
IEMS Vol. 10, No. 3, pp. 203-208, September 2011.

Differential Evolution Algorithm for Job Shop
Scheduling Problem

Warisa Wisittipanich†
Industrial and Manufacturing Engineering School of Engineering and Technology, Asian Institute of Technology

P.O. Box 4, Klong Luang, Pathumthani 12120, Thailand
E-mail: warisa.wisittipanich@ait.ac.th

Voratas Kachitvichyanukul

Industrial and Manufacturing Engineering School of Engineering and Technology, Asian Institute of Technology
P.O. Box 4, Klong Luang, Pathumthani 12120, Thailand

E-mail: voratas@ait.ac.th

Received, February 22, 2011; Revised, July 2, 2011; Accepted, August 6, 2011

Abstract. Job shop scheduling is well-known as one of the hardest combinatorial optimization problems and has
been demonstrated to be NP-hard problem. In the past decades, several researchers have devoted their effort to
develop evolutionary algorithms such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) for
job shop scheduling problem. Differential Evolution (DE) algorithm is a more recent evolutionary algorithm
which has been widely applied and shown its strength in many application areas. However, the applications of
DE on scheduling problems are still limited. This paper proposes a one-stage differential evolution algorithm
(1ST-DE) for job shop scheduling problem. The proposed algorithm employs random key representation and
permutation of m-job repetition to generate active schedules. The performance of proposed method is evaluated
on a set of benchmark problems and compared with results from an existing PSO algorithm. The numerical
results demonstrated that the proposed algorithm is able to provide good solutions especially for the large size
problems with relatively fast computing time.

Keywords: Evolutionary Algorithm, Differential Evolution, Scheduling, Job Shop

1. INTRODUCTION

The Job Shop Scheduling Problem (JSP) is one of
the most well-known combinatorial problems which
have been subject of many research efforts for several
decades. The classical JSP schedules a set of jobs on a
set of machines in order to optimize a certain criterion,
subjected to constraints that each job has processing
operations through all machines which are fixed and
known in advance. JSP is considered to be NP-hard (Ga-
rey et al., 1976), and exact algorithms such as integer
programming, mixed integer programming and branch
and bound method become inefficient to deal with such
problem since they can solve only small size problems
and may take extremely long computing time when the
problem size increases. For practical reasons, most re-
cent efforts have been devoted to develop effective evo-
lutionary algorithms in order to find high-quality or
near-optimal solutions within a reasonable time. Several
approaches for solving JSP include, but not limited to,

Genetic Algorithm GA (Wang et al., 2004; Concalves et
al., 2005; Yamada and Nakano, 1995), Ant Colony Op-
timization ACO (Huang et al., 2008; Udomsakdigool
and Kachitvichyanukul, 2006, 2008) and Particle Swarm
Optimization PSO (Pongchairerks and Kachivichyanukul,
2009; Pratchayaborirak and Kachivichyanukul, 2011).

Differential evolution (DE) is one of the latest evo-
lutionary algorithms developed by Storn and Price in
1995. DE has been gradually receiving attention from
researchers due to its advantage of few control variables
but performing well in search ability and convergence. It
has been widely applied and shown its strengths in many
problem domains from scientific, engineering, and fi-
nancial applications (Price et al., 2005; Chakraborty,
2008).

However, the applications on DE for combinatorial
optimization are still very limited. Recently, some at-
tempts have been made to apply DE for solving schedul-
ing problems. Godfrey et al. (2006) applied DE on flow
shop scheduling problem. Quan et al. (2007) proposed a

† : Corresponding Author

204 Warisa Wisittipanich·Voratas Kachitvichyanukul

discrete differential evolution algorithm (DDE) for the
permutation flow shop with the makespan criteria. Wang
et al. (2008) proposed a self-adaptive DE (SDE) to im-
prove global convergence property and avoid premature
convergence ability of the conventional DE. Liu et al.
(2009) extended the application of DDE to the job shop
scheduling problem with special mutation and crossover
operators to deal with discrete variables in JSP. The
results showed that DDE inherits the advantage of the
original DE that has a rapid convergence rate and high
solution quality for the small size problem, but for large
problems DDE lost its diversity causing the solutions to
be easily trapped at local optima.

This paper presents the preliminary development of
a one-stage differential evolution (1ST-DE) for JSP. The
remainders of the paper are organized as follows. Sec-
tion 2 briefly describes JSP. Section 3 defines the DE
algorithm. Section 4 describes an application of the pro-
posed DE for JSP. Experimental results are reported in
section 5. Finally, conclusion is provided in section 6.

2. JOB SHOP SCHEDULING PROBLEM

The classical JSP is a problem of allocating n dif-
ferent jobs to be processed on m different machines,
subjected to two main sets of constraints; the precedence
constraints and the conflict constraints. Each job has a
set of sequential operations and each operation must be
processed on a predefined machine with deterministic
processing time known in advance. Each machine is
independent from one another. Machine set up time and
transfer time between operations are negligible. In addi-
tion, machine breakdown is not considered and the pre-
emption is not allowed in this problem. The precedence
constraints ensure that each operation of a certain job is
processed sequentially and the conflicts constraints gua-
rantee that each machine can processes only one opera-
tion at a time. The goal is to sequence operations on
machines and specify starting time and ending time of
each operation in order to optimize certain objectives
subjected to the constraints.

In this paper, the objective is to minimize the make-
span. The variables used in the JSP model are listed as
follows:

,j kp : the process time of job j on machine k

,j ks : the start time of job j on machine k
M : a large positive number

jr : the ready time of job j
, ,′j j ky : a binary variable defined as

1, if job is before job on machine
0, otherwise

′⎧
= ⎨
⎩

j, j',k

j j k
y

The mathematical model of the problem can be for-

mulated as follows:

Minimization of makespan

{ }, ,: +j k j kf minimize max s p (1)

Subjected to

, ,+ ≤j k j k ks p s , , '∀j k k (2)

, , ', , ',(1)+ ≤ + ⋅ −j k j k j k j j ks p s M y , ',∀j j k (3)

', ', , , ',+ ≤ + ⋅j k j k j k j j ks p s M y , ',∀j j k (4)

, 0≥ ≥j k js r ,∀j k (5)

Where j, j’ = {1, 2, …, n} and k, k’ ={1, 2, …, m}
Equation (1) is the objective function. Equation (2)

is the precedence constraint, and Equations (3) and (4)
are the conflict constraints. Equation (5) ensures that
any job cannot start before its ready time.

3. DIFFERENTIAL EVOLUTION

Differential Evolution (DE) is one of the Evolu-
tionary Algorithms (EAs) for global optimization over
continuous search space (Storn and Price, 1995). Its theo
retical framework is simple and requires inexpensive
computation in term of CPU time (Bin et al., 2008). Due
to its advantage of relatively few control variables but
performing well in convergence, DE has been widely
applied and shown its strengths in many application
areas (Godfrey and Donald, 2006; Quan et al., 2007;
Qian et al., 2008).

As a population-based search method, DE starts
with randomly generate initial population of size N of
D-dimensional vectors. A solution in DE algorithm is
represented by D-dimensional position of a vector. Each
variable’s value in the dimensional space is represented
as the real number. The key idea behind DE is a new
mechanism for generating trial vectors. DE generates
trial vectors by mutation and crossover operation. Then,
the replacement of an individual, so called selection
operation, occurs only if the trial vector outperforms its
corresponding vector. These processes are repeated until
some stopping criteria are met. Thus, DE population
evolve through repeated cycles of three main DE opera-
tors; mutation, crossover and selection.

3.1 The Classic DE

Currently, there are several DE variants. Generally,
the mutation is the main operation which makes each
variant distinct from one another. The classic version of
DE is the simplest and most popular scheme used in
literatures. The mutation operator in the classic DE gen-
erates a mutant vector by adding a weighted difference
between two randomly selected vectors to the third ran-

 Differential Evolution Algorithm for Job Shop Scheduling Problem 205

domly selected vector. This scheme has proven to be
effective in solving many multimodal optimization pro-
blems due to its good exploration capability (Price et al.,
2005; Chakraborty, 2008). The procedures in the classic
DE (Price et al., 2005) can be described as follows.

3.1.1 Population Initialization

DE starts with initializing the population of size N
of D-dimensional vectors. The lower bound, bL, and
upper bound, bU, for the value in each dimension jth (j =
0, 1, …, D-1) must be specified. At initialization step (g
= 0), the jth value of the ith vector is randomly generated
as follows:

, ,0 , , ,()= ⋅ − +j i j j U j L j Lx u b b b (6)

Where ju is a uniform random number in the range [0, 1].

3.1.2 Mutation

Once initialized, DE mutates and combines current
target vectors to produce mutant vectors. For each target
vector, Xi,g, at generation g, the mutant vector, Vi,g, is
generated according to the following equation:

, 1, 2, 3,()= + −i g r g r g r gV X F X X (7)

It is noted that 1 2,r rX X and 3rX are randomly se-

lected vectors from the population. They are mutually
exclusive and different from the ith target vector, Xi,g. F
is a scale factor which controls the scale of the differ-
ence vector between 2rX and 3rX , added to the base
vector, 1rX .

3.1.3 Crossover

DE applies crossover operator on Xi,g and Vi,g
 to

generate the trial vector Zi,g. In the classic DE, the uni-
form crossover is employed and the trial vector is gener-
ated by the following equation.

, ,

, ,
, ,

,
,

≤ =⎧⎪= ⎨
⎪⎩

j i g j r u
j i g

j i g

v if u C or j j
z

x otherwise
 (8)

Where

ju : a uniformly random number between [0, 1]
uj : a random chosen index, { }0, 1, , 1∈ −uj D
rC : crossover probability in the range [0, 1]

rC controls the probability of selecting the value
in each dimension for a trial vector from a mutant vector.

3.1.4 Selection

The selection operation is performed on each target
vector, Xi,g, and its corresponding trial vector, Zi,g, to
determine the survival vector for the next generation.
The vector, Xi,g+1, is selected according to the greedy

criteria

, , ,
, 1

,

, if () ()
, otherwise+

≤⎧⎪= ⎨
⎪⎩

i g i g i g
i g

i g

Z f Z f X
X

X
 (9)

It is noted that this selection scheme is applicable

for minimization problem. Once each individual in the
current population is updated, the population continue to
evolve through mutation, crossover, and selection opera-
tion until some stopping criteria are met.

This classic DE is commonly denoted as DE/rand/
1/bin, where DE stands for DE, rand is the type of base
vector selected to be perturbed, 1 is the number of dif-
ference vector for permutation, and bin stands for bino-
mial distribution of the number of inherited dimension
values of mutant vectors.

4. APPLICATION OF DE ON JSP

Since DE is first designed for continuous domain,
in order to apply DE to combinatorial problem i.e.
scheduling problem, solution vectors in DE need to be
transformed into a schedule. The procedures of solution
mapping are illustrated in the following example.

4.1 Solution Representation

A solution of the problem can be represented using
a vector with dimensions equal to the total number of
operations processed on all machines. Consider an ex-
ample of two jobs and three machines in JSP in table 1.

Table 1. JSP with 2 jobs and 3 machines.

Job Machine Sequence Processing Time

A M1 M2 M3 3 2 6
B M2 M1 M3 5 3 4

According to this example, the total number of di-

mension, equal to the total number of operation, is 6.
Figure 1 illustrates random key representation encoding
scheme (Bean, 1994) where each value in a vector di-
mension is initially generated with a uniform random
number in range [0, 1].

Dimension j 1 2 3 4 5 6

 0.23 0.97 0.34 0.46 0.71 0.58

Figure 1. Random key representation.

Next, the permutation of 3-repetition of 3 jobs

(Bierwirth, 1995) is applied with a sorting list rule to
decode an individual vector into a sequence of opera-
tions as shown in Figure 2. The advantage of this ap-
proach is that any permutation of this representation

206 Warisa Wisittipanich·Voratas Kachitvichyanukul

always provides a feasible schedule. Then, the opera-
tion-based approach (Cheng et al., 1996) is employed to
generate a schedule. The decoded individual is trans-
formed into a schedule by taking the first operation from
the list, then the second operation, and so on. During the
process of generating a schedule, each operation is allo-
cated to a required machine in the best available position
without delaying other scheduled operations. This pro-
cedure results in an active schedule as shown in Figure 3.

Dimension j 1 3 4 6 5 2

 0.23 0.34 0.46 0.58 0.71 0.97
 A A A B B B

Dimension j 1 2 3 4 5 6

 0.23 0.97 0.34 0.46 0.71 0.58
 A B A A B B

Figure 2. m-repetition of job number permutation and
operation-based representation.

Figure 3. An active schedule after the decoding process.

4.2 A Single Stage DE (1ST-DE)

This paper proposes a one-stage differential evolu-
tion (1ST-DE) with a single population. In 1ST-DE,
initial population is randomly generated according to
equation (6).To obtain trial vectors, the mutation opera-
tion is carried out in the same way as the classic DE by
equation (7), however, this study uses the exponential
crossover operation. Starting at the randomly picked
dimension index š, each dimension value of trial vector
are inherited from its mutant vector, Vi,g, as long as uj ≤

rC . The first time when uj > rC , all the remaining di-
mension value are taken from the target vector, Xi,g. An

integer, L indicates the number of consecutive dimen-
sion indexes on which crossover is performed. The ex-
ponential crossover scheme can be expressed in Equa-
tion (10).

, ,

, ,
, ,

, , 1 , , 1
,

= < > < + > < + − >⎧⎪= ⎨
⎪⎩

j i g D D D
j i g

j i g

V if j s s s L
z

x otherwise
 (10)

The angular brakets < > D denote a modulo function

with modulus D (Storn and Price, 1995). The variant
used in the experiments of 1ST-DE can be denoted as
DE/rand/1/exp.

5. COMPUTATIONAL EXPERIMENT

5.1 Parameter Setting

In this study, the crossover rate rC is set to 0.2.
Some experiments were carried out to determine the
choice of scale factors F in the range [0, 2]; 0.5, 1, 1.5,
and 2. The results showed that the suitable value of F
for JSP in this study is 1.5. Particularly compared with
PSO, DE population size and number of iterations are
set equally to those in previous PSO studies as 100 and
500 respectively (Pratchayaborirak and Kachitvichy-
anukul, 2011).

5.2 Experimental Results

The experiments are implemented using the C# lan-
guage of the Microsoft Visual Studio 8.0. The program
runs on the platform of Intel®CoreTM 2 Dou CPU 1.67
GHz with 3062 MRAM.

 The performance of 1ST-DE is evaluated using
several benchmark JSP; FT20, LA01, LA21, LA29,
LA35 and LA37. Each problem is characterized by its
problem size: number of jobs (n) x number of machines
(m). The results are compared to those obtained from
1ST-PSO (a one-stage PSO) having the same algorithm
as in previous PSO studies (Pratchayaborirak and Ka-
chitvichyanukul, 2011) under the same conditions such
as encoding and decoding scheme, population size and

Table 2. Makespan comparison results between 1ST-PSO and 1ST-DE.

1ST-PSO 1ST-DE
Fitness Value Time Fitness Value Time Instance

Problem
size

(n×m)

Best
known

Solution Best Avg. SD (Sec.) Best Avg. SD (Sec.)
P-Value

FT20 10×10 1165 1226 1279.9 29.516 12.82 1224 1255 19.686 6.878 0.042
LA01 5×10 666 666 666 0 4.85 666 666 0 2.437 1
LA21 15×10 1046 1159 1167.4 6.501 20.36 1126 1141.1 9.539 8.352 0.000
LA29 20×10 1152 1319 1335.4 9.489 29.91 1277 1300.7 13.329 13.857 0.000
LA35 30×10 1888 1939 1967.6 20.727 58.03 1899 1917 12.875 26.52 0.000
LA37 15×15 1397 1514 1545.4 16.44 28.52 1485 1515.8 20.368 14.76 0.002

 Differential Evolution Algorithm for Job Shop Scheduling Problem 207

number of iterations. Table 2 shows the best, average,
standard deviations of makespan, and computing time
from 10 runs of each algorithm for each problem. The t-
test was performed to statistically compare the results of
two algorithms with 95% confident interval. The aver-
age convergence graph are also observed and illustrated
in Figure 4.

It is noted that since this experiment focuses on the
performance of DE and PSO algorithms, the 1ST-DE
and 1ST-PSO used here are the simple versions without
any additional improvements such as re-initialization
and local search strategies.

According to the results from Table 2 and Figure 4,
it is observed that all of solutions obtained from the pro-
posed DE are equal to or better than those obtained from
1ST-PSO with relatively faster computing time. The sta-
tistical t-test indicates that 1ST-DE outperforms 1ST-
PSO in all cases except for small problem size LA01
where both algorithms can easily find the optimal solu-
tion. The average convergence graph clearly demon-
strates faster convergence behavior of 1ST-DE com-
pared to 1ST-PSO.

6. CONCLUSION

This paper proposes a one-stage differential algo-
rithm (1ST-DE) for solving JSP. The proposed algo-
rithm employs the classic DE mutation scheme with ex-
ponential crossover operation. The random key repre-

sentation and permutation of m-job repetition is applied
to generate an active schedule. The performance of pro-
posed method is evaluated on a set of benchmark prob-
lems and compared with results from an existing PSO
algorithm.

The experimental results indicate that under the
same experimental conditions: encoding and decoding
scheme, population size and number of iterations, the
1ST-DE is superior to 1ST-PSO in term of solution
quality and computing time especially for the large size
problems. In addition, the proposed DE demonstrates
faster convergence behavior than that in 1ST-PSO.

In conclusion, the experimental results demon-
strated that DE has mechanisms to effectively search for
better solutions in JSP than PSO. In addition, the DE
algorithm can be easily adapted to solve other optimiza-
tion problems. The ongoing researches are under inves-
tigation to improve DE performance for solving a wide
range on scheduling problems.

REFERENCES

Bean, J. C. (1994), Genetic algorithms and random keys
for sequencing and optimization, ORSA Journal on
Computing, 6(2), 154-160.

Bierwirth, C. (1995), In E. Pesch, and S. Vo (Eds.), A
generalized permutation approach to job shop
scheduling with genetic algorithms, OR-Spektrum.
Special issue: Applied Local Search, 17(213), 87-

Figure 4. Comparison of average convergence graph between PSO and 1ST-DE.

LA35 LA37

LA21 LA29

208 Warisa Wisittipanich·Voratas Kachitvichyanukul

92.
Bin, Q., Ling, W., De-Xian, H., and Xiong W. (2008),

Scheduling multi-objective job shop using a me-
metic algorithm based on differential evolution. In-
ternational Journal of Advanced Manufacturing
and Technology, 35, 1014-1027.

Chakraborty, U. K. (ed.) (2008), Advances in Differen-
tial Evolution, Springer, Heidelberg.

Cheng, R., Gen, M., and Tsujimura, Y. (1996), A tuto-
rial survey of job-shop scheduling problems using
genetic algorithms-I, representation. Computers and
Industrial Engineering, 30, 983-997.

Fang L., Yutao Q., Zhuchang X., and Hongxia H.
(2009), Discrete differential evolution for the job
shop scheduling problem, Proceedings of the 1st
ACM/SIGEVO Summit on Genetic and Evolution-
aty Computation, China, 879-882.

Garey, M. R., Johnson, D. S., and Sethi, R. (1976), The
complexity of flow shop and job-shop scheduling.
Mathematics of Operation Research, 1, 117-129.

Godfrey, O. and Donald, D. (2006), Scheduling flow
shop using differential evolution algorithm, Euro-
pean Journal of Operational Research, 171, 674-
692.

Gonçalves, J. F., José, J., and Resende, M. G. C. (2005),
A hybrid genetic algorithm for the job shop sched-
uling problem, European Journal of Operation Re-
search, 167, 77-95.

Huang, K. L. and Liao, C. J. (2008), Ant colony optimi-
zation combined with taboo search for the job shop
scheduling problem, Computer and Operations Re-
search, 35, 1030-1046.

Price, K., Storn, R. M., and Lampinen, J. A. (2005),
Differential Evolution: A Practical Approach to
Global Optimization (Natural Computing Series),
Springer, New York.

Pongchairerks, P. and Kachitvichyanukul, V. (2009), A
two-level particle swarm optimization algorithm on
job-shop scheduling problems, International Jour-
nal of Operational Research, 4(4), 390-411.

Pratchayaborirak, T. and Kachivichyanukul, V. (2011),
A two-stage particle swarm optimization for multi-
objective job shop scheduling problems, Interna-

tional Journal of Management Science and Engi-
neering Management, 6(2), 84-93.

Qian, B., Wang, L., Huang, D. X., and Wang, X. (2008),
Scheduling multi-objective job shops using me-
metic algorithm based on differential evolution, In-
ternational Journal of Advanced Manufacturing
and Technology, 35, 1014-1027.

Quan-Ke, P., M. Fatih, T., and Yun-Chia, L. (2007), A
discrete differential evolution algorithm for the per-
mutation flowshop scheduling problem, Proceed-
ings of the 9th Genetic and Evolutionary Computa-
tion Conference, London, 126-133.

Storn, R. and Price, K. (1995), Differential evolution-a
simple and efficient adaptive scheme for global op-
timization over continuous spaces, Technical Re-
port TR-95-012, International Computer Science,
Berkeley, CA.

Udomsakdigool, A. and Kachitvichyanukul, V. (2006),
Two-way scheduling approach in ant algorithm for
solving job shop problems, International Journal of
Industrial Engineering and Management Systems,
5(2), 68-75.

Udomsakdigool, A. and Kachitvichyanukul, V. (2008),
Multiple-colony ant algorithm with forward-back-
ward scheduling approach for job-shop scheduling
problem, Advances in Industrial Engineering and
Operation Research (Springle), chapter 4, 39-55.

Wang, W. L., Wu, Q. D., and Song, Y. (2004), Modified
adaptive genetic algorithms for solving job-shop
scheduling problems, System Engineering Theory
and Practice, 24(2), 58-62.

Wang W., Xiang Z., and Xu X. (2008) Self-adaptive
differential evolution and its application to job-
shop scheduling, Proceeding of the 7th Interna-
tional Conference on System Simulation and Scien-
tific Computing, 820-826.

Yamada, T. and Nakano, R. (1995), A genetic algorithm
with multi-step crossover for job-shop scheduling
problems, Proceedings of the IEE/IEEE Interna-
tional Conference on Genetic Algorithms in Engi-
neering Systems: Innovations and Applications,
146-151.

