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Summary. Differential Evolution (DE), a vector population based stochastic optimization 
method has been introduced to the public in 1995. During the last 10 years research on and with 
DE has reached an impressive state, yet there are still many open questions, and new 
application areas are emerging. This chapter introduces some of the current trends in DE-
research and touches upon the problems that are still waiting to be solved.   

1   Introduction 

It has been more than ten years since Differential Evolution (DE) was introduced by 
Ken Price and Rainer Storn in a series of papers that followed in quick succession [1, 
2, 3, 4, 5] and by means of an Internet page [6]. DE is a population-based stochastic 
method for global optimization. Throughout this chapter the term optimization shall 
always be equated with minimization without loss of generality. The original version 
of DE can be defined by the following constituents. 
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where Np denotes the number of population vectors, g defines the generation counter, 
and D the dimensionality, i.e. the number of parameters. 
 

2) The initialization of the population via 

( ) .)1,0[rand L,L,U,0,, jjjjij bbbx +−⋅=  (2) 

 

The D-dimensional initialization vectors, bL and bU indicate the lower and upper 
bounds of the parameter vectors xi,j. The random number generator, randj[0,1), returns 
a uniformly distributed random number from within the range [0,1), i.e., 0 ≤ randj[0,1) 
< 1. The subscript, j, indicates that a new random value is generated for each 
parameter.  
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3) The perturbation of a base vector yi,g by using a difference vector based mutation 

( ).,2,1,, grgrgigi F xxyv −⋅+=  (3) 

to generate a mutation vector vi,g. The difference vector indices, r1 and r2, are 
randomly selected once per base vector. Setting yi,g = xr0,g defines what is often 
called classic DE where the base vector is also a randomly chosen population vector. 
The random indexes r0, r1, and r2 should be mutually exclusive. There are also 
variants of perturbations which are different to Eq. (3) and some of them will be 
described later. For example, setting the base vector to the current best vector or a 
linear combination of various vectors is also popular. Employing more than one 
difference vector for mutation has also been tried but has never gained a lot of 
popularity so far. 
 
4) Diversity enhancement 
 

The classic variant of diversity enhancement is crossover [1, 2, 3, 4, 5, 6, 7] which 
mixes parameters of the mutation vector vi,g and the so-called target vector xi,g in 
order to generate the trial vector ui,g. The most common form of crossover is uniform 
and is defined as 
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In order to prevent the case ui,g = xi,g at least one component is taken from the 
mutation vector vi,g, a detail that is not expressed in Eq. (4). Other variants of 
crossover are described by Price, Storn and Lampinen [7]. 
 
5) Selection 
 

DE uses simple one-to-one survivor selection where the trial vector ui,g competes 
against the target vector xi,g. The vector with the lowest objective function value 
survives into the next generation g+1. 
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Please note that the presentation as well as notation has been chosen slightly different 
from the original papers[1, 2, 3, 4, 5]. Along with the DE algorithm came a notation 
[5] to classify the various DE-variants. The notation is defined by DE/x/y/z where x 
denotes the base vector, y denotes the number of difference vectors used, and z 
representing the crossover method. For example, DE/rand/1/bin is the shorthand 
notation for Eq. (1) through Eq. (5) with yi,g = xr0,g. DE/best/1/bin is the same 
except for yi,g = xbest,g. In this case xbest,g represents the vector with the lowest 
objective function value evaluated so far. With today’s extensions of DE the 
shorthand notation DE/x/y/z is not sufficient any more, but a more appropriate 
notation has not been defined yet. 



 Differential Evolution Research – Trends and Open Questions 3 

f(x1,g)

F
+

+

+ -

population
Px,g

1) Choose target vector and base vector
2) Random choice of two population members

3) Compute weighted
    difference vector

4) Add to base vector

objective function value f(xNp-1,g)

parameter vector xNp-1,g

x1,g

f(x2,g)

x2,g

f(x3,g)

x3,g

f(xNp-2,g)

xNp-2,g xNp-1,g

f(xNp-1,g)f(x0,g)

x0,g

f(v1,g)

mutant
population

Pv,g

v1,g

f(v2,g)

v2,g

f(v3,g)

v3,g

f(vNp-2,g)

vNp-2,g vNp-1,g

f(vNp-1,g)f(v0,g)

v0,g

select
trial or
target

f(x1,g+1)

x1,g+1

f(x2,g+1)

x2,g+1

f(x3,g+1)

x3,g+1

f(xNp-2,g+1)

xNp-2,g+1 xNp-1,g+1

f(xNp-1,g+1)f(x0,g+1)

x0,g+1

5) x0,g+1 = u0,g if f(u0,g) <= f(x0,g), else x0,g+1 = x0,g

new
population

Px,g+1

(=base vector)

(target vector)

crossover

u0,g

xr2,g
xr1,g

xr0,g

trial vector

 

Fig. 1. Flowchart of classical DE [7] 

In order to be able to represent DE pictorially the flowgraph representation in 
Figure 1 was contrived because flowgraphs are very common in the engineering 
world. The DE-flowgraph representation seemed to be ideal to convey DE’s 
simplicity and first appeared in the DE-article published in the Dr. Dobb’s journal at 
1997 [4], a magazine for computer programmers. The article spawned a lot of interest 
for DE among practitioners which Kenneth Price and Rainer Storn concluded from 
the large number of e-mails they received in which DE was attributed very good 
convergence along with simplicity. Simplicity is an asset which is very important to 
anyone who considers optimization to be a necessary but not the primary task. DE’s 
simplicity allowed many practicing engineers and researchers from very diverse 
disciplines to use global optimization without the need to be an optimization expert.  

Interestingly enough, DE received attention only very slowly from fellow 
researchers in the evolutionary computation community, even though it performed 
very well on the first international contest on evolutionary computation in Nagoya as 
early as 1996 [2]. DE’s lack of attention might have been due to a lack of 
understanding concerning its inner workings. More light was shed upon these in 2002 



4 R. Storn 

when Daniela Zaharie published a beautiful article [8] that enlightened the 
convergence of DE from theoretical point of view. Also the contour matching 
properties of DE, a phrase coined by Kenneth Price, were not explicitly advocated 
until 2005 [7] and only vaguely described as the self-steering property of DE. 

For the following discussions the terms population vectors and population points 
will be used interchangeably, depending on the circumstances. Talking about vectors 
is usually more appropriate when issues concerning the parameters of the vectors or 
the vector arithmetic used to generate new vectors are elaborated. Speaking in terms 
of points, however, is usually more convenient when the discussion concentrates on 
the sampling of the objective function surface. It should be kept in mind that the 
points are simply the endpoints of the vectors.  
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Fig. 2. Peaks function a) and illustration of difference vectors b) that promote transfer of points 
between two basins of attraction of the objective function surface 

Some explanations concerning contour matching are in order. Contour matching 
means that the vector population adapts such that promising regions of the objective 
function surface are investigated automatically once they are detected. To this end an 
important ingredient besides selection is the promotion of basin-to-basin transfer 
where search points may move from one basin of attraction, i.e. a local minimum, to 
another one. Figure 2 illustrates that DE in fact supports basin-to-basin transfer by 
yielding a certain amount of difference vectors that are able to generate new trial 
points in the lower basin of attraction when the base points stem from the upper left 
basin of attraction. 

Professor Jouni Lampinen from Lappeenranta University of Technology, Finland, 
[7] was one of the first scientists who was intrigued by DE’s potential and not only 
did a lot of seminal DE-research but also started to maintain a bibliography of DE-
related papers [9]. A look into this bibliography on the Internet reveals that its 
maintenance has been halted after 2002. The reason for this stop was that the number 
of papers began to increase at such a large rate after the year 2002 that it was 
impossible to keep the bibliography up-to-date and complete. 
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A simple search for “Differential Evolution” using any kind of search engine on 
the Internet supports the above statement and shows that DE-research is in full swing. 

There are basically four main directions of DE-research that can be identified: 
 

• Basic DE research 
       Here the inner workings and theoretical aspects of DE are investigated. Ob-

jective functions involved are usually unconstrained. The goal is to better 
understand DE, identify its weaknesses and improve it in an overall fashion. 
It is worth mentioning that the majority of the research in this category is 
empirical. Purely theoretical treatments are rare as it is the case for EAs in 
general. This is probably due to the situation that those scenarios which lend 
themselves to feasible theoretical investigations rarely represent the com-
plexity of real-world problems.  

• Problem Domain Specific research 
       In this area the problem formulation and how DE can be adapted to it is  

under scrutiny. For example, constraints, time variations, and number of ob-
jectives of an objective function are of importance but also effects of dimen-
sionality and parameter granularity, i.e. discreteness are considered. 

• Application Specific research 
       This research domain is similar to the problem domain specific case, however, 

certain applications can be much more specific than the general problem do-
main they belong to. For example, the traveling salesman problem belongs to 
the problem domain of combinatorial optimization, but its specifics narrow 
down the heuristics one may use in order to solve the problem. 

• Computing Environment related research 
       In the real world computational efficiency of DE is often crucial to make de-

sign problems tractable. Some problems call for parallel computations while 
others have to deal with limited memory or processing power. 

 
In the following selected areas from the research domains mentioned above will be 

discussed. I have tried to highlight those that still exhibit many open questions and 
hence constitute rewarding research topics, but I am aware that I did not provide a 
complete picture. For example, the vast domain of multi-objective optimization using 
DE has not been covered at all, but it will be treated in another part of the book. 

2   Basic DE Research 

In the early days DE was only marginally understood concerning its strengths and 
weaknesses. By twisting and tuning the various constituents of DE, i.e. initialization, 
mutation, diversity enhancement, and selection of DE as well as the choice of the 
control variables it was tried to make it a foolproof and fast optimization method for any 
kind of objective function, even though the No Free Lunch Theorem (NFL) by Wolpert 
and Macready (1997) [10] suggested already that such a panacea could not exist. 
Nevertheless, many real-world problems seem to be of the kind that they are very well 
amenable to be treated by DE. And even though there will be no cure-all-optimization 
for every problem, DE can nevertheless be improved also in a general sense. 
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2.1   The Control Variables Np, F, and Cr 

Trying to tune the three main control variables Np, F, and Cr and finding bounds for 
their values has been a topic of intensive research [7, 8, 11, 12, 13, 14, 15, 16]. An 
important result was presented by Daniela Zaharie [8] where she proved that the 
mutation scale factor F should never be smaller than Fcrit where  

( )
Np

Cr
F 21

crit

−
= . (6) 

Another important result from Price, Storn, Lampinen [7] was that only high values of 
Cr guarantee the contour matching properties of DE. In addition, only when Cr=1 is 
the mean number of function evaluations for an objective function and its rotated 
counterpart the same, i.e. in this case DE is called rotationally invariant. This does 
not mean, however, that low values of Cr should always be avoided. Low values of Cr 
are advantageous for separable functions, since the search concentrates on the axes of 
the coordinate system as outlined in [7]. The rule of thumb values for the control 
variables given by Storn and Price [5]: 

1. F ∈ [0.5, 1.0] 
2. Cr ∈ [0.8, 1.0] 
3. Np = 10⋅D 

are valid for many practical purposes but still lack generality. Gämperle [11] reported 
that the control variable settings for F, Cr, and Np can be quite difficult to find, and 
some objective functions are sensitive to the proper setting. This finding was also 
stated by Liu and Lampinen [12]. Therefore research trends go towards finding the 
best settings of F, Cr, and Np automatically [13, 14, 15, 16, 17]. One recent approach 
by Brest et al. [17] uses F and Cr as additional parameters to evolve for each 
population vector, an idea pioneered by Schwefel [18]. Hence each parameter vector 
has D + 2 parameters with the last two parameters containing an individual F and Cr 
for the particular vector. If the trial vector wins in the selection process either both F 
and Cr from the base vector are transported into the winner vector or the individual  
F and Cr are randomly determined. It is claimed that the most appropriate values for F 
and Cr will survive in the long run. The results on a reasonably-sized testbed show 
that the scheme yields improved objective function values after a fixed set of function 
evaluations, compared to classical DE with F=0.5 and Cr=0.9, and compared to some 
other DE-variants. However, it is unclear whether the scheme would maintain it 
superiority if not a fixed number of evaluations but a fixed value-to-reach (VTR) 
would have been chosen as a goal. It may also be that the encouraging results are due 
to the occasionally occurring random selection of F and Cr. This kind of randomness 
known as dither [7] has been found to be advantageous as will be elaborated later. 
Furthermore the question remains whether the surviving F and Cr gear the 
optimization towards fast and therefore possibly premature convergence. Hence the 
area of automatic control parameter determination remains very interesting and a 
fruitful area of research. 
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2.2   Perturbation 

Perturbation of the base vector by mutation has been treated very early and has lead to 
various variants of DE such as the one belonging to classical DE/rand/1/bin 

( ),,2,1,0, grgrgrgi F xxxv −⋅+=  (7) 

the mutation being used in DE/best/1/bin 

( ),,2,1,, grgrgbestgi F xxxv −⋅+=  (8) 

the mutation for DE/current-to-best/1/bin 

( ) ( ).,2,1,,,, grgrgigbestgigi FF xxxxxv −⋅+−⋅+=  (9) 

and the variant for DE/best/2/bin 

( ).,4,3,2,1,, grgrgrgrgbestgi F xxxxxv −+−⋅+=  (10) 

In fact many more linear combinations of vectors may be used for mutation, a 
generalization of which can be written as 

( ).1 1

0
),22(),12(,, ∑
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N

n
gnrgnrgigi N
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with yi,g being the base vector. The base vector should be distinct from the other 
vectors in Eq. (11). Most commonly used are the mutation schemes represented by 
Eq. (7) and Eq. (8) with the latter being more greedy. Recently Price and Rönkkönen 
[19] investigated Eq. (11) for the case yi,g = xi,g and N=0. In [7] the effect of 
recombination as a perturbation method  
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for the case yi,g = xi,g and N=0 has been elaborated. Eq. (12) is a generalization of the 
Nelder and Mead reflection operation [20] and defines a point between yi,g and the 
centroid of the vectors used in the recombination sum. So far no single perturbation 
method has turned out to be best for all problems which, of course, doesn’t come as a 
surprise with regard to the NFL [10]. Nevertheless all the various methods need 
further investigation under which circumstances they perform well. In practice this 
information can be very important because it may save many computations or may 
even be crucial for the solution of a certain problem.  

2.3   Diversity Enhancement 

One of the most fundamental aspects of mutation-based DE is the fact that vector 
perturbations are generated from the Np·(Np-1) nonzero difference vectors of the 
population rather than employing a predetermined probability density function. This 
leads to one of the main assets of DE: contour matching [7]. The contour matching 
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property can be observed in Figure 3 through Figure 5 which show the DE-population 
and the difference vector distribution for Np=8 on the peaks function the latter of 
which is defined by 

( ) ( )( )
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Fig. 3. Generation g=1 using Np = 8 
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Fig. 4. Generation g=10 using Np = 8. The difference vector distribution (only endpoints 
shown) exhibits three main clouds where the outer ones promote the transfer between two 
basins of attraction. 
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Fig. 5. Generation g=20 using Np = 8. Now the difference vector distribution fosters the local 
search of the minimum the vector population is enclosing. 

It is intriguing to see the difference vector distribution adapt to the landscape of the 
objective function. This self-adaptivity renders DE’s mutation based perturbation 
superior to mere Gaussian- or Cauchy-based types in most cases. However, Figure 3 
through Figure 5 also reveals a weakness:  

In the endeavour to obtain fast convergence the population size Np is usually kept 
low. Due to the limitation of Np·(Np-1) potential perturbation possibilities for a base 
vector there is a limited possibility to find regions of improvement and hence 
stagnation [21] can be the price to pay for the low number of Np. The blessing of 
contour matching may then turn out to be a curse when the contour of the objective 
function is deceiving and the “matching” leads away from the global optimum. 

In order to increase the number of potential points to be searched while still 
maintaining a low number of Np gives rise to the various strategies for diversity 
enhancement, certainly one of the most interesting and rewarding areas of DE 
research today. The basic idea is simply to find some hopefully contour-matching and 
rotationally invariant way to generate more potential points without increasing the 
number Np of population members. As has been mentioned above one method for 
diversity enhancement has always been a part of DE, crossover. 
 
Crossover 
Crossover, i.e. mixing parameters of the target and the mutant vector in order to get 
the trial vector (see Eq. (4)) has been introduced to DE from the beginning [1, 2, 3, 4, 
5, 6]. It was felt that mutation alone is too restrictive as a perturbation method, just as 
genetic algorithms [22] require some random mutation in addition to the dominant 
recombination mechanism to make the optimization work properly. So both DE and 
genetic algorithms have some dominant method of change plus an additional 
ingredient which slightly breaks up the mechanics of the dominant perturbation. 
Figure 6, however, forebodes that crossover has the potential to destroy the 
directional information provided by the difference vectors for the sake of increasing 
diversity. In fact it has been shown [7] that DE’s contour matching property is lost 
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Fig. 6. Example for a population of Np=8 points and a mutation step a). The figure on the right 
b) shows the potential points when using crossover.  

when strong crossover is used (e.g. Cr=0.1) and that in this case DE has a strong 
tendency to search along the main parameter axes, a property that is in fact beneficial 
for separable objective functions. Yet for real-world applications separability is rarely 
present. Parameter dependency seems to be the rule rather than the exception instead.  

Another deficiency of crossover is that it is not rotationally invariant, i.e. 
optimization results obtained for a certain objective function do not directly translate 
to the rotated counterpart of this function. The differences in potential crossover 
points for two coordinate systems with the same origin are depicted in Figure 7. 
Despite its deficiencies the DE-literature reveals that crossover is almost always used. 
The diversity enhancing features of crossover seem to outweigh its disadvantages, at 
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Fig. 7. Potential trial points after crossover for coordinate system x1, x2 and  system x1’, x2’ 
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least if used lightly, i.e. if Cr stays close to 1 for the case of non-separable objective 
functions. 
 
Dither 
The term dither has been defined in [7] and presumably has been used by early 
practitioners of DE. The first reported publication advocating its use, however, seems 
to have been launched by Karaboga and Ökdem [23] in a Turkish Journal even though 
the term “dither” had not been employed. In [23] the scale factor F was randomized 
according to 

( )lhgldither FFrandFF −⋅+= )1,0(  (14) 

for every generation g. Independently of [23] Das, Konar, and Chakraborty [24] have 
reported improvements in DE’s convergence when using dither. In [24] dither had 
been applied to every difference vector i=0, 1, …, Np-1 rather than on a generational 
basis. 

( )lhildither FFrandFF −⋅+= )1,0(  (15) 

More variants are conceivable, for example changing F using some randomization 
different from uniform. A pictorial representation of dither is provided in Figure 8.  
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Fig. 8. Pictorial representation of dither which simply randomizes the mutation scale factor F 
and hence does not compromise DE’s contour matching 

Besides from improving DE’s convergence behavior on time-independent 
objective functions dither also improves DE’s handling of noisy objective functions 
[25]. Since dither is rotationally invariant and preserves the contour matching 
property this diversity enhancing method should always be used. 
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Jitter 
Jitter as defined in [7] is somewhat similar to dither in that the scaling factor F is 
randomized. However, F is randomized for each single parameter j=0, 1, …, D-1 and 
for every new mutant vector i according to 

( )( )5.0)1,0[1, −⋅+⋅= jijitter randFF δ  (16) 

Jitter has not been treated a lot in the literature. Zaharie [8] has used a Gaussian 
randomized form of jitter for the theoretical convergence proof of DE. Storn [26] has 
implemented it in a commercial program for digital filter design, and also Lampinen 
[27] reportedly has used but never published it. For jitter it seems to be very important 
that δ be small, e.g., δ=0.001. In fact δ may even be randomized itself. Figure 9 
visualizes jitter and shows the effect of randomizing all parameter directions. The 
effect is a square cloud of potential points centered at the tip of the mutant vector.  
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Fig. 9. Jitter randomizes the difference vector in all parameter directions 

As stated in [7] jitter is not rotationally invariant, but for small δ this deficiency is 
negligible. The benefit of jitter seems to be that Np can be reduced so that 
convergence is sped up without loosing robustness, but jitter-research is still in its 
infancy. Empirics indicate that jitter works well for non-deceiving objective 
functions. In this context non-deceiving shall mean that if an objective function 
posesses a strong global gradient information then it also leads towards the vicinity of 
the global minimum. For example, Corana’s paraboloid [28] which is riddled with 
small local minima would be non-deceiving.  

In addition it also seems to be beneficial to combine jitter with dither [26] as in 

( )( ) ( )( )5.0)1,0[1)1,0(,,& −⋅+⋅−⋅+= jlhglgiditherjitter randFFrandFF δ , (17) 

but more research is required with regard to jitter to get conclusive results. 
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Mixing perturbation techniques 
Mixing perturbation techniques is another diversity generating technique that has 
received some attention in the past. One example is the Either-Or-Algorithm proposed 
by Kenneth Price and described in [7]. This technique counteracts stagnation by 
choosing at random which perturbation method to use, mutation like in Eq. (11) or 
recombination like in Eq. (12). Figure 10 provides an example for the differences in 
potential target points. 

 

difference vector V

point to be
perturbed

point after
perturbation

F*V

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3
Peaks  function

Pa ramete r x 1

P
a

ra
m

et
er

 x
2

x1,min x1,max

x2,min

x2,max

target  vector

difference vector

base vector

mutant vector

centroid of the two
recombination points
A and B

A

B

potential target
points when using
either mutation
or two-vector
recombination

 

Fig. 10. Potential target points after applying either Eq. (11) or Eq. (12) for N=0 

The advantage of this technique is that both rotational invariance and the basin-to-
basin transfer property (i.e. contour matching) are preserved. Extensive empirical tests 
have shown that this approach can be more robust than classical DE while exhibiting 
a slow-down in convergence. Yet not all varieties of perturbation have been explored 
to a sufficient extent, e.g. multi-vector mutation or recombination, as well as usage of 
dither and jitter in addition to mutation and recombination. So there are quite a 
number of loose ends which need to be investigated further. 
 
Opposition-based points 
Another interesting concept for diversity enhancement has been introduced by 
Rahnamayan, Tizhoosh, and Salama [29] which uses either the mutant vector 
obtained in the usual way or its opposing point, depending on some probabilistic 
descision. The scheme is dubbed ODE for opposition-based DE. The opposing vector 
is defined as 

.,max,min,,, giggopposedgi vxxv −+=  (18) 

where xg,min and xg,max define the momentary extremes for each parameter taken over 
the entire population at a certain generation g. For the initial generation g=0 the 
absolute bounds are taken for these extremes. It is interesting to see that the opposing 
points generation scheme neither fulfills rotational invariance nor has the capability 
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Fig. 11. Illustration of the construction of an opposition-based population point. Note that this 
point generating scheme does neither satisfy rotational invariance nor basin-to-basin transfer. 

for basin to basin transfer. Figure 11 provides an example for opposition based vector 
generation. 

Rahnamayan, Tizhoosh, and Salama [29] report a convergence speed up compared 
to classical DE. The reason for this may stem from two properties of the scheme:  

1. The opposing points are not chosen on an individual basis but an entire 
population is generated with some probability JR (in [29] with JR=0.3) on a 
generational basis. Once this population of opposing points is generated there 
are 2·Np points available, Np from the current population and another Np 
from the population of points which is opposite to the current population. 
Out of these 2·Np points the Np best ones are chosen to form the next gen-
eration of points. In the evolutionary programming community this selection 
scheme is called elitist, or (μ+λ)-selection [7]. As indicated above this elitist 
selection is not used for every generation but only with a probability JR. The 
authors of [29] refer to this scheme as generation jumping. Elitist schemes 
usually speed up convergence because only the best points are retained. On 
the downside the chances for premature convergence are increased. Genera-
tion jumping might offer a good balance between elitist and one-to-one  
survivor selection. 

2. The occasional generation jumping breaks up the vector generation scheme 
of DE just like the probabilistically occurring mutation breaks up the cross-
over scheme for GAs. This may hinder contour matching once in a while,  
but on the other hand it increases diversity, and the (μ+λ)-selection counter-
acts the loss of focus towards the optimum by being more greedy than the  
selection scheme of DE. 

 



 Differential Evolution Research – Trends and Open Questions 15 

Again, the reasons for ODE’s success and potential deficiencies need to be 
investigated further. Also a combination with other diversity enhancing strategies is 
worth investigating. 

The strategies above are not the only diversity enhancing strategies that can be 
found in the literature. For example, in Ali [30] an extra distribution, the so-called β-
distribution is applied to enhance the diversity of DE. Enhancing diversity is certainly 
a very interesting area of DE-research and hopefully more fruitful ideas in that 
domain will appear. 

2.4   Controlling the Vector Population 

One-array vs. Two-array 
Classic DE uses two populations in order to allow computation on parallel computers 
or processors, something which is becoming increasingly important especially since 
the advent of multicore processors [80]. But in fact the very first algorithm that 
Kenneth Price came up with used just one single vector population array. This 
simplified version has been described in [7] in the light of saving memory on limited 
resource devices. In Feoktistov [31] this scheme is investigated further and extended 
to transversal DE where an individual may undergo several mutation/evaluation steps 
before it is compared to the target vector. Unfortunately in [31] the consequences, 
benefits or drawbacks are not regarded for a sufficiently large test set, so more 
research is needed to evaluate this idea. Transversal DE bears some similarity with 
hybrid DE versions that employ gradient algorithms or other greedy techniques for 
local search (see chapter 4.1.) in that the trial vector undergoes several improvement 
steps before it is compared to the target vector.  
 
Selection Methods 
Selection methods have been extensively discussed in [7]. The main methods of 
interest are: 

1. Elitist (μ+λ)-selection where the best μ individuals out of μ+λ individuals 
are selected. For DE usually μ=λ=Np is used. 

2. Tournament selection with one-to-one survivor selection as in classic DE. 
 

There have not been too many investigations on alternatives to DE’s one-to-one 
selection, but it can be said that elitist selection is accelerating convergence while 
making the optimization more prone to premature convergence. In addition, elitist 
selection makes parallel computation more difficult. An in-depth numerical comparison 
of selection methods using an extensive testbed, however, is still lacking. 

3   Problem Domain Specific Research 

So far we have regarded DE as an optimization method to minimize objective 
functions without specifying the makeup of these objective functions. The tacit 
assumption when looking at “basic research” of evolutionary optimization is 
generally that objective functions to be minimized have a single global minimum, are  
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potentially multimodal and nonlinear, and have a moderate number of parameters. 
Real-life problems, however, are often more complicated than that. Optimizations 
may include bounds constraints, inequality constraints, equality constraints, or they 
may even consist of constraints only without any objective to be optimized. The latter 
problem is well known as constraint satisfaction problem. If only equality constraints 
prevail and no objective is present we are encountering a system of equations. So far 
we have concentrated on parameters stemming from the continuous space, i.e. the 
floating point domain. Yet problems may also include discrete parameters or consist 
of discrete parameters only. If there are only discrete parameters and these parameters 
follow no metric, which means that there is no smaller, equal, or greater relationship, 
then we are looking at a combinatorial problem in the strict sense [7]. There are even 
more dimensions to optimization problems which the spider diagram in Figure 12 
attempts to visualize. Many of these problem domains have been treated in [7] but 
still a lot of open questions remain. An entire chapter can be written easily for each 
case depicted in Figure 12 so only a few problem domain types will be sketched in the 
following in order to illustrate the research potential.  

Parameter
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Time-Variance

low high
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one

many
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Parameter
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strong

objective
function type
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quadratic

highly nonlinear
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Fig. 12. Spider diagram sketching the various problem domain characteristics 

3.1   Objective Functions with Single Objective 

Figure 13 shows a classification of objective functions with a single objective regarding 
three problem domain dimensions, time variance, constraints, and parameter granularity. 
When available in the literature real-world example applications are provided. Figure 13 
illustrates that at present DE is mostly used for time-invariant problems. 
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3.2   Combinatorial Problems 

Combinatorial problems in the strict sense are problems where the parameters are 
discrete, the number of discrete states is finite, and the parameters are not associated 
with a metric, i.e. one cannot tell which of two different values for the same parameter 
is greater than the other unless an artificial metric is applied. For example the letters A 
and F of the alphabet may have an order in the alphabet, but one cannot truly say that A 
is greater than F or the other way round. Many of the well-known combinatorial 
problems are also highly constrained like the traveling salesman problem (TSP) which 
we will look at for illustration purposes later on. Even though DE has a good reputation 
of solving discrete or mixed-integer problems [7, 26, 32, 44, 50, 51, 52] there is no good 
evidence so far that DE is applicable to strict-sense combinatorial problems, at least if 
they are heavily constrained. In [7] the topic of combinatorial problems has been 
discussed, and the success of DE-based solutions to combinatorial problems was 
attributed to well-chosen repair mechanisms in the algorithm rather than DE-mutation. 
However, the applicability of DE to strict-sense combinatorial problems is neither 
proven nor disproven and depends also on finding a discrete operator that corresponds 
to the difference vector in the continuous domain. In addition it is required that the 
combination of a base vector and a difference vector (or recombination vector) yields a 
new valid vector. The validity of the newly generated vector is a big problem for most 
of the classical combinatorial problems like the TSP. 

 
The traveling salesman problem (TSP) 
Let us regard the traveling salesman problem (TSP) as an example to see how DE 
may be used to solve it and what the difficulties are. The TSP is a universal strict-
sense combinatorial problem, and many other strict-sense combinatorial problems can 
be transformed into a TSP formulation [53]. Hence many findings about DE’s 
performance on the TSP can be extrapolated to other strict-sense combinatorial 
problems.  

Let there be M cities cm, m=1,2, ..., M. Each city cm has a distance dm,n = dn,m to 
some other city cn, n not equal to m, associated with it. The task in the TSP is to find a 
graph where all cities are visited and where the total distance 

differentmutuallyandmnwithdD
M

m
nm ≠=∑

=1
,  (19) 

is minimized. Figure 14 shows an example of a 5-city tour.  

An approach using distances as parameters 
In order to apply DE we first have to find an appropriate problem formulation. A 
natural approach would be to set up the problem vector x which contains all M 
distances dm,n as parameters, because the arithmetic difference of distances has a 
meaning and hence is suited for DE. For each city ci there are M-1 distances dm,n to 
the other cities. For a finite set of parameters it is helpful to have these parameters in 
ascending order. So for our five city TSP example the list of distances would be as 
shown in Table 1. If we look at the first row as well as Figure 14, we see that city c4 is 
closest to city c1. The next closest city is c2, then c3, and then c5. The other rows can 
be checked in a similar way. Since we know that DE prefers to have continuous 
parameters we take a table-based approach for non-uniform quantization. In this case 
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Fig. 14. Example for a city tour in a TSP for five cities [7] 

DE's parameters are not the distances themselves but the appropriate array indices.  In 
order to be able to use a continuous parameter vector x for DE we choose  

( )T
54321 x,x,x,x,x=x  (20) 

with xm representing a reference to the distance between city cm and its successor 
along the travel path. The values xm are continuous and from the range [-0.5,3.5], so 
the index of the distances is computed via 

( )5.0+= mm xfloorindex  (21) 

Table 1. Distance table containing the distances from each city cm to each other city in ascend-
ing order 

                   index m
city cm

0 1 2 3 

c1 d1,4 d1,2 d1,3 d1,5

c2 d2,3 d2,4 d2,1 d2,5

c3 d3,2 d3,4 d3,5 d3,1

c4 d4,2 d4,3 d4,1 d4,5

c5 d5,4 d5,3 d5,2 d5,1  

According to Eq. (21) abd the range information for xm the indexm can assume the 
values 0, 1, 2, or 3. 

While trying to construct a valid path we easily see the constraints. For the first 
parameter x1, which represents the distance associated with city c1, we may choose a 
value from all the available table entries in Table 1, e.g. d1,3. Since each city may be 
visited only once we must go to city c3 in the next step because in the first step a path 
from city 1 to city 3 was selected. In order to prevent traveling back to city 1 the distance  
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Table 2. If d1,3 is selected for city c1 then d3,1 may not be used for city c3. This is indicated by 
greyshading. 

         index n 

city cm  
0 1 2 3 

c1 d1,4 d1,2 d1,3 d1,5 

c2 d2,3 d2,4 d2,1 d2,5 
c3 d3,2 d3,4 d3,5 d3,1 
c4 d4,2 d4,3 d4,1 d4,5 
c5 d5,4 d5,3 d5,2 d5,1 

Table 3. If d3,4 is chosen the next city to work on is c4. Now only two distances are free to 
choose from. 

                   index n
city cm

0 1 2 3 

c1
d1,4 d1,2 d1,3

d1,5

c2 d2,3 d2,4 d2,1 d2,5

c3
d3,2 d3,4

d3,5 d3,1

c4 d4,2 d4,3 d4,1 d4,5

c5 d5,4 d5,3 d5,2 d5,1  

d3,1 in the row for c3 is excluded from the allowed list as indicated in Table 2 by 
greyshading.  

So our search range has been restricted. Let’s assume that we will choose d3,4 in the 
next step, then our next city to consider will be c4 and the associated parameter is x4. 

For x4 the choice of available distances is even more restricted, as indicated in 
Table 3. So all the cities which have already been considered are excluded from the 
further search. The constraints get tighter and tighter until just one city is left. The last 
city must be connected to the first one in order to complete the tour. 

Now the problem DE faces here becomes evident: Not only is the choice of 
allowable indexes for each city restricted, but also is this restriction dependent on 
which city we start the tour with and in which direction we go first. There is another 
fundamental problem with this approach: DE in general relies on the fact that a small 
difference vector means that the two parameter vectors are close together. This means 
that two identical solutions should yield the vector difference zero. However, we can 
immediately verify that the vectors xa = ( d1,2  d2,4  d4,3  d3,5  d5,1 ) and xb = ( d1,5  d5,3  
d3,4  d4,2  d2,1 ) describe exactly the same tour but do not yield the vector difference 
zero. Hence one of DE’s biggest assets, the self-adaptivity of the vector difference 
distribution is severely disturbed because a converged population still might exhibit 
large difference vectors. 

Additional problems arise due to the heavy constraints inherent in the TSP. For 
example, even if we have a population of valid vectors, the weighted difference of 
two vectors added to a third one rarely  yields a valid tour. If we want to repair this 
vector we can do this in many ways so that finally not much of DE's working 
principles are left. In the above case the constraints are dependent on the selection of 
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the city, so the problem is not invariant. There have been attempts to treat such kinds 
of problems by not caring about valid solutions at first and simply applying validity as 
a hard constraint on the vectors [50]. The problem with this approach, however, is that 
most of the generated vectors are invalid and hence the optimization is very prone to 
stagnation. There are a number other approaches to optimize the TSP with DE [7], but 
none of them is really convincing. So successful optimization of heavily constrained 
strict-sense combinatorial problems using DE still remains to be fairly uncharted 
territory and leaves substantial room for improvement. 

3.3   Design Centering 

The problem of design centering using DE [37] has been largely left untouched even 
though this problem is of great importance to manufacturing. The idea is very simple: 
the design of any technical system usually has to meet certain specifications. Due to 
imprecisions in the manufacturing process the actual properties of the system often 
deviate from the nominal ones. The goal of design centering is to estimate the 
manufacturing imprecisions and to consider them at design time so that the 
probability that the eventual design violates any of the specifications is minimized. 

In mathematical terms the design centering problem can be described as 

maximum.)(PDF
ROA

00 =∫ xx d  (22) 

which means that the D-dimensional parameter vector x0 should be located such in the 
so-called region of acceptability (ROA) that the deviations of the parameters from 
their nominal values, which are described by a D-dimensional probability density 
function, mostly fall into the ROA rather than outside. The ROA is the permitted  
region in the parameter space within which any actual parameter vector may lie in 
order to fulfill the design specifications. 
As an example Figure 15 shows a nominal magnitude function of a switched-
capacitor lowpass filter and also its real-world counterpart after manufacturing. The 
manufacturing process introduces so-called parasitic capacitors which make the 
magnitude function violate the tolerance scheme. Figure 16 on the other hand shows  
the resulting magnitude function after manufacturing if the nominal design has 
undergone a design centering optimization, i.e. the parasitics are included into the 
design and the nominal parameter vector is placed within the design center of  
the ROA. Because the magnitude function lies well between the boundaries of the 
tolerance scheme it is intuitive that there is some headroom for the parameter values.  

In [7] the problem of design centering and its solution via DE has been treated to 
some extent, and it was suggested that, provided that all population vectors are 
equally distributed within the ROA, a rough estimate of the design center is the point 
that maximizes the center index: 

jiij

Np

i
ijj dNpjdc xx −==−=∑

=
,,...,2,1,)exp(

1

. (23) 
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Fig. 15. Lowpass transfer function by standard filter design (left side) and after inclusion of 
parasitics (right side) [37] 
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Fig. 16. Transfer function with parasitics but after design centering [37] 

The center cj index increases with the number of vectors that are close to vector xj. 
In other words, if a vector has a lot of neighbors then it is probably located fairly 
close to the design center. For vectors close to the rim of the ROA there is simply not 
as much space to accommodate many neighbors. Although this claim may appear 
intuitive, it has not been verified for a large enough testbed, and in fact the usage of 
DE for design centering problems still offers a lot of research opportunities.  



 Differential Evolution Research – Trends and Open Questions 23 

3.4   Time-Variant Objective Functions 

All population based optimization routines are mainly geared towards “offline 
optimization” or, in other words, optimization of time-independent objective 
functions.  Especially when it comes to realtime applications where the minimum-
finding process has to occur in a matter of seconds or even milliseconds, like in echo 
cancellation [41] or routing [42], minimization approaches have to be used that are 
more greedy and faster converging. Often the minimization problem is simplified to 
be a quadratic one, so fast gradient methods can be used [41]. Other applications may 
not necessarily require the global optimum because it will be gone anyway in a matter 
of seconds [42]. Nevertheless there are problem domains where population based 
optimizers may be applied. These domains comprise noisy and/or slowly varying 
multimodal objective functions. 
 
Noisy objective functions 
Noisy objective functions frequently occur in practice and are most often due to 
measurement imprecisions. As an example we may use the parameter identification 
problem for an induction motor [40]. First certain characteristic voltages of the motor 
are measured over time and/or over frequency. Then the parameters of a mathematical 
model of the motor are to be determined such that the absolute difference between the 
voltages generated by the model and the voltages from the measurements is 
minimized. The objective function to be minimized is noisy because the voltage 
measurements are noisy. 

It has been reported by Krink, Filipic, Fogel, and Thomsen [54], that classic DE 
exhibits convergence problems on some noisy objective functions, at least when 
resampling is used as a noise-mitigating strategy. The idea of resampling is simply to 
evaluate the same candidate solution m times and to estimate the ’true’ fitness value 
by the mean of the samples [54]. In [54] the question was raised whether thresholding 
rather than resampling may be a solution. The idea in thresholding [55] is to use a 
new selection operator for ES, such that a new candidate solution can only replace an 
existing one if the fitness difference is larger than a threshold τ. A disadvantage, 
however, is that with τ a new control variable enters the optimization scheme. A hint 
to the potential solution was already given in [54] when it was noticed that a specific 
Evolutionary Algorithm, which was compared to DE and showed better performance, 
used a Gaussian mutation operator. Eventually Chakraborty [24] showed that indeed 
DE is superior to this particular Evolutionary Algorithm if dither is added to classical 
DE. Rahnamayan, Tizhoosh, and Salama, [56] provided additional results showing 
the DE’s performance on noisy objective functions can be improved if the evaluation 
of opposition-based points is added to classic DE resulting in what the authors call 
ODE. Both methods, dither and ODE, are diversity enhancement methods, so the 
question arises if there are more diversity enhancement methods which are beneficial 
for noisy objective function minimization.  

 
Slowly time-variant objective functions 
The application of DE to slowly varying objective functions is a very young area of 
research that has been touched briefly in [7] and which has been more intensely 
investigated by Mendes and Mohais [57]. The investigation in [57] revolves around 
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the moving peaks benchmark (MPB) and suggests a DE-variant called DynDE 
(Dynamic DE) to approach this. The main ingredients in DynDE are: 

1. Usage of several populations in parallel 
2. Usage of uniform dither for F ∈ [0,1] as well as Cr ∈ [0,1] 
3. To maintain diversity of the populations two approaches may be chosen: 

a. Reinitialization of a population if the best individual of a population 
gets too close to the best individual of another population. The 
population with the absolute best individual is kept while the other 
one is reinitialized. This way the various populations are kept from 
merging. 

b. Randomization of one or more population vectors by adding a ran-
dom deviation to the vector components. Various schemes of ran-
domization are suggested. 

The authors conclude that DynDE yields reasonable results, but admit that more 
research is required to improve this particular DE-variant.  

The added dimension of time to the optimization problem requires to deal with 
many objective function instances at different points in time which makes research 
very expensive in terms of computational effort. This may be the reason why this 
problem domain has not been covered to a greater extent so far.  

Since there is only little available literature there remains a lot of room to further 
explore the very interesting problem area of slowly varying objective functions. 

4   Application Specific Research and Consequences for DE 

It has been mentioned before that specific applications may bear some properties that 
make it worthwhile revisiting or extending DE so that the optimization matches the 
problem in the best possible way. Generally should any knowledge about the problem 
be incorporated into the optimization method and/or the objective function in order to 
make it more efficient. In the following we will look at the problem of digital filter 
design to illuminate this. 

4.1   An Example: Digital Filter Design 

Digital Filter design is a field of signal processing where specialized numerical 
methods govern the field [61]. To perform a filter design in practice is generally a 
matter of seconds, once the correct specifications are available. In some cases, 
though, there may be applications that require unconventional designs which cannot 
be performed using the standard methods [7, 26]. This is where DE can be of help, but 
it must be kept in mind that the filter designer is used to short design times which is 
why DE’s convergence should be fast. It appears that the objective functions involved 
in digital filter design are non-deceiving, albeit multimodal. To illustrate this claim 
we look at the design task where a magnitude function A(Ω) has to fit into a tolerance 
scheme. An example for such a scheme is provided in Figure 17 which represents a 
so-called bandpass filter because only signal-portions with the normalized frequencies  
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Ω from the passband remain more or less unattenuated while the other portions get 
suppressed to a large degree. The equations needed to define A(Ω) are: 
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with 

1),2sin()2cos(2 −=Ω⋅+Ω== Ω jjez j πππ . (25) 

From Eq. (25) it is evident that for Ω=0 there must be z=1 and for Ω=0.5 there must 
be z=. Finally we define 
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(26) 

From Eq. (25) and Figure 17 it becomes clear that a range of Ω ∈ [0, 0.5] transforms 
itself into the upper semi-circle of the z-plane. It is typical for a digital filter that the 
poles zp(m) are located in the passband while the zeros z0(m) are located in the 
stopband. So already by defining the tolerance scheme the approximate locations of 
poles and zeros are known. In [26] the fact is utilized that if the parameters of the 
objective function are not the coefficients a(n) and b(m) but the zeros z0(n) and the 
poles zp(m) then applying jitter together with dither in the DE-variant DE/best/1/bin 
works extremely well. Reasonable values for the control variables are Cr=0.95 and 
Np = 2·D, …, 5·D. The mutation method used in [26] is described by Eq. (27) 
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The superscripts k on the random number randj(k)[0,1), k=1,2, in Eq. (27) shall 
denote that the numbers for k=1 and for k=2 are generated independently. Empirical 
evidence has shown that the positive effect of dither is small while jitter together with 
low values of Np is considerably speeding up convergence. These results come 
somewhat unexpected compared to the findings reported in [7] that jitter combined 
with DE/best/1/bin does not always perform well. The success of the described DE 
variant for this specific application is probably attributable to the benign nature of the 
objective functions, but more evidence needs to be gathered to corroborate this 
assumption.  

What can be learned from this example is the advice to not consider the findings about 
DE-variants obtained from a large testbed as being universally applicable. This is also in 
line with the NFL [10]. For a specific application it may be worthwhile to revisit certain 
variants of DE depending on the properties of the objective functions at hand.  

There are other potential possibilities to accelerate the convergence of DE-based 
digital filter design, one of which is using hybrid methods. In [62, 63, 64, 65] hybrid 
methods have already been used successfully. The basic idea usually is to refine one 
or more points from the DE-population by applying a fast-converging local search 
method like the Nelder and Mead optimization [20], dynamic hill climbing [66], or 
gradient type of algorithms [60, 67]. This refinement may take place for every  
DE-generation or after a certain amount of DE-generations. Gradient algorithms, 
however, are probably not appropriate since A(Ω) is not always differentiable. 

5   More Topics and Outlook 

The topics mentioned in the sections above are only some of many. Quite a few 
important topics have just been touched upon or not been discussed at all in order not 
to extend the chapter beyond a reasonable size. A few more important DE research 
topics are: 

• DE for multiple objectives and multiple constraints [68, 69, 70, 71, 72, 73] 
• DE for multiple global minima [58, 59, 60] 
• Stopping criteria [74] 
• Hybrid versions [62, 63, 64, 65, 66] 
• DE for various computational environments [7, 31, 75, 76, 77, 78, 79] 

The remaining chapters of this book will shed more light on many interesting 
topics of DE-research but are certainly unable to present a solution to all the questions 
raised in this chapter. So optimization with the help of DE remains a challenging and 
interesting research area for many years to come.  
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