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Abstract. Job shop scheduling is well-known as one of the hardest combinatorial optimization problems and has 
been demonstrated to be NP-hard problem. In the past decades, several researchers have devoted their effort to 
develop evolutionary algorithms such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) for 
job shop scheduling problem. Differential Evolution (DE) algorithm is a more recent evolutionary algorithm 
which has been widely applied and shown its strength in many application areas. However, the applications of 
DE on scheduling problems are still limited. This paper proposes a one-stage differential evolution algorithm 
(1ST-DE) for job shop scheduling problem. The proposed algorithm employs random key representation and 
permutation of m-job repetition to generate active schedules. The performance of proposed method is evaluated 
on a set of benchmark problems and compared with results from an existing PSO algorithm. The numerical 
results demonstrated that the proposed algorithm is able to provide good solutions especially for the large size 
problems with relatively fast computing time. 
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1.  INTRODUCTION 

The Job Shop Scheduling Problem (JSP) is one of 
the most well-known combinatorial problems which 
have been subject of many research efforts for several 
decades. The classical JSP schedules a set of jobs on a 
set of machines in order to optimize a certain criterion, 
subjected to constraints that each job has processing 
operations through all machines which are fixed and 
known in advance. JSP is considered to be NP-hard (Ga-
rey et al., 1976), and exact algorithms such as integer 
programming, mixed integer programming and branch 
and bound method become inefficient to deal with such 
problem since they can solve only small size problems 
and may take extremely long computing time when the 
problem size increases. For practical reasons, most re-
cent efforts have been devoted to develop effective evo-
lutionary algorithms in order to find high-quality or 
near-optimal solutions within a reasonable time. Several 
approaches for solving JSP include, but not limited to, 

Genetic Algorithm GA (Wang et al., 2004; Concalves et 
al., 2005; Yamada and Nakano, 1995), Ant Colony Op-
timization ACO (Huang et al., 2008; Udomsakdigool 
and Kachitvichyanukul, 2006, 2008) and Particle Swarm 
Optimization PSO (Pongchairerks and Kachivichyanukul, 
2009; Pratchayaborirak and Kachivichyanukul, 2011).  

Differential evolution (DE) is one of the latest evo-
lutionary algorithms developed by Storn and Price in 
1995. DE has been gradually receiving attention from 
researchers due to its advantage of few control variables 
but performing well in search ability and convergence. It 
has been widely applied and shown its strengths in many 
problem domains from scientific, engineering, and fi-
nancial applications (Price et al., 2005; Chakraborty, 
2008).  

However, the applications on DE for combinatorial 
optimization are still very limited. Recently, some at-
tempts have been made to apply DE for solving schedul-
ing problems. Godfrey et al. (2006) applied DE on flow 
shop scheduling problem. Quan et al. (2007) proposed a 
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discrete differential evolution algorithm (DDE) for the 
permutation flow shop with the makespan criteria. Wang 
et al. (2008) proposed a self-adaptive DE (SDE) to im-
prove global convergence property and avoid premature 
convergence ability of the conventional DE. Liu et al. 
(2009) extended the application of DDE to the job shop 
scheduling problem with special mutation and crossover 
operators to deal with discrete variables in JSP. The 
results showed that DDE inherits the advantage of the 
original DE that has a rapid convergence rate and high 
solution quality for the small size problem, but for large 
problems DDE lost its diversity causing the solutions to 
be easily trapped at local optima. 

This paper presents the preliminary development of 
a one-stage differential evolution (1ST-DE) for JSP. The 
remainders of the paper are organized as follows. Sec-
tion 2 briefly describes JSP. Section 3 defines the DE 
algorithm. Section 4 describes an application of the pro-
posed DE for JSP. Experimental results are reported in 
section 5. Finally, conclusion is provided in section 6. 

2.  JOB SHOP SCHEDULING PROBLEM 

The classical JSP is a problem of allocating n dif-
ferent jobs to be processed on m different machines, 
subjected to two main sets of constraints; the precedence 
constraints and the conflict constraints. Each job has a 
set of sequential operations and each operation must be 
processed on a predefined machine with deterministic 
processing time known in advance. Each machine is 
independent from one another. Machine set up time and 
transfer time between operations are negligible. In addi-
tion, machine breakdown is not considered and the pre-
emption is not allowed in this problem. The precedence 
constraints ensure that each operation of a certain job is 
processed sequentially and the conflicts constraints gua-
rantee that each machine can processes only one opera-
tion at a time. The goal is to sequence operations on 
machines and specify starting time and ending time of 
each operation in order to optimize certain objectives 
subjected to the constraints.  

In this paper, the objective is to minimize the make-
span. The variables used in the JSP model are listed as 
follows:  

 
,j kp  : the process time of job j on machine k 

,j ks  : the start time of job j on machine k 
M : a large positive number 

jr  : the ready time of job j 
, ,′j j ky  : a binary variable defined as 

 
1, if job is before job on machine
0, otherwise

′⎧
= ⎨
⎩

j, j',k

j j k
y  

 
The mathematical model of the problem can be for-

mulated as follows: 

Minimization of makespan  
 

{ }, ,: +j k j kf minimize max s p       (1) 
 
 
Subjected to  
 

, ,+ ≤j k j k ks p s     , , '∀j k k   (2) 

, , ', , ',(1 )+ ≤ + ⋅ −j k j k j k j j ks p s M y  , ',∀j j k   (3) 

', ', , , ',+ ≤ + ⋅j k j k j k j j ks p s M y    , ',∀j j k   (4) 

, 0≥ ≥j k js r     ,∀j k     (5) 
 
 

Where j,  j’ = {1, 2, …, n} and k,  k’ ={1, 2, …, m}  
Equation (1) is the objective function. Equation (2) 

is the precedence constraint, and Equations (3) and (4) 
are the conflict constraints. Equation (5) ensures that 
any job cannot start before its ready time. 

3.  DIFFERENTIAL EVOLUTION 

Differential Evolution (DE) is one of the Evolu-
tionary Algorithms (EAs) for global optimization over 
continuous search space (Storn and Price, 1995). Its theo 
retical framework is simple and requires inexpensive 
computation in term of CPU time (Bin et al., 2008). Due 
to its advantage of relatively few control variables but 
performing well in convergence, DE has been widely 
applied and shown its strengths in many application 
areas (Godfrey and Donald, 2006; Quan et al., 2007; 
Qian et al., 2008).  

As a population-based search method, DE starts 
with randomly generate initial population of size N of 
D-dimensional vectors. A solution in DE algorithm is 
represented by D-dimensional position of a vector. Each 
variable’s value in the dimensional space is represented 
as the real number. The key idea behind DE is a new 
mechanism for generating trial vectors. DE generates 
trial vectors by mutation and crossover operation. Then, 
the replacement of an individual, so called selection 
operation, occurs only if the trial vector outperforms its 
corresponding vector. These processes are repeated until 
some stopping criteria are met. Thus, DE population 
evolve through repeated cycles of three main DE opera-
tors; mutation, crossover and selection. 

3.1 The Classic DE 

Currently, there are several DE variants. Generally, 
the mutation is the main operation which makes each 
variant distinct from one another. The classic version of 
DE is the simplest and most popular scheme used in 
literatures. The mutation operator in the classic DE gen-
erates a mutant vector by adding a weighted difference 
between two randomly selected vectors to the third ran-
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domly selected vector. This scheme has proven to be 
effective in solving many multimodal optimization pro-
blems due to its good exploration capability (Price et al., 
2005; Chakraborty, 2008). The procedures in the classic 
DE (Price et al., 2005) can be described as follows.  

3.1.1 Population Initialization 

DE starts with initializing the population of size N 
of D-dimensional vectors. The lower bound, bL, and 
upper bound, bU, for the value in each dimension jth (j = 
0, 1, …, D-1) must be specified. At initialization step (g 
= 0), the jth value of the ith vector is randomly generated 
as follows: 

 
, ,0 , , ,( )= ⋅ − +j i j j U j L j Lx u b b b        (6) 

 
Where ju  is a uniform random number in the range [0, 1]. 

3.1.2 Mutation 

Once initialized, DE mutates and combines current 
target vectors to produce mutant vectors. For each target 
vector, Xi,g, at generation g, the mutant vector, Vi,g, is 
generated according to the following equation: 

 
, 1, 2, 3,( )= + −i g r g r g r gV X F X X       (7) 

 
It is noted that 1 2,r rX X and 3rX  are randomly se-

lected vectors from the population. They are mutually 
exclusive and different from the ith target vector, Xi,g. F 
is a scale factor which controls the scale of the differ-
ence vector between 2rX  and 3rX , added to the base 
vector, 1rX . 

3.1.3 Crossover 

DE applies crossover operator on Xi,g and Vi,g
 to 

generate the trial vector Zi,g. In the classic DE, the uni-
form crossover is employed and the trial vector is gener-
ated by the following equation. 

 
, ,

, ,
, ,

,
,

≤ =⎧⎪= ⎨
⎪⎩

j i g j r u
j i g

j i g

v if u C or j j
z

x otherwise
   (8) 

 
Where  

 
ju : a uniformly random number between [0, 1] 
uj : a random chosen index, { }0, 1, , 1∈ −uj D  
rC : crossover probability in the range [0, 1] 
  

rC  controls the probability of selecting the value 
in each dimension for a trial vector from a mutant vector.  

3.1.4 Selection 

The selection operation is performed on each target 
vector, Xi,g, and its corresponding trial vector, Zi,g, to 
determine the survival vector for the next generation. 
The vector, Xi,g+1, is selected according to the greedy 

criteria 
 

, , ,
, 1

,

, if ( ) ( )
, otherwise+

≤⎧⎪= ⎨
⎪⎩

i g i g i g
i g

i g

Z f Z f X
X

X
     (9) 

 
It is noted that this selection scheme is applicable 

for minimization problem. Once each individual in the 
current population is updated, the population continue to 
evolve through mutation, crossover, and selection opera-
tion until some stopping criteria are met.  

This classic DE is commonly denoted as DE/rand/ 
1/bin, where DE stands for DE, rand is the type of base 
vector selected to be perturbed, 1 is the number of dif-
ference vector for permutation, and bin stands for bino-
mial distribution of the number of inherited dimension 
values of mutant vectors.  

4.  APPLICATION OF DE ON JSP 

Since DE is first designed for continuous domain, 
in order to apply DE to combinatorial problem i.e. 
scheduling problem, solution vectors in DE need to be 
transformed into a schedule. The procedures of solution 
mapping are illustrated in the following example. 

4.1 Solution Representation 

A solution of the problem can be represented using 
a vector with dimensions equal to the total number of 
operations processed on all machines. Consider an ex-
ample of two jobs and three machines in JSP in table 1.  

 
Table 1. JSP with 2 jobs and 3 machines. 

Job Machine Sequence Processing Time 

A M1 M2 M3 3 2 6 
B M2 M1 M3 5 3 4 

 
According to this example, the total number of di-

mension, equal to the total number of operation, is 6. 
Figure 1 illustrates random key representation encoding 
scheme (Bean, 1994) where each value in a vector di-
mension is initially generated with a uniform random 
number in range [0, 1]. 

 
Dimension j 1 2 3 4 5 6 

 0.23 0.97 0.34 0.46 0.71 0.58

Figure 1. Random key representation. 
 
Next, the permutation of 3-repetition of 3 jobs 

(Bierwirth, 1995) is applied with a sorting list rule to 
decode an individual vector into a sequence of opera-
tions as shown in Figure 2. The advantage of this ap-
proach is that any permutation of this representation 
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always provides a feasible schedule. Then, the opera-
tion-based approach (Cheng et al., 1996) is employed to 
generate a schedule. The decoded individual is trans-
formed into a schedule by taking the first operation from 
the list, then the second operation, and so on. During the 
process of generating a schedule, each operation is allo-
cated to a required machine in the best available position 
without delaying other scheduled operations. This pro-
cedure results in an active schedule as shown in Figure 3. 

 
Dimension j 1 3 4 6 5 2 

 0.23 0.34 0.46 0.58 0.71 0.97
 A A A B B B 

 
Dimension j 1 2 3 4 5 6 

 0.23 0.97 0.34 0.46 0.71 0.58
 A B A A B B 

Figure 2. m-repetition of job number permutation and 
operation-based representation. 

 

 
Figure 3. An active schedule after the decoding process. 

4.2 A Single Stage DE (1ST-DE) 

This paper proposes a one-stage differential evolu-
tion (1ST-DE) with a single population. In 1ST-DE, 
initial population is randomly generated according to 
equation (6).To obtain trial vectors, the mutation opera-
tion is carried out in the same way as the classic DE by 
equation (7), however, this study uses the exponential 
crossover operation. Starting at the randomly picked 
dimension index š, each dimension value of trial vector 
are inherited from its mutant vector, Vi,g, as long as uj ≤ 

rC . The first time when uj > rC , all the remaining di-
mension value are taken from the target vector, Xi,g. An 

integer, L indicates the number of consecutive dimen-
sion indexes on which crossover is performed. The ex-
ponential crossover scheme can be expressed in Equa-
tion (10). 

 
, ,

, ,
, ,

, , 1 , , 1
,

= < > < + > < + − >⎧⎪= ⎨
⎪⎩

j i g D D D
j i g

j i g

V if j s s s L
z

x otherwise
 (10) 

 
The angular brakets < > D denote a modulo function 

with modulus D (Storn and Price, 1995). The variant 
used in the experiments of 1ST-DE can be denoted as 
DE/rand/1/exp. 

5.  COMPUTATIONAL EXPERIMENT 

5.1 Parameter Setting 

In this study, the crossover rate rC  is set to 0.2. 
Some experiments were carried out to determine the 
choice of scale factors F in the range [0, 2]; 0.5, 1, 1.5, 
and 2. The results showed that the suitable value of F 
for JSP in this study is 1.5. Particularly compared with 
PSO, DE population size and number of iterations are 
set equally to those in previous PSO studies as 100 and 
500 respectively (Pratchayaborirak and Kachitvichy-
anukul, 2011). 

5.2 Experimental Results 

The experiments are implemented using the C# lan-
guage of the Microsoft Visual Studio 8.0. The program 
runs on the platform of Intel®CoreTM 2 Dou CPU 1.67 
GHz with 3062 MRAM.  

 The performance of 1ST-DE is evaluated using 
several benchmark JSP; FT20, LA01, LA21, LA29, 
LA35 and LA37. Each problem is characterized by its 
problem size: number of jobs (n) x number of machines 
(m). The results are compared to those obtained from 
1ST-PSO (a one-stage PSO) having the same algorithm 
as in previous PSO studies (Pratchayaborirak and Ka-
chitvichyanukul, 2011) under the same conditions such 
as encoding and decoding scheme, population size and 

 
Table 2. Makespan comparison results between 1ST-PSO and 1ST-DE. 

1ST-PSO 1ST-DE 
Fitness Value Time Fitness Value Time Instance 

Problem 
size 

(n×m) 

Best 
known 

Solution Best Avg. SD (Sec.) Best Avg. SD (Sec.) 
P-Value

FT20 10×10 1165 1226 1279.9 29.516 12.82 1224 1255 19.686 6.878 0.042 
LA01 5×10 666 666 666 0 4.85 666 666 0 2.437 1 
LA21 15×10 1046 1159 1167.4 6.501 20.36 1126 1141.1 9.539 8.352 0.000 
LA29 20×10 1152 1319 1335.4 9.489 29.91 1277 1300.7 13.329 13.857 0.000 
LA35 30×10 1888 1939 1967.6 20.727 58.03 1899 1917 12.875 26.52 0.000 
LA37 15×15 1397 1514 1545.4 16.44 28.52 1485 1515.8 20.368 14.76 0.002 
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number of iterations. Table 2 shows the best, average, 
standard deviations of makespan, and computing time 
from 10 runs of each algorithm for each problem. The t-
test was performed to statistically compare the results of 
two algorithms with 95% confident interval. The aver-
age convergence graph are also observed and illustrated 
in Figure 4. 

It is noted that since this experiment focuses on the 
performance of DE and PSO algorithms, the 1ST-DE 
and 1ST-PSO used here are the simple versions without 
any additional improvements such as re-initialization 
and local search strategies.  

According to the results from Table 2 and Figure 4, 
it is observed that all of solutions obtained from the pro-
posed DE are equal to or better than those obtained from 
1ST-PSO with relatively faster computing time. The sta-
tistical t-test indicates that 1ST-DE outperforms 1ST-
PSO in all cases except for small problem size LA01 
where both algorithms can easily find the optimal solu-
tion. The average convergence graph clearly demon-
strates faster convergence behavior of 1ST-DE com-
pared to 1ST-PSO. 

6.  CONCLUSION 

This paper proposes a one-stage differential algo-
rithm (1ST-DE) for solving JSP. The proposed algo-
rithm employs the classic DE mutation scheme with ex-
ponential crossover operation. The random key repre-

sentation and permutation of m-job repetition is applied 
to generate an active schedule. The performance of pro-
posed method is evaluated on a set of benchmark prob-
lems and compared with results from an existing PSO 
algorithm. 

The experimental results indicate that under the 
same experimental conditions: encoding and decoding 
scheme, population size and number of iterations, the 
1ST-DE is superior to 1ST-PSO in term of solution 
quality and computing time especially for the large size 
problems. In addition, the proposed DE demonstrates 
faster convergence behavior than that in 1ST-PSO. 

In conclusion, the experimental results demon-
strated that DE has mechanisms to effectively search for 
better solutions in JSP than PSO. In addition, the DE 
algorithm can be easily adapted to solve other optimiza-
tion problems. The ongoing researches are under inves-
tigation to improve DE performance for solving a wide 
range on scheduling problems. 
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