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Differential Evolution for Dynamic Environments with

Unknown Numbers of Optima

Mathys C. du Plessis · Andries P. Engelbrecht

Abstract This paper investigates optimization in dynamic environments where the

numbers of optima are unknown or fluctuating. The authors present a novel algorithm,

Dynamic Population Differential Evolution (DynPopDE), which is specifically designed

for these problems. DynPopDE is a Differential Evolution based multi-population al-

gorithm that dynamically spawns and removes populations as required. The new algo-

rithm is evaluated on an extension of the Moving Peaks Benchmark. Comparisons with

other state-of-the-art algorithms indicate that DynPopDE is an effective approach to

use when the number of optima in a dynamic problem space is unknown or changing

over time.

Keywords Differential Evolution · Dynamic Environments · Competing Populations ·
Moving Peaks · Dynamic Number of Populations

1 Introduction

Dynamic optimization problems are found in many real world domains, for example,

air traffic control, polarization mode dispersion compensation in optical fibre, and

target tracking in military applications. Despite the fact that evolutionary algorithms

often successfully solve static problems, dynamic optimization problems tend to pose a

challenge to evolutionary algorithms [23]. The lack of genetic diversity of the individuals

in the population is the main drawback of most of the standard evolutionary algorithms

when they are applied to dynamic problems. This is because the algorithms tend to

converge on a single optimum in the solution space and then lack the diversity to locate
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new optima when they appear. Differential Evolution (DE) is one of the evolutionary

algorithms that does not scale well to dynamic environments due to a lack of diversity

[34].

Most current research in applying DE to dynamic environments focuses on prob-

lems where the number of optima is known and does not change over time. This is

the case with the popular Moving Peaks Benchmark (MPB) [5] and the Generalized

Benchmark Generator [18]. While the phrase “varying number of peaks” is often used

by researchers, this generally refers only to the fact that some peaks are obscured by

others for a brief period during the algorithm’s run, and not to the number of peaks

fluctuating during the run [4], [19].

Previously, the authors presented Competitive Population Evaluation DE (CDE)

[10], a DE based multi-population algorithm, which is based on DynDE [21], one of the

first DE-based algorithms for dynamic environments. It was shown that CDE performed

better than DynDE on problems where the number of optima are known [10]. In this

paper, the performance of CDE on problems where the number of optima is unknown

or fluctuating is investigated and compared to results found using CDE’s predecessor

algorithm, DynDE.

The main contribution of this work is a novel extension to CDE, namely Dynamic

Population Differential Evolution (DynPopDE), which is aimed specifically at problems

where the number of optima is unknown or fluctuating. DynPopDE differs from CDE

in that the number of populations used is not constant over time.

The performance of DynDE, CDE and DynPopDE is evaluated by using an exten-

sion of Branke’s MPB which allows for fluctuating numbers of peaks.

The rest of the paper is structured as follows: related work is described in Section

2 and the DE algorithm is discussed in Section 3. The Moving Peaks Benchmark and

extensions to allow for fluctuating numbers of peaks is discussed in Section 4. Section 5

reviews the research of Mendes and Mohais on DynDE. CDE is reviewed in Section 6,

while the novel approach DynPopDE is presented in Section 7. The results of an inves-

tigation into the performance of DynDE, CDE and DynPopDE are given in Section 8.

DynPopDE is compared to other state-of-the-art optimization algorithms for dynamic

environments in Section 9. In addition, a population spawning and removing technique

suggested by Blackwell [2] is incorporated into CDE and compared to DynPopDE.

Finally, conclusions are drawn in Section 10.

2 Related Work

Jin and Branke [15] provided a survey on algorithms for dynamic optimization which

are discussed along with some of the more recent advances in the field in this section.

Cobb [9] suggested drastically increasing the mutation rate of a Genetic Algorithm

(GA) after a change in the environment has occurred, while Vavak et al. [32] advocated

a more gradual increase. Hu and Eberhart [12] suggested that particles in a Particle

Swarm Optimization (PSO) algorithm should be reinitialized when a change in the en-

vironment has occurred. Approaches aimed at maintaining a high amount of diversity

during the entire run include Grefenstette’s Random Immigrants [11] and refinements

made by Yang [33]. These introduce random individuals into the GA’s population after

each generation. In contrast, Morrison [23] made use of stationary individuals (called

sentinels) that are uniformly distributed around the search space. These sentinels in-
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crease diversity by providing an influx of genetic material from points apart from the

convergence area of the GA’s population.

The thermodynamic GA [22] explicitly controls the population’s diversity through-

out the run by selecting individuals for the next population, not only based on their

fitness, but also based on the rarity of their genes.

More recent diversity-increasing PSO approaches include charged particles [1],

where each particle is assigned a virtual charge and then allowed to repel each other

based on the laws of electrostatics. The idea of increasing diversity by reinitializing

a number of individuals in a population within a hyper-sphere centered around the

best individual within the population was proposed by Blackwell and Branke [3], [4].

These individuals are called Quantum individuals. A similar approach, called Brow-

nian individuals, involves the creation of individuals close to the best individual by

adding a small random value sampled from a normal distribution to each component

of the best individual [21]. Investigations into finding an appropriate neighborhood

structure for PSO [14], [20] and an appropriate reproduction scheme for DE [21] have

been conducted, since these parameters greatly affect the diversity of the population.

Several strategies employ memory to retain information regarding the location of

the optima in the environments before a change has occurred. This is generally achieved

by using multiple independent populations to locate various optima. A key feature of

these approaches is that independent populations are allowed to search for optima in

parallel. Three of the seminal algorithms in this class are Branke’s Self-Organizing

Scouts (SOS) [6], Oppacher and Wineberg’s Shifting Balance GA (SBGA) [26] and

Ursem’s Multinational GA (MGA) [31]. All three of these approaches make use of

some strategy to intelligently distribute individuals among the populations.

SOS makes use of a large base population that identifies optima in the search

space. When an optimum is located, a small scout population is left to guard and

further optimize the optimum. Individuals are distributed between the various scout

populations and the base population by the algorithm. This distribution is based firstly

on the fitness of the best individual in each population, and secondly, on the amount

of improvement in fitness made between the previous and the current generation.

While SOS aims to keep the bulk of the population in a single population searching

for new optima, the SBGA groups a single core around the best optimum that was

found and uses smaller populations, called colonies, to search for new optima. The

information contained in the colony populations is shared with the core population by

means of migrant individuals that are periodically transferred from colony populations

to the core population.

In contrast to SOS and SBGA, the MGA algorithm does not explicitly control

the number of individuals in sub-populations. Furthermore, parent individuals for the

creation of offspring for a given population are not only selected from the current

population, but from all the individuals. MGA uses hill-valley detection to form popu-

lations. This technique randomly samples points between two individuals to determine

whether the two individuals are located on the same optimum. When offspring are cre-

ated, hill-valley detection determines if the new individuals are to remain in the current

population, whether the new individual should join another population, or whether the

new individual should be placed in an entirely new population.

Considerable success has been achieved in applying modern optimization algo-

rithms, such as PSO and DE, to dynamic optimization. Parrot and Li [27] suggested a

multiple-population PSO approach to optimizing dynamic problems, called speciation.

The social component of PSO provides a simple method of dividing the population
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into sub-populations. In this algorithm, a particle is grouped into a population if the

Euclidean distance between the position of the particle and the best particle in the pop-

ulation is within a certain threshold value. The global best value of each particle within

a population is set to the personal best value of the best particle. Particles can thus

migrate to another population by moving too far away from the current population’s

best particle or by moving closer to another population’s best particle.

Blackwell and Branke [4] introduced a multiple-swarm PSO-based algorithm that

is based on three components: Exclusion, Anti-convergence and Quantum individu-

als. An interesting novelty about their approach is that all swarms contain the same

number of individuals. The aim of having multiple swarms is that each population

should be positioned on its own promising optimum in the environment. Unfortunately

swarms often converge to the same optimum, hence decreasing diversity. Exclusion [3]

is a technique meant to prevent swarms from clustering around the same optimum

by means of reinitializing swarms that stray within a threshold Euclidean distance

from a better-performing swarm. This threshold distance is called the exclusion radius.

Anti-convergence is meant to prevent stagnation of the particles in the search space.

Consequently, if it is found that all swarms have converged to their respective optima,

the weakest population is randomly reinitialized. Convergence is detected if all parti-

cles within a swarm fall within a threshold Euclidean distance of each other. This is

called the convergence radius.

Blackwell [2] further adapted the PSO-based algorithm of Blackwell and Branke

[4] by self-adapting the number of swarms in the search space. This algorithm is aimed

at situations where the number of optima in the dynamic environment is unknown.

Swarms are generated when the number of free swarms that have not converged to

an optimum (Mfree) have dropped to zero. Conversely, swarms are removed if Mfree

is less than a threshold parameter, nexcess. A swarm is classified as converged if all

particles are located within a diameter of 2rconv. The value of rconv is calculated using

equation 5.

Li et al. [19] improved the speciation algorithm by introducing quantum individuals

[3] to increase the diversity and anti-convergence to detect stagnation and subsequently

to reinitialize the worst-performing populations. This algorithm is called the Speciation-

based PSO (SPSO).

Mendes and Mohais [21] adapted the ideas from Blackwell and Branke [4] to a DE

algorithm for dynamic optimization. Their multi-population algorithm, DynDE, uses

Brownian individuals to increase diversity, and exclusion to prevent populations from

converging to the same optimum. DynDE will be discussed in detail in later sections.

Brest et al. [7], [8] proposed a self-adaptive, multi-population DE algorithm (jDE )

for optimizing dynamic environments. This work focused on adapting the DE scale fac-

tor and crossover probability, but it also contained several components that are similar

to other dynamic optimization algorithms. An idea similar to exclusion is used to pre-

vent populations from converging to the same optimum. An ageing metaphor is used

to reinitialize populations that have stagnated on a local optimum. Each individual’s

age is incremented every generation. Offspring inherit the age of parents, but this age

may be reduced if an offspring individual performs significantly better than its parent.

Populations of which the best individual is too old are reinitialized. Within populations

a further mechanism is used to prevent convergence. Individuals are reinitialized if the

Euclidean distance between the individual and the best individual in the population is

too small. The algorithm also utilizes a form of memory, called an archive. The best

individual is added to the archive every time a change in the environment occurs. A
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random individual is selected from the archive from which one of the sub-populations

is generated by adding small random numbers to each of the individual’s components.

Recently, Noroozi et al. [25] proposed a DE-based algorithm aimed at dynamic

environments, referred to as CellularDE. This algorithm divides the search space into

equally sized cells which are used to delineate sub-populations. A limit is placed on

the maximum number of individuals that are allowed to be located in each cell (and

consequently the sub-population size). Once this limit is exceeded, the worst performing

individual within the overpopulated cell is reinitialized in a randomly selected cell. For

each sub-population, the DE mutations and crossovers are only applied to individuals

in the same or surrounding cells.

It is interesting to note that several earlier algorithms supported the number of

populations changing over the course of the run (e.g. SOS [6] and MGA [31]), while

later algorithms (for which better results are reported) made use of a constant number

of populations (e.g. Blackwell and Branke’s PSO-based approach [4], DynDE [21] and

jDE [8]).

3 Differential Evolution

Differential Evolution (DE) is a relatively new optimization algorithm based on Dar-

winian evolution, created by Storn and Price [16], [29]. Mutations are based on the

spacial difference between two or more individuals added to a target vector, as opposed

to other evolutionary algorithms where mutation step sizes are generally sampled from

a random distribution. Several variants to the DE algorithm have been suggested, but

a generic algorithm is as follows [16]:

1. Randomly create I individuals to form a population.

2. Evaluate each individual.

3. Create I individuals for a trial population as follows:

(a) Select three individuals at random, −→x 1 6= −→x 2 6= −→x 3, from the current popula-

tion.

(b) Create a new trial vector −→v using:

−→v i = −→x 1 + F · (−→x 2 −−→x 3) (1)

where F ∈ (0,∞) is known as the scale factor.

(c) Add −→v i to the trial population.

4. For each individual −→x i in the current population, select the corresponding −→v i in

the trial population. With these two individuals, perform crossover as follows:

(a) Create offspring −→u i using:

ui,j =

{

vi,j if(U(0, 1) ≤ Cr or j = jrand)

xi,j otherwise
(2)

where Cr ∈ (0, 1) is the crossover probability and jrand is a randomly selected

index.

(b) Evaluate the fitness of −→u i.

(c) If −→u i has a better fitness value than −→x i then replace −→x i with −→u i.

5. Repeat steps 3 and 4 until a termination criterion is met.
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Most variations on DE (known as schemes) are based on different approaches to

create each of the temporary individuals, −→v i [28] (see equation (1)), and how offspring

is created (see equation (2)). By convention schemes are labelled in the form DE/a/b/c,

where a is the method used to select the target vector; b is the number of difference

vectors and c is the method used to create offspring. The scheme used in the above

algorithm is referred to as DE/rand/1/bin.

4 Moving Peaks Benchmark

Branke [5] created the Moving Peaks Benchmark (MPB) in order to address the need

for a single, adaptable benchmark that can be used to compare the performance of

algorithms aimed at dynamic optimization problems. This has been used by several

researchers [13],[24],[27],[30]. The benchmark contains a moving peaks function and

performance measures to evaluate the efficiency of an algorithm. The multi-dimensional

problem space of the moving peaks function contains several peaks of variable height,

width and shape. The position, height and width of each peak changes periodically.

The MPB allows the following parameters to be set:

– Number of peaks

– Number of dimensions

– Maximum and minimum peak widths

– Maximum and minimum peak heights

– Change period (the number of function evaluations between successive changes in

the environment)

– Change severity (how much the peaks are moved)

– Height severity (standard deviation of changes made to the height of each peak)

– Width severity (standard deviation of changes made to the width of each peak)

– Peak function

– Correlation (between successive movements of a peak)

The performance measure suggested by Branke et al. [6] is the offline error. The

offline error is defined as the average of the current errors over the entire run, where

the current error is defined as the smallest error found since the last change in the

environment.

Part of this study involves an investigation into dynamic environments in which the

number of peaks fluctuates. The MPB was therefore adapted by the current authors

to allow the number of peaks to change when a change occurs in the environment. For

the adapted MPB, the number of peaks, m(t), is now calculated as:

m(t) =











max{1, m(t − 1) − M ∗ U(0, 1) ∗ P}
if U(0, 1) < 0.5

min{M, m(t − 1) + M ∗ U(0, 1) ∗ P}
otherwise

(3)

where M is the maximum number of peaks and P is the maximum fraction of the

maximum number of peaks that can be added or removed from the population after a

change in the environment. P thus controls the severity of the change in the number

of peaks. For example, a value of P = 1 will result in up to M peaks being added or

removed, while a value of P = 0.1 will result in a change of up to 10% in M , where M

and P are included as parameters of the benchmark function.
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5 DynDE

DynDE is a differential evolution algorithm developed by Mendes and Mohais [21]

to solve dynamic optimization problems. Their algorithm makes use of approaches

similar to those applied by Blackwell and Branke [4] to Particle Swarm Optimization

(PSO) in dynamic environments. The most successful versions of DynDE make use

of multiple populations, exclusion and Brownian individuals to adapt DE to dynamic

environments.

5.1 Multiple populations

Typically, a static problem space may contain several peaks or local optima. These

peaks not only move around in a dynamic environment, but also change in height.

This implies that an entirely different peak may become the optimal peak (or one of

several) once a change in the environment occurs. Consequently, not only must the

movement of the best peak found in the problem space be tracked, but also the sub-

optimal peaks. An effective method to achieve this is to maintain several independent

populations of DE individuals, one on each peak. In their most successful experiments,

Mendes and Mohais used 10 populations, each containing 6 individuals.

5.2 Exclusion

In order to track all peaks, it is necessary to ensure that all populations converge

to different peaks. If all the populations converged to the optimum peak this would

defeat the purpose of having multiple populations. Mendes and Mohais used exclusion

to prevent populations from converging to the same peak. This approach works by

comparing the best individuals from each population. If the spatial difference between

any two of these individuals becomes too small, their errors are compared and the

entire population of the inferior individual is then randomly reinitialized. A threshold

is used to determine if two individuals are too close. This is calculated as follows:

rexcl =
X

2p
1

d

(4)

where X is the range of the d dimensions (assuming equal ranges for all dimensions),

and p is the number of peaks. From equation (4) it can be seen that the exclusion

threshold increases with an increase in the number of dimensions and decreases if the

number of peaks is increased.

In the above approach it is assumed that the number of peaks is known. In the

absence of information on the number of peaks, this study suggests that equation (4)

be changed to:

rexcl =
X

2K
1

d

(5)

where K is the number of populations, thus making the threshold dependent on the

number of available populations. The same equation was used by Blackwell [2] in the

self-adapting multi-swarms algorithm.
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5.3 Brownian individuals

Since a change in the environment implies at least some movement of some of the peaks,

it is unlikely (even if the change is small) that all of the populations will still be clustered

around the maximum of their respective peaks. In order to improve the relocation of the

optimum of the respective peak by the individuals in the sub-populations, the diversity

of each population should be increased. Mendes and Mohais successfully used Brownian

individuals for this purpose. In every generation a pre-defined number of the weakest

individuals are flagged as Brownian. These individuals are then replaced by another

individual created by adding a small random number sampled from a zero-centred

Gaussian distribution to each component of the best individual in the sub-population.

A Brownian individual, −→x brown, is thus created from the best individual −→x best using

the formula:

−→x brown = −→x best +
−→
N (0, ν) (6)

where ν is the standard deviation of the Gaussian distributed random number. Mendes

and Mohais [21] showed that an appropriate value of ν is 0.2.

5.4 DE Scheme

Mendes and Mohais [21] showed that the most effective scheme to use when following

their approach is DE/best/2/bin, where each temporary individual is created using:

−→v = −→x best + F · (−→x 1 + −→x 2 −−→x 3 −−→x 4) (7)

with −→x 1 6= −→x 2 6= −→x 3 6= −→x 4. The temporary individuals are thus created from four

randomly selected individuals and the current best individual, −→x best.

6 Competitive Population Evaluation Differential Evolution

CDE [10] is an algorithm based on DynDE, containing two additional components,

namely: Competitive Population Evaluation and Reinitialization Midpoint Check.

6.1 Competitive Population Evaluation (CPE)

The basis for the CPE approach [10] is to allocate function evaluations to populations

based on performance. The best-performing population is evolved on its own until its

performance drops below that of another population. At this point another population

will be identified as the best-performing population, which is then evolved on its own

until its performance drops. This allows the location of the highest peak to be discovered

early, while the suboptimum peaks are located later. This approach thus differs from

DynDE in that peaks are located sequentially rather than in parallel.

In short, the Competitive Population Evaluation algorithm works as follows:

1. At the commencement of the running of the algorithm or after a change in the en-

vironment occurs, allow the standard DynDE algorithm to run for two generations.

2. Calculate the performance value, P, for each population.
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3. Evolve only the population with the highest performance value in the next gener-

ation.

4. Update the performance value of the population that evolved.

5. If no change in the environment has occurred, return to step 2.

6. Return to step 1 when a change in the environment occurs.

The performance of a population depends on two factors: The current fitness of the

best individual in the population and the amount that the error of the best individual

was reduced during the previous evaluation of the population. Let K be the number

of populations and fk(t) be the fitness of the best individual in population k during

generation t. The performance P of population k after generation t is given by:

P(k, t) = (∆fk(t) + 1)(Rk(t) + 1) (8)

∆fk(t) = |fk(t) − fk(t − 1)|

For function maximization problems, Rk(t) is calculated as:

Rk(t) = |fk(t) − min
q=1,...,K

{fq(t)}|

and, for function minimization problems,

Rk(t) = |fk(t) − max
q=1,...,K

{fq(t)}|

The absolute values of ∆fk(t) and Rk(t) are taken to ensure that the performance

values are always positive. The best-performing population will thus be the population

with the highest product of fitness and improvement. Equation (8) explains why the

standard DynDE algorithm is allowed to run for two generations after a change in the

environment; since two successive evaluations are required to evaluate the equation.

By competitively choosing the better-performing populations to evolve before other

populations, the lowest error value could be reached sooner. This is beneficial when a

low error is required during the entire run of the algorithm. Alternatively, when the

lowest error value is only required just before changes occur in the environment, the

algorithm should perform better on environments with more frequent changes. This

technique has the added advantage that better-performing populations will receive

more function evaluations. These would otherwise have been wasted on finding the

maximum of the sub-optimal peaks. The overall error value should consequently also

be reduced.

Changes in the environment are detected by periodically re-evaluating the best

individual found since the last change in the environment.

An advantage of CPE is that only information that is available in normal DynDE

is utilized, thus requiring no additional function evaluations.

6.2 Reinitialization Midpoint Check

Section 5.2 explained how DynDE determines when two populations are located on the

same peak, which results in the weaker population being reinitialized. This approach

does not take into account the case when two peaks are located extremely close to each

other, i.e. within the exclusion threshold. In these situations, one of the populations will

be reinitialized, leaving one of the peaks unpopulated. The Reinitialization Midpoint
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Check (RMC) approach partially remedies this problem by determining whether the

midpoint between the best individuals in each population constitutes a higher error

value than the best individuals of both populations. If this is the case, it implies that a

trough exists between the two populations and that neither should be reinitialized. This

strategy will not work in all situations, but provides a method of detecting multiple

peaks within the exclusion threshold without being computationally expensive or using

too many function evaluations, since only one point is evaluated.

7 DynPopDE

In this section a novel approach specifically designed to address problems with unknown

or a fluctuating number of peaks is introduced. Dynamic Population Differential Evo-

lution (DynPopDE) is based on CDE, but with three new extensions, namely spawning

new populations, removing populations, and the introduction of a penalty factor on

performance.

7.1 Spawning populations

As is illustrated in section 8, even if the number of peaks is known, creating an equal

number of populations as peaks is not an effective strategy. When the total number

of peaks is unknown, choosing the number of populations to use would be, at best, an

educated guess. It is therefore suggested that the number of populations should not

be a parameter of the algorithm, but that populations should be spawned as needed.

The question that must be answered is: When should new populations be spawned?

Blackwell [2] spawned populations based on the number of swarms that have not con-

verged to within a threshold radius. In contrast, DynPopDE makes use of information

inherent to CDE to determine when populations should be spawned.

CDE is based on allocating processing time and function evaluations to populations

based on performance. A detection scheme is proposed to indicate when evolution has

reached a point of little or no improvement in error for current populations. In this

context, this point will be referred to as stagnation. When stagnation is detected,

DynPopDE introduces a new population of random individuals. Equation (8) shows

that the performance of an individual is calculated as the product of its current fitness

and the improvement made in fitness during the previous generation. It is suggested

that it would be a meaningful indicator of stagnation if all of the current populations

received a zero improvement of fitness after their last respective function evaluations.

Let K be the set of current populations. We define a function, Υ (t), that is true if

stagnation occurred, as follows:

Υ (t) =

{

true if(∆fk(t) = 0) ∀ k ∈ K
false otherwise

(9)

Note that this approach does not guarantee that stagnation of all populations has

permanently occurred, but it does indicate that function evaluations are not effectively

used by the current populations, and may thus be employed to detect more peaks in

the environment.

This approach allows DynPopDE to commence with only a single population and

adapt to an appropriate number of populations.
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7.2 Removing populations

The previous section explained how new populations are spawned when necessary.

However, it is possible that equation (9) detects stagnation incorrectly, and more pop-

ulations than necessary may be created. Furthermore, in problems where the number

of peaks fluctuate, it would be desirable to remove superfluous populations when the

number of peaks decreases. It thus becomes necessary to detect redundant populations

when the number of populations outnumber the number of peaks.

In DynDE a population is reinitialized when the spatial difference between the pop-

ulation and a more fit population drops below the exclusion threshold and, in CDE,

the midpoint check does not detect two distinct optima. It is reasonable to assume

that when redundant populations are present, these populations will perpetually be

reinitialized and will not converge to specific peaks. Consequently, redundant popula-

tions can be detected by finding populations that are successively reinitialized without

reaching a point of apparent convergence. A population, k, will be discarded when it

is flagged for reinitialization due to exclusion, and

∆fk(t) 6= 0 (10)

Once again, this approach does not guarantee the removal of a population only when

the number of populations outnumbers the peaks, since more than one population may

optimize the same peak even when more peaks than populations are present. However,

since no information is lost by this process (populations are only removed when flagged

for reinitialization), new populations can effectively be reintroduced by the spawning

process when necessary.

7.3 Penalty Factor

The detection of stagnation is essential to DynPopDE’s population-spawning process.

In order to detect stagnation effectively, it is necessary to distribute function evalua-

tions more uniformly among all the populations.

The final component of DynPopDE is the introduction of a penalty factor into

equation (8) to penalize populations for successively receiving the highest performance

value without showing any improvement in fitness.

The performance with penalty, Ppen(k, t), is calculated as:

Ppen(k, t) =

{

P(k,t)
penk(t)

if(penk(t) > 0)

P(k, t) otherwise
(11)

where the penalty factor, penk(t), of population k is calculated as:

penk(t) =

{

penk(t − 1) + 1 if(∆fk(t) = 0)

0 otherwise
(12)

The penalty factor is thus reset to zero as soon as an improvement of fitness is found.

This approach is contrary to the spirit of CDE where populations are favoured

for performing well, and function evaluations are not wasted on suboptimal peaks. In

fact, it will be shown in Section 8 that when a penalty factor is introduced into CDE

without the spawning and population removal components, a decrease in performance
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is observed. There is thus an intrinsic cost in detecting stagnation which takes the

form of a necessary allocation of more function evaluations to weaker populations to

ensure a reasonable chance to stagnate. It will be shown that DynPopDE is significantly

improved by the incorporation of the penalty factor, since this improves the detection

of stagnation. Pseudo-code of the DynPopDE algorithms is given in Algorithm 1.

Algorithm 1 DynPopDE Pseudo-code

Create one sub-population of random individuals

while termination criterion not met begin

if Change detected or First generation

begin

Reevaluate fitness of all individuals

count := 0

end

if count < 2

begin

for all sub-populations

begin

Create offspring using DE/best/2/bin

Insert better performing offspring into sub-population

end

end

else begin

for all sub-populations calculate Ppen

Create offspring using DE/best/2/bin for sub-population with highest Ppen

Insert better performing offspring into sub-population

end

if Υ then introduce new random sub-population

Remove exclusion sub-populations subject to RMC

Reinitialize excluded sub-populations for which ∆f = 0

Evaluate fitness of populations reinitialized by exclusion

Create Brownian individuals

count := count + 1

end

8 Experimental Results

In order to investigate performance of DynDE and CDE and to validate DynPopDE,

a comparative study into the performance of DynPopDE, CDE and DynDE was con-

ducted over a large number of combinations of settings of the MPB. In Section 8.2 the

effects of having an unknown number of optima is investigated. Fluctuating numbers

of optima are investigated in Section 8.3.

8.1 Experimental Procedure

Experiments were run for 500 000 function evaluations each. For each experiment the

average offline error over 50 runs along with the confidence interval is reported. A Mann-
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Whitney U test was done for relevant experiments to determine if differences between

the results of the respective algorithms were statistically significant. The algorithms all

used the following parameter values (following results obtained by Mendes and Mohais

[21]): Sub-population size = 6; Number of Brownian individuals per sub-population =

2; Brownian radius, ν = 0.2.

8.2 Unknown Number of Peaks Experiments

DynDE, CDE and DynPopDE were compared on problems where the number of peaks

is unknown. This was done by investigating several variations of MPB settings that

correspond to Scenario 2 [5] (see Table 1).

Table 1 MPB settings.

Setting Value

Nr of Dimensions 5
Nr of Peaks 10
Max and Min Peak height [30,70]
Max and Min Peak width [1.0,12.0]
Change period 5000
Change severity 1.0
Height severity 7.0
Width severity 1.0
Peak function Cone
Correlation [0.0,1.0]

The algorithms were run for various settings of the number of peaks. In addition,

the scalability of the algorithms in terms of the change periods and the number of

dimensions were investigated by repeating the experiments for all combinations of the

selected settings listed in Table 2.

Table 2 MPB settings for unknown number of peaks experiments.

Setting Values

Nr of Dimensions 5, 10, 15
Change period 1000, 2000, 3000, 4000, 5000
Number of Peaks 5, 10, 20, 40, 80, 160

As a baseline, experiments were conducted to determine the offline error of DynDE

and CDE when the number of peaks is known, i.e. the same number of populations

as peaks were used. The results of these experiments can be found in Table 3. Similar

trends were found in 10 and 15 dimensions. Consequently, the 10 and 15 dimensional

results are omitted here. Full results are available from the authors. A visual depiction

of the offline error of DynDE is provided in Figure 1.

The results show that both CDE and DynDE yielded extremely large errors for

higher numbers of peaks.

Since the ideal number of populations is not known when an unknown number of peaks
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Fig. 1 Offline error of DynDE for different change periods in 5 dimensions when the same
number of populations as number of peaks is used.

exists in the problem space, the same experiments were repeated with both DynDE and

CDE using 10 populations in all cases. This number was found to produce reasonable

results for the purpose of a baseline comparison. Results are given in Table 3. Figure

2 depicts the DynDE results in 5 dimensions when using 10 populations. Comparing

Figures 1 and 2 highlights the dissimilar behaviour that was found by using a constant

number of sub-populations. The effect of reducing the change period is less pronounced

with respect to increasing the number of peaks, and the increase in offline error, due

to increasing the number of peaks, levels off for number of peaks greater than about

40.
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Table 3 Offline error in 5 dimensional experiments with various numbers of peaks (#P) and
change periods (CP) of DynDE with equal population size and number of peaks (DynDE),
DynDE with population size 10 (DynDE 10), CDE with equal population size and number
of peaks (CDE), CDE with population size 10 (CDE 10), CDE with penalty factor (CDE
10 Pen), and the result of a Mann-Whitney U test comparing DynDE with population size
10 to CDE with population size 10 (p-Val). Values that are below a 95% confidence level are
in boldface.

#P CP DynDE DynDE
10

CDE CDE 10 CDE 10
Pen

p-
Val

5 1000 2.63 ± 0.16 4.36 ± 0.13 1.82 ± 0.11 2.83 ± 0.10 3.14 ± 0.08 0.00
2000 1.53 ± 0.12 2.49 ± 0.09 1.22 ± 0.13 1.72 ± 0.06 2.02 ± 0.07 0.00
3000 1.23 ± 0.13 1.96 ± 0.09 0.90 ± 0.09 1.27 ± 0.06 1.61 ± 0.10 0.00
4000 0.99 ± 0.13 1.56 ± 0.12 0.82 ± 0.08 1.05 ± 0.07 1.39 ± 0.07 0.00
5000 0.91 ± 0.15 1.33 ± 0.08 0.76 ± 0.14 0.86 ± 0.05 1.22 ± 0.11 0.00

10 1000 3.66 ± 0.09 3.80 ± 0.09 2.80 ± 0.08 2.75 ± 0.08 2.90 ± 0.08 0.00
2000 2.47 ± 0.09 2.43 ± 0.09 1.72 ± 0.07 1.75 ± 0.08 1.94 ± 0.07 0.00
3000 1.84 ± 0.09 1.88 ± 0.11 1.34 ± 0.07 1.36 ± 0.08 1.57 ± 0.11 0.00
4000 1.58 ± 0.11 1.48 ± 0.08 1.11 ± 0.08 1.15 ± 0.11 1.35 ± 0.11 0.00
5000 1.23 ± 0.07 1.36 ± 0.10 1.00 ± 0.08 1.04 ± 0.10 1.22 ± 0.11 0.00

20 1000 6.45 ± 0.39 4.92 ± 0.10 4.04 ± 0.06 4.07 ± 0.08 4.28 ± 0.10 0.00
2000 3.34 ± 0.08 3.72 ± 0.14 2.62 ± 0.05 3.10 ± 0.08 3.42 ± 0.11 0.00
3000 2.56 ± 0.07 3.05 ± 0.13 1.96 ± 0.05 2.75 ± 0.13 2.93 ± 0.10 0.00
4000 2.12 ± 0.07 2.82 ± 0.13 1.59 ± 0.06 2.50 ± 0.13 2.61 ± 0.14 0.00
5000 1.87 ± 0.06 2.53 ± 0.13 1.42 ± 0.05 2.35 ± 0.13 2.56 ± 0.20 0.07

40 1000 17.69 ± 2.48 5.79 ± 0.10 18.69 ± 2.45 4.95 ± 0.09 5.11 ± 0.09 0.00
2000 5.67 ± 0.29 4.66 ± 0.16 3.52 ± 0.06 4.08 ± 0.14 4.04 ± 0.12 0.00
3000 3.51 ± 0.08 3.99 ± 0.14 2.71 ± 0.05 3.55 ± 0.12 3.91 ± 0.16 0.00
4000 2.90 ± 0.07 3.69 ± 0.18 2.32 ± 0.06 3.25 ± 0.17 3.61 ± 0.16 0.00
5000 2.42 ± 0.06 3.34 ± 0.18 1.99 ± 0.05 3.20 ± 0.17 3.33 ± 0.18 0.29

80 1000 26.91 ± 1.93 6.18 ± 0.10 25.27 ± 2.12 5.36 ± 0.10 5.47 ± 0.10 0.00
2000 13.89 ± 1.71 4.86 ± 0.12 13.21 ± 1.62 4.31 ± 0.14 4.63 ± 0.14 0.00
3000 8.13 ± 0.95 4.38 ± 0.11 3.92 ± 0.11 3.94 ± 0.14 4.24 ± 0.15 0.00
4000 4.57 ± 0.21 4.04 ± 0.18 2.99 ± 0.05 3.79 ± 0.19 3.96 ± 0.16 0.04
5000 3.49 ± 0.09 3.69 ± 0.19 2.68 ± 0.06 3.61 ± 0.19 3.74 ± 0.17 0.47

160 1000 27.69 ± 1.05 6.25 ± 0.11 28.26 ± 0.99 5.37 ± 0.10 5.49 ± 0.10 0.00
2000 18.77 ± 1.34 4.95 ± 0.11 19.03 ± 1.29 4.45 ± 0.11 4.65 ± 0.14 0.00
3000 15.98 ± 1.18 4.34 ± 0.14 15.21 ± 1.25 3.92 ± 0.13 4.25 ± 0.16 0.00
4000 10.55 ± 1.08 4.08 ± 0.15 11.03 ± 1.16 3.87 ± 0.14 4.07 ± 0.19 0.06
5000 8.23 ± 0.85 3.86 ± 0.21 4.76 ± 0.26 3.61 ± 0.13 3.63 ± 0.14 0.06

When using 10 populations, a much lower offline error is found for a high number of

peaks for both DynDE and CDE. Figure 3 plots the average offline error of DynDE and

CDE per number of peaks for situations when an equal number of populations as peaks

are used and when a constant number of 10 peaks are used. An interesting observation

can be made from Figure 3. Much better results are found when a constant number

of 10 peaks are used. This indicates that, even if the number of peaks is known, it is

better to use a lower number of populations for a large number of peaks. A plausible

explanation for this phenomenon is that while it is desirable to track all peaks, the low

number of function evaluations that are available between changes in the environment

makes using a large number of populations infeasible.

Note that for number of peaks equal to 5, CDE with matching number of peaks

and populations outperformed CDE with 10 populations. This was the only situation

where knowing the number of peaks was advantageous.

In all cases CDE outperformed DynDE. The Mann-Whitney U test results listed

in Tables 3 indicate that CDE performed statistically significantly better than DynDE

in all but 5 of the 5 dimensional experiments. A statistically significant improvement

of CDE over DynDE was found in all the 10 and 15 dimensional experiments.
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Fig. 3 Average Offline error of DynDE and CDE when the same number of populations as
peaks are used, and with a constant number of populations of 10.

Before DynPopDE results are given, results will be presented to show that the

penalty factor described in Section 7.3 yields an increase in offline error when intro-

duced into CDE. Table 3 lists the offline error of CDE with 10 populations without

and with the penalty factor component in 5 dimensions. In all cases the offline error

was increased by the incorporation of the penalty factor. Similar trends were found in

10 and 15 dimensions.

The same experiments that were done for DynDE and CDE were performed using

DynPopDE, with and without, the penalty factor. The results are summarized in Table

4. In contrast with what was found for CDE, the penalty factor positively affects the

results of DynPopDE. Figure 4 illustrates how the number of populations is adapted

by DynPopDE for various numbers of peaks (results depicted are averaged over 30

repeats in each case). DynPopDE commences with a single population and then intro-

duces more populations as is required. Although the number of populations had not

stabilized in the graphs of the experiments with the larger number of peaks, the figure

demonstrates that more populations are created in situations where more peaks are

present.

DynPopDE performed statistically significantly better than DynDE in all experi-

ments, except for 3 of the 10 peak experiments, where the differences were not statis-

tically significant.

A similar trend indicating the superiority of DynPopDE was evident in the high-

dimensional experiments. DynPopDE performed statistically significantly better than

DynDE in all but 2 of the 10 dimensional experiments and in all 15 dimensional ex-

periments.

DynPopDE outperforms CDE in most situations except those where the number

of peaks is equal to 10. This is reasonable since CDE made use of 10 populations.

However, the results of the Mann-Whitney U tests listed in Table 4 indicate that the

improvements are not always statistically significant. In 5 dimensions the results indi-
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Table 4 Offline error in experiments with various numbers of peaks (#P) and change periods
(CP) of DynDE with population size 10, CDE with population size 10 (CDE 10) DynPopDE
without penalty factor (DynPopDE WP), and DynPopDE (DynPopDE). The p-value out-
comes of a Mann-Whitney U test comparing CDE with population size 10 to DynPopDE
(p-A), and DynDE with population size 10 to DynPopDE (p-B) are given with values that
are below a 95% confidence level printed in boldface.

#P CP DynDE 10 CDE 10 DynPopDE
WP

DynPopDE p-A p-B

5 1000 4.36 ± 0.13 2.83 ± 0.10 2.41 ± 0.11 2.41 ± 0.08 0.00 0.00
2000 2.49 ± 0.09 1.72 ± 0.06 1.69 ± 0.13 1.67 ± 0.10 0.08 0.00
3000 1.96 ± 0.09 1.27 ± 0.06 1.23 ± 0.12 1.29 ± 0.07 0.90 0.00
4000 1.56 ± 0.12 1.05 ± 0.07 1.10 ± 0.15 1.12 ± 0.09 0.26 0.00
5000 1.33 ± 0.08 0.86 ± 0.05 1.09 ± 0.14 0.94 ± 0.07 0.17 0.00

10 1000 3.80 ± 0.09 2.75 ± 0.08 3.15 ± 0.10 3.08 ± 0.08 0.00 0.00
2000 2.43 ± 0.09 1.75 ± 0.08 2.55 ± 0.13 2.14 ± 0.08 0.00 0.00
3000 1.88 ± 0.11 1.36 ± 0.08 2.32 ± 0.20 1.74 ± 0.09 0.00 0.06
4000 1.48 ± 0.08 1.15 ± 0.11 2.54 ± 0.24 1.54 ± 0.11 0.00 0.54
5000 1.36 ± 0.10 1.04 ± 0.10 2.61 ± 0.29 1.31 ± 0.09 0.00 0.43

20 1000 4.92 ± 0.10 4.07 ± 0.08 4.52 ± 0.12 4.02 ± 0.08 0.33 0.00
2000 3.72 ± 0.14 3.10 ± 0.08 3.72 ± 0.17 2.69 ± 0.07 0.00 0.00
3000 3.05 ± 0.13 2.75 ± 0.13 3.78 ± 0.25 2.19 ± 0.07 0.00 0.00
4000 2.82 ± 0.13 2.50 ± 0.13 3.78 ± 0.27 1.86 ± 0.07 0.00 0.00
5000 2.53 ± 0.13 2.35 ± 0.13 3.56 ± 0.25 1.72 ± 0.07 0.00 0.00

40 1000 5.79 ± 0.10 4.95 ± 0.09 5.07 ± 0.12 4.76 ± 0.10 0.00 0.00
2000 4.66 ± 0.16 4.08 ± 0.14 4.13 ± 0.16 3.33 ± 0.08 0.00 0.00
3000 3.99 ± 0.14 3.55 ± 0.12 4.30 ± 0.21 2.74 ± 0.08 0.00 0.00
4000 3.69 ± 0.18 3.25 ± 0.17 4.33 ± 0.25 2.36 ± 0.10 0.00 0.00
5000 3.34 ± 0.18 3.20 ± 0.17 4.32 ± 0.33 1.97 ± 0.06 0.00 0.00

80 1000 6.18 ± 0.10 5.36 ± 0.10 5.44 ± 0.13 5.07 ± 0.11 0.00 0.00
2000 4.86 ± 0.12 4.31 ± 0.14 4.68 ± 0.20 3.64 ± 0.08 0.00 0.00
3000 4.38 ± 0.11 3.94 ± 0.14 4.22 ± 0.24 3.01 ± 0.06 0.00 0.00
4000 4.04 ± 0.18 3.79 ± 0.19 4.10 ± 0.24 2.59 ± 0.06 0.00 0.00
5000 3.69 ± 0.19 3.61 ± 0.19 4.25 ± 0.28 2.25 ± 0.06 0.00 0.00

160 1000 6.25 ± 0.11 5.37 ± 0.10 5.30 ± 0.11 5.12 ± 0.08 0.00 0.00
2000 4.95 ± 0.11 4.45 ± 0.11 4.34 ± 0.16 3.78 ± 0.07 0.00 0.00
3000 4.34 ± 0.14 3.92 ± 0.13 4.41 ± 0.21 3.00 ± 0.07 0.00 0.00
4000 4.08 ± 0.15 3.87 ± 0.14 3.97 ± 0.23 2.68 ± 0.07 0.00 0.00
5000 3.86 ± 0.21 3.61 ± 0.13 3.71 ± 0.23 2.40 ± 0.07 0.00 0.00

cate that CDE and DynPopDE are not consistently different in 5 peak experiments.

CDE performed statistically significantly better that DynPopDE in the 10 peak ex-

periments. However, DynPopDE was statistically significantly better than CDE in all

but one of the 20 peak experiments and performed significantly better than CDE in

all experiments with more than 20 peaks.

In 10 and especially 15 dimensions the differences between DynPopDE and CDE

are less pronounced. Out of the 30 experiments in 10 dimensions, 12 results were not

statistically significant, and 19 of the results in 15 dimensions were not statistically

significantly different. However, DynPopDE performed better than CDE in all experi-

ments that were statistically significant with more than 10 peaks in 10 dimensions and

all but one of the experiments that were statistically significant in 15 dimensions.

In all these cases the number of peaks was fixed. The next section presents the results

associated with a fluctuating number of peaks.
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rithm for various numbers of peaks.

8.3 Fluctuating Number of Peaks Experiments

The modified MPB described in Section 4 was used to model problems with a fluctuat-

ing number of peaks. For these experiments, the non-adaptive algorithms (DynDE and

CDE) were given 10 populations each. DynDE was compared to DynPopDE for differ-

ent values of maximum number of peaks and percentage change in number of peaks.

Additionally, the effects of varying dimension and change periods were investigated.

All combinations of the settings listed in Table 5 were investigated.

Table 5 MPB settings for fluctuating number of peaks experiments

Setting Values

Number of Dimensions 5, 10, 15
Change period 1000, 2000, 3000, 4000, 5000
Maximum Number of Peaks 20, 40, 60, 80, 100, . . . , 180, 200
Percentage Change in Nr Peaks 10, 20, 30, 40, 50

The results for DynDE, CDE and DynPopDE along with the results of a Mann-

Whitney U test to indicate statistical significant differences are summarized in Table

6. For the sake of brevity, the 10 and 15 dimensional results, and several of the other

combinations investigated, are omitted, as similar trends were found.

CDE performed better than DynDE in all cases. The results of the Mann-Whitney

U tests show that the difference between CDE and DynDE was statistically significant

in 710 of the 750 experiments. On average, CDE yielded an improvement over DynDE

of 23.5% in 5 dimensions, 32.14% in 10 dimensions and 34.17% in 15 dimensions.
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Table 6 5 dimensional fluctuating numbers of peak experiments listing the maximum number
of peaks (#P), percentage change in the number of peaks (%C), change period (CP), offline
error of DynDE (DynDE 10), CDE (CDE 10) and DynPopDE, and Mann-Whitney U test p-
values of DynDE compared to CDE (p-A), CDE compared to DynPopDE (p-B), and DynDE
compared to DynPopDE (p-C) (Values that are below a 95% confidence level are in boldface).

#P %C CP DynDE 10 CDE 10 DynPopDE p-A p-B p-C

40 10 1000 16.70 ± 1.44 12.92 ± 1.06 10.68 ± 0.99 0.00 0.00 0.00
2000 7.95 ± 0.83 6.45 ± 0.69 5.30 ± 0.51 0.01 0.01 0.00
3000 5.09 ± 0.48 4.23 ± 0.45 3.94 ± 0.47 0.00 0.16 0.00
4000 3.69 ± 0.29 3.58 ± 0.38 2.97 ± 0.32 0.49 0.00 0.00
5000 3.07 ± 0.20 2.87 ± 0.27 2.38 ± 0.20 0.09 0.01 0.00

50 1000 38.19 ± 1.22 30.86 ± 1.10 28.00 ± 0.88 0.00 0.00 0.00
2000 22.50 ± 1.05 15.77 ± 0.79 14.87 ± 0.77 0.00 0.09 0.00
3000 15.00 ± 1.18 10.89 ± 0.70 10.53 ± 0.69 0.00 0.30 0.00
4000 10.21 ± 0.95 7.81 ± 0.57 7.70 ± 0.64 0.00 0.71 0.00
5000 8.52 ± 0.89 6.90 ± 0.65 5.41 ± 0.58 0.01 0.00 0.00

80 10 1000 16.30 ± 1.70 12.20 ± 1.25 11.82 ± 1.19 0.00 0.69 0.00
2000 8.87 ± 1.02 7.11 ± 0.79 6.56 ± 0.62 0.01 0.42 0.00
3000 6.64 ± 0.80 5.08 ± 0.55 3.95 ± 0.34 0.00 0.00 0.00
4000 4.56 ± 0.43 4.08 ± 0.30 3.26 ± 0.40 0.13 0.00 0.00
5000 3.62 ± 0.22 3.34 ± 0.25 2.76 ± 0.29 0.01 0.00 0.00

50 1000 37.94 ± 1.17 30.22 ± 0.96 28.09 ± 0.78 0.00 0.00 0.00
2000 24.71 ± 1.58 16.69 ± 1.00 16.00 ± 0.83 0.00 0.30 0.00
3000 17.12 ± 1.12 13.39 ± 1.02 11.75 ± 0.93 0.00 0.01 0.00
4000 13.35 ± 0.96 9.51 ± 0.64 8.51 ± 0.72 0.00 0.03 0.00
5000 9.83 ± 0.87 7.67 ± 0.63 7.60 ± 0.72 0.00 0.98 0.00

120 10 1000 16.62 ± 1.68 12.33 ± 1.22 12.37 ± 1.14 0.00 0.81 0.00
2000 8.98 ± 1.15 6.85 ± 0.81 6.60 ± 0.73 0.00 0.65 0.00
3000 6.19 ± 0.84 5.04 ± 0.53 4.39 ± 0.55 0.01 0.01 0.00
4000 5.10 ± 0.51 4.30 ± 0.39 3.28 ± 0.31 0.01 0.00 0.00
5000 4.26 ± 0.35 3.57 ± 0.22 3.00 ± 0.50 0.00 0.00 0.00

50 1000 38.35 ± 1.27 30.54 ± 1.16 28.43 ± 0.99 0.00 0.01 0.00
2000 23.39 ± 0.99 17.53 ± 0.92 17.10 ± 0.81 0.00 0.97 0.00
3000 17.36 ± 0.97 12.86 ± 0.74 13.07 ± 0.89 0.00 0.98 0.00
4000 13.55 ± 1.00 9.71 ± 0.69 9.51 ± 0.82 0.00 0.56 0.00
5000 11.68 ± 0.98 8.12 ± 0.58 8.02 ± 0.65 0.00 0.74 0.00

160 10 1000 16.60 ± 1.55 12.48 ± 1.43 12.03 ± 1.22 0.00 0.82 0.00
2000 8.83 ± 1.04 6.97 ± 0.88 6.89 ± 0.90 0.00 0.70 0.01
3000 7.94 ± 1.29 5.52 ± 0.66 5.03 ± 0.57 0.01 0.15 0.00
4000 5.04 ± 0.66 4.40 ± 0.44 3.72 ± 0.46 0.01 0.00 0.00
5000 4.53 ± 0.46 4.34 ± 0.48 3.37 ± 0.61 0.28 0.00 0.00

50 1000 36.32 ± 1.18 30.01 ± 1.08 29.31 ± 0.93 0.00 0.14 0.00
2000 24.75 ± 0.95 18.13 ± 0.79 17.49 ± 0.93 0.00 0.56 0.00
3000 18.71 ± 1.20 12.54 ± 0.81 12.14 ± 0.84 0.00 0.71 0.00
4000 14.64 ± 1.29 11.08 ± 0.83 10.10 ± 0.74 0.00 0.11 0.00
5000 12.58 ± 1.10 8.07 ± 0.80 8.15 ± 0.72 0.00 0.56 0.00

200 10 1000 16.34 ± 1.87 12.10 ± 1.36 11.81 ± 1.12 0.00 0.98 0.00
2000 8.60 ± 1.05 6.78 ± 0.80 7.13 ± 0.82 0.00 0.62 0.06
3000 7.54 ± 1.01 5.98 ± 0.68 5.47 ± 0.67 0.01 0.21 0.00
4000 5.56 ± 0.66 4.31 ± 0.58 4.04 ± 0.64 0.00 0.03 0.00
5000 4.33 ± 0.44 4.27 ± 0.44 3.43 ± 0.46 0.66 0.00 0.00

50 1000 35.72 ± 0.98 29.28 ± 1.08 27.82 ± 1.18 0.00 0.11 0.00
2000 22.83 ± 1.13 17.59 ± 0.74 18.27 ± 0.94 0.00 0.22 0.00
3000 19.47 ± 1.22 12.88 ± 0.83 13.23 ± 1.02 0.00 0.63 0.00
4000 15.15 ± 1.30 9.53 ± 0.65 10.33 ± 0.89 0.00 0.19 0.00
5000 12.00 ± 0.96 8.36 ± 0.58 8.77 ± 0.72 0.00 0.60 0.00

The same experiments that were conducted with DynDE and CDE were repeated

using DynPopDE. The relationship between the number of peaks and the number of

populations in a typical run of the DynPopDE algorithm is illustrated in Figure 5. It is

clear that the number of populations is increased when the number of peaks increases,

but remains less than the number of peaks when the number of peaks is large. This
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Fig. 5 Comparison between the number of peaks and the number of populations in a typical
run of the DynPopDE algorithm

is consistent with results found in the unknown number of peaks experiments, which

indicated that the number of populations should be kept relatively small when many

peaks are present.

The results of the DynPopDE experiments are summarized in Table 6. DynPopDE

yielded a clear improvement over DynDE, with 746 of the 750 experiments resulting in a

statistically significantly better result for DynPopDE. On average, DynPopDE yielded

an improvement over DynDE of 29.22% in 5 dimensions, 37.02% in 10 dimensions and

40.55% in 15 dimensions.

The difference between CDE and DynPopDE is less pronounced than between

DynDE and CDE. Out of the 750 experiments only 296 cases showed a statistically

significant difference between CDE and DynPopDE. However, of those 296 cases, 294

showed an improvement of DynPopDE over CDE. In many cases the improvement

was over 20%. Thus, while it cannot be said that DynPopDE performs better that

CDE in all cases, and no trend between improvement of DynPopDE over CDE and the

parameters of the experiments is evident, there seems to be definite benefits to using

DynPopDE rather than CDE.

9 Comparison with other approaches

This section validates DynPopDE by comparing it with. Test cases with unknown

numbers of peaks are investigated in Section 9.1 and fluctuating numbers of peaks

scenarios are investigated in Section 9.2.

9.1 Unknown number of peaks

The first algorithm to which DynPopDE is compared is that of Li et al. [19], who

adapted the PSO with speciation algorithm of Parrot and Li [27] to create an algo-
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rithm designed specifically for situations where the number of peaks is unknown. This

algorithm is called the Speciation-based PSO (SPSO). The second algorithm used is

the self-adapting multi-swarm algorithm (referred to here as SAMS) of Blackwell [2].

The third algorithm used for comparison is the CellularDE algorithm of Noroozi et al.

[25].

The creators of the above algorithms used Scenario 2 of the MPB with various

settings of the number of peaks to validate their results. The same experiments were

repeated in this section using DynPopDE. The best results reported by Li et al. [19],

Blackwell [2] and Noroozi et al. [25] are given in Table 7 with the corresponding results

of DynPopDE.

Table 7 Offline error of SPSO, SAMS, CellularDE and DynPopDE

# Peaks SPSO SAMS CellularDE DynPopDE

3 2.14 ± 0.02 0.86 ± 0.06
5 1.98 ± 0.01 1.50 ± 0.04 1.03 ± 0.13
8 1.89 ± 0.02 1.24 ± 0.07
10 1.98 ± 0.01 1.77 ± 0.01 1.64 ± 0.03 1.39 ± 0.07
12 2.39 ± 0.02 1.41 ± 0.10
15 2.78 ± 0.02 1.54 ± 0.09
18 2.94 ± 0.02 1.65 ± 0.06
50 3.47 ± 0.02 2.75 ± 0.05 2.10 ± 0.06
100 3.6 ± 0.02 2.73 ± 0.03 2.34 ± 0.05
200 3.47 ± 0.02 2.37 ± 0.01 2.61 ± 0.02 2.44 ± 0.05
300 3.12 ± 0.01 2.32 ± 0.04

It is clear that DynPopDE performed considerably better than both SPSO and

CellularDE on all the test cases investigated, and performed better than SAMS on

10 peaks. SAMS gave a slightly lower offline error than DynPopDE when 200 peaks

were present in the environment. It should be pointed out, however, that SAMS has

a parameter (nexcess) that is problem dependant and must be manually tuned. When

the default setting of nexcess = 1 was used, SAMS yielded an offline error of 2.54,

which is higher than the result found when using DynPopDE. In practice it may be

more feasible to use DynPopDE rather than SAMS in order to avoid manually tuning

parameters.

Despite the previously mentioned disadvantage associated with the SAMS algo-

rithm, the reported results suggest that potentially the swarm spawning and removing

approach followed by Blackwell [2] could be more effective than the technique used in

DynPopDE. This possibility was investigated by incorporating the approach followed in

SAMS to spawn and remove populations into CDE. A population is thus created when

there are no available free populations, i.e. all the current populations had converged to

within a diameter of 2rconv, were rconv is calculated using the same equation as rexcl

(equation 5). The worst performing free population is removed when the number of free

populations exceed nexcess. The new algorithm is referred to as SAMSCDE. Experi-

ments were conducted on the MPB using the Scenario 2 settings for various numbers

of peaks. Nine values of the nexcess parameter were tested to determine the influence

of this parameter. Results are given in Table 8, along with outcomes of Mann-Whitney

U tests comparing the results of SAMSCDE to DynPopDE.
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Table 8 Offline error of SAMSCDE for various settings of nexcess and number of peaks (#P).

#P Error p-val Error p-val Error p-val

nexcess = 1 nexcess = 2 nexcess = 4
5 47.82 ± 2.16 0.00 45.25 ± 2.12 0.00 39.43 ± 2.24 0.00
10 39.26 ± 1.51 0.00 35.43 ± 1.14 0.00 26.75 ± 0.97 0.00
20 32.87 ± 0.74 0.00 29.23 ± 0.63 0.00 19.52 ± 0.52 0.00
40 27.27 ± 0.46 0.00 22.86 ± 0.36 0.00 11.70 ± 0.42 0.00
80 22.35 ± 0.29 0.00 16.37 ± 0.32 0.00 5.22 ± 0.32 0.00
160 17.50 ± 0.26 0.00 8.92 ± 0.31 0.00 3.42 ± 0.15 0.00

nexcess = 8 nexcess = 16 nexcess = 32
5 18.35 ± 1.25 0.00 4.98 ± 0.28 0.00 4.37 ± 0.22 0.00
10 11.48 ± 0.82 0.00 4.09 ± 0.13 0.00 4.08 ± 0.16 0.00
20 5.68 ± 0.35 0.00 3.76 ± 0.13 0.00 3.70 ± 0.10 0.00
40 3.62 ± 0.10 0.00 3.29 ± 0.10 0.00 3.45 ± 0.11 0.00
80 3.32 ± 0.11 0.00 3.26 ± 0.11 0.00 3.17 ± 0.12 0.00
160 3.11 ± 0.16 0.00 3.28 ± 0.15 0.00 3.18 ± 0.14 0.00

nexcess = 64 nexcess = 128 nexcess = 256
5 4.51 ± 0.18 0.00 4.62 ± 0.20 0.00 4.61 ± 0.23 0.00
10 4.18 ± 0.16 0.00 4.12 ± 0.12 0.00 4.14 ± 0.16 0.00
20 3.68 ± 0.10 0.00 3.73 ± 0.10 0.00 3.76 ± 0.11 0.00
40 3.33 ± 0.09 0.00 3.37 ± 0.09 0.00 3.37 ± 0.11 0.00
80 3.20 ± 0.11 0.00 3.11 ± 0.11 0.00 3.16 ± 0.11 0.00
160 3.25 ± 0.14 0.00 3.19 ± 0.16 0.00 3.20 ± 0.13 0.00

The experimental results indicate that SAMSCDE works best when a relatively

large value of nexcess is used (between 32 and 64) as opposed to Blackwell’s results

on SAMS where values of 3 and 4 gave the best results. This is a consequence of CDE

evaluating populations in sequence rather than in parallel. It thus appears as if many

free populations are present for a large number of iterations, simply because some of

the populations have not been allowed to evolve yet. A larger nexcess threshold is

consequently required to prevent the unnecessary removal of populations.

The SAMSCDE experiments in which larger values of nexcess was used yielded

reasonable results. However, DynPopDE performed statistically significantly better in

all experiments. It can thus be concluded that, while Blackwell’s swarm spawning and

removing approach worked well in SAMS, it is not an effective technique to use in

conjunction with CDE on problems where the number of peaks is unknown.

9.2 Fluctuating numbers of peaks

The SAMSCDE algorithm that was discussed in the previous section was evaluated

using the modified MPB to simulate problems where the number of peaks fluctuate.

Several settings for nexcess were tested. Table 9 lists results when using the Scenario 2

MPB settings for various values for maximum number of peaks and percentage change

in the number of peaks, along with outcomes of Mann-Whitney U tests comparing the

results of SAMSCDE to DynPopDE.

Once again, it was found that a relatively large value of nexcess works best. A com-

parison of the results of Tables 6 and 9 show that DynPopDE performed considerably

better than SAMSCDE on problems where the number of peaks fluctuate. In all cases

the results were statistically significantly different. It can thus be concluded that the

population spawning an removing technique employed by SAMS is not appropriate for

incorporation into CDE.
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Table 9 Offline error of SAMSCDE for various settings of nexcess, maximum number of peaks
(#P) and percentage change in the number of peaks (%C).

#P % C Error p-val Error p-val Error p-val

nexcess = 1 nexcess = 2 nexcess = 4
40 10 30.81 ± 1.41 0.00 26.79 ± 1.61 0.00 20.09 ± 2.07 0.00

50 32.32 ± 0.96 0.00 31.73 ± 1.18 0.00 27.45 ± 1.28 0.00
80 10 27.18 ± 1.51 0.00 22.80 ± 1.73 0.00 16.17 ± 2.01 0.00

50 31.12 ± 1.16 0.00 29.25 ± 1.12 0.00 25.77 ± 1.36 0.00
120 10 23.49 ± 1.49 0.00 18.95 ± 1.75 0.00 11.94 ± 1.77 0.00

50 28.78 ± 1.12 0.00 27.28 ± 1.62 0.00 23.23 ± 1.28 0.00
160 10 23.80 ± 1.37 0.00 17.88 ± 1.91 0.00 11.72 ± 2.23 0.00

50 28.89 ± 1.51 0.00 25.43 ± 1.32 0.00 22.68 ± 1.54 0.00
200 10 22.05 ± 1.63 0.00 16.77 ± 1.98 0.00 10.70 ± 1.68 0.00

50 26.47 ± 1.04 0.00 25.19 ± 1.18 0.00 23.14 ± 1.40 0.00
nexcess = 8 nexcess = 16 nexcess = 32

40 10 12.16 ± 1.67 0.00 11.27 ± 1.89 0.00 10.06 ± 1.64 0.00
50 23.16 ± 1.45 0.00 22.83 ± 1.61 0.00 22.69 ± 1.42 0.00

80 10 10.52 ± 1.83 0.00 9.42 ± 1.50 0.00 12.26 ± 2.10 0.00
50 22.81 ± 1.45 0.00 22.47 ± 1.32 0.00 21.71 ± 1.28 0.00

120 10 9.06 ± 1.79 0.00 8.30 ± 1.47 0.00 8.46 ± 1.49 0.00
50 21.38 ± 1.43 0.00 20.93 ± 1.28 0.00 21.10 ± 1.43 0.00

160 10 9.78 ± 1.92 0.00 8.56 ± 1.78 0.00 8.43 ± 1.74 0.00
50 21.03 ± 1.17 0.00 22.28 ± 1.24 0.00 21.46 ± 1.50 0.00

200 10 8.82 ± 1.61 0.00 7.97 ± 1.63 0.00 8.26 ± 1.64 0.00
50 21.34 ± 1.51 0.00 21.16 ± 1.28 0.00 21.02 ± 1.21 0.00

nexcess = 64 nexcess = 128 nexcess = 256
40 10 11.12 ± 1.84 0.00 9.55 ± 1.68 0.00 9.35 ± 1.81 0.00

50 21.22 ± 1.57 0.00 21.28 ± 0.94 0.00 23.43 ± 1.38 0.00
80 10 9.32 ± 1.93 0.00 10.85 ± 1.98 0.00 9.52 ± 1.52 0.00

50 22.83 ± 1.67 0.00 22.62 ± 1.35 0.00 22.31 ± 1.47 0.00
120 10 7.77 ± 1.25 0.00 10.66 ± 1.87 0.00 9.21 ± 1.60 0.00

50 21.58 ± 1.07 0.00 22.11 ± 1.47 0.00 22.40 ± 1.38 0.00
160 10 9.71 ± 2.07 0.00 10.03 ± 2.09 0.00 10.16 ± 2.00 0.00

50 21.69 ± 1.53 0.00 22.31 ± 1.57 0.00 21.21 ± 1.37 0.00
200 10 8.65 ± 1.76 0.00 9.15 ± 1.70 0.00 11.08 ± 2.08 0.00

50 21.39 ± 1.22 0.00 21.20 ± 1.40 0.00 21.92 ± 1.12 0.00

The 2009 Congress on Evolutionary Computation (CEC2009) ran a dynamic op-

timization competition. This competition used the Generalized Benchmark Generator

(GBG) of Li et al. [18], [17] to compare the results of the competing algorithms. The

winning algorithm of this competition was jDE, developed by Brest et al. [8]. jDE was

implemented by the authors of this article in order to compare its performance with

the algorithms discussed in this paper.

Du Plessis and Engelbrecht [10] showed that, while jDE delivers superior results in

low-change frequency problems, it is outperformed by CDE in high-change frequency

problems. jDE was not specifically developed for problems where the number of optima

fluctuate, but the ageing mechanism that is employed (see Section 2) allows further

exploration once a population has converged to an optimum. The results of jDE on

the fluctuating number of peaks experiments are given in Table 10.

A comparison of Tables 6 and 10 shows that DynPopDE performed better in all

cases.

10 Discussion and Conclusions

This paper evaluated the performance of DynDE and CDE on dynamic environments

where the number of optima is unknown or is fluctuating. A new algorithm, DynPopDE,
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Table 10 jDE results for 5 dimensional fluctuating numberd of peak experiments listing the
maximum number of peaks (Max # Peaks), percentage change in the number of peaks (%
Change), change period (Change Period) and offline error of jDE (jDE)

.

Max # Peaks % Change Change Period jDE

40 10 1000 19.59 ± 1.44
2000 12.90 ± 0.83
3000 10.40 ± 0.48
4000 8.10 ± 0.29
5000 7.62 ± 0.20

50 1000 32.87 ± 1.22
2000 23.21 ± 1.05
3000 16.75 ± 1.18
4000 13.86 ± 0.95
5000 10.55 ± 0.89

80 10 1000 17.64 ± 1.70
2000 12.79 ± 1.02
3000 9.91 ± 0.80
4000 8.83 ± 0.43
5000 7.36 ± 0.22

50 1000 31.45 ± 1.17
2000 22.13 ± 1.58
3000 17.09 ± 1.12
4000 13.75 ± 0.96
5000 10.87 ± 0.87

120 10 1000 17.45 ± 1.68
2000 14.18 ± 1.15
3000 9.90 ± 0.84
4000 8.83 ± 0.51
5000 7.52 ± 0.35

50 1000 30.76 ± 1.27
2000 22.52 ± 0.99
3000 17.18 ± 0.97
4000 13.92 ± 1.00
5000 11.59 ± 0.98

160 10 1000 17.15 ± 1.55
2000 12.42 ± 1.04
3000 11.02 ± 1.29
4000 9.54 ± 0.66
5000 7.99 ± 0.46

50 1000 29.68 ± 1.18
2000 22.47 ± 0.95
3000 16.28 ± 1.20
4000 13.37 ± 1.29
5000 11.67 ± 1.10

200 10 1000 16.63 ± 1.87
2000 12.91 ± 1.05
3000 11.31 ± 1.01
4000 8.65 ± 0.66
5000 7.39 ± 0.44

50 1000 29.68 ± 0.98
2000 22.85 ± 1.13
3000 16.98 ± 1.22
4000 14.21 ± 1.30
5000 11.05 ± 0.96
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specifically aimed at this type of dynamic optimization problem was proposed and

evaluated.

The first result of this investigation is the fact that maintaining an equal number of

populations as the number of optima is not an effective strategy. Too many populations

reduce the number of generations that any specific population can complete before a

change in the environment occurs. Consequently, the effectiveness of the optimization

algorithm is reduced. When a large number of optima are present, a relatively small

number of populations should be used.

The results indicated that the competitive population evaluation approach of CDE

resulted in an algorithm that is more robust than DynDE when faced with an unknown

number of peaks. The population spawning and removing process of DynPopDE yielded

a further improvement in results. It was shown that both DynPopDE and CDE per-

formed better than DynDE in situations where the number of optima is unknown on

almost all of the cases investigated. Experiments to investigate the introduction of a

penalty factor into DynPopDE’s base algorithm, CDE, showed that the penalty factor

reduced the effectiveness of CDE. However, when introduced into DynPopDE, it was

shown that the penalty factor aided the population-spawning process and consequently

improved DynPopDE.

DynPopDE performed better than CDE in the 5 dimensional unknown number of

peaks experiments where the number of peaks were more than 20. This trend continued

to the higher dimensions, although the improvement of DynPopDE over CDE was not

always statistically significant.

For problems where the number of optima fluctuates during the course of the

optimization process, results showed that CDE and DynPopDE clearly outperforms

DynDE. In experiments comparing DynPopDE to CDE it was found that the majority

of the results were not statistically significantly different. DynPopDE did outperform

CDE in virtually all cases where a statistical significant difference was found. It can

thus be concluded that DynPopDE is the superior algorithm.

Comparisons with SPSO and jDE, two state-of-the-art optimization algorithms for

dynamic environments, illustrated the superiority of DynPopDE on all unknown and

fluctuating optima-problems investigated. Although DynPopDE did not perform better

than SAMS when a large number of peaks were used in an unknown number of peaks

problem, it was argued that DynPopDE may be the preferred algorithm since it has

fewer parameters to tune. Experimental evidence showed that the population spawning

and removing technique used in SAMS were not effective when used in conjunction with

CDE.

DynPopDE does not depend on any intrinsic DE behaviour, since its main com-

ponents involve the creation of independent populations which competitively optimize

different peaks. Future work could include a study the effects of applying aspects of

DynPopDE to other multi-population optimization algorithms for dynamic environ-

ments.
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