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ABSTRACT

Identifying differentially expressed (DE) genes from

RNA sequencing (RNAseq) studies is among the

most common analyses in genomics. However,

RNAseq DE analysis presents several statistical and

computational challenges, including over-dispersed

read counts and, in some settings, sample non-

independence. Previous count-based methods rely

on simple hierarchical Poisson models (e.g. nega-

tive binomial) to model independent over-dispersion,

but do not account for sample non-independence

due to relatedness, population structure and/or hid-

den confounders. Here, we present a Poisson mixed

model with two random effects terms that account for

both independent over-dispersion and sample non-

independence. We also develop a scalable sampling-

based inference algorithm using a latent variable rep-

resentation of the Poisson distribution. With simula-

tions, we show that our method properly controls

for type I error and is generally more powerful than

other widely used approaches, except in small sam-

ples (n <15) with other unfavorable properties (e.g.

small effect sizes). We also apply our method to three

real datasets that contain related individuals, popu-

lation stratification or hidden confounders. Our re-

sults show that our method increases power in all

three data compared to other approaches, though

the power gain is smallest in the smallest sample (n
= 6). Our method is implemented in MACAU, freely

available at www.xzlab.org/software.html.

INTRODUCTION

RNA sequencing (RNAseq) has emerged as a powerful tool
for transcriptome analysis, thanks to its many advantages
over previous microarray techniques (1–3). Compared with
microarrays, RNAseq has increased dynamic range, does
not rely on a priori-chosen probes, and can thus identify
previously unknown transcripts and isoforms. It also yields
allelic-specific expression estimates and genotype informa-
tion inside expressed transcripts as a useful by-product (4–
7). Because of these desirable features, RNAseq has been
widely applied in many areas of genomics and is currently
the gold standard method for genome-wide gene expression
profiling.
One of the most common analyses of RNAseq data in-

volves identification of differentially expressed (DE) genes.
Identifying DE genes that are influenced by predictors of
interest––such as disease status, risk factors, environmental
covariates or genotype––is an important first step toward
understanding the molecular basis of disease susceptibility
as well as the genetic and environmental basis of gene ex-
pression variation. Progress toward this goal requires sta-
tistical methods that can handle the complexities of the in-
creasingly large and structurally complex RNAseq datasets
that are now being collected from population and fam-
ily studies (8,9). Indeed, even in classical treatment-control
comparisons, the importance of larger sample sizes formax-
imizing power and reproducibility is increasingly well ap-
preciated (10,11). However, identifying DE genes from such
studies presents several key statistical and computational
challenges, including accounting for ambiguously mapped
reads (12), modeling uneven distribution of reads inside a
transcript (13) and inferring transcript isoforms (14).
A fundamental challenge shared by all DE analyses in

RNAseq, though, is accounting for the count nature of
the data (3,15,16). In most RNAseq studies, the number
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of reads mapped to a given gene or isoform (following ap-
propriate data processing and normalization) is often used
as a simple and intuitive estimate of its expression level
(13,14,17). As a result, RNAseq data display an appre-
ciable dependence between the mean and variance of esti-
mated gene expression levels: highly expressed genes tend
to have high read counts and subsequently high between-
sample variance, and vice versa (15,18). To account for the
count nature of the data and the resulting mean-variance
dependence,most statisticalmethods forDE analysismodel
RNAseq data using discrete distributions. For example,
early studies showed that gene expression variation across
technical replicates can be accurately described by a Poisson
distribution (19–21). More recent methods also take into
account over-dispersion across biological replicates (22,23)
by replacing Poisson models with negative binomial mod-
els (15,16,24–28) or other related approaches (18,29–32).
While non-count based methods are also commonly used
(primarily relying on transformation of the count data to
more flexible, continuous distributions (33,34)), recent com-
parisons have highlighted the benefits of modeling RNAseq
data using the original counts and accounting for the result-
ing mean-variance dependence (11,35–37), consistent with
observations from many count data analyses in other sta-
tistical settings (38). Indeed, accurate modeling of mean-
variance dependence is one of the keys to enable power-
ful DE analysis with RNAseq, especially in the presence of
large sequencing depth variation across samples (25,33,39).
A second important feature of many RNAseq datasets,

which has been largely overlooked in DE analysis thus far,
is that samples often are not independent. Sample non-
independence can result from individual relatedness, popu-
lation stratification or hidden confounding factors. For ex-
ample, it is well known that gene expression levels are her-
itable. In humans, the narrow-sense heritability of gene ex-
pression levels averages from 15–34% in peripheral blood
(40–44) and is about 23% in adipose tissue (40), with amaxi-
mumheritability in both tissues as high as 90% (40,41). Sim-
ilarly, in baboons, gene expression levels are about 28% her-
itable in the peripheral blood (7). Some of these effects are
attributable to nearby, putatively cis-acting genetic variants:
indeed, recent studies have shown that the expression lev-
els of almost all genes are influenced by cis-eQTLs and/or
display allelic specific expression (3,7,45–47). However, the
majority of heritability is often explained by distal genetic
variants (i.e. trans-QTLs, which account for 63–84% of her-
itability in humans (40) and baboons (7)). Because gene ex-
pression levels are heritable, they will covary with kinship or
population structure. Besides kinship or population struc-
ture, hidden confounding factors, commonly encountered
in sequencing studies (48–51), can also induce similarity in
gene expression levels across many genes even when individ-
uals are unrelated (52–56). Failure to account for this gene
expression covariance due to sample non-independence
could lead to spurious associations or reduced power to de-
tect true DE effects. This phenomenon has been extensively
documented in genome-wide association studies (9,57–58)
and more recently, in bisulfite sequencing studies (59), but
is less explored in RNAseq studies. In particular, none of
the currently available count-based methods for identifying
DE genes in RNAseq can appropriately control for sam-

ple non-independence. Consequently, even though count-
based methods have been shown to be more powerful, re-
cent RNAseq studies have turned to linear mixed models
(LMMs), which are specifically designed for quantitative
traits, to deal with the confounding effects of kinship, pop-
ulation structure or hidden confounders (7,41,60).
Here, we present a Poisson mixed model (PMM) that

can explicitly model both over-dispersed count data and
sample non-independence in RNAseq data for effective DE
analysis. To make our model scalable to large datasets, we
also develop an accompanying efficient inference algorithm
based on an auxiliary variable representation of the Poisson
model (61–63) and recent advances in mixed model meth-
ods (9,58,64). We refer to the combination of the statistical
method and the computational algorithm developed here
as MACAU (Mixed model Association for Count data via
dataAUgmentation), which effectively extends our previous
method of the same name on the simpler binomial model
(59) to the more difficult Poisson model. MACAU works
directly on RNAseq count data and introduces two random
effects terms to both control for sample non-independence
and account for additional independent over-dispersion. As
a result, MACAU properly controls for type I error in the
presence of sample non-independence and, in a variety of
settings, is more powerful for identifying DE genes than
other commonly used methods. We illustrate the benefits of
MACAU with extensive simulations and real data applica-
tions to three RNAseq studies.

MATERIALS AND METHODS

Methods for comparison

We compared the performance of seven different methods
in the main text: (i) our PMM implemented in theMACAU
software package (59); (ii) the linear model implemented
in the lm function in R; (iii) the LMM implemented in
the GEMMA software package (9,58,65); (iv) the Poisson
model implemented in the glm function in R (66); (v) the
negative binomial model implemented in the glm.nb func-
tion in R; (vi) edgeR implemented in the edgeR package in
R (25); (vii) DESeq2 implemented in the DESeq2 package
in R (24). All methods were used with default settings. The
performance of each method in simulations was evaluated
using the area under the curve (AUC) function implemented
in the pROC package in R (67), a widely used benchmark
for RNAseq method comparisons (68).
Both the linear model and the LMM require quantitative

phenotypes. Here, we considered six different transforma-
tions of count data to quantitative values, taking advan-
tage of several methods proposed to normalize RNAseq
data (e.g. (12–14,17,22,33,69)): (i) quantile normalization
(TRCQ), where we first divided the number of reads
mapped to a given gene by the total number of read
counts for each individual, and then for each gene, quan-
tile normalized the resulting proportions across individu-
als to a standard normal distribution (7); (ii) total read
count (TRC) normalization, where we divided the number
of reads mapped to a given gene by the total number of read
counts for each individual (i.e. CPM, counts per million;
without further transformation to a standard normalwithin
genes: (25)); (iii) upper quantile (UQ) normalization, where
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we divided the number of reads mapped to a given gene
by the UQ (75th percentile) of all genes for each individ-
ual (70); (iv) relative log expression normalization (15); (v)
the trimmed mean of M-values (TMM) method (39) where
we divided the number of reads mapped to a given gene
by the normalization factor output from TMM; and (vi)
VOOM normalization (33). Simulation results presented in
a supplementary figure (see ‘Results’ section) showed that
TRCQ,VOOMandTRCworked better than the other three
methods, with TRCQ showing a small advantage. There-
fore, we report results using TRCQ throughout the text.

Simulations

To make our simulations as realistic as possible, we simu-
lated the gene expression count data based on parameters
inferred from a real baboon dataset that contains 63 sam-
ples (see the next section for a detailed description of the
data). We varied the sample size (n) in the simulations (n
= 6, 10, 14, 63, 100, 200, 500, 800 or 1000). For n = 63,
we used the baboon relatedness matrix K (7). For sample
simulations with n > 63, we constructed a new relatedness
matrix K by filling in its off-diagonal elements with ran-
domly drawn off-diagonal elements from the baboon relat-
edness matrix following (59). For sample simulations with
n < 63, we constructed a new relatedness matrix K by ran-
domly sub-sampling individuals from the baboon related-
ness matrix. In cases where the resulting K was not positive
definite, we used the nearPD function in R to find the clos-
est positive definite matrix as the final K. In most cases, we
simulated the TRC Ni for each individual from a discrete
uniform distribution with a minimum ( = 1 770 083) and
a maximum ( = 9 675 989) TRC (i.e. summation of read
counts across all genes) equal to the minimum and maxi-
mum TRCs from the baboon data. We scaled the TRCs to
ensure that the coefficient of variationwas small (CV= 0.3),
moderate (CV = 0.6) or high (CV = 0.9) across individu-
als (i.e. Nnew = N̄ + (N− N̄) CV sd(N) /N̄) and then dis-
cretized them. In the special case where CV = 0.3 and n =
63, we directly used the observed TRCs per individual i (Ni )
from the baboon data (which has a CV = 0.33).

We then repeatedly simulated a continuous predictor
variable x from a standard normal distribution (without re-
gard to the pedigree structure).We estimated the heritability
of the continuous predictor using GEMMA, and retained x
if the heritability (h2x) estimate (with ± 0.01 tolerance) was
0, 0.4 or 0.8, representing no, moderate and highly heritable
predictors. Using this procedure, ∼30 percent of x values
generated were retained, with different retention percent-
ages for different heritability values.
Based on the simulated sample size, TRCs and contin-

uous predictor variable, we simulated gene expression val-
ues using the following procedure. For the expression of
each gene in turn, we simulated the genetic random effects
g from a multivariate normal distribution with covariance
K. We simulated the environmental random effects e based
on independent normal distributions. We scaled the two
sets of random effects to ensure a fixed value of heritabil-
ity (h2 =

V(g)

V(g)+V(e)
0 or 0.3 or 0.6) and a fixed value of over-

dispersion variance ( σ 2 = V(g) + V (e) = 0.1, 0.25 or 0.4,
close to the lower, median and UQs of the over-dispersion

variance inferred from the baboon data, respectively), where
the function V(•) denotes the sample variance.We then gen-
erated the effect size β of the predictor variable on gene ex-
pression. The effect size was either 0 (for non-DE genes)
or generated to explain a certain percentage of variance in

log(λ) (i.e. PVE =
V(Xβ)

V(Xβ)+σ 2 ; for DE genes). Proportion of

variance explained (PVE) values were 15, 20, 25, 30 or 35%
to represent different effect sizes. The predictor effects Xβ,
genetic effects g, environmental effects e, and an intercept

(= log( 100
N̄
) to ensure that the expected simulated count is

100) were then summed together to yield the latent vari-
able log(λ) = µ + Xβ + g + e. Note that h2 does not in-
clude the contribution of Xβ, which inmany cases represent
non-genetic effects. Finally, the read counts were simulated
based on a Poisson distribution with rate determined by the
TRCs and the latent variable λ, or yi ∼ Poi (Niλi ) for the
i th individual.

With the above procedure, we first simulated data for n=
63, CV = 0.3, h2x = 0, PVE = 0.25, h2 = 0.3 and σ 2 = 0.25.
We then varied one parameter at a time to generate different
scenarios for comparison. In each scenario, conditional on
the sample size, TRCs and continuous predictor variable,
we performed 10 simulation replicates, where ‘replication’
is at the level described in the paragraph above. Each repli-
cate consisted of 10 000 genes. For examining type I error
control, all 10 000 genes were non-DE. For the power com-
parison, 1000 genes were DE while 9000 were non-DE.

RNAseq datasets

We considered three published RNAseq datasets in this
study, which include small (n< 15), medium (15 ≤ n≤ 100)
and large (n> 100) sample sizes (based on current RNAseq
sample sizes in the literature).
The first RNAseq dataset was collected from blood sam-

ples of yellow baboons (7) from the Amboseli ecosystem of
southern Kenya as part of the Amboseli Baboon Research
Project (ABRP) (71). The data are publicly available on
GEO with accession number GSE63788. Read counts were
measured on 63 baboons and 12 018 genes after stringent
quality control as in (7). As in (7), we computed pairwise
relatedness values from previously collected microsatellite
data (72,73) using the software COANCESTRY (74). The
data contains related individuals: 16 pairs of individuals
have a kinship coefficient exceeding 1/8 and 48 pairs exceed
1/16.We obtained sex information for each individual from
GEO. Sex differences in health and survival are major top-
ics of interest in medicine, epidemiology and evolutionary
biology (72,75). Therefore, we used this dataset to identify
sex-related gene expression variation. In the analysis, we in-
cluded the top five expression principal components (PCs)
as covariates to control for potential batch effects following
the original study (7).

The second RNAseq dataset was collected from skeletal
muscle samples of Finnish individuals (60) as part of the
Finland-United States Investigation of NIDDM Genetics
(FUSION) project (76,77). The data are publicly available
in dbGaPwith accession code phs001068.v1.p1. Among the
271 individuals in the original study, we selected 267 indi-
viduals who have both genotypes and gene expression mea-
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surements. Read counts were obtained on these 267 indi-
viduals and 21 753 genes following the same stringent qual-
ity control as in the original FUSION RNAseq study. For
genotypes, we excluded SNPs withminor allele frequency<

0.05 and Hardy-Weinberg equilibrium P-value < 10−6. We
used the remaining 5 696 681 SNPs to compute the relat-
edness matrix using GEMMA. The data contains remotely
related individuals (three pairs of individuals have a kinship
coefficient exceeding 1/32 and 6 pairs exceed 1/64) and is
stratified by the municipality from which samples were col-
lected (see ‘Results’ section). Two predictors from the data
were available to us: the oral glucose tolerance test (OGTT)
which classifies n = 162 individuals as either type II dia-
betes (T2D) patient (n = 66) or normal glucose tolerance
(NGT; i.e. control, n = 96); and a T2D-related quantitative
trait––fasting glucose levels (GL)––measured on all n= 267
individuals. We used these data to identify genes whose ex-
pression level is associated with either T2D or GL. In the
analysis, we included age, sex and batch labels as covariates
following the original study (60).

The third RNAseq dataset was collected from lym-
phoblastoid cell lines (LCLs) derived from 69 unrelated
Nigerian individuals (YRI) (3). The data are publicly avail-
able on GEO with accession number GSE19480. Follow-
ing the original study (3), we aligned reads to the human
reference genome (version hg19) using Burrows-Wheeler
Aligner (BWA) (78). We counted the number of reads
mapped to each gene on either autosomes or the X chro-
mosome using Ensembl gene annotation information ob-
tained from the UCSC genome browser. We then filtered
out lowly expressed genes with zero counts in over 90% of
individuals. In total, we obtained gene expression measure-
ments on 13 319 genes. Sex is the only phenotype available
in the data and we used sex as the predictor variable to
identify sex-associated genes. To demonstrate the efficacy
of MACAU in small samples, we randomly subsampled in-
dividuals from the data to create small datasets with either
n = 6 (3 males and 3 females) or n = 10 (5 males and 5 fe-
males) or n = 14 individuals (7 males and 7 females). For
each sample size n, we performed 20 replicates of subsam-
pling and we evaluated method performance by averaging
across these replicates. In each replicate, following previous
studies (52–56), we used the gene expression covariance ma-
trix as K (i.e.K = XXT/p, where X is the normalized gene
expression matrix and p is the number of genes) and ap-
plied MACAU to identify sex-associated genes. Note that
the gene expression covariance matrix K contains informa-
tion on sample non-independence caused by hidden con-
founding factors (52–56). By incorporating K, MACAU
can be used to control for hidden confounding factors that
are commonly observed in sequencing datasets (48–51).
For each of these RNAseq datasets and each trait, we

used a constrained permutation procedure to estimate the
empirical false discovery rate (FDR) of a given analytical
method. In the constrained permutation procedure, we per-
muted the predictor across individuals, estimated the heri-
tability of the permuted predictor and retained the permu-
tation only if the permuted predictor had a heritability esti-
mate (h2x) similar to the original predictor with ±0.01 toler-

ance (for the original predictors: h2x = 0.0002 for sex in the

baboon data; h2x = 0.0121 for T2D and h2x = 0.4023 for GL

in the FUSION data; h2x are all close to zero with small vari-
ations depending on the sub-sample size in the YRI data).
We then analyzed all genes using the permuted predictor.
We repeated the constrained permutation procedure and
analysis 10 times, and combined the P-values from these 10
constrained permutations. We used this set of P-values as a
null distribution from which to estimate the empirical FDR
for any given P-value threshold (59). This constrained pro-
cedure thus differs from the usual unconstrained permuta-
tion procedure (every permutation retained) (79) in that it
constrains the permuted predictor to have the same h2x as
the original predictor. We chose to use the constrained per-
mutation procedure here because the unconstrained proce-
dure is invalid under the mixed model assumption: the sub-
jects are not exchangeable in the presence of sample non-
independence (individual relatedness, population structure
or hidden confounders) (79,80). To validate our constrained
permutation procedure and test its effectiveness in estimat-
ing FDR, we performed a simulation with 1000 DE genes
and 9000 non-DE genes as described above. We considered
three predictor variables x with different heritability: h2x =

0, h2x = 0.4 and h2x = 0.8. For each predictor variable and
each P-value threshold, we computed the true FDR and
then estimated the FDR based on either the constrained or
unconstrained permutation procedures. The simulation re-
sults presented in a supplementary figure (see ‘Results’ sec-
tion) demonstrate that the constrained permutation proce-
dure provides a much more accurate estimate of the true
FDRwhile the unconstrained permutation procedure often
under-estimates the true FDR. Therefore, we applied the
constrained permutation procedure for all real data anal-
ysis.
Finally, we investigated whether the methods we com-

pared were sensitive to outliers (31,81,82) in the first two
datasets. To examine outlier sensitivity, we first identified
genes with potential outliers using BBSeq (18). In total, we
identified 8 genes with potential outliers in the baboon data,
130 genes with potential outliers in the FUSION data (n =
267) and 43 genes with potential outliers in the subset of
the FUSION data for which we had T2D diagnoses (n =
162). We counted the number of genes with potential out-
liers in the top 1000 genes with strong DE association ev-
idence. In the baboon data, 4 genes with potential outliers
are in the top 1000 genes with the strongest sex association
determined by various methods: two of them by the neg-
ative binomial model, three of them by the Poisson model,
but zero of them byMACAU, linear model or GEMMA. In
the FUSION data, for T2D analysis, 9 genes with potential
outliers are in the top 1000 genes with the strongest T2D as-
sociation determined by various methods: one byMACAU,
three by negative binomial, six by Poisson, one by linear and
one by GEMMA. For GL analysis, 15 genes with potential
outliers are in the top 1000 genes with the strongest GL as-
sociation determined by various methods: two byMACAU,
seven by negative binomial, nine by Poisson, three by linear
and three by GEMMA. All outliers are presented in sup-
plementary figures (see ‘Results’ section). Therefore, the in-
fluence of outliers on DE analysis is small in the real data.
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RESULTS

MACAU overview

Here, we provide a brief overview of the PMM;more details
are available in the Supplementary Data. To identify DE
genes with RNAseq data, we examine one gene at a time.
For each gene, we model the read counts with a Poisson dis-
tribution

yi ∼ Poi (Niλi ) , i = 1, 2, · · · , n,

where for the i ′th individual, yi is the number of reads
mapped to the gene (or isoform); Ni is the TRCs for that
individual summing read counts across all genes; and λi
is an unknown Poisson rate parameter. We model the log-
transformed rate λi as a linear combination of several pa-
rameters

log (λi ) = wT
i α + xiβ + gi + ei , i = 1, 2, · · · , n,

g = (g1, g2, · · · , gn)
T

∼ MVN
(
0, σ 2h2K

)
,

e = (e1, e2, · · · , en)
T

∼ MVN
(
0, σ 2

(
1 − h2

)
I
)
,

wherewi is a c-vector of covariates (including the intercept);
α is a c-vector of corresponding coefficients; xi represents
the predictor variable of interest (e.g. experimental pertur-
bation, sex, disease status or genotype); β is its coefficient;
g is an n-vector of genetic effects; e is an n-vector of envi-
ronmental effects; K is an n by n positive semi-definite ma-
trix that models the covariance among individuals due to
individual relatedness, population structure or hidden con-
founders; I is an n by n identity matrix that models inde-
pendent environmental variation; σ 2h2 is the genetic vari-
ance component; σ 2(1 − h2) is the environmental variance
component; andMVN denotes themultivariate normal dis-
tribution. In the above model, we assume that K is known
and can be computed based on either pedigree, genotype or
the gene expressionmatrix (9). For pedigree/genotype data,
when K is standardized to have tr(K)/n = 1, h2 ∈ [0, 1]
has the usual interpretation of heritability (9), where the
tr(·) denotes the trace of a matrix. Importantly, unlike sev-
eral other DE methods (15,25), our model can deal with
both continuous and discrete predictor variables.
Both of the random effects terms g and e model over-

dispersion, the extra variance not explained by a Poisson
model. However, the two terms g and emodel two different
aspects of over-dispersion. Specifically, g models the frac-
tion of the extra variance that is explained by sample non-
independence while e models the fraction of the extra vari-
ance that is independent across samples. For example, let us
consider a simple case in which all samples have the same se-
quencing depth (i.e. Ni = N) and there is only one intercept
termµ included as the covariate. In this case, the random ef-
fects term e models the independent over-dispersion: with-

out g, V (y) = E(y)(1 + E(y)(eσ 2

− 1)) is still larger than

the mean E(y) = Neµ+σ 2/2, with the difference between the
two increasing with increasing σ 2. In a similar fashion,
the random effects term g models the non-independent
over-dispersion by accounting for the sample covariance
matrix K. By modeling both aspects of over-dispersion,

our PMM effectively generalizes the commonly used neg-
ative binomial model––which only models independent ex-
tra variance––to account for sample non-independence. In
addition, our PMM naturally extends the commonly used
LMM (9,64,83,84) to modeling count data.
Our goal here is to test the null hypothesis that gene ex-

pression levels are not associated with the predictor variable
of interest, or H0 : β = 0. Testing this hypothesis requires
estimating parameters in the PMM (as has previously been
done in other settings (85,86), including for modeling un-
even RNAseq read distribution inside transcripts (13); de-
tails in SupplementaryData). The PMMbelongs to the gen-
eralized LMM family, where parameter estimation is noto-
riously difficult because of the random effects and the re-
sulting intractable n-dimensional integral in the likelihood.
Standard estimation methods rely on numerical integration
(87) or Laplace approximation (88,89), but neither strategy
scales well with the increasing dimension of the integral,
which in our case equals the sample size. As a consequence,
standard approaches often produce biased estimates and
overly narrow (i.e. anti-conservative) confidence intervals
(90–96). To overcome the high-dimensionality of the in-
tegral, we instead develop a novel Markov Chain Monte
Carlo (MCMC) algorithm, which, with enough iterations,
can achieve high inference accuracy (97,98).We useMCMC
to draw posterior samples but rely on the asymptotic nor-
mality of both the likelihood and the posterior distributions
(99) to obtain the approximate maximum likelihood esti-

mate β̂ j and its standard error se(
̂̂β j ).With β̂ j and se(

̂̂β j ), we
can construct approximateWald test statistics and P-values
for hypothesis testing (Supplementary Material). Although
we use MCMC, our procedure is frequentist in nature.
At the technical level, our MCMC algorithm is also

novel, taking advantage of an auxiliary variable representa-
tion of the Poisson likelihood (61–63) and recent linear alge-
bra innovations for fitting LMMs (9,58,64). OurMCMCal-
gorithm introduces two continuous latent variables for each
individual to replace the count observation, effectively ex-
tending our previous approach of using one latent variable
for the simpler binomial distribution (59). Compared with a
standard MCMC, our new MCMC algorithm reduces the
computational complexity of each MCMC iteration from
cubic to quadratic with respect to the sample size. There-
fore, our method is orders of magnitude faster than the
popular Bayesian software MCMCglmm (100) and can be
used to analyze hundreds of samples and tens of thousands
of genes with a single desktop PC (Supplementary Figure
S1). Although our procedure is stochastic in nature, we find
the MCMC errors are often small enough to ensure stable
P-values across independent MCMC runs (Supplementary
Figure S2). We summarize the key features of our method
along with other commonly used approaches in Table 1.

Simulations: control for sample non-independence

We performed a series of simulations to compare the per-
formance of the PMM implemented in MACAU with four
other commonly used methods: (i) a linear model; (ii)
the LMM implemented in GEMMA (9,58); (iii) a Pois-
son model; and (iv) a negative binomial model. We used
quantile-transformed data for linear model and GEMMA
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Table 1. Current approaches for identifying differentially expressed genes in RNAseq

Statistical method

Directly
models
counts?

Controls for
biological
covariates?

Controls for sample
non-independence?

Example software that implements the
method

Linear regression No Yes No R and many others
Linear mixed model No Yes Yes GEMMA (9) and EMMA (84)
Poisson model Yes Some methods do No GLMP (66) and DEGseq (20)
Negative binomial model Yes Some methods do No edgeR (25), DESeq (15) and GLMNB

(66)
Poisson mixed model Yes Yes Yes MACAU

(see ‘Materials and Methods’ section for normalization de-
tails and a comparison between various transformations;
Supplementary Figure S3) and used raw count data for
the other three methods. To make our simulations realis-
tic, we use parameters inferred from a published RNAseq
dataset on a population of wild baboons (7,71) to perform
simulations (‘Materials andMethods’ section); this baboon
dataset contains known related individuals and hence in-
vokes the problem of sample non-independence outlined
above.
Our first set of simulations was performed to evaluate

the effectiveness of MACAU and the other four methods
in controlling for sample non-independence. To do so, we
simulated expression levels for 10 000 genes in 63 individ-
uals (the sample size from the baboon dataset). Simulated
gene expression levels are influenced by both independent
environmental effects and correlated genetic effects, where
genetic effects are simulated based on the baboon kinship
matrix (estimated from microsatellite data (7)) with either
zero ( h2 = 0.0), moderate ( h2 = 0.3), or high (h2 = 0.6)
heritability values. We also simulated a continuous predic-
tor variable x that is itself moderately heritable ( h2x = 0.4).
Because we were interested in the behavior of the null in this
set of simulations, gene expression levels were not affected
by the predictor variable (i.e. no genes were truly DE).
Figure 1, Supplementary Figures S4 and 5 show

quantile–quantile plots for analyses usingMACAU and the
other four methods against the null (uniform) expectation,
for h2 = 0.6, h2 = 0.3 and h2 = 0.0 respectively. When
genes are heritable and the predictor variable is also cor-
related with individual relatedness, then the resulting P-
values from the DE analysis are expected to be uniform
only for a method that properly controls for sample non-
independence. If a method fails to control for sample non-
independence, then theP-values would be inflated, resulting
in false positives.
Our results show that, because MACAU controls for

sample non-independence, the P-values fromMACAU fol-
low the expected uniform distribution closely (and are
slightly conservative) regardless of whether gene expression
is moderately or highly heritable. The genomic control fac-
tors fromMACAU are close to 1 (Figure 1 and Supplemen-
tary Figure S4). Even if we use a relatively relaxed q-value
cutoff of 0.2 to identify DE genes, we do not incorrectly
identify any genes as DE with MACAU. In contrast, the
P-values from negative binomial are inflated and skewed to-
ward low (significant) values, especially for gene expression
levels with high heritability. With negative binomial, 27 DE
genes (when h2 = 0.3) or 21 DE genes (when h2 = 0.6) are
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Figure 1. QQ-plots comparing expected and observed P-value distribu-
tions generated by different methods for the null simulations in the pres-
ence of sample non-independence. In each case, 10 000 non-DE genes were
simulated with n= 63, CV= 0.3, σ 2 = 0.25, h2 = 0.6, and hx

2 = 0.4.Meth-
ods for comparison include MACAU (A), Negative binomial (B), Poisson
(C), GEMMA (D), and Linear (E). BothMACAUandGEMMAproperly
control for type I error well in the presence of sample non-independence.
λgc is the genomic control factor.

erroneously detected at the q-value cutoff of 0.2. The infla-
tion of P-values is even more acute in Poisson, presumably
because the Poisson model accounts for neither individual
relatedness nor over-dispersion. For non-count-basedmod-
els, the P-values from a linear model are slightly skewed to-
wards significant values, with three DE genes (when h2 =
0.3) and one DE gene (when h2 = 0.6) erroneously detected
at q< 0.2. In contrast, because the LMM in GEMMA also
accounts for individual relatedness, it controls for sample
non-independence well. Finally, when genes are not herita-
ble, all methods except Poisson correctly control type I error
(Supplementary Figure S5).
Two important factors influence the severity of sample

non-independence in RNAseq data (Figure 2). First, the
inflation of P-values in the negative binomial, Poisson and
linear models becomes more acute with increasing sample
size. In particular, when h2x = 0.4, with a sample size of
n = 1, 000, λgc from the negative binomial, Poisson and
linear models reaches 1.71, 82.28 and 1.41, respectively. In
contrast, even when n = 1, 000, λgc from both MACAU
and GEMMA remain close to 1 (0.97 and 1.01, respec-
tively). Second, the inflation of P-values in the three mod-
els also becomes more acute when the predictor variable
is more correlated with population structure. Thus, for a
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Figure 2. Comparison of the genomic control factor �gc from differ-
ent methods for the null simulations in the presence of sample non-
independence. 10 000 null genes were simulated with CV = 0.3, σ 2 = 0.25,
h2 = 0.6, and (A) hx

2 = 0; (B) hx
2 = 0.4; (C) hx

2 = 0.8. λgc (y-axis) changes
with sample size n (x-axis). Methods for comparison were MACAU (red),
Negative binomial (purple), GEMMA (blue), and Linear (cyan). Both
MACAU and GEMMA provide calibrated test statistics in the presence
of sample non-independence across a range of settings. λgc from Poisson
exceeds 10 in all settings and is thus not shown.

highly heritable predictor variable (h2x = 0.8), λgc (when
n = 1000) from the negative binomial, Poisson and lin-
ear models increases to 2.13, 101.43 and 1.81, respectively,
whereas λgc from MACAU and GEMMA remains close to
1 (1.02 and 1.05).
We also compared MACAU with edgeR (25) and DE-

Seq2 (15), two commonly used methods for DE analysis
(11,101). Because edgeR andDESeq2were designed for dis-
crete predictor valuables, we discretized the continuous pre-
dictor x into 0/1 based on themedian predictor value across
individuals. We then applied all methods to the same bina-
rized predictor values for comparison. Results are shown in
Supplementary Figure S6. For the five methods compared
above, the results on binarized values are comparable with
those for continuous variables (i.e. Supplementary Figure
S6 versus Figure 1). Both edgeR andDESeq2 produce anti-
conservative P-values and perform similarly to the negative
binomial model in terms of type I error control.
Finally, we explored the use of PCs from the gene ex-

pression matrix or the genotype matrix to control for sam-
ple non-independence. Genotype PCs have been used as
covariates to control for population stratification in asso-
ciation studies (102). However, recent comparative studies
have shown that using PCs is less effective than usingLMMs
(83,103). Consistent with the poorer performance of PCs in
association studies (83,103), using the top PCs from either
the gene expression matrix or the genotype matrix does not
improve type I error control for negative binomial, Poisson,
linear, edgeR or DESeq2 approaches (Supplementary Fig-
ures S7 and 8).

Simulations: power to identify DE genes

Our second set of simulations was designed to compare the
power of different methods for identifying DE genes, again
based on parameters inferred from real data. This time,
we simulated a total of 10 000 genes, among which 1000
genes were truly DE and 9000 were non-DE. For the DE
genes, simulated effect sizes corresponded to a fixed PVE
in gene expression levels that ranged from 15 to 35%. For
each set of parameters, we performed 10 replicate simula-
tions and measured model performance based on the AUC
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Figure 3. MACAU exhibits increased power to detect true positive DE
genes across a range of simulation settings. Area under the curve (AUC)
is shown as a measure of performance for MACAU (red), Negative bino-
mial (purple), Poisson (green), GEMMA (blue), and Linear (cyan). Each
simulation setting consists of 10 simulation replicates, and each replicate
includes 10 000 simulated genes, with 1 000 DE and 9 000 non-DE. We
used n= 63, hx

2 = 0.4, PVE = 0.25, and σ 2 = 0.25. In (A) we increased h2

while maintaining CV = 0.3 and in (B) we increased CV while maintaining
h2 = 0.3. Boxplots of AUC across replicates for different methods show
that (A) heritability (h2) influences the relative performance of the meth-
ods that account for sample non-independence (MACAU and GEMMA)
compared to the methods that do not (negative binomial, Poisson, linear);
(B) variation in total read counts across individuals, measured by the coef-
ficient of variation (CV), influences the relative performance of GEMMA
and negative binomial. Insets in the two figures show the rank of different
methods, where the top row represents the highest rank.

(as in (35,68,104)). We also examined several key factors
that could influence the relative performance of the alterna-
tive methods: (i) gene expression heritability (h2); (ii) cor-
relation between the predictor variable x and genetic relat-
edness (measured by the heritability of x, or h2x); (iii) varia-
tion of the TRCs across samples (measured by the CV); (iv)
the over-dispersion parameter (σ 2); (v) the effect size (PVE);
and (vi) sample size (n). To do so, we first performed sim-
ulations using a default set of values (h2 = 0.3, h2x = 0, CV

= 0.3, σ 2 = 0.25, PVE = 0.25 and n = 63) and then varied
them one at a time to examine the influence of each factor
on the relative performance of each method.
Our results show that MACAU works either as well as

or better than other methods in almost all settings (Fig-
ure 3 and Supplementary Figure S9–14), probably because
it both models count data directly and controls for sample
non-independence. In contrast, the Poisson approach con-
sistently fared the worst across all simulation scenarios, pre-
sumably because it fails to account for any sources of over-
dispersion (Figure 3 and Supplementary Figures S9–14).
Among the factors that influence the relative rank

of various methods, the most important factor was
heritability (h2) (Figure 3A). While all methods perform
worse with increasing gene expression heritability, heritabil-
ity disproportionately affects the performance of models
that do not account for relatedness (i.e. negative binomial,
Poisson and Linear), whereas when heritability is zero (
h2 = 0), these approaches tend to perform slightly better.
Therefore, for non-heritable genes, linear models perform
slightly better than GEMMA, and negative binomial mod-
els work similarly or slightly better than MACAU. This
observation most likely arises because linear and negative
binomial models require fewer parameters and thus have
a greater number of degrees of freedom. However, even
in this setting, the difference between MACAU and nega-
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tive binomial is small, suggesting that MACAU is robust
to model misspecification and works reasonably well even
for non-heritable genes. On the other hand, when heritabil-
ity is moderate ( h2 = 0.3) or high ( h2 = 0.6), the meth-
ods that account for sample non-independence are much
more powerful than the methods that do not. Because al-
most all genes are influenced by cis-eQTLs (46,47) and are
thus likely heritable to some extent, MACAU’s robustness
for non-heritable genes and its high performance gain for
heritable genes make it appealing.
The second most important factor in relative model per-

formance was the variation of TRCs across individuals
(CV; Figure 3B). While all methods perform worse with
increasing CV, CV particularly affects the performance of
GEMMA. Specifically, when CV is small (0.3; as the ba-
boon data), GEMMA works well and is the second best
method behind MACAU. However, when CV is moderate
(0.6) or high (0.9), the performance of GEMMA quickly
decays: it becomes only the fourth best method when CV
= 0.9. GEMMA performs poorly in high CV settings pre-
sumably because the LMM fails to account for the mean-
variance dependence observed in count data, which is in
agreement with previous findings (59,105).
The other four factors we explored had small impacts

on the relative performance of the alternative methods, al-
though they did affect their absolute performance. For ex-
ample, as one would expect, power increases with large ef-
fect sizes (PVE) (Supplementary Figure S9) or large sample
sizes (Supplementary Figure S10), and decreases with large
over-dispersion σ 2 (Supplementary Figure S11) or large h2x
(Supplementary Figure S12).
Finally, we included comparisons with edgeR (25) and

DESeq2 (15). In the basic parameter simulation setting
(n = 63, CV = 0.3, h2x = 0, PVE = 0.25, h2 = 0.3 and

σ 2 = 0.25), we again discretized the continuous predictor
x into a binary 0/1 variable based on the median predictor
value across individuals. Results for all methods are shown
in Supplementary Figure S13A. For the five methods also
tested on a continuous predictor variable, the power on bi-
narized values is much reduced compared with the power
when the predictor variable is modeledwithout binarization
(e.g. Supplementary Figure S13A versus Figure 3). Further,
neither edgeR nor DESeq2 perform well, consistent with
the recent move from these methods towards linear models
in differential expression analysis (3,7,45–47,106). This re-
sult is not contingent on having large sample sizes. In small
sample size settings (n= 6, n= 10 and n= 14, with samples
balanced between the two classes, 0 or 1), MACAU again
outperforms the other methods, though the power differ-
ence is much smaller (n = 10 and n = 14; Supplementary
Figures S13C and 13D) and sometimes negligible (n = 6,
Supplementary Figure S13B).
In summary, the power of MACAU and other methods,

as well as the power difference between methods, is influ-
enced in a continuous fashion by multiple factors. Larger
sample sizes, larger effect sizes, lower read depth variation,
lower gene expression heritability, lower predictor variable
heritability and lower over-dispersion all increase power.
However, MACAU’s power is less diminished by high gene
expression heritability and high read depth variability than

the non-mixed model methods, while retaining the advan-
tage ofmodeling the count data directly. In challenging data
analysis settings (e.g. when sample size is low and effect size
is low: Supplementary Figure S13B for n = 6), no method
stands out and using MACAU results in no or negligible
gains in power relative to other methods. When the sam-
ple size is low (n = 6) and effect sizes are large, however,
MACAU consistently outperforms the other methods (n =
6, Supplementary Figure S14).

Real data applications

To gain insight beyond simulation, we appliedMACAUand
the other six methods to three recently published RNAseq
datasets.
The first dataset we considered is the baboon RNAseq

study (7) used to parameterize the simulations above. Ex-
pression measurements on 12 018 blood-expressed genes
were collected by the (ABRP) (71) for 63 adult baboons
(26 females and 37 males), among which some were rela-
tives. Here, we applied MACAU and the six other meth-
ods to identify genes with sex-biased expression patterns.
Sex-associated genes are known to be enriched on sex chro-
mosomes (107,108), and we use this enrichment as one of
the criteria to compare method performance, as in (18). Be-
cause the same nominal P-value from different methods
may correspond to different type I errors, we compared
methods based on empirical FDR. In particular, we per-
muted the data to construct an empirical null, estimated the
FDR at any given P-value threshold, and counted the num-
ber of discoveries at a given FDR cutoff (see ‘Materials and
Methods’ section for permutation details and a comparison
between two different permutation procedures; Supplemen-
tary Figure S15).
In agreement with our simulations, MACAU was the

most powerful method of those we considered. Specifically,
at an empirical FDR of 5%, MACAU identified 105 genes
with sex-biased expression patterns, 40% more than that
identified by the linear model, the second best method at
this FDR cutoff (Figure 4A). At a more relaxed FDR
of 10%, MACAU identified 234 sex-associated genes, 47%
more than that identified by the negative binomial model,
the second best method at this FDR cutoff (Figure 4A).
Further, as expected, the sex-associated genes detected by
MACAU are enriched on the X chromosome (the Y chro-
mosome is not assembled in baboons and is thus ignored),
and this enrichment is stronger for the genes identified by
MACAU than by the other methods (Figure 4B). Of the
remaining approaches, the negative binomial, linear model
and GEMMA all performed similarly and are ranked right
after MACAU. The Poisson model performs the worst, and
edgeR and DESeq2 fall between the Poisson model and the
other methods (Figure 4A and B).
The second dataset we considered is anRNAseq study on

T2D collected as part of the FUSION study (60). Here, the
data were collected from skeletal muscle samples from 267
individuals with expression measurements on 21 753 genes.
Individuals are from three municipalities (Helsinki, Savi-
taipale and Kuopio) in Finland. Individuals within each
municipality are more closely related than individuals be-
tween municipalities (e.g. the top genotype PCs generally
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Figure 4. MACAU identifies more differentially expressed genes than other methods in the baboon (A-B) and FUSION (C-F) data sets. Methods for
comparison include MACAU (red), Negative binomial (purple), Poisson (green), edgeR (magenta), DESeq2 (rosybrown), GEMMA (blue), and Linear
(cyan). (A) shows the number of sex-associated genes identified by different methods at a range of empirical false discovery rates (FDRs). (B) shows the
number of genes that are on the X chromosome out of the genes that have the strongest sex association for each method (note that the Y chromosome is not
assembled in baboons and is thus ignored). For instance, in the top 400 genes identified by MACAU, 41 of them are also on the X chromosome. (C) shows
the number of T2D-associated genes identified by different methods at a range of empirical false discovery rates (FDRs). (D) shows the number of genes
that are in the list of top 1 000 genes most significantly associated with GL out of the genes that have the strongest association for T2D for each method.
For instance, in the top 1 000 genes with the strongest T2D association identified by MACAU, 428 of them are also in the list of top 1 000 genes with
the strongest GL association identified by the same method. (E) shows the number of GL-associated genes identified by different methods at a range of
FDRs. (F) shows the number of genes that are in the list of top 1 000 genes most significantly associated with T2D out of the genes that have the strongest
association for GL for each method. T2D: type II diabetes; GL: fasting glucose level.

correspond to the three municipalities; Supplementary Fig-
ure S16). Two related phenotypes were available to us: 162
individuals with T2D or NGT status (i.e. case/control)
based on the OGTT and 267 individuals with the quanti-
tative trait fasting GL, a biologically relevant trait of T2D.
We performed analyses to identify genes associated with

T2D status as well as genes associated with GL. To accom-

modate edgeR and DESeq2, we also discretized the con-
tinuous GL values into binary 0/1 categories based on the
median GL value across individuals. We refer to the result-
ing values as GL01. Therefore, we performed two sets of
analyses for GL: one on the continuous GL values and the
other on the discretized GL01 values. Consistent with sim-
ulations and the baboon data analysis, MACAU identified
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more T2D-associated genes and GL-associated genes than
other methods across a range of empirical FDR values. For
the T2D analysis, MACAU identified 23 T2D-associated
genes at an FDR of 5%, while GEMMA and the linear
model, the second best methods at this FDR cutoff, iden-
tified only 1 T2D-associated gene (Figure 4C). Similarly, at
an FDR of 10%, MACAU identified 123 T2D-associated
genes, 51% more than that identified by the linear model,
the second best method at this FDR cutoff (Figure 4C). For
GL analysis, based on an FDR of 5%, MACAU detected
12 DE genes, while the other methods did not identify any
DE genes at this FDR cutoff. At an FDR of 10%,MACAU
identified 100 GL associated genes, while the second best
methods––the linear model and GEMMA––identified 12
DE genes (Figure 4E). For the dichotomizedGL01, none of
the methods detected any DE genes even at a relaxed FDR
cutoff of 20%, highlighting the importance of modeling the
original continuous predictor variable in DE analysis.
Several lines of evidence support the biological valid-

ity of the genes detected by MACAU. First, we performed
gene ontology (GO) analysis using LRpath (109) on T2D
and GL associated genes identified by MACAU, as in the
FUSION study (60) (Supplementary Figure S17). The GO
analysis results for T2D and GL are consistent with previ-
ous studies (60,110) and are also similar to each other, as
expected given the biological relationship between the two
traits. In particular, T2D status and high GL are associated
with decreased expression of cellular respiratory pathway
genes, consistent with previous observations (60,110). T2D
status and GL are also associated with several pathways
that are related to mTOR, including generation of precur-
sor metabolites, poly-ubiquitination and vesicle trafficking,
in agreement with a prominent role of mTOR pathway in
T2D etiology (111–114).

Second, we performed overlap analyses between T2D
andGL associated genes. We reasoned that T2D-associated
genes are likely associated with GL because T2D shares
a common genetic basis with GL (115–117) and T2D sta-
tus is determined in part by fasting GL. Therefore, we
used the overlap between genes associated with T2D and
genes associated with GL as a measure of method perfor-
mance. In the overlap analysis, genes with the strongest T2D
association identified by MACAU show a larger overlap
with the top 1000 genes that have the strongest GL asso-
ciation than did genes identified by other methods (Fig-
ure 4D). For instance, among the top 100 genes with the
strongest T2D-association evidence from MACAU, 63 of
them also show strong association evidence with GL. In
contrast, only 55 of the top 100 genes with the strongest
T2D-association identified by GEMMA, the second best
method, show strong association evidence with GL.We ob-
served similar results, with MACAU performing the best,
when performing the reciprocal analysis (overlap between
genes with the strongest GL-association and the top 1000
genes that have the strongest T2D-association: Figure 4F).
To include the comparisonwith edgeR andDESeq2, we fur-
ther examined the overlap between T2D associated genes
and GL01 associated genes for all methods (Supplemen-
tary Figure S18). Again, MACAU performs the best, fol-
lowed byGEMMAand the linearmodel, and neither edgeR
nor DESeq2 perform well in this context (Supplementary

Figure S18). Therefore, MACAU appears to both confer
more power to identify biologically relevant DE genes and
be more consistent across analyses of related phenotypes.
To assess the type I error rate of various methods, we

permuted the trait data from the baboon and the FUSION
studies. Consistent with our simulation results, the P-values
fromMACAUandGEMMAunder the permuted null were
close to uniformly distributed (slightly conservative) in both
datasets, whereas the other methods were not (Supplemen-
tary Figures S19 and 20). In addition, none of the methods
compared here are sensitive to outliers in the two datasets
(Supplementary Figures S21–23).
Finally, although large, population-based RNAseq

datasets are becoming more common, MACAU’s flexible
PMM modeling framework allows it to be applied to DE
analysis in small datasets with unrelated individuals as
well. In this setting, MACAU can use the gene expression
covariance matrix as the K matrix to control for hidden
confounding effects that are commonly observed in se-
quencing studies (48–51). Hidden confounders can induce
similarity in gene expression levels across many genes even
though individuals are unrelated (52–56), similar to the
effects of kinship or population structure. Therefore, by
defining K using a gene expression (instead of genetic)
covariance matrix, MACAU can effectively control for
sample non-independence induced by hidden confounders,
thus extending the LMM widely used to control for hidden
confounders in array based studies (52–56) to sequencing
count data.
To illustrate this application, we analyzed a third dataset

on LCLs derived from 69 unrelated Nigerian individuals
(YRI) (3) from the HapMap project (118), with expression
measurements on 13 319 genes. We also aimed to identify
sex-associated genes in this dataset. To demonstrate the ef-
fectiveness of MACAU in small samples, we randomly sub-
sampled individuals from the data to create small datasets
with either n = 6 (3 males and 3 females), n = 10 (5 males
and 5 females) or n = 14 individuals (7 males and 7 fe-
males). For each sample size n, we performed 20 replicates
of random subsampling and then evaluated method perfor-
mance by averaging across replicates. In each replicate, we
used the gene expression covariance matrix as K and com-
pared MACAU’s performance against other methods. Be-
cause of the small sample size, none of the methods were
able to identify DE genes at an FDR cutoff of 10%, con-
sistent with recent arguments that at least 6–12 biological
replicates are needed to ensure sufficient power and replica-
bility in DE analysis (11). We therefore used enrichment of
genes on the sex chromosomes to compare the performance
of different methods (Supplementary Figure S24). The en-
richment of top ranked sex-associated genes on sex chro-
mosomes has previously been used for method comparison
and is especially suitable for comparingmethods in the pres-
ence of batch effects and other hidden confounding factors
(119).
In this comparison, MACAU performs the best of all

methods when the sample size is either n= 10 or n= 14, and
is ranked among the best (together with the negative bino-
mial model) when n = 6. For instance, when n = 6, among
the top 50 genes identified by each method, the number of
genes on the sex chromosomes for MACAU, negative bino-
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mial, Poisson, edgeR, DESeq2, GEMMA and Linear are
3.3, 2.7, 3.1, 1.8, 3.0, 2.0 and 2.4, respectively. The advan-
tage of MACAU becomes larger when the sample size in-
creases: for example, when n = 14, an average of 10.6 genes
in the top 50 genes from MACAU are on the sex chromo-
somes, which is again larger than that from the negative
binomial (8.3), Poisson (6.0), edgeR (6.65), DESeq2 (8.8),
GEMMA (9.8) or Linear (8.05). These results suggest that
MACAU can also perform better than existing methods
in relatively small sample study designs with unrelated in-
dividuals by controlling for hidden confounders. However,
MACAU’s power gain is much smaller in this setting than in
the first two datasets we considered (the baboon and Fusion
data). In addition,MACAU’s power gain is negligible in the
case of n= 6 when compared with the second best method,
though its power gain over the commonly used edgeR and
DESeq2 is still substantial. MACAU’s small power gain
in this data presumably stems from both the small sample
size and the small effect size of sex in the data, consistent
with previous reports for blood cell-derived gene expression
(3,7,120).

DISCUSSION

Here, we present an effective Poisson mixed effects model,
together with a computationally efficient inference method
and software implementation in MACAU, for identify-
ing DE genes in RNAseq studies. MACAU directly mod-
els count data and, using two random effects terms, con-
trols for both independent over-dispersion and sample non-
independence. Because of its flexible modeling framework,
MACAU controls for type I error in the presence of indi-
vidual relatedness, population structure and hidden con-
founders, and MACAU achieves higher power than sev-
eral other methods for DE analysis across a range of set-
tings. In addition, MACAU can easily accommodate con-
tinuous predictor variables and biological or technical co-
variates. We have demonstrated the benefits ofMACAU us-
ing both simulations and applications to three recently pub-
lished RNAseq datasets.
MACAU is particularly well-suited to datasets that con-

tain related individuals or population structure. Several ma-
jor population genomic resources contain structure of these
kinds. For example, the HapMap population (118), the Hu-
man Genome Diversity Panel (121), the 1000 Genomes
Project in humans (122) aswell as the 1001Genomes Project
in Arabidopsis (123) all contain data from multiple pop-
ulations or related individuals. Several recent large-scale
RNAseq projects also collected individuals from geneti-
cally differentiated populations (45). MACAU is also well-
suited to analyzing genes with moderate to high heritabil-
ity. Previous studies in humans have shown that, while her-
itability varies across genes, many genes are moderately
or highly heritable, and almost all genes have detectable
eQTL (46,124). Analyzing these data with MACAU can
reduce false positives and increase power. Notably, even
when genes exhibit zero heritability, our results show that
MACAU incurs minimal loss of power compared with
other approaches.
While we have mainly focused on illustrating the benefits

of MACAU for controlling for individual relatedness and

population stratification, we note thatMACAU can be used
to control for sample non-independence occurred in other
settings as we have demonstratedwith the third real data ap-
plication. For example, cell type heterogeneity (54) or other
hidden confounding factors (52) are commonly observed in
sequencing studies and can induce gene expression similar-
ity evenwhen individuals are unrelated (48–51). Because the
gene expression covariance matrix K contains information
on sample non-independence caused by hidden confound-
ing factors (52–56), MACAU could be applied to control
for hidden confounding effects by using the gene expression
covariance as the K matrix. Therefore, MACAU provides a
natural avenue for extending the commonly used mixed ef-
fects model for controlling for hidden confounding effects
(52–55) in array-based studies to sequencing studies. In ad-
dition, although we have designed MACAU for differential
expression analysis, we note that MACAU may also be ef-
fective in other common settings. For example, MACAU
could be readily applied in QTL mapping studies to iden-
tify genetic variants that are associatedwith gene expression
levels estimated using RNAseq or related high-throughput
sequencing methods.
In the present study, we have focused on demonstrating

the performance of MACAU in three published RNAseq
datasets with sample sizes ranging from small (n = 6) to
medium (n = 63) to large (n = 267), relative to the size of
most currentRNAseq studies. Comparedwith small sample
studies, RNAseq studies with medium or large sample sizes
are better powered and more reproducible and are thus be-
coming increasingly common in genomics (10,11). For ex-
ample, a recent comparative study makes explicit calls for
medium to large sample RNAseq studies performed with
at least 12 replicates per condition (i.e. n ≥ 24) (11). How-
ever, we recognize that many RNAseq studies are still car-
ried out with a small number of samples (e.g. 3 replicates
per condition). As our simulations make clear, the power of
all analysis methods is dramatically reduced with decreas-
ing sample size, conditional on fixed values of other fac-
tors that influence power (e.g., effect size, gene expression
heritability). Thus, MACAU’s advantage is no longer ob-
vious in simulated data with only three replicates per con-
dition when the effect size is also small (although its ad-
vantage becomes apparent when the simulated effect size
increases: Supplementary Figures S13B and 14). In addi-
tion, MACAU’s advantage is much smaller and sometimes
negligible in the small real dataset when compared with
the medium and large datasets analyzed here. Furthermore,
because MACAU requires estimating one more parameter
than other existing methods, MACAU requires at least five
samples to run while existing DE methods require at least
four. Therefore, MACAUmay not confer benefits to power
in some settings, and is especially likely (like all methods)
to be underpowered in very small sample sizes with small
effect sizes. Future extensions of MACAU are likely needed
to ensure its robust performance in small as well as moder-
ate to large samples. For example, further power improve-
ments could be achieved by borrowing information across
genes to estimate the over-dispersion parameter (15,22,25)
or building in a hierarchical structure to model many genes
at once.
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Like other DE methods (24,25), MACAU requires data
pre-processing to obtain gene expression measurements
from raw sequencing read files. This data pre-processing
step may include read alignment, transcript assembly, al-
ternative transcript quantification, transcript measurement
and normalization. Many methods are available to per-
form these tasks (12,14,68,125–130) and different meth-
ods can be differentially advantageous across settings
(68,125,131). Importantly, MACAU can be paired with any
pre-processing method that retains the count nature of the
data. While we provide a preliminary comparison of several
methods here (see ‘Materials andMethods’ section; Supple-
mentary Figure S3), a full analysis of howdifferent data pre-
processing choices affect MACAU’s performance in alter-
native study designs is beyond the scope of this paper. No-
tably, recent results suggest that a recommended approach
is to incorporate data pre-processing and DE analysis into
the same, joint statistical framework (132), which represents
an important next step for the MACAU software package.
We note that, like many other DE methods (15,25), we

did not model gene length inMACAU. Because gene length
does not change from sample to sample, it does not af-
fect differential expression analysis on any particular gene
(15,25). However, gene length will affect the power of DE
analysis across different genes: genes with longer length
tend to have a larger number of mapped reads and more ac-
curate expression measurements, and as a consequence, DE
analysis on these genes tends to have higher statistical power
(2,70,133). Gene length may also introduce sample-specific
effects in certain datasets (134). Therefore, understanding
the impact of, and taking into account gene length effects,
in MACAUDE analysis represents another possible future
extension.
Currently, despite the newly developed computationally

efficient algorithm, applications ofMACAUcan still be lim-
ited by its relatively heavy computational cost. TheMCMC
algorithm in MACAU scales quadratically with the num-
ber of individuals/samples and linearly with the number of
genes. AlthoughMACAU is two orders of magnitude faster
than the standard software MCMCglmm for fitting Pois-
son mixed effects models (Supplementary Table S1), it can
still take close to 20 h to analyze a dataset of the size of the
FUSION data we considered here (267 individuals and 21
753 genes). Therefore, new algorithms will be needed to use
MACAU for datasets that are orders of magnitude larger.

URLs

The software implementation ofMACAU is freely available
at: www.xzlab.org/software.html.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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