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Abstract

CD163, a haptoglobin-hemoglobin (Hp-Hb) scavenger receptor, expressed by monocytes and macrophages, is important in
resolution of inflammation. Age-related non-AIDS co-morbidities in HIV-infected individuals, particularly dementia and
cardiovascular disease, result in part from effects of HIV-1 infection on monocyte and macrophage biology. CD163 co-
expression on CD14+CD16++ monocytes has been proposed as a useful biomarker for HIV-1 disease progression and the
presence of HIV associated dementia. Here we investigated CD163 expression on monocyte subsets ex vivo, on cultured
macrophages, and soluble in plasma, in the setting of HIV-1 infection. Whole blood immunophenotyping revealed CD163
expression on CD14++CD16- monocytes but not on CD14+CD16++ monocytes (P = 0.004), supported by CD163 mRNA
levels. Incubation with M-CSF induced CD163 protein expression on CD14+CD16++ monocytes to the same extent as
CD14++CD162 monocytes. CD163 expression on CD14++CD16+ monocytes from HIV-infected subjects was significantly
higher than from uninfected individuals, with a trend towards increased expression on CD14++CD162 monocytes (P = 0.019
and 0.069 respectively), which is accounted for by HIV-1 therapy including protease inhibitors. Shedding of CD163 was
shown to predominantly occur from the CD14++CD162 subset after Ficoll isolation and LPS stimulation. Soluble CD163
concentration in plasma from HIV-1 infected donors was similar to HIV-1 uninfected donors. Monocyte CD163 expression in
HIV-1 infected patients showed a complicated relationship with classical measures of disease progression. Our findings
clarify technical issues regarding CD163 expression on monocyte subsets and further elucidates its role in HIV-associated
inflammation by demonstrating that CD163 is readily lost from CD14++CD162 monocytes and induced in pro-inflammatory
CD14+CD16++ monocytes by M-CSF. Our data show that all monocyte subsets are potentially capable of differentiating into
CD163-expressing anti-inflammatory macrophages given appropriate stimuli. Levels of CD163 expression on monocytes
may be a potential biomarker reflecting efforts by the immune system to resolve immune activation and inflammation in
HIV-infected individuals.
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Introduction

With the success of antiretroviral therapy in reducing the

incidence of AIDS, attention is now turning to non-AIDS co-

morbidities in chronically HIV-infected individuals. Two such

important age-related co-morbidities that are accelerated in HIV-

1 infection are cardiovascular disease and HIV-1 associated

dementia, both of which involve activated macrophages and

chronic inflammation [1,2,3,4]. Biomarkers that detect persistent

inflammation are needed to monitor immune activation and

inflammation to enable better long term clinical outcomes for

HIV-infected individuals. The scavenger receptor CD163 has

been investigated as a potential marker of inflammation in

infectious diseases such as meningitis [5], as well as in autoimmune

diseases driven by activated macrophages [6,7,8], and so may have

potential as a monitoring tool in management of HIV-1 disease.

CD163 is a member of the class B scavenger receptor cysteine-

rich superfamily, primarily responsible for endocytosing hemoglo-

bin-haptoglobin (Hb-Hp) complexes [9,10] and, to a lesser degree,

free hemoglobin (Hb) released from hemolysed erythrocytes [11].

Other more recently recognised functions of CD163 include anti-

inflammatory scavenger receptor for the tumour necrosis factor-

like weak inducer of apoptosis (TWEAK) [12], an erythroblast

receptor, promoting their survival and differentiation [13], and a

receptor functioning as an innate immune sensor for both Gram

positive and negative bacteria [14]. CD163 expressing macro-

phages are also involved in resolution of inflammation by limiting

free hemoglobin associated damage [11] and secreting anti-

inflammatory cytokines in response to inflammation [15,16].

However, the immune effects of CD163 are complicated and may

not be limited to down-regulating inflammation as CD163

stimulation has also been reported to induce pro-inflammatory

cytokine production from rat macrophages [17]. In vitro, soluble

CD163, but not membrane bound CD163, inhibits phorbol ester-

induced T cell proliferation [18,19]. CD163 protein expression on

monocytes and macrophages is altered in a number of diseases
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including asthma, cancer and following bypass graft surgery

[20,21,22]. CD163 expression is increased by exposure of

monocytes to glucocorticoids in vivo, and incubation with M-

CSF, IL-6 and IL-10 in vitro, [23,24,25,26,27,28] while it is

decreased following incubation with pro-inflammatory cytokines

GM-CSF, IL-4, IFNc and TNFa [25,27,29].

CD163 is shed from the cell surface of monocytes following

proteolytic cleavage after pro-inflammatory stimulation such as

ligand binding (including lipopolysaccharide) to toll-like

receptors [26,30,31,32,33,34]. Soluble CD163 is thought to

be involved in the resolution of inflammation by mechanisms

that are not yet fully understood, but include inhibition of T

cell activation [16,18], and is increased in autoimmune

disorders [32,35,36], hematological malignancies [37], malaria

[38], and bacterial, but not viral meningitis [8]. Macrophage

activation syndrome is driven by activated macrophages (and

poorly functioning natural killer cells) and is associated with

significantly increased plasma levels of soluble CD163 [6,7].

Soluble CD163 levels in plasma correlate inversely with

expression of CD163 on monocytes in blood obtained from

randomly selected hospital patients [39] suggesting that

monocytes are a major source of sCD163 under pathophysi-

ological conditions.

In terms of HIV-1, productively infected macrophages and

microglia in the brain of individuals with HIV-related enceph-

alitis have been shown to upregulate CD163 [3,40,41]. In

peripheral blood, the number of CD14+CD16++ monocytes

expressing CD163 correlates with SIV RNA in plasma in SIV-

infected rhesus macaques [40]. Levels of soluble CD163 in

plasma of SIV-infected macaques correlate with monocyte

activation and expansion [42]. In SIV-infected macaques with

myocarditis, there was a correlation between CD163-expression

on macrophages and the numbers of SIV-infected cells, but there

were lower numbers of intra-cardiac CD163-expressing macro-

phages in SIV-infected macaques with myocarditis compared to

controls, suggesting these cells are associated with decreased

inflammation in the heart [43].

There have been contradictory reports on the expression of

CD163 on different monocyte subsets with some studies reporting

highest expression on the non-classical CD14+CD16++ mono-

cytes [25,44] while others report highest expression on

CD14++CD162 monocytes [20]. CD163 is much more labile

on monocytes than other surface molecules such as CD36 [45] and

its expression on monocytes is altered both by the anticoagulant

used in blood sampling and during purification of peripheral blood

mononuclear cells [41,45]. Recently it has been shown that

inconsistencies in reported expression of CD163 on blood

monocytes may also result from different sources of antibodies

used for analysis, with epitope accessibility and CD163 detection

being highest with antibodies directed against the N terminal of

CD163 [46].

Given the proposed role of CD163-expressing monocytes in

resolution of inflammation, and the potential for use of soluble

CD163 as a marker for inflammation for HIV-infected individuals,

we aimed to characterise CD163 expression on monocyte subsets

and soluble levels in plasma in the setting of HIV-1 infection. We

show that CD163 is more highly expressed on CD14++CD16-

compared to CD14++CD16+ monocytes, and not expressed on

CD14+CD16++ monocytes, at the level of both protein and gene

expression, and that expression is increased in HIV-1 infection.

Soluble CD163 in plasma was not significantly altered by HIV-1

infection. CD163 expression increased during maturation into

macrophages and was inducible in all three monocyte subsets by

culture in M-CSF.

Materials and Methods

Human research ethics
All human blood samples used in this study were collected with

informed consent and approval from The Alfred Hospital Human

Research Ethics Committee, project number 128/06 (Melbourne,

Victoria, Australia).

Sample donors
Peripheral blood was collected in K3EDTA tubes (BD

Bioscience) from HIV-1 infected volunteers attending the Alfred

Hospital Infectious Diseases Unit Outpatients (Melbourne,

Victoria, Australia) or healthy HIV-1 uninfected laboratory

volunteers. Controls were age matched to HIV-1 infected donors

(HIV-1 negative median 40 yr vs. HIV-1 positive median age

42 yr). Table S1 describes the viral load, CD4 T cell count and

antiretroviral therapy regimen of HIV-1 positive donors at time

of recruitment. To harvest plasma, K3EDTA tubes containing

blood samples were centrifuged at 6206g for 10 min with no

brake. The uppermost 3 ml was removed and stored at 280uC
until analysed.

Whole blood flow cytometry phenotyping
All antibodies used were purchased from BD Biosciences. An

antibody cocktail composed of 8 ml anti-CD14 FITC or 4 ml anti-

CD14 APC-Cy-7, 8 ml anti-CD16 PC5 and 8 ml CD163-PE (clone

GHI/61; directed against domain 7 of CD163) or IgG-1 PE was

placed in 5 ml polypropylene FACS tubes (BD Biosciences) and

80 ml of whole blood was added. The mixture was vortexed and

incubated on ice for 30 min. Erythrocytes were lysed with 1 ml

Facs Lyse (BD Biosciences) for 10 min then cells centrifuged at

5006g for 7 min at 4uC, with 3 ml PBS containing 1% newborn

calf serum (Cosmic calf serum, HyClone) and 2 mM EDTA (wash

buffer). Monocytes were initially gated using forward vs. side

scatter dot plots. These events were then gated onto a CD14 vs.

CD16 dot plot and monocyte subsets defined as described in

figure 1A using recently defined nomenclature [47]. CD163

expression was defined as the proportion of cells within a given

monocyte gate with fluorescence greater than that expressed by

approximately 2% of isotype matched control cells (IgG-1 PE, BD

Biosciences).

LPS stimulation
100 ml of whole blood was washed (5006g, 7 min, 4uC) with

4 ml sterile wash buffer then resuspended in 1 ml supplemented

Iscoves modified Dulbecco’s medium (IMDM) containing 10%

human serum (described below) with or without 1 mg/ml

lipopolysaccharide (LPS). Cells were incubated for 2 hours at

37uC prior to washing and staining as described above.

CD163 ELISA
Soluble CD163 from EDTA plasma samples was quantified in

2 ml of plasma using a commercial ELISA kit (BMA Biomedicals)

according to manufacturer’s instructions.

Isolation of monocytes from buffy coats
Human monocytes were isolated from buffy coats of HIV-,

hepatitis B virus-, hepatitis C virus-, human T cell leukemia virus-,

and syphilis-seronegative donors (obtained from the Australian

Red Cross Blood Services, Melbourne) by density-gradient

centrifugation at 9206g for 20 min at room temperature, with

no brake (Ficoll-Paque Plus; Amersham Biosciences), followed by

counter-current elutriation (J-6M/E centrifuge equipped with a

Monocyte Subset CD163 Expression in HIV-1
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JE-5.0 rotor, Beckman Coulter). The typical purity of isolated

monocytes was .90%.

Isolation of monocyte subsets
To obtain purified CD14++CD162, CD14++CD16+ and

CD14+CD16++ monocytes for CD163 mRNA quantification,

PBMC were isolated from 40 ml of freshly collected whole blood by

Ficoll-Paque Plus (Amersham Biosciences) density-gradient centri-

fugation. Amounts not exceeding 16108 PBMC were stained with

20 ml anti-CD14 FITC, anti-HLA-DR PE and anti-CD16 PC5 for

30 min on ice before being resuspended at 16107/ml in wash

buffer. HLA-DR positive cells were gated onto a CD14 vs. CD16

dot plot and cells defined as CD14++CD162, CD14++CD16+ and

CD14+CD16++ then sorted using a FACSAria (BD Biosciences)

with purities of greater than 95% being achieved for all three

subsets. To obtain monocyte subsets for culture in vitro, 56107

elutriated monocytes were stained with 20 ml CD14-FITC and

20 ml CD16-PC5 for 30 min prior to being resuspended in 5 ml

sterile wash buffer then sorted as described above.

Quantification of mRNA in monocyte subsets
To purify mRNA, purified monocyte subsets were lysed using

Buffer A (100 mM Tris-HCl, pH 7.5, 500 mM LiCl, 10 mM

EDTA, pH 8.0, 5 mM DTT and 1% LiDS) and mRNA captured

using GenoPrep Oligo(dT) mRNA Beads as per manufacturer’s

instructions. Messenger RNA was eluted by resuspending washed

beads in 10.4 ml DEPC-treated water and incubating at 65uC for

5 min. Complementary DNA was synthesised by incubating

11.4 ml of mRNA and Anchored-oligo(dT)18 Primer (2.5 mM,

Roche) premix at 65uC for 5 min, followed by addition of 8.6 ml of

master mix (16 Reaction Buffer, 20 U RNase Inhibitor, 1 mM

dNTPs, 5 mM DTT and 10 U Transcriptor RT) and incubation

at 55uC for 30 min then 85uC for 5 min.

For real-time PCR, 2 ml of 5-fold diluted cDNA was added to

23 ml master mix (12.5 ml SuperArray RT2 Real Time SYBR

Green/Fluorescein PCR master mix (Applied Biosystems), 0.6 mM

primer pair) and real time quantitative PCR (Q-PCR) analysis

performed using an iCycler real-time PCR machine (BioRad). The

CD163 primers were 59-CCAGTCCCAAACACTGTCCT-3

(forward), 59-ATGCCAGTGAGCTTCCCGTTCAGC-39 (re-

verse) and amplified a 67 nucleotide sequence (GenBank accession

number z22968). Relative CD163 mRNA content was determined

by the comparative threshold method using GAPDH PCR as a

comparator: melt curve analysis and agarose gel electrophoresis of

PCR products were conducted to verify that the PCR reaction

amplified a single product in each case.

Figure 1. CD163 is differentially expressed on monocyte subsets at the protein and gene level. (A) Monocytes from whole blood were
identified by forward and side scatter properties and expression of CD14 vs. CD16 with subsets defined as CD14++CD162 (P2, lower right),
CD14++CD16+ (P3, upper right) and CD14+CD16++ (P4, upper left). (B) Expression of CD163 protein (dark grey) in each monocyte subset is shown
compared to matched isotype control (light grey) in the histograms. Data illustrate results from a representative experiment. (C) CD163 mRNA was
determined by Q-PCR in isolated monocyte subsets from 8 HIV-1 negative donors. Bars indicate median values. P values were calculated using the
non-parametric, Mann-Whitney U test adjusted for multiple comparisons.
doi:10.1371/journal.pone.0019968.g001

Monocyte Subset CD163 Expression in HIV-1

PLoS ONE | www.plosone.org 3 May 2011 | Volume 6 | Issue 5 | e19968



Culture of monocyte derived macrophages and
monocyte subsets

Monocytes/monocyte-derived macrophages (MDM) were cul-

tured at a concentration of 26106 cells/ml in IMDM supple-

mented with 2 mM L-glutamine (both Invitrogen Life Technol-

ogies) and 24 mg/ml gentamicin (supplemented IMDM) with

either 10% heat inactivated pooled human serum (Australian Red

Cross Blood Services, Sydney) in Teflon pots, or 10% fetal calf

serum (ICP Bio) plus M-CSF (50 U/ml, R & D systems) or GM-

CSF (40 ng/ml, kind gift of A. Lopez, Hanson Institute, Adelaide,

Australia) in sterile 5 mm polypropylene tubes (BD Bioscience).

Media was replenished with a half-media change on day 5.

In vitro monocyte and macrophage phenotyping
Monocytes or macrophages (16105) were resuspended in 100 ml

of either wash buffer or permeabilisation buffer (0.1% saponin

freshly diluted in wash buffer) for surface or total cellular staining

respectively. Cells were stained with 5 ml anti-CD163-PE or IgG-

PE, or anti-CD206 (mannose receptor)–PE to confirm maturation

[48], for 30 min on ice. Cells were washed once with wash buffer

for surface staining or once with perm buffer and once with wash

buffer for total cellular staining. Cells were then fixed with 3%

formaldehyde and analysed by flow cytometry within 24 hours.

Analysis was carried out using a 7 color FACSAria (BD Bioscience)

with FACSDiva software, or a 3 color FacsCalibur using

CellQuest software (BD Bioscience).

Statistics
Mann-Whitney U test and Wilcoxon matched pairs test was

used to test significant difference for unpaired and paired data

respectively. Non-parametric Spearman correlation coefficient was

used to test correlations. Statistics were generated using GraphPad

Prism 5 and a P value lower than 0.05 was considered significant.

Results

CD163 is differentially expressed on monocyte subsets
and can be induced by M-CSF stimulation.

Expression of CD163 protein on monocyte subsets in whole

blood was investigated within 4 h of venepuncture by flow

cytometry. Blood was collected into K3EDTA-containing vacu-

tainers since the use of both heparin and acid citrate dextran

anticoagulant tubes have been reported to alter CD163 and CD16

protein expression [41,45,49](P. Ellery and SMC unpublished

data). Monocyte subsets were defined as CD14++CD162 (P2),

CD14++CD16+ (P3) and CD14+CD16++ (P4) as shown in

figure 1A. CD163 expression was greatest on CD14++CD162

monocytes (median MFI [IQR] = 201.0 [176.0–374.0]), expressed

at an intermediate level on CD14++CD16+ monocytes (192.0

[113.0–263.0]) and low/undetectable on CD14+CD16++ mono-

cytes (5.0 [0–39.0]) A representative histogram of CD163 staining

for each subset from a single donor is presented (Figure 1B).

To determine whether the difference in CD163 protein

expression between monocyte subsets was at the level of gene

expression, CD163 mRNA was quantified in the three monocyte

subsets purified from eight healthy HIV-uninfected subjects

(Figure 1C). CD163 mRNA expression showed a similar pattern

of expression to CD163 surface expression, that is, highest in

CD14++CD162 monocytes and undetectable in CD14+CD16++
monocytes. These data show that the three monocyte subsets

express different amounts of CD163 on their surface and that this

is consistent with the relative level of CD163 mRNA in each

subset.

To systematically investigate the effect of Ficoll density gradient

isolation on monocyte subsets we performed a pair-wise

comparison of the percentage of monocytes that expressed

CD163 in whole blood and after PBMC preparation. CD163

expression was reduced on CD14++CD162 monocytes present in

PBMC preparations compared to whole blood from the same

donor by a median of 24.8% (n = 21, P = 0.0003) (Figure 2A). The

proportion of CD163 positive cells in the CD14++CD16+
monocyte subset from whole blood and PBMCs were similar in

eight donors tested (P = 0.38). These data suggest that CD163

expression on CD14++CD162 monocytes is altered by sample

manipulation and that surface expression on this subset may be

more labile than on other monocyte subsets.

To determine if the degree of cleavage of CD163 from the cell

surface differed in different monocyte subsets, we stimulated

monocytes from 4 HIV-1 negative donors with LPS to induce

shedding (Figure 2B)[31,32,33,34]. The mean fluorescence

Figure 2. Surface CD163 expression is reduced on
CD14++CD162 monocytes after density gradient separation
and LPS stimulation. (A) Comparison of CD163 protein expression on
the classical CD14++CD162 subset was carried out on 13 samples from
HIV-1 negative donors and on all monocyte subsets from a further eight
donors before and after Ficoll density gradient purification of PBMC
from whole blood. Bars represent median values. Differences were
analysed using the Wilcoxon matched pairs test. WB: whole blood,
PBMC: peripheral blood mononuclear cells. (B) Whole blood from HIV-
uninfected donors was incubated with 1 mg/ml LPS for 2 h and CD163
surface expression measured by flow cytometry. CD163 expression on
each subset (mean fluorescence intensity) is plotted as the ratio of
expression in treated compared to untreated monocytes. Data
represent mean 6 SEM for 4 independent donors. ‘ data from 1 donor
was excluded from the CD14++CD16+ data set due to insufficient cell
number.
doi:10.1371/journal.pone.0019968.g002

Monocyte Subset CD163 Expression in HIV-1
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intensity of CD163 staining in CD14++CD162 monocytes

decreased by an average of 19.7% in LPS treated monocytes

compared to controls (mean MFI 503 untreated vs. 404 in LPS

treated CD14++CD162 monocytes). In contrast, LPS treatment

had no effect on detection of CD163 in CD14++CD16+ (mean

MFI 557 untreated vs. 616 LPS treated) or CD14+CD16++ (87

untreated vs 126 LPS treated) monocyte subsets indicating that the

majority of CD163 is shed from the major CD14++CD162

monocyte population after LPS stimulation.

To determine how CD163 protein expression changes with

differentiation of monocytes to macrophages, monocytes isolated

by counter-current elutriation (n = 5 donors) were cultured under

non-adherent conditions in IMDM supplemented with human

serum but no additional growth factors. Total and surface CD163

expression and surface mannose receptor expression was measured

at various times during maturation of monocytes to monocyte-

derived macrophages (MDM) (Figure 3). As expected, monocytes

did not express mannose receptor [48,50], but following

differentiation into macrophages its expression was detectable on

the majority of cells. The frequency of CD163 expressing MDM

rapidly increased after five days in culture, reaching a maximum

after 10 days. A comparison of surface CD163 staining versus

staining following permeabilisation showed the presence of high

levels of intracellular CD163. After 10 days of culture, an average

of 70.8612.8% (mean 6 standard deviation) of MDM contained

intracellular/surface CD163. However, a substantial proportion

(35.7617.8%) of MDM expressing intracellular CD163 did not

express detectable CD163 on the cell surface. The total MFI at the

same time point was 2.5 times greater than surface alone

(16396504 vs. 6356171 fluorescence units). The fact that

CD163 is predominantly expressed intracellularly in macrophages

and not on the surface membrane as occurs in monocytes suggests

that the function of CD163 in monocytes may differ to that of

macrophages.

To address whether all three monocyte subsets are able to

differentiate into CD163-expressing MDM, irrespective of initial

levels of CD163 gene expression, subsets were isolated from

elutriated monocytes by FACS and cultured separately in the

presence of M-CSF (n = 4) or GM-CSF (n = 2) for eight days prior

to determination of surface and total CD163 protein expression.

Expression of CD163 protein increased in each monocyte subset

to similar levels when cells were cultured with M-CSF (Table 1).

Culture of monocytes from all three subsets in the presence of

GM-CSF resulted in negligible expression of surface CD163.

Intracellular CD163 was still detectable in an average of 32.8% of

the CD14++CD162 population but only in #5% of

CD14++CD16+ and CD14+CD16++ monocytes (Table 1). These

results show that CD163 expression is highly inducible, is readily

modified by macrophage growth factors and has the capacity to be

expressed by all three monocyte subsets.

CD163 expression is increased on CD14++CD16+
monocytes from HIV-1 infected donors.

We next compared CD163 protein expression on monocytes

from HIV-infected individuals (n = 38), of whom 30 were currently

receiving antiretroviral therapy, with 26 age-matched, healthy

HIV-uninfected donors. The median CD4 T cell count and viral

load for this HIV-1 cohort was 535 cells/ml and most had an

undetectable viral load (,50 copies/ml) with only 9 participants

having detectable viremia (Table S1). HIV-1 infected donors

showed the same pattern of expression of CD163 across their

monocyte subsets as uninfected donors, with the CD14++CD162

subset having the highest frequency and CD14+CD16++
monocytes the lowest frequency of CD163 expressing monocytes

(Figure 4Ai). When we compared expression of CD163 on each

subset in HIV-infected and uninfected donors we found

significantly higher expression of CD163 on CD14++CD16+
monocytes in HIV-1 infected donors compared to HIV-1

uninfected donors (38.5% vs 29.6% respectively, P = 0.021). In

CD14++CD162 monocytes expression of CD163 was higher in

HIV-1 infected donors compared to HIV-1 uninfected donors,

Figure 3. Intracellular and surface CD163 expression increases
during maturation of monocytes to macrophages. Monocytes
purified by countercurrent elutriation from healthy HIV-1 uninfected
donors were cultured in vitro for the times indicated, then stained for
CD163 with (solid line) and without (dashed line) permeabilisation to
measure total (surface and intracellular) and surface only CD163,
respectively. At the same time, cells were stained for expression of
mannose receptor to confirm maturation of monocytes into macro-
phages. Percent of monocytes/macrophages positive for CD163 is
presented in upper graph and mean fluorescence intensity of
expression in middle graph. Percent of monocytes/macrophage
positive for mannose receptor is presented in lower graph. Data
represent mean 6 SEM using 5 independent donors.
doi:10.1371/journal.pone.0019968.g003
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however, this did not reach statistical significance (72.2% vs.

65.5% respectively, P = 0.069).

As CD163 is shed via proteolytic cleavage [51], patients were

stratified based on their receiving antiretroviral therapy regimens

containing or not-containing a protease inhibitor (PI) and CD163

expression was compared on monocyte subsets. Patients treated

with PIs (n = 8) expressed higher levels of CD163 on

CD14++CD162 monocytes compared to those on a non-PI

containing regimen, although this did not reach statistical

significance (P = 0.056), possibly due to low sample size in the PI

group. CD163 expression was not increased on CD14++CD16+
monocytes (P = 0.34) from patients on a PI compared to patients

(n = 22) receiving non PI-containing regimens. This suggests that

PIs may affect expression of CD163 on CD14++CD162

monocytes and confound measurement of CD163 on this subset

in HIV patients. Exclusion of patients being treated with PIs from

the analysis resulted in there being no difference in CD163

expression on CD14++CD162 monocytes of HIV+ patients

compared to HIV-1 negative donors (P = 0.25), but a trend

towards a difference in CD14++CD16+ monocytes (P = 0.06).

There was no difference in the proportion of monocytes within

each subset between HIV-1 infected and uninfected donors

(Figure 4Aii) indicating that differences in CD163 expression

between these two groups are not due to changes in CD16 protein

expression in HIV-1 infection.

We next quantified soluble CD163 by sandwich ELISA using

plasma from a randomly chosen subset of the HIV-1 uninfected

donors (n = 11) and a cohort of HIV-1 infected donors (n = 38)

separate from that used above (Figure 4B). In this selected group of

HIV-1 infected donors median T cell count was 465 cells/ml and

median viral load was 835 copies/ml with 22 out of 38 donors

having a detectable viral load; 15 were not receiving antiretroviral

therapy. There was no significant difference in plasma sCD163

concentrations between these two groups (median [IQR] HIV-

infected = 3.0 [4.322.0], HIV-uninfected = 3.6 [4.321.6] mg/ml

P = 0.87), nor between patients on therapy being treated with or

without a protease inhibitor (P = 0.54).

It has been reported previously in HIV-infected individuals with

a CD4 count of less than 450/ml that the frequency of CD163

positive cells inversely correlated with CD4 counts [52]. We

therefore examined the relationship between CD163 protein

expression on both monocyte subsets and CD4 counts of the

cohort, analysing expression on monocytes from patients with

CD4 counts greater than or less than 500 cells/ml (Figure 5). A

plot of CD163 surface expression on both the CD14++CD162

and CD14++CD16+ monocyte subsets with the patients’ CD4 T

cell counts at time of recruitment showed a biphasic relationship.

HIV-1 infected patients with a CD4 count #500 cells/ml showed

an inverse correlation between CD4 count and the percentage of

CD14++CD162 monocytes expressing CD163 (rs = 20.55,

P = 0.027) and CD14++CD16+ monocytes expressing CD163 (rs

20.60, P = 0.014). Conversely, HIV-1 positive patients with a

CD4 T cell count .500/ml showed a positive correlation between

CD163 expression and CD4 counts (rs = 0.43, P = 0.053, for

CD14++CD162 monocytes and rs = 0.67, P = 0.0008 for

CD14++CD16+ monocytes). For both CD4 T cell counts . and

,500, the CD14++CD16+ subset demonstrated the strongest

correlation based on both P and rs value. Data were also examined

following exclusion of results from patients being treated with PIs.

For patients being treated with a non-PI containing regimen with

CD4 counts less than 500/ml the correlation between CD4 count

and surface CD163 expression was strengthened for both

CD14++CD162 and CD14++CD162 monocytes (rs = 20.67,

P = 0.009 and rs = 20.68, P = 0.008 respectively). There was no

correlation between patient viral load and surface CD163 on

either monocyte subset (data not shown).

Examination of sCD163 levels and CD4 T cell count showed a

weak correlation (rs = 0.34), such that patients with low CD4 T cell

counts had low sCD163 levels (Table S2). Further analysis of both

sCD163 and surface CD163 expression compared to CD4 cell count

in various clinical groups is presented in supplementary data table S2.

Discussion

In this study we have used whole blood flow cytometric

phenotyping assays and quantitative real time PCR to show that

CD163 is expressed in high levels on the classical CD14++CD162

monocytes, intermediate levels on CD14++CD16+ monocytes and

not at all on non-classical CD14+CD16++ monocytes. We show

that CD163 surface expression is decreased selectively on

CD14++CD162 monocytes during monocyte purification which,

together with variable antibody affinities [46], explanat the

discrepancies in the literature regarding monocyte expression of

CD163 [25,52]. We further show that all monocyte subsets induce

comparable CD163 expression following differentiation to type 2

(anti-inflammatory) macrophages in the presence of M-CSF which

suggests that CD163 positive macrophages are not derived

exclusively from CD163 expressing monocytes. Finally, we show

that CD163 is elevated on monocytes from HIV-1 infected

individuals. These data support the hypothesis that CD163 could

serve as a biomarker for immune activation and/or resolution of

inflammation in HIV-infected individuals in the HAART era

[5,6,7,13,32,39,53].

There are several conflicting reports regarding CD163 protein

expression on monocyte subsets. The reported frequency of

CD163 positive monocytes from healthy individuals has ranged

from undetectable to as high as 100% [54,55]. CD163 protein

expression on monocyte subsets has also previously been reported

to be highest on CD16+ monocytes [25]. We demonstrate that

CD163 is detectable by flow cytometry on the majority of

CD14++CD162 monocytes and in approximately half of

CD14++CD16+ monocytes. These findings are similar, albeit at

a lower level, to those reported by Monisuszko et al. [20]. In

contrast to several reports [20,25], however, we found surface

CD163 is undetectable in CD14+CD16++ monocytes ex vivo.

These findings are reflected by CD163 gene expression measured

by real time RT-PCR. The differential expression of CD163

between subsets may reflect distinct monocyte subset functions,

with the absence of CD163 on CD14+CD16++ monocytes

consistent with their pro-inflammatory role [56,57].

Table 1. Mean percent of cells expressing CD163 after culture
of the monocytes in M-CSF or GM-CSF.

n CD14++CD162 CD14++ CD16+ CD14+ CD16++

M-CSF

Surface 4 24.765.5 25.266.2 19.065.7

Total 4 51.064.6 68.864.0 52.864.8

GM-CSF

Surface 2 0.060.6 20.360.4 20.560.1

Total 2 32.8614.7 5.266.3 1.961.5

Surface and total CD163 expression were measured on macrophages derived
from each of the indicated monocyte subsets cultured for 8 days in the
presence of M-CSF or GM-CSF.
doi:10.1371/journal.pone.0019968.t001
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The conflicting results reported in the literature regarding

CD163 expression on monocyte subsets are likely to be due to a

range of technical issues. These include anticoagulant type

[52,58,59], antibody used (relating to access to epitope as well as

extracellular calcium dependence [46]), analysis of PBMC

prepared using Ficoll density gradient isolation [52,58,59] and

monocyte culture prior to analysis [25,60]. These incongruities

highlight the need for techniques of measuring CD163 expression

that involve the least amount of sample manipulation, such as

using whole blood techniques.

Examination of the effect of sample manipulation on expression

of CD163 on the surface of monocytes confirmed observations by

others [45]. However, we further show that whilst CD163

expression was significantly decreased on CD14++CD162

monocytes following sample manipulation, expression on

CD14++CD16+ monocytes was not changed following Ficoll

density gradient centrifugation. This suggests that CD163 is more

labile on the former subset. To investigate this observation we

induced CD163 shedding by LPS and found similarly reduced

CD163 surface expression on CD14++CD162 monocytes but

comparable levels on CD14++CD16+ monocytes compared to

controls.

CD163 surface expression has been shown to be altered by

cleavage of CD163 mediated by a metalloproteinase, specifically

ADAM17 (a disintegrin and metalloproteinase domain 17) [51],

rather than loss of epitopes due to conformational changes or

protein internalisation [31,32,33,34]. Monocyte subsets differen-

tially express metalloproteinases [61,62]. This most likely accounts

for the different degree of CD163 shedding between the subsets

demonstrated here, however, ADAM17 expression has not yet

been characterised on monocyte subsets. Our observations

showing an LPS-induced decrease in CD163 expression on the

classic CD14++CD162 monocytes but not CD14++CD16+
monocytes suggest that the majority of CD163 found as sCD163

in plasma originates from CD14++CD162 monocytes.

CD163 expression on monocytes and macrophages is readily

modified by immune factors such as cytokines, inflammatory

mediators and bacterial components. We showed that when

monocytes are matured into macrophages CD163 expression is

upregulated and that a significant proportion of CD163 is found

Figure 4. Membrane bound and soluble CD163 in monocyte subsets from HIV-1 infected donors. (A.i) CD163 expression on each
monocyte subset was determined using a whole blood flow cytometric assay for HIV-1 uninfected donors (closed circles, n = 27) and infected donors
(open squares, n = 38). Bars represent median values. (A.ii) The proportion of total monocytes in each of the three monocyte subsets was determined
for each donor analysed in (A.i). The event count for that subset was divided by the sum of events in each subset. Bars represent median values.
(B) Soluble CD163 in serum from 12 HIV uninfected donors, 38 HIV-1infected donors receiving antiretroviral therapy was determined by sandwich
ELISA. Bars represent median values. P values were calculated using the non-parametric Mann Whitney U test.
doi:10.1371/journal.pone.0019968.g004
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intracellularly. This intracellular pool of CD163 may be

maintained to enable rapid secretion upon stimulation, or may

indicate constitutive endocytosis [63]. To investigate the potential

for each subset to express CD163, isolated monocyte subsets were

differentiated [64] in the presence of GM-CSF and M-CSF. Using

this experimental protocol circumvents the problems resulting

from the low viability of CD16+ monocytes cultured in the

absence of added cytokines, and provides additional information

regarding pro-inflammatory type 1 and anti-inflammatory type 2

macrophages [64]. Expression of CD163 on monocyte-derived

macrophages from each subset was low after culturing in the

presence of GM-CSF, supporting previous observations [64,65].

In contrast, MDM derived from monocyte subsets cultured in the

presence of M-CSF upregulated CD163 in each subset to

comparable levels. These data indicate that despite undetectable

mRNA levels in circulating CD14+CD16++ monocytes CD163

expression can be induced by M-CSF to levels comparable to the

CD14++CD162 population.

It is uncertain whether different monocyte subsets have different

differentiation fates in vivo. Our findings have implications

regarding the origin of perivascular macrophages in the brain

which express both CD16 and CD163. Several reports have

suggested that CD14+CD16+CD163+ monocytes circulating in

the peripheral blood are potentially the precursors of perivascular

macrophages due to the similarity in phenotype [41,52]. Given

that CD16 is induced during monocyte maturation [66] and that

we have shown that CD163 can be expressed in any monocyte

subset upon stimulation, these markers are not reliable in

predicting the origin of perivascular macrophages. As monocyte

subsets can be matured into cells with distinct functional

characteristics in vitro [67], further work is required to determine

if, despite similar CD163 expression, type II macrophages derived

from different subsets have differences in immune function such as

bacterial phagocytic or T cell stimulating ability.

Our data show that the frequency of CD14++CD162CD163+
and CD14++CD16+CD163+ monocytes from HIV-infected

individuals was increased relative to age-matched, HIV-uninfected

individuals, with differences in the latter subset reaching statistical

significance. There was no significant change in the proportion of

each monocyte subset to total monocytes from HIV-1 infected

donors, the majority of whom were on HAART with an

undetectable viral load, compared to HIV-uninfected controls

(similar to our earlier observations [68]) and so this finding was not

due to upregulation of CD16 during HIV-1 infection. Comparison

of CD163 expression on monocytes from patients receiving or

not receiving a PI-containing regimen suggests that protease

inhibitors may selectively decrease cleavage of CD163 from

CD14++CD162 monocytes, accounting for the trend to increased

CD163 expression seen in HIV-infected versus HIV-1 uninfected

donors. In their study, Fischer-Smith et al. did not demonstrate

increased CD163 expression on CD14++CD162 monocytes from

HIV-1 infected donors [52]. This may be due to a range of factors,

Figure 5. Membrane CD163 expression is related to CD4 T cell count. Frequency of CD163 positive cells in CD14++CD162 monocytes (top
row) and CD14++CD16+ monocytes (bottom row) was correlated with CD4 T cell count for donors below 500 cells/ml (left column) and above
500 cells/ml (right column). Donors not currently receiving antiretroviral therapy are represented by open circles and donors receiving protease
inhibitors are represented by dotted squares. rs and P values after analysis excluding patients receiving PI are presented in parentheses after pooled
data. rs value was determined by Spearman correlation coefficient.
doi:10.1371/journal.pone.0019968.g005
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including no patients receiving PI therapy in their cohort, as well

as examination of phenotype on PBMC post Ficoll isolation which

we have shown to selectively result in loss of CD163 from

CD14++CD162 monocytes. We did not find any association

between receiving a PI-containing regimen and levels of sCD163

in plasma, but this is presumably due to the low numbers of our

patients receiving PIs. Direct comparison of CD163 expression on

CD14++CD162 monocytes and soluble CD163 levels in single

donors from a larger cohort may uncover a connection between

these parameters.

We observed a weak overall correlation between sCD163 levels

and CD4 T cell counts with no correlation between sCD163 and

HIV RNA. Previously, Fischer-Smith et al. reported an inverse

correlation between frequency of CD163+CD14++CD16+ mono-

cytes and CD4 T cell count in HIV-1 positive donors with counts

below 450 cells/ml [52]. We stratified our surface expression data

based on the commonly used and thus more clinically relevant

CD4 cutoff of 500 cells/ml and correlated CD163 expression with

CD4 counts. Whilst we found a similar negative correlation

between CD163 positive monocyte frequency and CD4 counts in

patients with low CD4 counts (for both CD14++CD16+
monocytes as well as CD14++CD162 monocytes), our data also

show a positive correlation in both monocyte subsets in donors

with T cell counts above 500 cells/ml. These observations were

similar when we stratified our patients using the same CD4 cutoff

as Fischer–Smith and colleagues. These findings are intriguing and

suggest alteration in CD163 expression on CD14++CD16+
monocytes in HIV-infected individuals may reflect either HIV-

or immune–related influences on CD163 gene and protein

expression and shedding. This might include an altered cytokine

milieu in individuals at different stages of disease e.g. raised plasma

IL-10 and cortisol [23,25,54,69,70] (reviewed [71]), defects in

cleavage of CD163 as a consequence of HIV-1 therapy,

contribution from comorbid illness such as cardiovascular disease,

or possibly alterations in gut lymphoid mass with resulting

bacterial translocation [72,73]. To fully elucidate the factors that

modulate CD163 expression in HIV-1 patients, larger cohorts

stratified on therapy type and comorbid disease are required.

Several studies have investigated changes in both membrane

bound and soluble CD163 in response to acute illness.

Examination of sCD163 levels in hospitalised patients demon-

strated that sCD163 is an acute phase marker which increases in

response to bacterial infection [5,8,32,35,36,37,74]. We did not,

however, find such a correlation in our cohort of HIV-1 infected

donors. Administration of endotoxin to healthy human subjects

results in a rapid increase in sCD163 levels with concomitant loss

of membrane expression on monocytes [33]. Given that LPS levels

are elevated in plasma of HIV-infected patients, even in those

whose viremia is suppressed by ART [72,73], we predicted that

CD163 expression on CD14++CD162 monocytes would be

decreased and sCD163 levels increased. However, we show that

membrane bound CD163 in fact increases and there is no

detectable change in sCD163 levels in HIV-1 infection. Recent

investigation into the effect of chronically raised LPS serum levels

on monocyte activation in HIV-1 infected people demonstrated

that monocytes become resistant to the stimulating effect of LPS

[75]. Monocyte tolerance to endotoxin may explain why we did

not find increased sCD163 plasma levels and the typical changes

in CD163 expression seen after acute exposure to endotoxin in vivo

[33]. As CD163 is involved in immune resolution, abrogated

CD163 responses to inflammatory stimuli may contribute to the

observed chronic immune activation/inflammation that is char-

acteristic of HIV infection. Further investigation into the effect of

chronic bacterial translocation on CD163 expression and shedding

in HIV-1 infection, and correlation with other markers of

inflammation, may uncover a better understanding of chronic

immune activation in HIV-1 infection.

The development of biomarkers that reflect chronic inflamma-

tion and/or immune activation is critical to ensure better long

term outcomes for people with HIV-1. CD163 shows potential

promise as a biomarker of monocyte/macrophage activation, but

our data suggest that a complex relationship exists between

CD163 monocyte expression and shedding on the one hand and

HIV disease progression on the other. Further studies are

warranted to define these relationships before CD163 could be

used as a prognostic indicator of HIV-1 related co-morbidities.

In the early days of antiretroviral therapy, goals for treatment

focused on maintaining life. Due to the success of combination

antiretroviral therapy focus has shifted to maintaining the health of

HIV-infected individuals. Current antiretroviral therapy, despite

effective viral suppression, does not eliminate immune activation

and chronic inflammation persists, leading to an increased

incidence of age-associated inflammatory diseases and a shortened

lifespan. As CD163 is involved in immune resolution and

protection against the development of atherosclerotic plaques,

understanding the changes in regulation of CD163 in HIV-1 is

important in addressing comorbid diseases caused by chronic

immune activation.

Supporting Information

Table S1 Virological and immunological characteristics and

antiretroviral therapy of HIV-1 infected donors at time of

participation.

(DOC)

Table S2 Correlation of membrane bound CD163 on monocyte

subsets and soluble CD163 in plasma stratified by clinical

parameter.

(DOC)

Acknowledgments

We would like to acknowledge Professor Jenny Hoy and the Clinical

Research Unit nursing staff at The Alfred Hospital for recruitment of

patients, and all the generous blood donors used in this study.

Author Contributions

Conceived and designed the experiments: ET AJ SMC PUC SL CW.

Performed the experiments: ET WC CW. Analyzed the data: ET WC.

Contributed reagents/materials/analysis tools: BB. Wrote the paper: ET

AJ SC SL PUC BB.

References

1. Crowe SM, Westhorpe CL, Mukhamedova N, Jaworowski A, Sviridov D, et al.

(2010) The macrophage: the intersection between HIV infection and

atherosclerosis. J Leukoc Biol 87: 589–598.

2. Glass JD, Fedor H, Wesselingh SL, McArthur JC (1995) Immunocytochemical

quantitation of human immunodeficiency virus in the brain: correlations with

dementia. Ann Neurol 38: 755–762.

3. Roberts ES, Zandonatti MA, Watry DD, Madden LJ, Henriksen SJ, et al. (2003)

Induction of pathogenic sets of genes in macrophages and neurons in

NeuroAIDS. Am J Pathol 162: 2041–2057.

4. Roberts ES, Masliah E, Fox HS (2004) CD163 identifies a unique population of

ramified microglia in HIV encephalitis (HIVE). J Neuropathol Exp Neurol 63:

1255–1264.

Monocyte Subset CD163 Expression in HIV-1

PLoS ONE | www.plosone.org 9 May 2011 | Volume 6 | Issue 5 | e19968



5. Knudsen TB, Larsen K, Kristiansen TB, Moller HJ, Tvede M, et al. (2007)

Diagnostic value of soluble CD163 serum levels in patients suspected of

meningitis: Comparison with CRP and procalcitonin. Scand J Infect Dis 39:

542–553.

6. Schaer DJ, Schleiffenbaum B, Kurrer M, Imhof A, Bachli E, et al. (2005) Soluble

hemoglobin-haptoglobin scavenger receptor CD163 as a lineage-specific marker

in the reactive hemophagocytic syndrome. Eur J Haematol 74: 6–10.

7. Bleesing J, Prada A, Siegel DM, Villanueva J, Olson J, et al. (2007) The

diagnostic significance of soluble CD163 and soluble interleukin-2 receptor

alpha-chain in macrophage activation syndrome and untreated new-onset

systemic juvenile idiopathic arthritis. Arthritis Rheum 56: 965–971.

8. Moller HJ, Aerts H, Gronbaek H, Peterslund NA, Hyltoft Petersen P, et al.

(2002) Soluble CD163: a marker molecule for monocyte/macrophage activity in

disease. Scand J Clin Lab Invest Suppl 237: 29–33.

9. Kristiansen M, Graversen JH, Jacobsen C, Sonne O, Hoffman HJ, et al. (2001)

Identification of the haemoglobin scavenger receptor. Nature 409: 198–201.

10. Schaer CA, Vallelian F, Imhof A, Schoedon G, Schaer DJ (2007) CD163-

expressing monocytes constitute an endotoxin-sensitive Hb clearance compart-

ment within the vascular system. J Leukoc Biol 82: 106–110.

11. Schaer DJ, Alayash AI, Buehler PW (2007) Gating the radical hemoglobin to

macrophages: the anti-inflammatory role of CD163, a scavenger receptor.

Antioxid Redox Signal 9: 991–999.

12. Bover LC, Cardo-Vila M, Kuniyasu A, Sun J, Rangel R, et al. (2007) A

previously unrecognized protein-protein interaction between TWEAK and

CD163: potential biological implications. J Immunol 178: 8183–8194.

13. Fabriek BO, Polfliet MM, Vloet RP, van der Schors RC, Ligtenberg AJ, et al.

(2007) The macrophage CD163 surface glycoprotein is an erythroblast adhesion

receptor. Blood 109: 5223–5229.

14. Fabriek BO, van Bruggen R, Deng DM, Ligtenberg AJ, Nazmi K, et al. (2009)

The macrophage scavenger receptor CD163 functions as an innate immune

sensor for bacteria. Blood 113: 887–892.

15. Philippidis P, Mason JC, Evans BJ, Nadra I, Taylor KM, et al. (2004)

Hemoglobin scavenger receptor CD163 mediates interleukin-10 release and

heme oxygenase-1 synthesis: antiinflammatory monocyte-macrophage responses

in vitro, in resolving skin blisters in vivo, and after cardiopulmonary bypass

surgery. Circ Res 94: 119–126.

16. Hamann W, Floter A, Schmutzler W, Zwadlo-Klarwasser G (1995) Character-

ization of a novel anti-inflammatory factor produced by RM3/1 macrophages

derived from glucocorticoid treated human monocytes. Inflamm Res 44:

535–540.

17. Polfliet MM, Fabriek BO, Daniels WP, Dijkstra CD, van den Berg TK (2006)

The rat macrophage scavenger receptor CD163: expression, regulation and role

in inflammatory mediator production. Immunobiology 211: 419–425.

18. Hogger P, Sorg C (2001) Soluble CD163 inhibits phorbol ester-induced

lymphocyte proliferation. Biochem Biophys Res Commun 288: 841–843.

19. Frings W, Dreier J, Sorg C (2002) Only the soluble form of the scavenger

receptor CD163 acts inhibitory on phorbol ester-activated T-lymphocytes,

whereas membrane-bound protein has no effect. FEBS Lett 526: 93–96.

20. Moniuszko M, Bodzenta-Lukaszyk A, Kowal K, Lenczewska D, Dabrowska M

(2009) Enhanced frequencies of CD14++CD16+, but not CD14+CD16+,

peripheral blood monocytes in severe asthmatic patients. Clin Immunol 130:

338–346.

21. Goodale D, Phay C, Brown W, Gray-Statchuk L, Furlong P, et al. (2009) Flow

cytometric assessment of monocyte activation markers and circulating

endothelial cells in patients with localized or metastatic breast cancer.

Cytometry B Clin Cytom 76: 107–117.

22. Goldstein JI, Goldstein KA, Wardwell K, Fahrner SL, Goonan KE, et al. (2003)

Increase in plasma and surface CD163 levels in patients undergoing coronary

artery bypass graft surgery. Atherosclerosis 170: 325–332.

23. Zwadlo-Klarwasser G, Bent S, Haubeck HD, Sorg C, Schmutzler W (1990)

Glucocorticoid-induced appearance of the macrophage subtype RM 3/1 in

peripheral blood of man. Int Arch Allergy Appl Immunol 91: 175–180.

24. Wenzel I, Roth J, Sorg C (1996) Identification of a novel surface molecule,

RM3/1, that contributes to the adhesion of glucocorticoid-induced human

monocytes to endothelial cells. Eur J Immunol 26: 2758–2763.

25. Buechler C, Ritter M, Orso E, Langmann T, Klucken J, et al. (2000) Regulation

of scavenger receptor CD163 expression in human monocytes and macrophages

by pro- and antiinflammatory stimuli. J Leukoc Biol 67: 97–103.

26. Weaver LK, Pioli PA, Wardwell K, Vogel SN, Guyre PM (2007) Up-regulation

of human monocyte CD163 upon activation of cell-surface Toll-like receptors.

J Leukoc Biol 81: 663–671.

27. Xu W, Schlagwein N, Roos A, van den Berg TK, Daha MR, et al. (2007)

Human peritoneal macrophages show functional characteristics of M-CSF-

driven anti-inflammatory type 2 macrophages. Eur J Immunol 37: 1594–1599.

28. Williams L, Jarai G, Smith A, Finan P (2002) IL-10 expression profiling in

human monocytes. J Leukoc Biol 72: 800–809.

29. Gleissner CA, Shaked I, Erbel C, Bockler D, Katus HA, et al. (2010) CXCL4

downregulates the atheroprotective hemoglobin receptor CD163 in human

macrophages. Circ Res 106: 203–211.

30. Sulahian TH, Pioli PA, Wardwell K, Guyre PM (2004) Cross-linking of

FcgammaR triggers shedding of the hemoglobin-haptoglobin scavenger receptor

CD163. J Leukoc Biol 76: 271–277.

31. Droste A, Sorg C, Hogger P (1999) Shedding of CD163, a novel regulatory

mechanism for a member of the scavenger receptor cysteine-rich family.

Biochem Biophys Res Commun 256: 110–113.

32. Matsushita N, Kashiwagi M, Wait R, Nagayoshi R, Nakamura M, et al. (2002)

Elevated levels of soluble CD163 in sera and fluids from rheumatoid arthritis

patients and inhibition of the shedding of CD163 by TIMP-3. Clin Exp

Immunol 130: 156–161.

33. Hintz KA, Rassias AJ, Wardwell K, Moss ML, Morganelli PM, et al. (2002)

Endotoxin induces rapid metalloproteinase-mediated shedding followed by up-

regulation of the monocyte hemoglobin scavenger receptor CD163. J Leukoc

Biol 72: 711–717.

34. Weaver LK, Hintz-Goldstein KA, Pioli PA, Wardwell K, Qureshi N, et al.

(2006) Pivotal advance: activation of cell surface Toll-like receptors causes

shedding of the hemoglobin scavenger receptor CD163. J Leukoc Biol 80:

26–35.

35. Fabriek BO, Moller HJ, Vloet RP, van Winsen LM, Hanemaaijer R, et al.

(2007) Proteolytic shedding of the macrophage scavenger receptor CD163 in

multiple sclerosis. J Neuroimmunol 187: 179–186.

36. Daly A, Walsh C, Feighery C, O’Shea U, Jackson J, et al. (2006) Serum levels of

soluble CD163 correlate with the inflammatory process in coeliac disease.

Aliment Pharmacol Ther 24: 553–559.

37. Moller HJ, Peterslund NA, Graversen JH, Moestrup SK (2002) Identification of

the hemoglobin scavenger receptor/CD163 as a natural soluble protein in

plasma. Blood 99: 378–380.

38. Kusi KA, Gyan BA, Goka BQ, Dodoo D, Obeng-Adjei G, et al. (2008) Levels of

soluble CD163 and severity of malaria in children in Ghana. Clin Vaccine

Immunol 15: 1456–1460.

39. Davis BH, Zarev PV (2005) Human monocyte CD163 expression inversely

correlates with soluble CD163 plasma levels. Cytometry B Clin Cytom 63:

16–22.

40. Fischer-Smith T, Bell C, Croul S, Lewis M, Rappaport J (2008) Monocyte/

macrophage trafficking in acquired immunodeficiency syndrome encephalitis:

lessons from human and nonhuman primate studies. J Neurovirol 14: 318–326.

41. Kim WK, Alvarez X, Fisher J, Bronfin B, Westmoreland S, et al. (2006) CD163

identifies perivascular macrophages in normal and viral encephalitic brains and

potential precursors to perivascular macrophages in blood. Am J Pathol 168:

822–834.

42. Burdo TH, Soulas C, Orzechowski K, Button J, Krishnan A, et al. (2010)

Increased monocyte turnover from bone marrow correlates with severity of SIV

encephalitis and CD163 levels in plasma. PLoS Pathog 6: e1000842.

43. Yearley JH, Pearson C, Shannon RP, Mansfield KG (2007) Phenotypic variation

in myocardial macrophage populations suggests a role for macrophage

activation in SIV-associated cardiac disease. AIDS Res Hum Retroviruses 23:

515–524.

44. Sanchez C, Domenech N, Vazquez J, Alonso F, Ezquerra A, et al. (1999) The

porcine 2A10 antigen is homologous to human CD163 and related to

macrophage differentiation. J Immunol 162: 5230–5237.

45. Moniuszko M, Kowal K, Rusak M, Pietruczuk M, Dabrowska M, et al. (2006)

Monocyte CD163 and CD36 expression in human whole blood and isolated

mononuclear cell samples: influence of different anticoagulants. Clin Vaccine

Immunol 13: 704–707.

46. Maniecki MB, Etzerodt A, Moestrup SK, Moller HJ, Graversen JH (2011)

Comparative assessment of the recognition of domain-specific CD163

monoclonal antibodies in human monocytes explains wide discrepancy in

reported levels of cellular surface CD163 expression. Immunobiology In press.

47. Ziegler-Heitbrock L, Ancuta P, Crowe S, Dalod M, Grau V, et al. (2010)

Nomenclature of monocytes and dendritic cells in blood. Blood 116: e74–80.

48. Musson RA (1984) Human monocyte maturation/differentiation during in vitro

culture. Surv Immunol Res 3: 138–141.

49. Souques F, Duperray C, Pene J, Bousquet J, Arnoux B (1997) Modification of

surface marker expression on CD14 monocytes of allergic patients after lysis or

Ficoll purification. J Immunol Methods 204: 153–160.

50. Shepherd VL, Campbell EJ, Senior RM, Stahl PD (1982) Characterization of

the mannose/fucose receptor on human mononuclear phagocytes.

J Reticuloendothel Soc 32: 423–431.

51. Etzerodt A, Maniecki MB, Moller K, Moller HJ, Moestrup SK (2010) Tumor

necrosis factor alpha-converting enzyme (TACE/ADAM17) mediates ectodo-

main shedding of the scavenger receptor CD163. J Leukoc Biol 88: 1201–1205.

52. Fischer-Smith T, Tedaldi E, Rappaport J (2008) CD163/CD16 Coexpression by

Circulating Monocytes/Macrophages in HIV: Potential Biomarkers for HIV

Infection and AIDS Progression. AIDS Research and Human Retroviruses 24:

417–421.

53. Bissel SJ, Wang G, Trichel AM, Murphey-Corb M, Wiley CA (2006)

Longitudinal analysis of activation markers on monocyte subsets during the

development of simian immunodeficiency virus encephalitis. J Neuroimmunol

177: 85–98.

54. Sulahian TH, Hogger P, Wahner AE, Wardwell K, Goulding NJ, et al. (2000)

Human monocytes express CD163, which is upregulated by IL-10 and identical

to p155. Cytokine 12: 1312–1321.

55. Van den Heuvel MM, Tensen CP, van As JH, Van den Berg TK, Fluitsma DM,

et al. (1999) Regulation of CD163 on human macrophages: cross-linking of

CD163 induces signalling and activation. J Leukoc Biol 66: 858–866.

Monocyte Subset CD163 Expression in HIV-1

PLoS ONE | www.plosone.org 10 May 2011 | Volume 6 | Issue 5 | e19968



56. Belge KU, Dayyani F, Horelt A, Siedlar M, Frankenberger M, et al. (2002) The

proinflammatory CD14+CD16+DR++ monocytes are a major source of TNF.
J Immunol 168: 3536–3542.

57. Ziegler-Heitbrock L (2007) The CD14+ CD16+ blood monocytes: their role in

infection and inflammation. J Leukoc Biol 81: 584–592.
58. Boyle JJ, Harrington HA, Piper E, Elderfield K, Stark J, et al. (2009) Coronary

intraplaque hemorrhage evokes a novel atheroprotective macrophage pheno-
type. Am J Pathol 174: 1097–1108.

59. Pilling D, Fan T, Huang D, Kaul B, Gomer RH (2009) Identification of markers

that distinguish monocyte-derived fibrocytes from monocytes, macrophages, and
fibroblasts. PLoS One 4: e7475.

60. Stec M, Weglarczyk K, Baran J, Zuba E, Mytar B, et al. (2007) Expansion and
differentiation of CD14+CD16(-) and CD14+ +CD16+ human monocyte

subsets from cord blood CD34+ hematopoietic progenitors. J Leukoc Biol 82:
594–602.

61. Ancuta P, Wang J, Gabuzda D (2006) CD16+ monocytes produce IL-6, CCL2,

and matrix metalloproteinase-9 upon interaction with CX3CL1-expressing
endothelial cells. J Leukoc Biol 80: 1156–1164.

62. Richens J, Fairclough L, Ghaemmaghami AM, Mahdavi J, Shakib F, et al.
(2007) The detection of ADAM8 protein on cells of the human immune system

and the demonstration of its expression on peripheral blood B cells, dendritic

cells and monocyte subsets. Immunobiology 212: 29–38.
63. Schaer CA, Schoedon G, Imhof A, Kurrer MO, Schaer DJ (2006) Constitutive

endocytosis of CD163 mediates hemoglobin-heme uptake and determines the
noninflammatory and protective transcriptional response of macrophages to

hemoglobin. Circ Res 99: 943–950.
64. Verreck FA, de Boer T, Langenberg DM, Hoeve MA, Kramer M, et al. (2004)

Human IL-23-producing type 1 macrophages promote but IL-10-producing

type 2 macrophages subvert immunity to (myco)bacteria. Proc Natl Acad
Sci U S A 101: 4560–4565.

65. Verreck FA, de Boer T, Langenberg DM, van der Zanden L, Ottenhoff TH
(2006) Phenotypic and functional profiling of human proinflammatory type-1

and anti-inflammatory type-2 macrophages in response to microbial antigens

and IFN-gamma- and CD40L-mediated costimulation. J Leukoc Biol 79:
285–293.

66. Kruger M, Coorevits L, De Wit TP, Casteels-Van Daele M, Van De Winkel JG,

et al. (1996) Granulocyte-macrophage colony-stimulating factor antagonizes the

transforming growth factor-beta-induced expression of Fc gamma RIII (CD16)

on human monocytes. Immunology 87: 162–167.

67. Ancuta P, Weiss L, Haeffner-Cavaillon N (2000) CD14+CD16++ cells derived

in vitro from peripheral blood monocytes exhibit phenotypic and functional

dendritic cell-like characteristics. Eur J Immunol 30: 1872–1883.

68. Jaworowski A, Ellery P, Maslin CL, Naim E, Heinlein AC, et al. (2006) Normal

CD16 Expression and Phagocytosis of Mycobacterium avium Complex by

Monocytes from a Current Cohort of HIV-1-Infected Patients. J Infect Dis 193:

693–697.

69. Morganelli PM, Guyre PM (1988) IFN-gamma plus glucocorticoids stimulate

the expression of a newly identified human mononuclear phagocyte-specific

antigen. J Immunol 140: 2296–2304.

70. Hogger P, Dreier J, Droste A, Buck F, Sorg C (1998) Identification of the

integral membrane protein RM3/1 on human monocytes as a glucocorticoid-

inducible member of the scavenger receptor cysteine-rich family (CD163).

J Immunol 161: 1883–1890.

71. Clerici M, Galli M, Bosis S, Gervasoni C, Moroni M, et al. (2000)

Immunoendocrinologic abnormalities in human immunodeficiency virus

infection. Ann N Y Acad Sci 917: 956–961.

72. Brenchley JM, Price DA, Schacker TW, Asher TE, Silvestri G, et al. (2006)

Microbial translocation is a cause of systemic immune activation in chronic HIV

infection. Nat Med 12: 1365–1371.

73. Rajasuriar R, Booth D, Solomon A, Chua K, Spelman T, et al. (2010) Biological

determinants of immune reconstitution in HIV-infected patients receiving

antiretroviral therapy: the role of interleukin 7 and interleukin 7 receptor alpha

and microbial translocation. J Infect Dis 202: 1254–1264.

74. Moller HJ, Moestrup SK, Weis N, Wejse C, Nielsen H, et al. (2006) Macrophage

serum markers in pneumococcal bacteremia: Prediction of survival by soluble

CD163. Crit Care Med 34: 2561–2566.

75. Rempel H, Sun B, Calosing C, Pillai SK, Pulliam L (2010) Interferon-alpha

drives monocyte gene expression in chronic unsuppressed HIV-1 infection.

AIDS 24: 1415–1423.

Monocyte Subset CD163 Expression in HIV-1

PLoS ONE | www.plosone.org 11 May 2011 | Volume 6 | Issue 5 | e19968


