
Differential Evolution for High-Dimensional Function Optimization

Zhenyu Yang, Ke Tang and Xin Yao

Abstract— Most reported studies on differential evolution
(DE) are obtained using low-dimensional problems, e.g., smaller
than 100, which are relatively small for many real-world
problems. In this paper we propose two new efficient DE
variants, named DECC-I and DECC-II, for high-dimensional
optimization (up to 1000 dimensions). The two algorithms are
based on a cooperative coevolution framework incorporated
with several novel strategies. The new strategies are mainly
focus on problem decomposition and subcomponents cooper-
ation. Experimental results have shown that these algorithms
have superior performance on a set of widely used benchmark
functions.

I. INTRODUCTION

Differential evolution (DE) is a simple yet effective al-
gorithm for global optimization [1]. It has shown superior
performance in both widely used benchmark functions [2]
and real-world applications [3], [4]. The crucial idea behind
DE is a new scheme of mutation. DE executes its mutation by
adding a weighted difference vector between two individuals
to a third individual. And then the mutated individuals will do
discrete crossover and greedy selection with corresponding
individuals of last generation to produce offspring. There are
three strategy parameters in DE, i.e., population size NP ,
crossover rate CR and scaling factor F . Many works have
been done to study the suitable setting of these control pa-
rameters [5]. Zaharie has analyzed the relationship between
these control parameters and population diversity [6]. Several
DE schemes have been proposed based on different mutations
[1]. Self-adaptive strategy has also been investigated to adapt
these parameters [7], as well as different schemes of DE [8].

However, most analytical and experimental results on DE
are obtained using low-dimensional problems, e.g., smaller
than 100. The reported studies on the scalability of DE
derivative algorithms are scarce. In contrast, other evolution-
ary algorithms such as evolutionary programming (EP), have
been studied in the domain of high-dimensional problems
(up to 1000-dimensions) [9]. In terms of optimizing high-
dimensional problems, cooperative coevolution with the fol-
lowing divide-and-conquer strategy is the usual and effective
choice:

1) Problem decomposition: Splitting the object vectors
into some smaller subcomponents.

2) Optimize subcomponents: Evolve each subcomponent
with a certain optimizer separately.

The authors are with the Nature Inspired Computation and Applica-
tions Laboratory, the Department of Computer Science and Technology,
University of Science and Technology of China, Hefei, Anhui 230027,
China. Xin Yao is also with CERCIA, the School of Computer Science,
University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K. (emails:
zhyuyang@mail.ustc.edu.cn, ketang@ustc.edu.cn, x.yao@cs.bham.ac.uk).

3) Cooperative combination: Combine all subcomponents
to form the whole system.

We can conclude that problem decomposition, optimizer
selection and subcomponents cooperation are the crucial
issues for the cooperative coevolution framework. Cooper-
ative coevolution architecture was firstly proposed by Potter
for genetic algorithm, called CCGA [10], and had been
successfully applied to other evolutionary algorihtms such
as evolutionary programming, called FEPCC [9], evolution
strategy, called CCES [11], and particle swarm optimization,
called CPSO [12]. In the context of DE, the cooperative
coevolution framework has also been introduced to propose
the corresponding CCDE [13]. CCDE only utilized sim-
ple problem decomposition and subcomponents cooperation
methods. Moreover, CCDE still use the original DE as
subcomponent optimizer, while many more efficient DE
variants have been proposed recently. We might get a better
scratch line for optimizing high-dimensional problems with
these advanced DE variants. Besides, CCDE only extended
the problem domain up to 100 dimensions, which are still
relatively small for many real-world problems.

In the present paper, we propose two new efficient DE
variants, named DECC-I and DECC-II, for high-dimensional
optimization (up to 1000 dimensions). Cooperative coevolu-
tion framework with several novel strategies are used in the
two algorithms. We mainly focus on how to decompose and
cooperate subcomponents more suitably, rather than applying
the original straightforward framework to DE directly. We
choose a relatively new and efficient DE variant SaNSDE as
the basic subcomponent optimizer, but any other DE variant
and even other EAs can be introduced into DECC easily.

II. PRELIMINARIES

A. Differential Evolution (DE)

Individuals in DE are represented by D-dimensional vec-
tors xi,∀i ∈ {1, · · · , NP}, where D is the number of
optimization parameters and NP is the population size.
According to the description by Storn and Price [1], the
evolutionary operations of classical DE can be summarized
as follow:

1) Mutation:

vi = xi1
+ F · (xi2

− xi3
) (1)

with i, i1, i2, i3 ∈ [1, NP], are integers and mutually
different, and F > 0, is a real constant factor to control
the differential variation di = xi2

− xi3
.

2) Crossover:

ui(j) =

{
vi(j), if Uj(0, 1) < CR
xi(j), otherwise.

(2)

3523

1-4244-1340-0/07$25.00 c©2007 IEEE

with Uj(0, 1) stands for the uniform random between
0 and 1, and CR ∈ (0, 1) is the crossover rate.

3) Selection:

x
′
i
=

{
ui, if f(ui) < f(xi)
xi, otherwise.

(3)

where x
′
i

is the offspring of xi for the next generation.

There are several variants of DE, but this DE scheme which
can be classified using notation DE/rand/1/bin is the most
often used in practice [1], [8].

B. Differential Evolution with Neighborhood Search (NSDE)

Evolutionary programming (EP) [14], [15] is another
major branch of evolutionary computation. Neighborhood
search (NS) is a main strategy underpinning EP. Charac-
teristics of several NS operators’ have been investigated in
EP literatures [15], [16]. Although DE might be similar to
the evolutionary process in EP, it lacks relevant concept of
neighborhood search. Based on the generalization of NS
strategy, we have proposed a neighborhood search differential
evolution (NSDE) in [17]. NSDE is the same as the DE
described in Section II.A except for Eq. (1) which is replaced
by the following:

vi = xi1
+

{
di · N(0.5, 0.5), if U(0, 1) < 0.5
di · δ, otherwise.

(4)

where di = xi2
−xi3

is the differential variation, N(0.5, 0.5)
denotes a Gaussian random number with mean 0.5 and
standard deviation 0.5, and δ denotes a Cauchy random
variable with scale parameter t = 1.

The advantages of NS strategy in DE have been studied
in [17]. Experimental results have shown that NSDE has
significant advantages over conventional DE on a broad range
of different benchmark functions. It has been found that NS
operators will improve the diversity of DE’s search step size
and population. This feature will be beneficial to escaping
from local optima when searching in environments without
prior knowledge about what kind of search step size will be
preferred.

C. Self-adaptive NSDE (SaNSDE)

As stated in [5], [8], the control parameters and learn-
ing strategies involved in DE are highly problem depen-
dent. It might be time consuming to try through various
strategies and fine-tune the corresponding parameters for a
specific task. Hence a self-adaptive DE algorithm (SaDE)
[8] has been proposed to solve this dilemma. In SaDE, two
DE’s learning strategies are selected as candidates due to
their good performance. Two out three critical parameters,
crossover rate CR and scaling factor F , are adaptively
changed instead of taking fixed empirical settings. The suit-
able learning strategy and parameter settings are gradually
self-adapted according to the learning experience during
evolution. The performance of SaDE is reported on the set
of 25 benchmark functions provided by CEC2005 special
session [8].

Comparing to NSDE, SaDE has quite different emphasis
on improving classical DE. SaDE pay special attention to
self-adaption between different DE variants, while NSDE in-
tends to mix search biases of different NS operators through
the scaling factor F . Since they have relatively irrelated
focuses, it’s possible to merge SaDE and NSDE to produce
a more considered self-adaptive NSDE (SaNSDE). We keep
the SaNSDE same to NSDE except:

1) Introducing the self-adaptive mechanism between dif-
ferent DE variants of SaDE.

2) Following the strategy in SaDE to dynamically adapt
the value of CR.

3) Using the same self-adaptive strategy in SaDE on
adapt different variants to adapt F using Gaussian and
Cauchy operators.

Due to the significant successes of NSDE and SaDE,
SaNSDE is promising to be more powerful for function
optimization.

III. SCALING UP DIFFERENTIAL EVOLUTION

A. Differential Evolution with Cooperative Coevolution

As suggested in [9], [10], [13], we still follow the coop-
erative coevolution framework in DE. The main approach is
to decompose the problem into subcomponents and evolve
these subcomponents cooperatively for a predefined number
of cycles. Here one complete evolution of all subcomponents
is called a cycle. Based on the idea, the main steps of
differential evolution with cooperative coevolution (DECC)
would be:

1) Decompose high-dimensional object vector into m
low-dimensional subcomponents.

2) i = 1. Optimize subcomponent 1 with SaNSDE for a
predefined number of fitness evaluations (FEs).

3) i = i + 1. Optimize subcomponent i with SaNSDE for
a predefined number of FEs.

4) if i ≤ m, go to step 3.
5) Execute a cooperative operation among all subcompo-

nents.
6) Stop if the halting criterion is satisfied; otherwise go

to step 2 for the next cycle.
Given SaNSDE as the basic subcomponent optimizer, we
need to further state the problem decomposition and cooper-
ation issues to form algorithms as follow.

B. Problem Decomposition by Grouping and Weighting

As we already know, DE is effective and efficient on
low-dimensional (up to 100 dimensions) problems [1], [7].
Obviously, for high-dimensional (up to 1000 dimensions)
problems we can split them into several groups of low-
dimensional subcomponents, and then evolve each of these
groups. For cooperation, we can apply a weight to each of
these groups, and evolve the weight vector after each cycle
with a certain optimizer (also DE in the paper). The key
points of this strategy can be summarized as follows:

1) Decomposition: Group the n-dimensional object vector
into m s-dimensional subcomponents randomly, where

3524 2007 IEEE Congress on Evolutionary Computation (CEC 2007)

assume n = m ∗ s. Here “randomly” means each
variable has the same chance to be assigned into any
of the groups.

2) Cooperation: Apply a weight to each of the groups after
each complete circle; Evolve the weight vectors for
the best, the worst and a random members in current
population.

The only parameter is the dimension of subcomponents
s, which can be specified by users (usually between 30–
100 dimensions). After combining with the basic process
listed in Section III.A, we will immediately get a complete
algorithm for high-dimensional problems. The algorithm will
be denoted as DECC-I in this paper. The pseudocode of
DECC-I is given in Fig. 1.

Algorithm III.1: DECC-I(s, cycles, FEs, wFEs)

pop(1 : NP, 1 : D) ← random population
wpop(1 : NP, 1 : D/s) ← define weight population
(best, best val) ← evalate(pop)
index(1 : D) ← randperm(D)
for i ← 1 to cycles

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

for j ← 1 to D/s

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

l ← (j − 1) ∗ s + 1
u ← j ∗ s
subpop ← pop(:, index(l : u))
subpop ← SaNSDE(best, subpop, FEs)
wpop(:, j) ← random weight
pop(:, index(l : u)) ← subpop
(best, best val) ← evaluate(pop)

(best, best index) ← findbest(pop)
(rand, rand index) ← findrand(pop)
(worst, worst index) ← findworst(pop)
pop(best index, :) ← DE(best, wpop, wFEs)
pop(rand index, :) ← DE(rand,wpop,wFEs)
pop(worst index, :) ← DE(worst, wpop, wFEs)
(best, best val) ← evaluate(pop)

return (best val)

Fig. 1. The pseudocode of DECC-I.

C. Problem Decomposition by Evolving Random Subsets

In DECC-I, the structure of problem decomposition keeps
fixed during evolutionary process. More generally, we can
extend this problem decomposition idea to produce another
algorithm as follows:

1) Select a subset with s variables randomly from the
object vector to form a s-dimensional subcomponent.

2) Optimize the subset with SaNSDE for one cycle, while
keeping the other variables constant.

3) Stop if the halting criterion is satisfied; otherwise go
to step 1 for the next cycle.

Again, based on DE’s scalability, we can set the parameter
s between 30 to 100 dimensions. We denote the algorithm

as DECC-II. The pseudocode of DECC-II is given in Fig. 2.
Since the structure of subset changes dynamically, it’s not
easy to apply the weighting strategy in DECC-I to DECC-
II. Although process of DECC-II is simple than DECC-I, it
might be also promising for high-dimensional optimization.

Algorithm III.2: DECC-II(s, cycles, FEs)

pop(1 : NP, 1 : D) ← random population
(best, best val) ← evalate(pop)
for i ← 1 to cycles

do

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

index(1 : D) ← randperm(D)
subpop ← pop(:, index(1 : s))
subpop ← SaNSDE(best, subpop, FEs)
pop(:, index(1 : s)) ← subpop
(best, best val) ← evaluate(pop)

return (best val)

Fig. 2. The pseudocode of DECC-II.

D. Discussions Toward Nonseparable Functions

The conventional one-dimension based problem decompo-
sition methods have a reputation of inefficient on nonsepara-
ble functions [9], [10]. Here nonseparable means the object
vector is consisted of interacting variables. It was always
assumed that decomposition will not work on completely
nonseparable functions, in which interaction exists between
any two variables of the object vector. For these cases, we
can only pursue a better near-optimum with decomposition
based methods. However, it is more common and usual that
interaction only exists in some subsets of all variables. If we
happen to group these interacting variables together, we still
have chance to find the optimum.

The proposed DECC-I and DECC-II have been designed to
embody mechanisms that are more beneficial to nonseparable
functions. Firstly, both DECC-I and DECC-II have extended
the original one-dimensional decomposition methods. They
optimize a subset of all variables at a time rather than only
one variable. And this will increase the chance of optimizing
some interacting variables together. Further, DECC-I has an
additional weighting mechanisms to cooperate interacting
variables of different groups, while DECC-II always changes
the optimized subset dynamically to increase the probability
of grouping interacting variables together. Although DECC-I
and DECC-II might not consistently find the optimum for
some functions, they do give a starting point for further
refinements in the domain of high-dimensional optimization.

IV. EXPERIMENTAL STUDIES

A. Benchmark Functions

A new set of benchmark functions, which was provided
by CEC2005 special session, was used in our experimental
studies. It includes 25 functions with different complexity
[18]. Functions f1−f5 are unimodal while the remaining 20

2007 IEEE Congress on Evolutionary Computation (CEC 2007) 3525

functions are multimodal. All of these functions are scalable.
Detailed descriptions of these functions can be found in [18].
Functions f15−f25 are hybrid composition functions, which
are very time consuming for fitness evaluation. So we only
used the first 14 functions of the set. Many of them are the
shifted, rotated, expanded or combined variants of classical
functions listed in appendix of [15]. Some of these changes
cause these functions more insensitive to simple search
tricks. Other changes such as rotation will transfer them
from separable to nonseparable, which might be a particular
challenge for the cooperative coevolution framework. Hence,
this suite of benchmark functions are more applicable for the
experimental evaluations on DECC-I and DECC-II.

B. SaNSDE on Low-dimensional Problems

First we will evaluate SaNSDE’s effectiveness for low-
dimensional problems (30 dimensions in our experiment).
The algorithms used for comparison are classical DE and
NSDE. The experimental results of them are taken from
[17], [19]. The average results of 25 independent runs are
summarized in Tables 1 and 2.

TABLE I

COMPARISON BETWEEN SANSDE, NSDE AND DE ON UNIMODAL

FUNCTIONS f1 – f5 , WITH DIMENSION D = 30. ALL RESULTS HAVE

BEEN AVERAGED OVER 25 INDEPENDENT RUNS.

Test SaNSDE NSDE DE SaNSDE NSDE
Func Mean Mean Mean t-test t-test
f1 0.00e+00 0.00e+00 0.00e+00 0 0

f2 1.66e-13 1.27e-06 3.33e-02 −3.40† −3.40†

f3 9.18e+04 5.19e+05 6.92e+05 −14.14† −2.64†

f4 7.15e-05 5.28e+01 1.52e+01 −4.20† 1.48

f5 2.24e+00 1.15e+03 1.70e+02 −4.55† 10.54†
† The value of t-test is significant at α = 0.05 by a two-tailed test.

For unimodal functions f1 − f5, NSDE has compara-
ble performance with DE, while SaNSDE is better than
both of them. SaNSDE outperforms DE significantly on
almost all functions except the three algorithms have exactly
same result on the shifted Sphere function f1. The success
of SaNSDE may because the introduced self-adaptive and
neighborhood search strategies both worked well.

TABLE II

COMPARISON BETWEEN SANSDE, NSDE AND DE ON MULTIMODAL

FUNCTIONS f6 – f14 , WITH DIMENSION D = 30. ALL RESULTS HAVE

BEEN AVERAGED OVER 25 INDEPENDENT RUNS.

Test SaNSDE NSDE DE SaNSDE NSDE
Func Mean Mean Mean t-test t-test
f6 3.19e-01 1.51e+01 2.51e+01 −4.27† −1.41

f7 1.03e-02 4.00e-03 2.96e-03 2.87† 0.67

f8 2.06e+01 2.09e+01 2.10e+01 −20.83† −0.71

f9 0.00e+00 7.96e-01 1.85e+01 −17.79† −17.01†

f10 3.26e+01 5.30e+01 9.69e+01 −3.90† −2.57†

f11 2.76e+01 2.21e+01 3.42e+01 −3.18† −4.62†

f12 2.90e+03 5.94e+03 2.75e+03 0.19 2.49†

f13 1.79e+00 3.24e+00 3.23e+00 −8.41† 0.046

f14 1.24e+01 1.33e+01 1.34e+01 −12.28† −2.73†
† The value of t-test is significant at α = 0.05 by a two-tailed test.

For multimodal functions f6 − f14, the advantages of
introducing self-adaptive and neighborhood search strategies
are still significant. Although DE performs better than NSDE
on f7, f12 and f13, it was outperformed by NSDE on the
other 6 functions. SaNSDE’s results are even better. It has
superior performance on 7 out of the 9 multimodal functions.

Based on the experimental results obtained on low-
dimensional problems, we can conclude that SaNSDE is
more suitable to be a basic subcomponents optimizer for
high-dimensional optimization.

C. Performance of DECC on High-dimensional Problems

In this section we evaluate the performance of proposed
DECC-I, DECC-II on 500 and 1000 dimensional problems.
The classical DE is also scaled directly for comparison.
We set the population size NP to 100 for all algorithms,
and the dimensions of subcomponent s to 100 for DECC-
I and DECC-II. The number of fitness evaluations for 500
and 1000 dimensional problems are 2500000 and 5000000,
respectively[9]. The fitness of an individual in DECC was
estimated by combining it with the current best individuals
from other subcomponents to form a vector, and applying
the vector to the target function [10], [9]. Since the fit-
ness evaluation of high-dimensional functions are very time
consuming, and even the values of some functions are too
big to represent by computer, we only used 8 functions for
experiments, including two separable functions (f1, f9), and
six nonseparable functions [18]. The average results of 25
independent runs are summarized in Tables 3 and 4.

TABLE III

COMPARISON BETWEEN DECC-I, DECC-II AND DE ON UNIMODAL

FUNCTIONS, WITH DIMENSION D = 500 AND 1000. ALL RESULTS HAVE

BEEN AVERAGED OVER 25 INDEPENDENT RUNS.

Test # of DE DECC-I DECC-II
Func Dim’s Mean Mean Mean

f1

500 1.56e+06 2.18e-13 4.07e-13
1000 3.36e+06 4.91e-13 6.64e-13

f3

500 9.25e+10 1.75e+08 2.29e+08
1000 2.20e+11 3.85e+08 4.10e+08

f5

500 2.39e+05 9.65e+04 1.75e+05
1000 3.94e+05 1.98e+05 2.40e+05

For unimodal functions, both DECC-I and DECC-II out-
performed the classical DE. DECC-I and DECC-II not only
have essential improvement over DE on separable function
f1, but also show great efficiency on nonseparable f3 and
f5. The evolution processes are shown in Figures 4 and 5.

Similar conclusions can be drawn for multimodal functions
from Table 4. DECC-I and DECC-II performs significantly
better than DE on almost all functions except for f8. The
three algorithms have exactly same results on function f8.
The fitness landscape of f8 in Fig. 3 shows that it belongs to
a class of deceptive problems, which are often regarded as
being difficult to optimize. For the other functions, Figures 6
and 7 show that DE stagnates rather early in search and
makes little progress thereafter, while DECC-I and DECC-
II keep finding better function values throughout the evolu-

3526 2007 IEEE Congress on Evolutionary Computation (CEC 2007)

TABLE IV

COMPARISON BETWEEN DECC-I, DECC-II AND DE ON MULTIMODAL

FUNCTIONS, WITH DIMENSION D = 500 AND 1000. ALL RESULTS HAVE

BEEN AVERAGED OVER 25 INDEPENDENT RUNS.

Test # of DE DECC-I DECC-II
Func Dim’s Mean Mean Mean

f6

500 1.68e+12 4.91e+02 8.82e+02
1000 1.68e+12 9.86e+02 2.25e+03

f8

500 2.16e+01 2.16e+01 2.16e+01
1000 2.16e+01 2.16e+01 2.16e+01

f9

500 8.85e+03 2.22e+03 2.91e+03
1000 1.81e+04 4.59e+03 5.22e+03

f10

500 1.38e+04 2.58e+03 5.88e+03
1000 2.93e+04 6.85e+03 9.40e+03

f13

500 7.90e+02 2.14e+02 2.94e+02
1000 2.08e+03 4.14e+02 5.32e+02

tion. It’s interesting to see that the cooperative coevolution
framework works well even for nonseparable multimodal
functions, which are more difficult for the method in [10].
Although some of the improvements might come from the
import of SaNSDE, the great difference of optimization
ability between DECC-I/DECC-II and DE make us believe
the proposed cooperative coevolution framework is more
suitable for high-dimensional optimization.

−40

−20

0

20

40

−40

−20

0

20

40
0

5

10

15

20

25

Fig. 3. The fitness landscape of two-dimensional version of f8.

V. CONCLUSIONS

In this paper we propose two new variants of DE, named
DECC-I and DECC-II, for high-dimensional optimization.
They follow the cooperative coevolution framework proposed
by Potter [10], but are extended with novel strategies on prob-
lem decomposition and subcomponents cooperation. DECC-
I groups the object vector into several low-dimensional
subcomponents that a basic optimizer can handle, and opti-
mizes all subcomponents in each cycle, and then cooperates
all subcomponents by optimizing the weights of them. On
the other hand, DECC-II selects a low-dimensional subset
randomly in each cycle, and then optimize the subset with a
basic optimizer.

Experimental evidence is also provided to evaluate the
effectiveness and efficiency of DECC-I and DECC-II on a
set of widely used benchmark functions. The set consists
of separable unimodal, nonseparable unimodal, separable
multimodal, and nonseparable multimodal functions. These
functions are scaled to 500 and 1000 dimensions. It was
found that DECC-I and DECC-II worked well on all kinds
of functions, even for the most difficult one (nonseparable
multimodal). Comparing to the results got by directly scaled
DE, DECC-I and DECC-II are definitely more suitable for
high-dimensional problems.

In the experimental studies for high-dimensional functions,
we have to fling away several functions for the difficulties
of their fitness evaluation. One of the future improvements
to DECC would be to apply advanced fitness evaluation
methods [20].

ACKNOWLEDGMENT

The authors would like to thank P. N. Suganthan, A. K. Qin
and V. L. Huang for they kindly shared some codes of DE
variants. This work is partially supported by the National
Natural Science Foundation of China (Grant No. 60428202
and 60573170).

REFERENCES

[1] R. Storn and K. Price, “Differential Evolution - A Simple and Efficient
Heuristic Strategy for Global Optimization over Continuous Spaces,”
Journal of Global Optimization, vol. 11, pp. 341–359, 1997.

[2] J. Vesterstrom, R. Thomsen, “A Comparative Study of Differential
Evolution, Particle Swarm Optimization, and Evolutionary Algorithms
on Numerical Benchmark Problems,” Evolutionary Computation, vol.
2, pp. 1980–1987, 2004.

[3] R. Storn, “System Design by Constraint Adaptation and Differential
Evolution,” IEEE Transactions on Evolutionary Computation, vol. 2,
pp. 82–102, 1999.

[4] R. Thomsen, “Flexible ligand docking using differential evolution,”
Proc. of the 2003 Congress on Evolutionary Computation, vol. 4, pp.
2354–2361, 2003

[5] R. Gämperle, S. D. Müller and P. Koumoutsakos, “A Parameter Study
for Differential Evolution,” Advances in Intelligent Systems, Fuzzy
Systems, Evolutionary Computation, pp. 293–298, 2002

[6] D. Zaharie, “Critical values for the control parameters of differential
evolution algorithms,” Proc. of the 8th International Conference on Soft
Computing, pp. 62–67, 2002

[7] Janez Brest et. al, “Self-Adapting Control Parameters in Differential
Evolution: A Comparative Study on Numerical Benchmark Problems,”
IEEE Transactions on Evolutionary Computation, vol. 2, pp. 82–102,
2006.

[8] A.K. Qin and P.N. Suganthan, “Self-adaptive Differential Evolution
Algorithm for Numerical Optimization,” Proc. of the 2005 Congress
on Evolutionary Computation, vol. 2, pp. 1785–1791, 2005.

[9] Y. Liu, X. Yao, Q. Zhao and T. Higuchi, “Scaling Up Fast Evolutionary
Porgramming with Cooperative Coevolution,” Proc. of the Congress on
Evolutionary Computation, pp. 1101–1108, 2001

[10] A. M. Potter and K. A. De Jong, “A cooperative co-evolutionary
approach to function optimization,” Proc. of the Third International
Conference on Parallel Problem Solving from Nature, pp. 249–257,
Springer-Verlag, 1994.

[11] D. Sofge, K. A. De Jong, and A. Schultz, “A blended population
approach to cooperative coevolution for decomposition of complex
problems,” Proc. of the Congress on Evolutionary Computation, pp.
413–418, 2002.

[12] Bergh, F.v.d. and A. P. Engelbrecht, “A Cooperative Approach to
Particle Swarm Optimization,” IEEE Transactions On Evolutionary
Computation, vol. 3 pp. 225–239, 2004.

2007 IEEE Congress on Evolutionary Computation (CEC 2007) 3527

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

10
−15

10
−10

10
−5

10
0

10
5

10
10

f
1

DE
DECC−I
DECC−II

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

10
8

10
9

10
10

10
11

10
12

f
3

DE
DECC−I
DECC−II

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

10
4

10
5

10
6

f
5

DE
DECC−I
DECC−II

Fig. 4. The evolution process of the mean best values found for f1, f3

and f5, with dimension n = 500. The results were averaged over 25 runs.
The vertical axis is the function value and the horizontal axis is the number
of generations.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

10
−15

10
−10

10
−5

10
0

10
5

10
10

f
1

DE
DECC−I
DECC−II

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

10
8

10
9

10
10

10
11

10
12

f
3

DE
DECC−I
DECC−II

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

10
5.4

10
5.5

10
5.6

10
5.7

f
5

DE
DECC−I
DECC−II

Fig. 5. The evolution process of the mean best values found for f1, f3

and f5, with dimension n = 1000. The results were averaged over 25 runs.
The vertical axis is the function value and the horizontal axis is the number
of generations.

3528 2007 IEEE Congress on Evolutionary Computation (CEC 2007)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

10
2

10
4

10
6

10
8

10
10

10
12

10
14

f
6

DE
DECC−I
DECC−II

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

10
3

10
4

10
5

f
9

DE
DECC−I
DECC−II

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

10
3

10
4

10
5

f
10

DE
DECC−I
DECC−II

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

10
2

10
3

10
4

10
5

10
6

f
13

DE
DECC−I
DECC−II

Fig. 6. The evolution process of the mean best values found for f6, f9,
f10 and f13, with dimension n = 500. The results were averaged over 25
runs. The vertical axis is the function value and the horizontal axis is the
number of generations.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

10
2

10
4

10
6

10
8

10
10

10
12

10
14

f
6

DE
DECC−I
DECC−II

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

10
3

10
4

10
5

f
9

DE
DECC−I
DECC−II

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

10
3

10
4

10
5

f
10

DE
DECC−I
DECC−II

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

10
2

10
3

10
4

10
5

10
6

f
13

DE
DECC−I
DECC−II

Fig. 7. The evolution process of the mean best values found for f6, f9,
f10 and f13, with dimension n = 1000. The results were averaged over
25 runs. The vertical axis is the function value and the horizontal axis is
the number of generations.

2007 IEEE Congress on Evolutionary Computation (CEC 2007) 3529

[13] Y. Shi, H. Teng and Z. Li, “Cooperative Co-evolutionary Differential
Evolution for Function Optimization,” Proc. of the First International
Conference on Natural Computation, pp. 1080–1088, 2005.

[14] T. Bäck, H. P. Schwefel, “An overview of evolutionary algorithms for
parameter optimization,” Evolutionary Computation, vol. 1 pp. 1–23,
1993.

[15] X. Yao, Y. Liu, G. Lin, “Evolutionary Programming Made Faster,”
IEEE Transactions on Evolutionary Computation, vol. 3, no. 2, pp. 82–
102, 1999.

[16] C. Lee, X. Yao, “Evolutionary Programming Using Mutations Based
on the Lévy Probability Distribution,” IEEE Transactions on Evolution-
ary Computation, vol. 8, no. 1, pp. 1–13, 2004.

[17] Z. Yang, J. He, X. Yao, “Make a difference to differential evolution,”
submitted to a book chapter, 2006.

[18] P. N. Suganthan et al, “Problem Definitions and Evaluation Criteria
for the CEC 2005 Special Session on Real-Parameter Optimization,”
http://www.ntu.edu.sg/home/EPNSugan, 2005.

[19] J. Rönkkönen, S. Kukkonen, K. V. Price, “Real-Parameter Opti-
mization with Differential Evolution,” Proc. of the 2005 Congress on
Evolutionary Computation, vol. 1, pp. 567–574, 2005.

[20] Q. F. Zhao, O. Hammami, K. Kuroda and K. Saito, “Cooperative co-
evolutionary algorithm – how to evaluate a module?” Proc. of the first
IEEE Symposium on Combinations of Evolutionary Computation and
Neural Networks, pp. 150–157, 2000.

3530 2007 IEEE Congress on Evolutionary Computation (CEC 2007)

