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Abstract— In this paper, swarm and evolutionary algorithms
have been applied for the design of digital filters. Particle
swarm optimization (PSO) and differential evolution particle
swarm optimization (DEPSO) have been used here for the
design of linear phase finite impulse response (FIR) filters. Two
different fitness functions have been studied and experimented,
each having its own significance. The first study considers a
fitness function based on the passband and stopband ripple,
while the second study considers a fitness function based on the
mean squared error between the actual and the ideal filter
response. DEPSO seems to be promising tool for FIR filter
design especially in a dynamic environment where filter
coefficients have to be adapted and fast convergence is of
importance.

I. INTRODUCTION

FILTER is a frequency selective circuit that allows a 
certain frequency to pass while attenuating the others.
Filters could be analog or digital. Analog filters use

electronic components such as resistor, capacitor, transistor
etc. to perform the filtering operations. These are mostly
used in communication for noise reduction, video/audio
signal enhancement etc. In contrast, digital filters use digital
processors which perform mathematical calculations on the
sampled values of the signal in order to perform the filter
operation. A computer or a dedicated digital signal
processor may be used implementing digital filters.

Traditionally, different techniques exist for the design of 
digital filters. Of these, windowing method is the most
popular. In this method, ideal impulse response is multiplied
with a window function. There are various kinds of window
functions (Butterworth, Chebyshev, Kaiser etc.), depending
on the requirements of ripples on the passband and
stopband, stopband attenuation and the transition width.
These various windows limit the infinite length impulse
response of ideal filter into a finite window to design an
actual response. But windowing methods do not allow
sufficient control of the frequency response in the various
frequency bands and other filter parameters such as
transition width. Designer always has to compromise on one
or the other of the design specifications. So, evolutionary
methods have been implemented in the design of digital
filters to design with better parameter control and to better
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approximate the ideal filter. Since population based 
stochastic search methods have proven to be effective in
multidimensional nonlinear environment, all of the 
constraints of filter design can be effectively taken care of 
by the use of these algorithms.

Previously, computational Intelligence based techniques
such as neural networks, particle swarm optimization (PSO)
and genetic algorithms (GA) have been implemented in the
design of digital filters. One such approach using neural
networks has been described in [1]. Use of PSO and GA in
the design of digital filters is described in [2]. Also, use of
PSO in the design of frequency sampling finite impulse
response (FIR) filter has been described in [3]. Use of
differential evolution in the design of digital filters has been
implemented in Storn’s work [4], [5] and Karaboga’s work
[6]. Design of infinite impulse response (IIR) filters using 
PSO is described in [7]. PSO with a preferential velocity
update mechanism has been explained and applied in the
design of IIR filters in [8]. 

In this paper, swarm and evolutionary algorithms have
been applied for the design of digital filters. Particle swarm
optimization and differential evolution particle swarm
optimization (DEPSO) have been used here for the design of
linear phase FIR filters.

II. DIGITAL FILTER DESIGN

Digital filters are classified as finite impulse response
(FIR) filter or infinite impulse response (IIR) filter
depending upon whether the response of the filter is 
dependent on only the present input values or on the present
inputs as well as previous outputs, respectively.

Any time varying signal  sampled at a sampling
interval of  has input signals  in 
intervals . These inputs have
corresponding outputs  depending
upon the kind of operation performed. Thus, the order of the
filter is determined by the number of the previous input
terms used to calculate the current output. The
terms appearing in the following equations are called the
filter coefficients and determine the operation of the filter.

0: (1)

110: (2)

22110:  (3)
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Now FIR filter or also called the non-recursive filter can
be represented by the following equation:

22110        (4)

Similarly, IIR filter or also called the recursive filter is
represented as:

1           (5)

By introducing a unit delay element , such that
and , the transfer function of FIR filter can be
represented as:

2
2

1
10          (6)

and that of IIR filter as:

2
2

1
10

2
2

1
10          (7)

Various filter parameters which come into picture are the
stopband and passband normalized frequencies ( ), the
passband and stopband ripple ( ) and ( ), the stopband
attenuation and the transition width. These parameters are
mainly decided by the filter coefficients as is evident from
transfer functions in (6) and (7). Significance of these
parameters in actual filters with respect to ideal filter is
illustrated in Fig. 1. In any filter design problem, some of 
these parameters are fixed while others are determined. In
this paper, swarm and evolutionary optimization algorithms
are applied in order to obtain the actual filter response as
close as possible to the ideal response.

III. DEPSO ALGORITHM

Particle swarm optimization is an evolutionary algorithm
developed by Eberhart and Kennedy in 1995 [9]. It is a 
population based search algorithm and is inspired by the
observation of natural habits of bird flocking and fish 
schooling. In PSO, a swarm of particles moves through a 
dimensional search space. The particles in the search process
are the potential solutions, which move around the defined
search space with some velocity until the error is minimized
or the solution is reached, as decided by the fitness function.
The particles reach to the desired solution by updating their
position and velocity according to the PSO equations. In
PSO model, each individual is treated as a volume-less
particle in the D-dimensional space, with the position and
velocity of  particle represented as:

),........,,( 21 (8)

),........,,( 21 (9)

)(*()*

)(*()**

22

11
(10)

            (11)

These particles are randomly distributed over the search
space with initial position and velocity. They change their
positions and velocity according to (10) and (11) where 
and  are cognitive and social acceleration constants,

 and  are two random functions uniformly
distributed in the range of [0,1] and  is the inertia weight
introduced to accelerate the convergence speed of PSO [9].
Vector  is the best previous
position (the position giving the best fitness value) of
particle  called the pbest, and vector

 is the position of the best particle
among all the particles in the population and is called the
gbest.  are the th dimension of vector of .

The basic pseudocode for PSO can be written as:

Do

Fig. 1.  Ideal and Actual filter Magnitude response showing passband
and stopband ripples and transition band in actual filter.
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While
.

Differential evolution was introduced by Storn and Price
in 1995 [4]. It is yet another population based stochastic
search technique for function minimization. Use of DE in
the filter design problem has been described in [4] and [5].
In DE, the weighted difference between the two population
vectors is added to a third vector and optimized using
selection, crossover and mutation operators as in GA. Each
individual is first mutated according to the difference
operation. This mutated individual, called the offspring, is
then recombined with the parent under certain criteria such
as crossover rate. Fitness of both the parent and the
offspring is then calculated and the offspring is selected for
the next generation only if it has a better fitness than the
parent [6]. 

A hybrid of DE and PSO gives a new method of 
optimization called the differential evolution particle swarm
optimization [10]. In DEPSO, new offspring is created by
the mutation of the parent. In this paper  has been taken
as the parent and a Gaussian distribution has been
considered. For mutation, 4 particles are randomly chosen
from the population. The weighted error between these
particles’ positions is used to mutate the parent and create an
offspring [12].  The mutation takes place according to (12).

)()(

,2          (12)

2

)()( ,4,3,2,1
,2     (13)

where is the weighted error in different dimensions, is
the offspring and  is the  position of the parent. The
mutation takes place under the condition when a random
number between [0,1] is less than the reproduction rate
or the particles position in any one randomly chosen
dimension, is mutated. This ensures that offspring is never 
same as the parent. Then the fitness of the offspring is
evaluated and the offspring replaces the parent only if it has
a better fitness than the parent, otherwise the parent is
retained for the next iteration [10]. Basic flowchart for 
DEPSO is given in Fig. 2. The pseudocode can be written as
follows:

Do

While
.

A different scheme for mutation in DEPSO is also proposed

DEPSO

No

Yes

Initialization:
Search Space, position, velocity etc.

Fitness (offspring) >
Fitness (parent)?

Calculate fitness of offspring

Max. Iteration ?
Min. Fitness?

Parent(new)= offspring Parent(new)= parent(old)

Next Iteration

Yes

No

PSO:
Evaluate Fitness
Position and Velocity Update

DE:
Calculate Delta
Mutate parent to create offspring

End

Fig. 2.  Basic flowchart showing the three algorithms in the design
flow.
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in [11], where position update in PSO is carried out either in
canonical PSO way or in DE way depending upon the
crossover rate.

IV. DEPSO BASED DIGITAL FILTER DESIGN

From (6), consider an FIR filter with the following
transfer function:

...2
2

1
10    (14)

or from (7), an IIR filter with the following transfer
function:

...

...
2

2
1

10

2
2

1
10  (15) 

Now for (14), the numerator coefficient vector
 is represented in  dimensions where as

for (15), the numerator as well as denominator coefficient
vector is

which is represented in (  dimensions. The
particles are distributed in a dimensional search space,
where  for FIR and  for IIR filter. The
position of the particles in this  dimensional search space
represents the coefficients of the transfer function. In each
iteration, these particles find a new position, which is the
new set of coefficients. Fitness of particles is calculated
using the new coefficients. This fitness is used to improve
the search in each iteration, and result obtained after a
certain number of iterations or after the error is below a
certain limit is considered to be the final result. For the
problem at hand, the FIR filter is chosen to be of a linear
phase type. So its coefficients are matched. Thus the
dimension of the problem reduces by a factor of 2. The
co-efficient are then flipped and concatenated to find the
required coefficients [2]. Depending on the fitness
function used, two different cases have been studied in this
paper. The detail operations in the filter design have been
summarized in the flowchart in Fig. 3.

Different kinds of fitness functions have been used in
different literature. An error function given by (16) is the
approximate error used in Parks-McClellan algorithm for
filter design.

)]()()[()(    (16)

Where  is the weighting function used to provide
different weights for the approximate errors in different
frequency bands,  is the frequency response of the
desired filter and  is the frequency response of the
approximate filter [2].

Now the error to be minimized is defined as in (17).

)|)((|)|)((|1  (17)

where  and s are the ripples in the pass and stopband,
and  and   are passband and stopband cut off
frequencies respectively. The algorithms try to minimize this
error and thus increase the fitness.

The second fitness function takes the mean squared error
between the frequency response of the ideal and the actual
filter. An ideal filter has a magnitude of 1 on the passband 

No

Yes

Start:
Define search space, population
and fitness function

Initialize:
Position, Velocity,  pbest, gbest

For each particle

Update Velocity & Position
using (10) and (11)

Calculate using
(17) or (18)

Next particle

Select 4 particles
Perform DE (13)

If

Is
OR ?

If  < 

Is
?

Mutate  using (12)

Evaluate  for offspring using (17) or (18)

Max. Iteration ? 
Min. ?

 New  = offspring New = Old

Next Iteration

Yes

No

Coefficients=
 Positions

Fig. 3.  Detail flowchart showing the design of digital filters using
DEPSO algorithm.
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and a magnitude of 0 on the stopband. So the error for this
fitness function is the squared difference between the
magnitudes of this filter and the filter designed using the
evolutionary algorithms, summed over desired frequency
range and divided by the total number of input samples for 
which the frequency response is evaluated. This is called the
mean squared error and is given by (18)

1

2
2 ))()((

1
    (18)

where  and are the magnitude response of 
the ideal and the actual filter, and  is the number of 
samples used to calculate the error.

V. RESULTS

The filters are designed to optimize the coefficients which
give the best frequency response. This is determined by the
ripples on the passband and the stopband. In this paper, the
desired ripple on the passband is 0.1 and that on the
stopband is 0.01. In each case, passband and stopband cut
off frequencies are 0.25 and 0.3 respectively. The passband
ripple is 0.1 and stopband ripple is 0.01. Filters with 20 
coefficients are designed. For PSO and DEPSO, population
size of 25 is chosen and 200 iterations are used. The value of 
constants  and has been taken as 2 and a linearly
decreasing  from 0.95 to 0.4 has been used as inertia
weight. Gaussian distribution has been used for the DE
operation and the operator has been used on the  for
creating offspring. The crossover rate for DEPSO is taken as
0.5. The experiment has been implemented in MATLAB.
The coefficients obtained from the filter design have been
listed in Table 1. 

The magnitude and gain plots thus obtained from the
design have been plotted. Fig. 4 shows the error graph for
Case I. It can be observed that both PSO and DEPSO
converge to the same fitness but DEPSO converges to a
much lower fitness in lesser number of iterations. The
magnitude and gain plot for the filter have been shown in

Figs. 5 and 6. Similarly, error curve for Case II has been
shown in Fig. 7. Fig. 8 shows the gain plot for Case II. It is 
seen in Case II that both PSO and DEPSO converge to the
same fitness after certain number of iterations and is also
evident from the coefficients in Table I. But DEPSO has 
converged to a much lower error in lesser number of
iterations than PSO.

To show the effectiveness of the two different fitness
functions, magnitude and gain for filters designed by each

TABLE I
COEFFICIENTS OBTAINED USING PSO AND DEPSO (200 ITERATIONS)

PSO DEPSO
Coefficients

Case I Case II Case I Case II

1(20) -0.082247 -0.025779 -0.046829 -0.025779

2(19) -0.037992 -0.02822 -0.053536 -0.02822

3(18) -0.018251 -0.007720 -0.042638 -0.007720

4(17) 0.027268 0.027496 0.053059 0.027496

5(16) 0.069825 0.054369 0.045884 0.054369

6(15) 0.045592 0.046422 0.079953 0.046422

7(14) -0.021912 -0.009960 -0.043754 -0.009960

8(13) -0.097704 -0.10426 -0.11199 -0.10426

9(12) 0.1962 -0.2034 -0.16226 -0.2034

10(11) -0.27258 -0.26676 -0.29153 -0.26676

Fig. 6.  Gain Plot of the designed filters for Case I (with 200 
It ti )

Fig. 5.  Magnitude response of filters for Case I (200 Iterations).

Fig. 4.  Error graph for Case I.
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algorithm using both fitness functions have also been plotted
together. Figs. 9 and 10 show the comparison of magnitude
and gain plots respectively, using fitness functions in Cases I 
and II. 

The results are evaluated over 10 runs and average,
minimum, maximum and standard deviation have been
calculated. These compared with the work in [2] have been
tabulated in Table II. The results for both the cases run for

Fig. 7.  Error curve for the Case II (with 200 Iterations).

Fig. 10.  Comparison of Case I and Case II in terms of gain plot.

Fig. 9.  Comparison of Case I and Case II in terms of magnitude plot.

Fig. 8.  Gain plot for filter designed in Case II.

TABLE III
PASSBAND AND STOPBAND RIPPLES (WITH 40 ITERATIONS)

PSO DEPSO Ref [2]

Case I Case II Case I Case II

Avg. 3.108 3.077 4.573 3.015 <60

T
im

e
Min. 3.021 2.954 3.200 2.875 <60

Avg. 0.169 0.275 0.172 0.269 0.073

Min. 0.124 0.256 0.152 0.253 0.071

Max. 0.266 0.290 0.194 0.291 0.075

P
as

sb
an

d 
(

p)

Std. 0.041 0.016 0.018 0.016 0.0013

Avg. 0.124 0.263 0.203 0.245 0.073

Min. 0.190 0.246 0.169 0.207 0.071

Max. 0.262 0.275 0.257 0.270 0.075

St
op

ba
nd

 (
s)

Std. 0.063 0.012 0.041 0.027 0.0013

TABLE II
PASSBAND AND STOPBAND RIPPLES (WITH 200 ITERATIOINS)

PSO DEPSO Ref [2]

Case I Case II Case I Case II

Avg. 9.054 8.899 9.396 9.382 <60

T
im

e

Min. 8.828 8.796 9.032 9.267 <60

Avg. 0.174 0.257 0.195 0.257 0.073

Min. 0.166 0.257 0.169 0.257 0.071

Max. 0.200 0.257 0.218 0.257 0.075

Pa
ss

ba
nd

 (
p)

Std. 0.009 0.000 0.014 0.000 0.0013

Avg. 0.160 0.259 0.182 0.259 0.073

Min. 0.141 0.259 0.158 0.259 0.071

Max. 0.185 0.259 0.235 0.259 0.075

St
op

ba
nd

 (
s)

Std. 0.012 0.000 0.025 0.000 0.0013
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40 iterations are shown in Table III. The error graph
obtained for Case I in 40 iterations is shown in Fig. 11. The
gain and plot for the same case are given in Figs. 12 and 13
respectively.

The use of DEPSO over PSO is thus justified by the
results of the experiment run in lesser number of iterations,
where DEPSO seems to show better convergence and
consistency than PSO. This implies that DEPSO is more
suitable for adaptive systems in fast changing environment
where quick convergence is the key factor. The gain plot
and the error graph for Case II are shown in Figs. 14 and 15 
respectively.

VI. CONCLUSION

Uses of hybrid optimization techniques involve the best
practices of both the algorithms and thus help reduce the
design time. Also, the fitness is significantly improved
because the hybridization helps to save the particles from
being trapped in local minima, thus guiding them towards
the global solution. From this work, it can be seen that
DEPSO performs better with respect to PSO even when its
execution time was almost the same as that of PSO.
Moreover, if lesser number of iterations be considered,
DEPSO would perform much better and which would also
mean early approximation of filter coefficients. With fitness
function in case study I, transition width was almost always
kept within limits while desired ripples were not achieved.
But with fitness function in case study II, lower ripples were
achieved but at the cost of wider transition width. Since
transition width is not the parameter under consideration of
this paper, the results in Table II show higher values of 
ripples than expected.

It can be concluded that with these swarm and
evolutionary algorithms, filter approximation can be
achieved even in dynamic environments and in a short
period of time useful for adaptive filtering. In this paper 
DEPSO is applied on the , but its effectiveness could
also be improved by applying it to the  and thus
evaluating the fitness of each particle instead of guiding just
one best particle among the population. Further research is
required to evaluate these two scenarios for digital filter
design especially in a dynamic environment.

Fig. 12.  Gain Plot for Case I (40 Iterations).

Fig. 13.  Magnitude Plot for Case I (40 Iterations).

Fig. 11.  Error graph for Case I (40 Iterations).
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