x(xDt) = 0. Explicitly differentiating and using the

relation

x∂xP = (m∂m − µ)P = (mxσ − µn)P , (2.13)

which, again, follows from the differential equation for Kν , we obtain

∞∫
0

dxxD−1 (xM −W ) t = 0 . (2.14)

Here

M =

L∑
l=0

mlσl , W =

L∑
l=0

µlnl −D , (2.15)

and the operators σl and nl act in l-th factor of C2 ⊗ . . . ⊗ C2 as σ and n, respectively.

Therefore,
∞∫

0

dxxD t = M−1W T (2.16)

whenever M−1 exists. Since the operators σl commute with each other and their eigenvalues

are ηl = ±1, the eigenvalues of M are
∑

l ηlml. Therefore, M is not invertible iff∑
l

ηlml = 0 (2.17)

for some choice of signs ηl.

Thus, using eqs. (2.12) and (2.16) we obtain the following expression for the derivative

of T with respect to mk

∂mlT = AlT, Al = σlM
−1W +

µln̄l
ml

. (2.18)

Equivalently, the above equations can be written as

dT = AT , (2.19)

A =

L∑
l=0

Aldml = dM M−1W +

L∑
l=0

µln̄l
dml

ml
. (2.20)

Remarkably, the differential form A is closed (dA = 0) which can be easily proved if one

takes into account the pairwise commutativity of σl. Then the integrability condition

dA = A∧A requires that A∧A = 0, see appendix A for the derivation. The system (2.19)

equipped with the condition dA = 0 is said to be in Pfaffian form. We observe that all

singularities of the differential form A are located on the L + 1 hyperplanes defined by

ml = 0 and 2L hyperplanes defined by eq. (2.17) (cf. ref. [11]). The latter hyperplanes

correspond to vanishing of the eigenvalues of the matrix M .
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Let us note that the differential system (2.19) in fact splits into two separate systems,

each for 2L functions Ta with |a| being either even or odd. This due to the commutativity

of A with the parity operator

P = (−1)
∑
i ni =

∏
i

(1− 2ni) . (2.21)

Of course, we are mostly interested in the subsystem for even components which involves

our original tadpole integral T .

3 Shifting exponents and dimension

Let us now obtain the recurrence relations in αk and D. For the former we use the identities

P0 (µ− 2,m, x) = m

∞∫
0

dλλ
1−µ
2 e−λm

2−x
2

4λ = − 1

2m2
(m∂m − 1)P0 (µ,m, x) , (3.1)

P1 (µ− 2,m, x) = −x
2

∞∫
0

dλλ−
1+µ
2 e−λm

2−x
2

4λ = − 1

2m
∂mP1 (µ,m, x) . (3.2)

Then, using eq. (2.18), we have

T (µ− 2el) = Rl (D,µ)T (µ) , (3.3)

where

Rl (D,µ) = − 1

2ml

(
Al −

n̄l
ml

)
= − 1

2ml

(
σlM

−1W +
(µl − 1) n̄l

ml

)
(3.4)

and el = (. . . , 0, 1
l-th
, 0, . . .) is the vector with l-th component equal to 1 and all other

components equal to zero.

Let us now derive the operator which shifts the dimension. Note that the identity (2.16)

defines the operator

R(D,µ) = M−1W , (3.5)

which shifts D by +1 at fixed µ, i.e.

T (D + 1,µ) = R(D,µ)T (D,µ) . (3.6)

In order to obtain the operator which shifts D at fixed α, we should first use the operators

Rl to shift µ → µ − 2 and then shift the dimension by −2 at fixed µ using the operator

R−1. We obtain

T (D − 2,µ− 2e) = R(D,µ)T (D,µ) , (3.7)

where

R(D,µ) = R−1(D − 2,µ− 2e)R−1(D − 1,µ− 2e)

L∏
l=0

Rl

D,µ− 2

L∑
j=l+1

ej

 (3.8)

is the operator which shifts D by −2 at fixed α. Here and below e =
∑L

j=0 ej = (1, 1, . . . , 1)

and the product of matrices corresponds to the multiplication from the left to the right, so

that
∏L
l=0Rl = R0 . . . RL.
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4 Basis of solution space

While the function T as defined in eq. (2.7) is a specific solution of the differential sys-

tem (2.19) and recurrence relations (3.3) and (3.6), it is natural to consider the linear space

of all solutions of these equations. In the present section we fix a basis of 2L+1 functions

in this space. In order to do this, we note that the derivation of the differential equations

and recurrence relations in sections 2 and 3 can be explicitly repeated if some of the Mac-

donald functions Kν are replaced with I±ν
sinπν . More specifically, let us make the following

replacement in the definition of ta, eq. (2.8):

Kµl±1

2

(mlx)→ ∓ σlπ

2 cos πµl2

I
σl
µl±1

2

(mlx) , (4.1)

for all l ∈ S, where S is some subset of E = {0, 1, . . . , L}. Here each σl can be either +1

or −1. Defined in this way, the function Ta formally satisfies the differential and difference

equations (2.19), (3.3), and (3.6). There may be however a problem with the convergence of

the integral over x due to the exponential growth of the modified Bessel functions. For all

masses being positive, the convergence condition is
∑

l∈Sml <
∑

l∈E\Sml. In particular,

E\S should not be empty. Therefore, we take E\S = {0}, i.e. S = {1, . . . , L}, and define

the set of functions

V (ρ) =

∞∫
0

dxxD−1P (µ0,m0, x)⊗
L⊗
l=1

Q(ρl)(µl,ml, x) , (4.2)

Q(ρ)(µ,m, x) =

(
Q

(ρ)
0 (µ,m, x)

Q
(ρ)
1 (µ,m, x)

)
=
π(−1)ρ

2 cos πµ2
2m
( x

2m

) 1−µ
2

(
I(−1)ρ µ−1

2
(mx)

I(−1)ρ µ+1
2

(mx)

)
, (4.3)

where ρ = ρ1ρ2 . . . ρL is a binary number. We assume that ml > 0 and m0 >
∑L

l=1ml, so

that the integrand decays exponentially at large x. Using the identity

Kν(x) =
π(I−ν(x)− Iν(x))

2 sinπν
, (4.4)

we can express T , eq. (2.7), via V (ρ) as

T =
∑
ρ

V (ρ) . (4.5)

The set of functions (4.2) contains 2L functions numbered by the vector ρ. Meanwhile,

the solution space of the differential system (2.19) is 2L+1-dimensional. In order to obtain

the whole set of solutions, we use the symmetry of the differential system related to the

operator P, eq. (2.21). Therefore, we can define functions

V (%0,ρ) =
1 + (−1)%0+|ρ|P

2
V (ρ) , %0 = 0, 1, (4.6)

which are the solutions of the differential system. Note that we have introduced the addi-

tional factor (−1)|ρ| for further convenience. In terms of the components we have

V
(%0,ρ)
a =

1 + (−1)%0+|ρ|+|a|

2
V

(ρ)
a , (4.7)

so that the solutions with %0 = |ρ| (mod 2) have nonzero components with even |a|.

– 7 –
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Together with the different choices of ρ, this gives us 2L+1 solutions of the differential

system (2.19). It is also easy to see that PRl = RlP and, therefore, V (%0,ρ) is also a solution

of the µ-shifting recurrences (3.3). As to the operator R, eq. (3.6), we have PR = −RP
and therefore

V (%0,ρ)(D + 1) = R(D)V (%̄0,ρ)(D) , (4.8)

where we used the notation x̄ = 1 − x. Thus, the functions (4.6) satisfy the relations

shifting D by 2,

V (%0,ρ)(D + 2) = R(D + 1)R(D) V (%0,ρ)(D) , (4.9)

which follow from eq. (3.6).2

Note that our basis functions V (%0,ρ) can be expressed via Lauricella function F
(L)
C

(cf. [7, 8]). This function is defined via the hypergeometric series

F
(L)
C (b1, b2; c1, . . . cL;x1, . . . , xL) =

∞∑
k1=0

. . .
∞∑

kL=0

(b1)∑ ki(b2)∑ kix
k1
1 . . . xkLL

(c1)k1 . . . (cL)kL k1! . . . kL!
, (4.10)

where (a)k = Γ(a + k)/Γ(a) is the Pochhammer symbol. In order to do this we use the

expansion of the modified Bessel function Iν :

Iν(x) =

∞∑
k=0

(x/2)ν+2k

k!Γ(ν + k + 1)
. (4.11)

Substituting this expansion in eq. (4.2) and taking the integral over x with the help of the

identity
∞∫

0

dxxβ−1Kν (x) = 2β−2Γ

[
β + ν

2

]
Γ

[
β − ν

2

]
, (4.12)

we obtain

V
(ρ)
a = 2D−1 (−1)a0 m

−D+
∑L
l=0 µl

0 Γ [b1] Γ [b2]

L∏
l=1

(−1)al Γ [1− cl]
(
ml

m0

)cl+µl−1

2

× F (L)
C

(
b1, b2; c1, . . . cL;

m2
1

m2
0

, . . . ,
m2
L

m2
0

)
, (4.13)

where

cl = 1 + (−1)ρl
µl − (−1)al

2
,

b1 =
D + a0

2
+

1

2

L∑
l=1

[
cl −

µl + 1

2

]
,

b2 = b1 − a0 +
1− µ0

2
. (4.14)

The functions V (%0,ρ) can be obtained from eq. (4.13) with the help of eq. (4.7).

2Note, that we can also construct 2L+1 functions which satisfy (3.6), e.g., by taking V (ρ) = V (0ρ) +V (1ρ)

and (V (0ρ) − V (1ρ))g(D), where g is any antiperiodic function of D, i.e., g(D + 1) = −g(D).

– 8 –
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Note that

V
(1...1)

0...0 ∝ m−L−D+
∑L
l=0 µl

0

[
L∏
l=1

ml

]
FC(b̃1, b̃2; c̃1, . . . c̃L;x1, . . . xL) , (4.15)

where xl = (ml/m0)2 and the parameters

c̃l =
1

2
(3− µl) , b̃1 =

D

2
+

1

2

L∑
l=1

[1− µl] , b̃2 = b̃1 +
1− µ0

2
(4.16)

are generic for generic µ and D. Therefore, V
(1...1)

0...0 is proportional to F
(L)
C with generic

parameters. Recall that the system (2.19) splits into two subsystems, for even and odd

components. Thus, we see that the subsystem of 2L equations for even components gives

a Pfaffian system for Lauricella F
(L)
C .

5 Bilinear relations and expansion near integer D and µ

The fundamental matrix of the differential system (2.19) can be written in the form of

path-ordered exponent

U(D,µ,m) = Pexp

[∫
C
A

]
, (5.1)

where C is some path in L + 1-dimensional space of mass parameters starting from some

fixed point m0 and ending in m.3 Note that A is linear homogeneous in D and µ which,

for the expansion near D = µ = 0, corresponds to a certain generalization of the canonical

form of ref. [12] to the case of analytical regularization. Thanks to this property, the

expansion around the point D = µ = 0 has the form

U(−2ε,−2τ ,m) =
∑

n>0,k>0

Cn,k(m)εn
∏
l

τkll , (5.2)

where the coefficients Cn,l(m) are the iterated integrals expressed in terms of the Gon-

charov’s polylogarithms [1, 2].

Let us note that the recurrence relations obtained in the previous section allow us to

express via the same polylogarithmic functions also the expansions near any integer D and

even µ. In particular, we can do it for the expansion near any odd integer value of D and

integer exponents α.

In the points where at least one of µl is an odd number, the recurrence relations can not

be used to express the corresponding expansion via polylogarithms. However, as we shall

see soon, they can be used to obtain the quadratic relations for the expansion coefficients,

see figure 2. These relations are closely related to the ones described in ref. [13] in the case

when matrix A is symmetric and proportional to ε or ε+ 1/2.

3Note that the matrix A has singularities when either detM = 0 or ml = 0. Naturally, the path C
should not intersect the singular locus of A, and, therefore, U depends not only on the end points m0 and

m, but also on the equivalence class of C.
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µ1

µ2

1

1

Figure 2. µ1 − µ2 plane at fixed integer D. The quadratic relations exist near any marked point

(disk, circle or square). Solid disks correspond to the points where, in addition, the expansion can

be expressed via polylogarithms. Depending on whether D is even or odd, the disks correspond to

half-integer or integer powers of the propagators. When D is even, integer powers of propagators

correspond to empty squares.

In order to obtain these relations, we first note that the matrix A(D,µ) has the

following symmetry

AᵀW = WA. (5.3)

Let F± be the two solutions of the equations

dF± = ±AF± . (5.4)

Then, from eq. (5.3) it follows that the bilinear form F T−WF+ is independent of m:

d(F ᵀ
−WF+) = −F ᵀ

−A
ᵀWF+ + F ᵀ

−WAF+ = 0 . (5.5)

Now we note that A(−D,−µ) = −A(D,µ) and, therefore, F−(D,µ) obeys the same

equation as F+(−D,−µ). So, given two solutions T1,2(D,µ,m) of eq. (2.19), we can

construct the conserved bilinear form

T ᵀ
1 (−D,−µ,m)W (D,µ)T2(D,µ,m) = C12(D,µ) , (5.6)

where C12(D,µ) in the right-hand side denotes some quantity which, in general, depends

on D and µ, but not on m.

Now let T1,2 also satisfy the recurrence relations (3.3) and (3.6). Suppose that we are

interested in the expansion near D = D? and µ = µ?, where 2D? and µ?l are integer. Then

we can write

T ᵀ
1 (D? + 2ε,µ? + 2τ ,m)BT2(D? − 2ε,µ? − 2τ ,m) = C12(D? − 2ε,µ? − 2τ ) , (5.7)
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where C12(D,µ) is the same function as in eq. (5.6) and

B = B(D?,µ?| ε, τ ,m) =
L∏
l=0

 µ?l∏
ν=1

Rᵀ
l (D

? + 2ε,−µ? + 2
L∑
j=l

µ?jej − 2νel + 2τ )

 (5.8)

×

[
2D?∏
d=1

R−1ᵀ(D? − d+ 2ε,−µ? + 2τ )

]
W (D? − 2ε,µ? − 2τ ) .

Using the commutation relations derived in the appendix A one can show that B has the

symmetry

Bᵀ(ε, τ ) = (−1)2D?+
∑
l µ
?
l +1B(−ε,−τ ) . (5.9)

When expanded in ε and τ , the identity (5.7) provides a lot of quadratic constraints for the

expansion coefficients of the solutions near D = D? and µ = µ?. Equations (5.6) and (5.7)

are important results of the present paper.

Let us now specialize eq. (5.6) to the case T1 = V (%0,ρ), T2 = V (%̃0,ρ̃). In order to

calculate the constant in the right-hand side, we consider the limit ml → 0 (l = 1, . . . , L)

at fixed m0. In this limit the main contribution comes from the region m0x ∼ 1 and from

eq. (4.13) we see that

V
(%0,ρ)
a (D,µ) = mµ0−D

0

L∏
l=1

mµl
0

(
ml

m0

)µl(1−ρl)+1−δalρl
F , (5.10)

where F is a function of (ml/m0)2, analytic and nonzero at the origin. The value of F at

the origin can be obtained by replacing F
(L)
C → 1 in eq. (4.13). Since we know that the

right-hand side of eq. (5.6) does not depend on masses, it can be nonzero only if ρ̃ = ρ.

Indeed, the power m
µl(ρ̃l−ρl)
l can not be canceled if ρ̃l 6= ρl. Besides, the exponent 1−δalρl in

eq. (5.10) shows that only the contribution of the components with al = ρl (l = 1, 2, . . . , L)

may contribute to the limit ml → 0. Taking the integral over x, we have

V
(%0,ρ)
a0ρ ' δa0%0 (−1)a0 2D−1mµ0−D

0

L∏
l=1

(−1)ρlΓ

[
1

2
(1− µl(−1)ρl)

]
mµlρl

0 m
µl(1−ρl)
l

× Γ

[
1

2

(
D − µ0a0 −

L∑
l=1

µlρl

)]
Γ

[
1

2

(
D + 1− µ0ā0 −

L∑
l=1

µlρl

)]
(5.11)

Using this asymptotics in the left-hand side of eq. (5.6), we fix the right-hand side of

this identity. We find

V (%̃0ρ̃)ᵀ (−D,−µ)W (D,µ)V (%0,ρ) (D,µ) =
1

2
δ%̃0%0δρ̃ρ

[
L∏
l=1

π

cos πµl2

]
× π

sin π
2

(
D − µ0%0 −

∑L
l=1 µlρl

) π

cos π2

(
D − µ0%̄0 −

∑L
l=1 µlρl

) (5.12)

Recall that %̄0 = 1 − %0. Let us note that in ref. [11] some bilinear relations between

Lauricella functions FC have been derived using different methods. It would be interesting

to compare them with eq. (5.12).
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Summing over %0 and %̃0 and using the identity

1

sin x
2

1

cos x−y2

+
1

sin x−y
2

1

cos x2
=

2

cos y2

[
1

sinx
+

1

sin(x− y)

]
, (5.13)

we obtain

V (ρ̃)ᵀ (−D,−µ)W (D,µ)V (ρ) (D,µ) = δρ̃ρ

[
L∏
l=0

π

cos πµl2

] ∑
ρ0=0,1

π

sinπ
(
D −

∑L
l=0 µlρl

) .
(5.14)

Finally, summing over ρ and ρ̃ and using eq. (4.5) we have

T ᵀ (−D,−µ)W (D,µ)T (D,µ) =

[
L∏
l=0

π

cos πµl2

] ∑
ρ0=0,1

. . .
∑

ρL=0,1

π

sinπ
(
D −

∑L
l=0 µlρl

) .
(5.15)

Note that we can obtain the bilinear relation separately for P-even part T+ = 1+P
2 T . In

order to do this, in addition to eq. (5.13), we also use the identity

1

sin x
2

1

cos x−y2

− 1

sin x−y
2

1

cos x2
=

2

cos y2
[cotx− cot(x− y)] . (5.16)

We obtain

T ᵀ
+ (−D,−µ)W (D,µ)T+ (D,µ) =

[
L∏
l=0

π

cos πµl2

] ∑
ρ0=0,1

. . .
∑

ρL=0,1

× π

2
(−1)

∑L
l=0 ρl cot

π

2

[
D −

L∑
l=0

(µl − 1)ρl

]
. (5.17)

6 Special cases when the system acquires a block-triangular form

6.1 Removing analytic regularization

Let us first consider the special case µl = µ = D − 1, which corresponds to the removal

of the analytical regularization. The differential system (2.19) in this case should have a

block-triangular form, corresponding to the decoupling of the trivial “clover-leaf” integrals

arising from the contraction of one of L + 1 lines. In order to see this structure, it is

convenient to pass to the new functions

Y (µ,m) = M T (D,µ,m)

∣∣∣∣D=µ+1
µl=µ

(6.1)

The differential system for these functions has the form

dY = µHY , (6.2)

H = (N − 1)
dM

M
+

L∑
l=0

n̄l
dml

ml
, (6.3)
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where N =
∑L

l=0 nl. Note that eq. (6.2) corresponds to (ε+1/2)-form discussed in ref. [13].

In particular, this form allows one to write down the ε-expansion of the solution near D = 1

in terms of Goncharov polylogarithms (see appendix B for details). Let us observe that

the equations for each of the components

Y10...0, Y01...0, . . . , Y0...01 (6.4)

decouple and acquire the form

dY...01
l
0... = µ

∑
i 6=l

dmi

mi

Y...01
l
0... (6.5)

with the general solution being

Y...01
l
0... ∝

∏
i 6=l

mµ
i . (6.6)

These are just the equations for the clover-leaf integrals. One can check explicitly that

Y10...0, Y01...0, . . . , Y0...01 are indeed evaluated to the corresponding expressions for the

clover-leaf integrals after substitution of eq. (2.7) into eq. (6.1). The simplest way to

check this is to represent Y (µ) as

Y (µ) = lim
D→µ+1

W (D− 1, µ)R−1(D− 1, µ)T (D,µ) = lim
D→µ+1

W (D− 1, µ)T (D− 1, µ) (6.7)

and to note that the corresponding elements of W are vanishing in this limit. Then, only

the pole part of the corresponding components of T (D − 1, µ) have to be evaluated (note

that W is a diagonal matrix).

Let us consider now the homogeneous differential system obtained by putting compo-

nents (6.4) to zero. This is the system for the maximally cut tadpole diagram. It has the

same form (6.2), where now the action of H is restricted to the subspace with

Y10...0 = Y01...0 = . . . = Y0...01 = 0 . (6.8)

Note that in this subspace the operator N − 1 is invertible. From now on to the end

of this subsection, we assume that all operators are restricted to this subspace and that all

vector functions belong to it. Then, using the property

Hᵀ(N − 1)−1 = (N − 1)−1H , (6.9)

and following the same path as in the previous section, we obtain the bilinear constraint

Y ᵀ
1 (−µ,m)(N − 1)−1Y2(µ,m) = const (6.10)

Let us now determine the basis of solutions in the subspace constrained by eq. (6.8). We

define

Y (%0,ρ)(µ,m) = M V (%0,ρ)(D,µ,m)

∣∣∣∣D=µ+1
µl=µ

. (6.11)
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One can check explicitly that 2L+1 − L − 1 such functions with %0 6= |ρ| satisfy the con-

straints (6.8) and, therefore, form the basis we are looking for.4

For two basis functions, Y (%̃0,ρ̃)ᵀ and Y (%0,ρ), using eqs. (5.12) and (6.7), we have

Y (%̃0,ρ̃)ᵀ (−µ) [µ(N − 1)]−1 Y (%0,ρ) (µ) =
1

2
δ%̃0%0δρ̃ρ

(
π

cos πµ2

)L
× π

sin πµ
2 (%0 − |ρ|)

π

cos πµ2 (%̄0 − |ρ|)
. (6.12)

Note that the right-hand side of this identity only makes sense when %0 6= |ρ|, otherwise

the argument of sin function in the denominator becomes zero.

In order to obtain the quadratic relations for the coefficients of ε-expansion near µ = µ?

for some integer µ?, we have to substitute µ = µ? − 2ε in eq. (6.12) and use the relation

Y (%̃0,ρ̃)ᵀ (−µ? + 2ε) = Y (%̃0,ρ̃)ᵀ (µ? + 2ε)

(−1)(L+1)µ?
µ?∏
ν=1

R(2ν − µ? − 2ε)

 , (6.13)

where R(µ) = R(D,µ)
∣∣
D=µ
µl=µ

is the operator of eq. (3.8) restricted to the subspace (6.8).

Note that the quadratic relations obtained by substituting eq. (6.13) into eq. (6.12) are

valid only for the solutions of homogeneous equations. A natural question arises: whether

one can obtain similar relations also for generic solutions of inhomogeneous equations?

Within our approach, the answer is negative. The bilinear relations (5.6) are valid for

any two solutions T1 and T2 even if we put D − 1 = µl = µ. However, in order to

obtain the quadratic relations near any integer point µ = µ? > 0, we have to shift the first

argument in the left factor T ᵀ
1 at least twice by the operator R−1. Then the second operator

R−1(−µ,−µ) does not make sense (since R(−µ,−µ) = −µM−1(N − 1) is not invertible).

6.2 Groups of identical lines

Let us now discuss the case when some lines share the same µ and m. Then we can write

T =

∞∫
0

dxxD−1
K∏
k=0

[P0(µk,mk, x)]rk , (6.14)

where rk is the number of lines with mass mk and parameter µk, so that
∑

k rk = L + 1.

There is a symmetry group G generated by the permutations of lines sharing the same mass

and parameter. This symmetry, in particular, holds for the matrix A in the right-hand

side of the differential system, which now can be written as

A = dM M−1W +
K∑
k=0

µk
2

(rk + 2Szk)
dmk

mk
(6.15)

M = 2

K∑
k=0

mkSxk, W =

K∑
k=0

µk
2

(rk − 2Szk)−D , (6.16)

4In particular, when |ρ| > 2, the function Y (ρ) = M V (ρ)
∣∣
D=µ+1
µl=µ

= Y (0,ρ) + Y (1,ρ) is the homogeneous

solution.
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where

Sxk =
1

2

uk+rk−1∑
l=uk

σxl , Szk =
1

2

uk+rk−1∑
l=uk

σzl . (6.17)

Here uk =
∑k−1

s=0 rs, and the sequence uk, uk + 1, . . . , uk + rk − 1 enumerates the lines in

k-th group. It is remarkable that A is expressed solely via Sxk and Szk which are among

the standard generators of the Lie algebra sl(2,C). We can express via the same generators

other operators which we have used previously, in particular P = iL+1
∏K
k=0 e

−iπSzk .

Note that there is a subtle point here that we want to stress. When all rk are even, the

matrix M obviously has zero eigenvalue and, therefore, is not invertible. Thus the matrix

A is ill-defined. So, from now on we assume that at least one rk is odd, i.e., at least one

group contains odd number of lines.

The symmetry of the matrix A leads to the splitting of the system into separate

subsystems, each corresponding to a specific irreducible representation of G. Since the

tadpole integral (6.14) is invariant under the action of this group, we are mostly interested

in the subspace spanned by the tensors Ta symmetric with respect to all permutations of

indices from this symmetry group.

Alternatively, we can reduce the number of auxiliary functions from 2L+1 = 2
∑
k rk to∏

k(rk + 1) from the very beginning. Namely, we can introduce the functions

Ta =

∞∫
0

dxxD−1
∏
k

(
rk
ak

)1/2

[P0(µk,mk, x)]rk−ak [P1(µk,mk, x)]ak (6.18)

where a = a0 . . . aK and ak runs from 0 to rk, and
(
n
k

)
= n!

k!(n−k)! is the binomial coefficient.

As before, it is convenient to treat the quantities Ta as components of the vector T

in Cr0+1 ⊗ . . . ⊗ CrK+1. Then the operators Sxk and Szk act on k-th factor as usual spin

operators, i.e., the matrices with nonzero elements being

(Sxk)l,l−1 = (Sxk)l−1,l =
1

2

√
l(rk + 1− l) (l = 1, . . . rk) , (6.19)

(Szk)ll = rk/2− l (l = 0, . . . rk) . (6.20)

Again, thanks to the parity operator the differential system consisting of
∏
k(rk + 1) equa-

tions splits into two subsystems corresponding to P = +1 and P = −1, the first involving

components with |a| =
∑

k ak even, the second with |a| odd. Note that since we assume

that at least one rk is odd, the numbers of even and odd components coincide and are

equal to 1
2

∏
k(rk + 1).

Let us now discuss the parameter and dimension shifting relations. Here we have to

take into account that shifting separately each parameter is not compatible with the per-

mutation symmetry. Fortunately, for the dimension shift at fixed αk it is sufficient to have

possibility to shift all parameters simultaneously. Therefore, we need to define the action of

Rk =

uk+rk−1∏
l=uk

Rl

D,µ− 2

uk+rk−1∑
j=l+1

ej

 (6.21)
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on the symmetric subspace. After some transformations we obtain

Rk =

(
i

2mk

)rk
eiπSxk

rk∑
n=0

1

n!

(
µk − 1

mk
S−k

)n 0∏
l=−rk+n+1

R(D − l) , (6.22)

where S−k = Sxk− iSyk = Sxk+[Sxk, Szk] which is the matrix with nonzero elements being

(S−k)l,l−1 =
√

(rk + 1− l)l (l = 1, . . . rk) . (6.23)

Let us now construct the basis of solutions. We remind that we restrict ourselves to

the case when at least one of rk is odd. We assume that r0 is odd. Similarly to section 4,

we want to replace in eq. (6.14) some P0 with Q
(0)
0 or Q

(1)
0 defined in eq. (4.3). Assuming

that m0 >
∑K

k=1 rkmk, for convergence of the integral over x we keep [P0(µ0,m0, x)]dr0/2e

and replace all other P0 with Q
(0)
0 or Q

(1)
0 . Thus we have

V
(ρ0ρ)
0 =

∞∫
0

dxxD−1 [P0(µ0,m0, x)]dr0/2e
[
Q

(0)
0 (µ0,m0, x)

]br0/2c−ρ0 [
Q

(1)
0 (µ0,m0, x)

]ρ0
×

K∏
k=1

[
Q

(0)
0 (µk,mk, x)

]rk−ρk [
Q

(1)
0 (µk,mk, x)

]ρk
, (6.24)

where ρ0 = 0, 1, . . . , br0/2c, ρk = 0, 1, . . . , rk (k > 0), and ρ = ρ1, . . . ρK . Note that

since r0 is odd, we have dr0/2e = (r0 + 1)/2, br0/2c = (r0 − 1)/2. Then there are

(br0/2c + 1)
∏K
k=1(rk + 1) = 1

2

∏K
k=0(rk + 1) functions V

(ρ)
0 . This is exactly the correct

dimension of P-even part of solution space. If we modify similarly other components of Ta
from eq. (6.18), we immediately see that we have exactly 1

2

∏K
k=0(rk + 1) basis vectors also

in P-odd part of solution space, which also coincides with the correct dimension of this

subspace. Note that the components other than T0 involve proper symmetrization within

each group of equivalent lines. For the sake of completeness we present here the result:

V
(ρ0ρ)
a =

∞∫
0

dxxD−1
∑
b0,c0

(dr0/2e
c0

)(
ρ0
b0

)(br0/2c−ρ0
a0−b0−c0

)(
r0
a0

)1/2 (6.25)

×
(
P
dr0/2e−c0
0 P c01

[
Q

(0)
0

]br0/2c−ρ0−a0+b0+c0 [
Q

(0)
1

]a0−b0−c0 [
Q

(1)
0

]ρ0−b0 [
Q

(1)
1

]b0)
(µ0,m0, x)

×
K∏
k=1

∑
bk

(
ρk
bk

)(
rk−ρk
ak−bk

)(
rk
ak

)1/2 ([
Q

(0)
0

]rk−ρk−ak+bk
[
Q

(0)
1

]ak−bk [
Q

(1)
0

]ρk−bk [
Q

(1)
1

]bk)
(µk,mk, x) .

Again, we have the quadratic relations of the form

V (ρ̃0ρ̃)ᵀ (−D,−µ)W (D,µ)V (ρ0ρ) (D,µ) = δρ̃ρC(ρ0, ρ̃0,ρ|D,µ) . (6.26)

If r0 = 1, the function C(ρ0, ρ̃0,ρ|D,µ) in the right-hand side can be easily deduced from

eq. (5.14):

C(0, 0,ρ|D,µ) =

[
K∏
k=0

(
π

cos πµk2

)rk] ∑
ρ0=0,1

π

sinπ
(
D −

∑K
k=0 µkρk

) , (r0 = 1) (6.27)
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However, it is not quite clear how to fix this function for r0 > 1, and we leave this question

for further investigations. The reason why the case r0 = 1 is simple for us is because,

while constructing the basis of solutions, we always assumed that one mass (m0) is larger

than the sum of all others. Therefore we did not have obligations to consider the ques-

tions of analytical continuation of the obtained solutions across (or around) the singular

hypersurfaces defined by eq. (2.17). However, if r0 > 1, we would have to do it.

Finally, we note that if we remove the analytical regularization, the P-even subsystem

contains K+ 1 decoupled equations and the number of its homogeneous solutions becomes
1
2

∏
k(rk + 1)−K − 1.

6.3 Removing dimensional regularization at D = 2

Let us now discuss some important features of the obtained results at D = µ + 1 = 2.

Below we assume that L > 1. The matrix A in this case has the form

A = dM M−1(N − 2) +

L∑
l=0

n̄l
dml

ml
(6.28)

The second term is diagonal and it is clear that the equations for the components with

|a| 6= 2 form a closed subsystem. On the other hand, if we pass to Y , eq. (6.1), we obtain

the system

dY = HY (6.29)

with H defined in eq. (6.3). In this form, the equations for Ya components with

|a| = 1 decouple. Let us consider the linear transformation of column of functions

Ta which replaces L + 1 entries T110...0, T1010...0, . . . , T10...10, T10...01, and T0110...0 with

Y100...0, Y010...0, . . . , Y0...01. It is easy to check that this transformation is non-degenerate.

With the new column of functions T̃ the differential system acquires the block-triangular

form depicted in figure 3. Let us observe that the component T0 enters the closed system

of 2L − (L + 1)L/2 equations determined by the block B2. Therefore, in a certain sense,

we find that the number of master integrals at D = 2 is equal to 2L − (L+ 1)L/2. This is

in agreement with known cases L 6 4, [14, 15].

Let us comment about the number of master integrals at D = 2 when there are groups

of identical masses. In the notations of previous subsection, we obtain that the number of

master integrals is equal to 1
2

∏
k(rk + 1)− (K + 1)(K + 2)/2 +

∑
k δrk,1. In particular, for

L-loop sunrise graph with equal masses we have L+ 2− 1− 1 = L master integrals.

Basis of solutions. Constructing the basis of solution space at D = 2 appears to be

extremely tricky and deserves a dedicated consideration elsewhere. Here we will only

explain the complications that arise on the way.

First, one might be tempted to pass to the basis of functions V [υ] defined as

V [υ] =
∑
ρ

L∏
l=1

(
− 2

π
sinπε

)υl
(1− ρ̄lυl)V (ρ) , (6.30)
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Figure 3. Block-triangular structure of the matrix in the right-hand side of the differential system

for T̃ . The block B1 is a diagonal matrix corresponding to L+ 1 entries of the form Y...010.... The

block B2 corresponds to 2L − (L + 1)L/2 entries Ta (|a| even and |a| 6= 2). The block B3 is a

diagonal matrix corresponding to (L+ 1)(L− 2)/2 remaining entries of Ta with |a| = 2. The block

B4 corresponds to 2L entries Ta with odd |a|.

where υ = υ1υ2 . . . υL is a binary number. The functions of this basis have the following

limit of a = 0 component:

V
[υ]
0

ε→0−→
L∏
l=0

(2ml)

∞∫
0

dxxK0 (m0x)

L∏
l=1

{
I0 (mlx) if υl = 1,

K0 (mlx) if υl = 0
. (6.31)

However, other components of V [υ] diverge in the limit ε→ 0 unless υ = 1 . . . 1 because fo

the singular asymptotics of K1 function at small argument.

In order to get rid of the divergent overall factor in eq. (4.2) at µ → 1, let us define

the functions

U (ρ) = (−1)|ρ|
(

2 sinπε

π

)L+1

V (ρ)
∣∣∣D=2−2ε
µl=1−2ε

. (6.32)

Then if we naively take limit ε → 0 under the integral sign, we can come to a wrong

conclusion that all U (ρ) tend to one and the same expression independent of ρ:

U (ρ) ε→0−→
L∏
l=0

(2ml)

∞∫
0

dxx

(
K0 (m0x)

−K1 (m0x)

)
⊗

L⊗
l=1

(
I0 (mlx)

I1 (mlx)

)
. (6.33)

However, eq. (6.33) is correct only for U (0). The reason why it breaks down for ρ 6= 0

is that the expansion of I−1+ε(mx) in x starts from the singular term Γ[ε]−1(mx/2)ε−1.

Although this term is suppressed in ε, it may survive after the integration over x due to

its singular nature. More precisely, consider the identities∫
dxK−ε(x)xα−1 = 2αΓ

[
α+ ε

2
,
α− ε

2

]
,∫

dxK1−ε(x)xα = 2αΓ

[
α+ ε

2
,
α− ε

2
+ 1

]
. (6.34)
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They show that when α is close to −n (n = 0, 1, . . .), the integral over x gives poles in

ε. A thorough investigation allows us to establish that nonzero corrections to the naive

limit (6.33) appear only in the components with |a| = 2. Moreover, we can explicitly

calculate these corrections using eqs. (6.34):

[
U (ρ) − U (0)

]
a

ε→0−→ δ|a|,2

L∏
l=0

(2ml)

 ∑
b,c,

16b<c6L

abacρbρc
mbmc |ρ| (|ρ| − 1)

−
L∑
b=1

a0abρb
m0mb |ρ|

 (6.35)

Here we imply that ρ 6= 0 and that the first term in square brackets should be omitted

when |ρ| = 1. We can construct the solutions which have nonzero ε → 0 limit exactly

in one component with |a| = 2. Let us adopt the notation 1l1,l2,... for the vector ρ with

ρl1 = ρl2 = . . . = 1 and other components equal to zero. Then we define

U(0, b) = lim
ε→0

[
U (0) − U (1b)

]
, (1 6 b 6 L) (6.36)

U(b, c) = lim
ε→0

[
2U (1bc) − U (1b) − U (1b)

]
, (1 6 b < c 6 L) (6.37)

with the property [U(b, c)]a = δa,1b,c

∏L
l=0(2ml)
mbmc

(here 0 6 b < c 6 L). These
(
L+1

2

)
=

L(L + 1)/2 solutions are obviously the solutions of the homogeneous equations for the

components with N = 2. Note that any difference U (ρ)−U (0) tends to a linear combination

of U(b, c). Therefore, we construct the combinations that vanish in the limit ε→ 0,

J (ρ) = U (ρ) − 2

|ρ|(|ρ| − 1)

∑
b,c

16b<c6L

ρbρcU
(1bc) (6.38)

for any ρ with |ρ| > 3. The idea is that we can now define the solutions

J̃ (ρ) = lim
ε→0

J (ρ)/ε . (6.39)

In particular, if L = 3, we obtain that

πJ (111)

sinπε
= −2

3

[
V [011] + V [101] + V [110]

]
(6.40)

has a finite limit ε → 0, while each term in the square brackets contains divergences in

components with |a| = 2. Unfortunately, at L > 3 the 2L − L(L+ 1)/2− 1 solutions J (ρ)

appear to be not linearly independent and, in order to proceed to the full basis of solutions,

we have to determine on the next step the linear combinations of J (ρ)/ε which vanish in

the limit ε → 0. The combinatorics appears to be quite involved and we reserve the full

consideration for our future work.

6.4 Equal mass sunrise integral in D = 2

The case of equal mass L-loop sunrise integral in D = 2 has probably received the most

attention in the literature, see, in particular, refs. [3, 16–20].
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So, we consider the two groups of lines, one containing a single (r0 = 1) line with

m0 =
√
q2, the other consisting of r1 = L+ 1 lines with mass m1 = m. It is convenient to

put q2 = 1.

Similar to eq. (6.31), we define the solutions V [υ] (υ = 0, 1, . . . , L+ 1) as follows

V [υ] =

(
− 2

π
sinπε

)υ L+1∑
ρ1=υ

(
L+ 1− υ
ρ1 − υ

)
V (0ρ1) , (6.41)

where V (ρ) = V (ρ0ρ1) are defined in eq. (6.25). Note that when υ > 2 the function V [υ] is

the solution of the homogeneous system for the ‘cut’ sunrise integral. This is because it

is a linear combination of V (ρ) with |ρ| > 1 which are all the homogeneous solutions, see

footnote 4 on page 14. Again, 00 components of V [υ] all have a finite limit at D = 2:

V
[υ]

00
ε→0−→ 2L+2mL+1

∞∫
0

dxxK0 (x) [K0 (mx)]L+1−υ[I0 (mx)]υ . (6.42)

As we explained in the previous section, the limit of components with a 6= 00 of each V [υ]

can contain divergences. However, we have some freedom in definition which might help

us to get rid of these divergences. Namely, we can construct

Ṽ [υ] = V [υ] +

υ−2∑
ω=1

Cυω(ε)V [υ−ω] , (6.43)

where Cυω are some coefficients with the asymptotics Cυω(ε) = O(εω). These new functions

Ṽ [υ] have the same properties as V [υ]. Namely, they have the same limit of 00 component

as V [υ] and are the solutions of the homogeneous system for the cut sunrise graph. Now the

idea is that we can fix the coefficients Cυω(ε) in such a way as to eliminate all divergences

in the limit ε→ 0. We were able to check this for a few low-loop cases.5

Instead of running into complications connected with the basis V (0ρ1), we can pass to

the basis of momenta spanned by the functions IKM[{0, 1}1, {υ, L+ 1− υ}m, s] defined as

IKM[{a0, b0}m0 , {a1, b1}m1 , . . . , s] =

∫
dxxs

∏
k

[I0(mkx)]ak [K0(mkx)]bk . (6.44)

Similar functions appear in refs. [21–23]. For any specified L it is easy to construct the

matrix M for transition to moments basis using the matrix R which shifts the power of x

in the integrand. Namely, the n-th row of the matrix M has the form

Mn =

[
n∏
k=1

R(2 + n− k, 1)

]
0

(6.45)

where [. . .]0 denotes the zeroth row of the matrix in the brackets. In appendix C we present

a few examples of the quadratic relations obtained in this way. These quadratic relations

5Note that this is not the case for the sunrise integral with different masses.
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resemble those discovered by Broadhurst and Roberts in ref. [23]. The difference is that

our relations explicitly depend on one parameter q2/m2 while the relations discovered in

ref. [23] are obtained for the symmetric point q2 = m2. However, it is not possible to

obtain the latter from the former by simply putting q2 = m2. One obstacle is that in the

symmetric point (when q2 = m2) the number of independent moments drops by about a

half. Another related problem is that our identities tend to develop singularities at q2 = m2.

Alternatively, we can start from eq. (6.26) for K = 0, use the shift operators R,

eq. (3.6), and Rk, eq. (6.21), and the matrix M above. In this way we’ve been able to

reproduce the matrix DN in the left-hand side of eq. (5.1) of ref. [23] up to at least 10

loops. However, in order to obtain the right-hand side of the same equation, we need the

generalization of (6.27) to the case r0 > 1.

7 Conclusion

In the present paper we considered the L-loop watermelon and sunrise integrals regularized

both dimensionally and analytically. We have constructed a special set of “master integrals”

for which we have managed to derive a Pfaffian differential system.

The basis of solutions of this system is expressed in terms of the Lauricella function

FC with L independent arguments and generic parameters (cf. [7, 8]). Thus, we obtain the

Pfaffian differential system equivalent to the Lauricella F
(L)
C second-order differential sys-

tem. To the best of our knowledge, the Pfaffian differential system for F
(L)
C was previously

known only for L 6 2. It worth to note that the obtained system does not have apparent

singularities.

Using the symmetry properties of the matrix in the right-hand side of the differential

system and following the path similar to that in ref. [13], we obtain the bilinear relations

between the solutions of the system for opposite signs of D and µ.

We derive the operators which shift dimension and/or exponents of the propagators by

±1. These operators, in particular, allow one to obtain the canonical form of the differential

system near any odd integer value of D and integer exponents α. Therefore, the expansion

of the solutions in the dimensional and analytic regularization parameters in this case can be

written in terms of polylogarithmic functions. Thanks to the shift operators, the obtained

bilinear relations lead to the quadratic relations between the coefficients of expansion of

the solutions near any integer point in D,µ space.

We have considered the integrals with integer exponents of the denominators. We

observe that the quadratic relations for the solutions of the whole differential system do

not exist in this case. Instead, we have derived the quadratic relations for the solutions of

the homogeneous differential system.

A Pfaffian differential system can be easily restricted to any subvariety in the space

of variables. In particular, we have considered the case when the masses and exponents of

some lines coincide. In this case the matrix in the right-hand side of the differential system

can be naturally rewritten in terms of the generators of sl(2,C) acting in the (rk + 1)-

dimensional irreducible representation (rk is the number of identical lines in the k-th group).
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Finally, we have considered the differential system for the tadpole integral in two di-

mensions (D = 2, αl = 1). The system acquires a block-triangular form, with the nontrivial

block of size 2L−(L+1)L/2. Using the quadratic relations for the maximally cut sunrise in-

tegral with equal masses in D = 2 we obtain for any given L the quadratic relations for the

moments of the product of the Bessel and Macdonald functions. However, we were not able

to derive the closed formula for these relations for general L. The found relations, in a sense,

generalize the quadratic relations obtained by Broadhurst and Roberts [23] to the case of

arbitrary incoming momentum. However, it is not easy to obtain the latter from the former.

The consideration of the present paper, while satisfactorily describing the generic case,

can not be considered as exhaustive when it concerns special cases. In particular, we don’t

fully understand how to construct the basis of solution space and the quadratic relations

for the case D = 2. We also did not consider the special configurations of masses when

M is not invertible. In particular, it happens in physically relevant case when each group

contains even number of identical lines. We underline that once the number of loops L

is fixed, one can rely on a brute-force approach to tackle the above issues. The principal

problem is to solve them for general L.
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A Compatibility conditions

Let us examine the compatibility conditions of eqs. (2.19), (3.3), and (3.6). First, it is

easy to see that dA = 0, thanks to the identity [σl, σk] = 0. Then we have to check that

[Al, Ak] = 0, or equivalently, A ∧A = 0. We have

A∧A=M−1dMWM−1∧dMW +
∑
k

[
µknk,M

−1dM
]
W ∧ dmk

mk

=M−1dM ∧ [W,dM ]M−1W −M−1dM
∑
k

[µknk,M ]M−1W ∧ dmk

mk
(A.1)

=M−1dM ∧
∑
k

µkdmk [nk,σk]M
−1W −M−1dM

∑
k

µk [nk,σk]M
−1W ∧dmk = 0 .

Other conditions have the form

dRl(µ) +Rl(µ)A(µ) = A(µ− 2el)Rl(µ) , (A.2)

Rj(µ− 2el)Rl(µ)−Rl(µ− 2ej)Rj(µ) = 0 , (A.3)

dR(D) +R(D)A(D) = A(D + 1)R(D) , (A.4)

Rl(D + 1,µ)R(D,µ) = R(D,µ− 2el)Rl(D,µ). (A.5)

These identities can be checked along the same lines as eq. (A.1).
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Let us also write down two useful identities which allow one to check the symmetry

property (5.9) of the matrix B in the right-hand side of the quadratic relation (5.7). They

read

W (D)R(D̃) = Rᵀ(D)W (D̃) , (A.6)

W (D,µ− 2el)Rl(D,µ) = −Rᵀ
l (−D,−µ+ 2el)W (D,µ) , (A.7)

W (D − 2,µ− 2e)R(D,µ) = (−1)L+1Rᵀ(2−D, 2e− µ)W (D,µ) . (A.8)

B Expansion near D = 1

We will consider ε-expansion of Y for D = 1 − 2ε. Then the ε-expansion of T can be

obtained with the help of eq. (6.1). Let us rescale mk → mkx (k = 1, . . . , L) and consider

the differential equation with respect to x:

dY

dx
= ε

∑
a∈Λ

Ha

x− a
Y , (B.1)

where the set (or alphabet) Λ contains 0 and all letters of the form

a(η) =
m0∑L

k=1 ηkmk

, (B.2)

where L-tuple {η1, . . . , ηL} has elements ±1, and

H0 = 2 (N − L− n0)

Ha(η) = −2 (N − 1)

L∏
k=1

1− ηkσ0σk
2

(B.3)

Then we choose the fundamental matrix of solutions of eq. (B.1) as

Ũ(ε,m, x) = lim
x0→0

Pexp

ε x∫
x0

∑
a∈Λ

Ha

y − a
dy

xεH0
0 . (B.4)

This definition corresponds to the small-x asymptotics

Ũ(ε,m, x) ∼ xεH0 . (B.5)

The ε-expansion of the fundamental matrix has the form

Ũ(ε,m, x) =
∞∑
n=0

εn
∑
a1...an

Ha1 . . . HanG(a1, . . . , an|x) , (B.6)

where the sum
∑

a1...an
runs over all words of length n with letters from the alphabet Λ,

and G(a1, . . . , an|x) denotes the Goncharov’s polylogarithms [1, 2] defined recursively by

G(a1, a2, . . . , an|x) =

x∫
0

dy

y − a1
G(a2, . . . , an|y) , (B.7)

G(0, . . . , 0︸ ︷︷ ︸
n

|x) =
1

n!
lnn x . (B.8)

– 23 –



J
H
E
P
0
8
(
2
0
1
9
)
0
2
7

Let us represent the specific solution Ya0ρ as

Ya0ρ = Ũ(ε,m, 1)C
(%0,ρ)
a0ρ (B.9)

where C
(%0,ρ)
a0ρ are the integration constants. In order to find C

(%0,ρ)
a0ρ , we consider the

asymptotics x→ 0. Using eqs. (5.11) and (6.7) we have

C
(%0,ρ)
a0ρ = lim

x→0
x−εH0Y

(%0,ρ)
a0ρ (m0, xmk) = 2−2εδa0%0 (−1)ā0

× Γ [1− (ā0 − |ρ|) ε] Γ

[
1

2
− (a0 − |ρ|) ε

] L∏
k=1

(−1)ρk
Γ
[

1
2 + (−1)ρkε

]
m2ερk

0 m2ερ̄k
k

. (B.10)

C Examples of quadratic relations for IKM functions

Let us present a few examples of the quadratic relations for IKM functions related to the cut

sunrise integral. For L-loop sunrise integral the overall number of Bessel and Macdonald

functions in the integrand is equal to L + 2. We use the IKM functions as defined in

eq. (6.44).

For L = 2 we obtain the following nontrivial quadratic relation:

IKM [{2, 1}m, {0, 1}1, 1] IKM [{3, 0}m, {0, 1}1, 3]

− IKM [{2, 1}m, {0, 1}1, 3] IKM [{3, 0}m, {0, 1}1, 1]

=
4
(
1− 5m2

)
(1−m2)2 (1− 9m2)2 . (C.1)

For L > 3 we obtain similar relations which are too lengthy to be presented here. These

relations, however, simplify on the pseudo-thresholds.

For L = 3 we have

9IKM
(
{3, 1} 1

4
, {0, 1}1, 1

)
IKM

(
{3, 1} 1

4
, {0, 1}1, 3

)
(C.2)

−16IKM
(
{3, 1} 1

4
, {0, 1}1, 1

)
2 = 20 ,

48IKM
(
{2, 2} 1

4
, {0, 1}1, 1

)
2 (C.3)

−27IKM
(
{2, 2} 1

4
, {0, 1}1, 1

)
IKM

(
{2, 2} 1

4
, {0, 1}1, 3

)
= 20π2 ,

−32IKM
(
{2, 2} 1

4
, {0, 1}1, 1

)
IKM

(
{3, 1} 1

4
, {0, 1}1, 1

)
+9IKM

(
{2, 2} 1

4
, {0, 1}1, 3

)
IKM

(
{3, 1} 1

4
, {0, 1}1, 1

)
(C.4)

+9IKM
(
{2, 2} 1

4
, {0, 1}1, 1

)
IKM

(
{3, 1} 1

4
, {0, 1}1, 3

)
= 0 ,

For L = 4 we have

275IKM (a, {0, 1}1, 3) IKM (b, {0, 1}1, 1)− 275IKM (a, {0, 1}1, 1) IKM (b, {0, 1}1, 3)

− 12IKM (a, {0, 1}1, 5) IKM (b, {0, 1}1, 1) + 12IKM (a, {0, 1}1, 1) IKM (b, {0, 1}1, 5)

= C1(a|b) (C.5)
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with

C1

(
{3, 2} 1

5
|{4, 1} 1

5

)
=

5546875

9216
, C1

(
{2, 3} 1

5
|{4, 1} 1

5

)
= 0 , (C.6)

C1

(
{2, 3} 1

5
|{3, 2} 1

5

)
=

5546875π2

18432
. (C.7)

At m = 1/3 we have one relation

33IKM
(
{2, 3} 1

3
, {0, 1}1, 3

)
IKM

(
{3, 2} 1

3
, {0, 1}1, 1

)
− 33IKM

(
{2, 3} 1

3
, {0, 1}1, 1

)
IKM

(
{3, 2} 1

3
, {0, 1}1, 3

)
− 4IKM

(
{2, 3} 1

3
, {0, 1}1, 5

)
IKM

(
{3, 2} 1

3
, {0, 1}1, 1

)
+ 4IKM

(
{2, 3} 1

3
, {0, 1}1, 1

)
IKM

(
{3, 2} 1

3
, {0, 1}1, 5

)
=

9963π2

2048
. (C.8)

We note that we could have easily proceeded to more loops.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[7] F.A. Berends, M. Buza, M. Böhm and R. Scharf, Closed expressions for specific massive

multiloop selfenergy integrals, Z. Phys. C 63 (1994) 227 [INSPIRE].

[8] M. Yu. Kalmykov and B.A. Kniehl, Counting the number of master integrals for sunrise

diagrams via the Mellin-Barnes representation, JHEP 07 (2017) 031 [arXiv:1612.06637]

[INSPIRE].

[9] G. Lauricella, Sulle funzioni ipergeometriche a piu variabili (in Italian), Rend. Circ. Matem.

7 (1893) 111 [Erratum ibid. 7 (1893) 158].

– 25 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.4310/MRL.1998.v5.n4.a7
https://doi.org/10.4310/MRL.1998.v5.n4.a7
https://arxiv.org/abs/1105.2076
https://inspirehep.net/search?p=find+J+%22Math.Res.Lett.,5,497%22
https://doi.org/10.1016/S0010-4655(02)00261-8
https://doi.org/10.1016/S0010-4655(02)00261-8
https://arxiv.org/abs/math-ph/0201011
https://inspirehep.net/search?p=find+EPRINT+math-ph/0201011
https://doi.org/10.4310/CNTP.2018.v12.n2.a1
https://arxiv.org/abs/1704.08895
https://inspirehep.net/search?p=find+EPRINT+arXiv:1704.08895
https://doi.org/10.1007/JHEP05(2018)093
https://arxiv.org/abs/1712.07089
https://inspirehep.net/search?p=find+EPRINT+arXiv:1712.07089
https://arxiv.org/abs/math.CO/0407327
https://doi.org/10.1007/978-3-030-04480-0_17
https://arxiv.org/abs/1807.11466
https://inspirehep.net/search?p=find+EPRINT+arXiv:1807.11466
https://doi.org/10.1007/BF01411014
https://inspirehep.net/search?p=find+J+%22Z.Physik,C63,227%22
https://doi.org/10.1007/JHEP07(2017)031
https://arxiv.org/abs/1612.06637
https://inspirehep.net/search?p=find+EPRINT+arXiv:1612.06637
https://doi.org/10.1007/bf03012437
https://doi.org/10.1007/bf03012437


J
H
E
P
0
8
(
2
0
1
9
)
0
2
7

[10] M. Kato, A Pfaffian system of Appell’s F4, Bull. College Educ. Univ. Ryukyus 33 (1988) 331.

[11] Y. Goto, Twisted cycles and twisted period relations for Lauricella’s hypergeometric function

FC , Int. J. Math. 24 (2013) 1350094 [arXiv:1308.5535].

[12] J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett.

110 (2013) 251601 [arXiv:1304.1806] [INSPIRE].

[13] R.N. Lee, Symmetric ε- and (ε+ 1/2)-forms and quadratic constraints in “elliptic” sectors,

JHEP 10 (2018) 176 [arXiv:1806.04846] [INSPIRE].

[14] L. Adams, C. Bogner and S. Weinzierl, The two-loop sunrise graph with arbitrary masses, J.

Math. Phys. 54 (2013) 052303 [arXiv:1302.7004] [INSPIRE].

[15] L. Tancredi, private communication.

[16] S. Müller-Stach, S. Weinzierl and R. Zayadeh, Picard-Fuchs equations for Feynman integrals,

Commun. Math. Phys. 326 (2014) 237 [arXiv:1212.4389] [INSPIRE].

[17] P. Vanhove, The physics and the mixed Hodge structure of Feynman integrals, Proc. Symp.

Pure Math. 88 (2014) 161 [arXiv:1401.6438] [INSPIRE].

[18] S. Bloch, M. Kerr and P. Vanhove, A Feynman integral via higher normal functions,

Compos. Math. 151 (2015) 2329 [arXiv:1406.2664] [INSPIRE].

[19] A. Primo and L. Tancredi, Maximal cuts and differential equations for Feynman integrals.

An application to the three-loop massive banana graph, Nucl. Phys. B 921 (2017) 316

[arXiv:1704.05465] [INSPIRE].

[20] J. Broedel, C. Duhr, F. Dulat and L. Tancredi, Elliptic polylogarithms and iterated integrals

on elliptic curves II: an application to the sunrise integral, Phys. Rev. D 97 (2018) 116009

[arXiv:1712.07095] [INSPIRE].

[21] D. Broadhurst, Feynman integrals, L-series and Kloosterman moments, Commun. Num.

Theor. Phys. 10 (2016) 527 [arXiv:1604.03057] [INSPIRE].
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