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ABSTRACT 30 

Early lifestages of the Pacific oyster (Crassostrea gigas) are highly susceptible to infection 31 

by OsHV-1 µVar, but little information exists regarding metabolic or pathophysiological 32 

responses of larval hosts. Using a metabolomics approach, we identified a range of metabolic 33 

and immunological responses in oyster larvae exposed to OsHV-1 µVar; some of which have 34 

not previously been reported in molluscs. Multivariate analyses of entire metabolite profiles 35 

were able to separate infected from non-infected larvae. Correlation analysis revealed the 36 

presence of major perturbations in the underlying biochemical networks and secondary 37 

pathway analysis of functionally-related metabolites identified a number of prospective 38 

pathways differentially regulated in virus-exposed larvae. These results provide new insights 39 

into the pathogenic mechanisms of OsHV-1 infection in oyster larvae, which may be applied 40 

to develop disease mitigation strategies and/or as new phenotypic information for selective 41 

breeding programmes aiming to enhance viral resistance. 42 

Keywords: Aquaculture, Crassostrea gigas, Larvae, Metabolism, Metabolomics, Ostreid 43 

herpesvirus  44 

1. INTRODUCTION 45 

With an estimated value of $4.17 billion USD (FAO 2016), oysters are one of the most 46 

commercially important groups of aquatic organisms in the world. In 2014, global 47 

aquaculture harvests reached 5.2 million tonnes, representing one third of all cultivated 48 

marine molluscs. Although total production volume remains high, growth of the industry has 49 

been severely hampered in recent years by extreme disease outbreaks during warmer summer 50 

months. Ostreid Herpesvirus (OsHV-1) is a new and emerging viral disease of several 51 

molluscan taxa, including oysters (Batista et al. 2015; Sanmartín et al. 2016), scallops (Arzul 52 

et al. 2001; Ren et al. 2013), and clams (Xia et al. 2015a; Bai et al. 2016). OsHV-1 has also 53 
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been detected in mussels, but without signs of infectivity or adverse consequences (Burge et 54 

al. 2011; Domeneghetti et al. 2014), making them a potential reservoir for the virus. Over the 55 

past couple of decades, OsHV-1 has been widely associated with mass mortalities of farmed 56 

oysters around the globe. A growing number of epidemiology studies and experimental trials 57 

suggest that the virus is a causal factor in these events (Friedman et al. 2005; Burge et al. 58 

2007; Segarra et al. 2010; Garcia et al. 2011; Schikorski et al. 2011a,b; Dégremont et al. 59 

2015a,b). With stock losses of up to 100%, economic and social consequences due to the 60 

spread of the disease have been devastating in countries such as France, Ireland, USA, China, 61 

Australia and New Zealand  where oyster aquaculture is a vital primary industry (Burge et al. 62 

2006; Lewis et al. 2012; Castinel et al. 2015). From the perspectives of many scientists, 63 

farmers and stakeholders alike, OsHV-1 has been articulated to represent the biggest 64 

individual threat to oyster production that the sector has ever faced (Lewis et al. 2012; 65 

Castinel et al. 2015).  66 

 First evidences for the presence of herpesvirus genetic material in bivalves was 67 

obtained in 1976 from samples of Ostrea edulis in the UK (Davison et al. 2005). However, 68 

widespread detection of herpesviruses and associations with mass mortalities of shellfish 69 

were not apparent until the early 1990’s (Renault et al. 1995). During the following decade, 70 

many occurrences of viral infections were documented around the world, and by 2005 71 

molecular characterisations had led to the designation of the pathogen as the OsHV-1 72 

reference genotype (GenBank accession no. AY509253.2) (Renault & Arzul 2001; Davison 73 

et al. 2005). More recently, there has been an emergence of numerous OsHV-1 variants 74 

affiliated with mortalities in different bivalve species displaying different epidemiological 75 

characteristics, and it appears that OsHV-1 is undergoing rapid evolution (Grijalva-Chon et 76 

al. 2013; Renault et al. 2014; Bai et al. 2015; Martenot et al. 2015). In 2008, the detection of 77 

a highly virulent new strain, OsHV-1 µVar (GenBank accession no. HQ842610.1), was 78 
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described in association with massive losses of oyster spat in France, Ireland and the UK 79 

(Segarra et al. 2010). By 2010, this new variant had reached the coasts of Australia and New 80 

Zealand, killing huge numbers of oyster stock within days and leading to sector collapses in 81 

certain regions over the following few years (Jenkins 2013; Keeling et al. 2014). Between 82 

2011 and 2013, genetic analysis of cultured oysters from China, Korea and Japan revealed 83 

widespread herpesvirus infections from numerous genotypes across the East Asiatic region 84 

(Shimahara et al. 2012; Hwang et al. 2013; Jee et al. 2013; Bai et al. 2015, 2016). High 85 

mortalities associated with OsHV-1 µVar were observed in Swedish and Norwegian 86 

hatcheries towards the end of 2014 (Mortensen et al. 2016). More recently, a new outbreak in 87 

Tasmania in 2016 has crippled the Australian oyster aquaculture sector and its selective 88 

breeding program (Davis 2016; Milne 2016; Whittington et al. 2016). Thus, it is clear that the 89 

extent of this new variant’s geographical reach is indeed a major global concern. 90 

 Due to the widespread prevalence and substantial socioeconomic consequences of 91 

OsHV-1 µVar, it is vital that knowledge of the interactions between the virus and its hosts are 92 

obtained to better understand pathogenesis of the disease, develop mitigation strategies, and 93 

guide management decisions. To provide such knowledge, a series of focused research 94 

themes relating to the spread of the virus and its mechanisms of infection have been 95 

conducted in recent years including genotyping and phylogenetics (Renault et al. 2012; 96 

Martenot et al. 2015; Mineur et al. 2015; Burioli et al. 2016), development of experimental 97 

infection models (Paul-Pont et al. 2015), modes of transmission (Burge & Friedman 2012; 98 

Lionel et al. 2013; Petton et al. 2013; Evans et al. 2016), viral replication and virulence 99 

processes (Segarra et al. 2014a, 2016; Green et al. 2015; Martenot et al. 2016), antiviral 100 

features of immunity and host responses at transcriptomic and proteomic levels (Renault et al. 101 

2011; Corporeau et al. 2014; Green et al. 2014a,b; Normand et al. 2014; Segarra et al. 102 

2014a,b; He et al. 2015) and identification of virus-resistant traits for selective breeding trials 103 
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(Dégremont 2013; Dégremont et al. 2015a,b). Most of these studies have focused on post-104 

metamorphic life stages. However, size and age are significant factors in viral susceptibility 105 

and pre-metamorphic larval forms appear to be more vulnerable than their juvenile or adult 106 

counterparts (Oden et al. 2011; Dégremont 2013; Paul-Pont et al. 2013; Azéma et al. 2016; 107 

Dégremont et al. 2016). 108 

 Many oyster farms rely on large-scale hatchery production of larvae to supply spat for 109 

growout, with increasing demand and stakeholder interests to enhance larval production 110 

capacities (Barnard 2014). Thus, it is essential that we extend our knowledge to characterise 111 

the pathophysiology of the disease during early ontogeny. Furthermore, the impacts of 112 

OsHV-1 µVar on the health of wild populations and their connectivity through larval 113 

mortalities, altered larval dispersal potentials, and reduced spat-falls are almost wholly 114 

unknown, but are likely to be substantial (Dégremont et al. 2016). In order to assess the 115 

ecological consequences of the disease and understand natural vectors and boundaries which 116 

may influence its spread, it is important to focus research across all developmental stages. In 117 

addition, the identification of specific genotypic and phenotypic traits in larvae which reflect 118 

disease susceptibility/resistance would be highly beneficial for monitoring early outcomes of 119 

selective breeding programs. Detailed physiological analysis of the host-virus interaction via 120 

use of –omics technologies (e.g., transcriptomics, proteomics and metabolomics) may 121 

provide fruitful for discovering such traits (Gómez-Chiarri et al. 2015). There are very few 122 

studies which have focused on the highly susceptible pre-metamorphic life-stage and, to our 123 

knowledge, none which have utilised metabolomic-based approaches to better understand the 124 

physiological effect of OsHV-1 infection on homeostatic control mechanisms of metabolism 125 

and immunity.  126 

 Metabolomics is a newly developing and rapidly advancing field under the –omics 127 

banner which aims to provide global snapshots of alterations in the metabolite, or small 128 
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molecule (<1 KDa), cellular component (Holmes et al. 2008). Metabolites are the ultimate 129 

end-products of gene expression and are strongly influenced by endogenous regulatory 130 

mechanisms, as well as by external elements (Fiehn 2002). As intermediates of metabolism, 131 

metabolites comprise the available biochemical depot of macromolecular precursors and 132 

energy transfer molecules required for optimal organismal growth and functioning. Thus, the 133 

composition of the metabolite pool and their flux dynamics provide a closer representation of 134 

an organism’s phenotype than molecular features at other levels of biological organisation, 135 

such as gene transcripts, which may display considerable temporal variations in expression 136 

compared to the final phenotypic response, or be entirely decoupled from downstream 137 

metabolic processes (Cascante & Marin 2008; Winter & Krömer 2013; Feussner & Polle 138 

2015). With many recent applications across the life sciences (e.g., functional genomics 139 

[Sévin et al. 2015], selective breeding [Hill et al. 2015; Hong et al. 2016], aquaculture-related 140 

research [Young et al. 2015, 2016; Alfaro & Young 2016], toxicology [Bouhifd et al. 2013; 141 

Størseth & Hammer 2014; Chen et al. 2016a] and disease diagnostics, monitoring and 142 

prevention [Pallares-Méndez et al. 2016; Wishart 2016]), metabolomics is proving extremely 143 

valuable as a highly efficient approach for generating new hypotheses and deciphering 144 

complex metabolic and gene regulatory networks of vertebrate and invertebrate models. 145 

 By scanning broad sets of metabolic features in whole organisms, tissues or biological 146 

fluids in response to environmental influences, such as bacterial or viral infections, 147 

metabolomics-based approaches can provide novel information to gain insights into the 148 

mechanisms of disease progression, resistance and remediation in aquatic organisms 149 

(reviewed by Alfaro & Young 2016; Young & Alfaro 2016). For example, metabolomics has 150 

recently been successfully applied to identify biomarkers for Vibrio spp. infections in mussels 151 

and crabs (Wu et al. 2013; Ellis et al. 2014; Su et al. 2014; Ye et al. 2016), to gain detailed 152 

metabolic information on tissue-specific host responses of shrimp and crayfish to white spot 153 
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syndrome virus (Liu et al. 2015; Chen et al. 2016b; Fan et al. 2016), and to develop practical 154 

treatment methods for streptococcal disease in fish (Ma et al. 2015; Zhao et al. 2015). 155 

Although limitedly applied to the investigation of marine invertebrate early life stages thus 156 

far, metabolomics has great potential to provide new insights into the interactions between 157 

OsHV-1 µVar and its oyster larval hosts. Thus, we have conducted the first metabolomics 158 

study to assess gross compositional alterations within the oyster larval metabolome in 159 

response to OsHV-1 infection.  160 

2.  METHODS 161 

Refer to the Supplementary Methods file for detailed method descriptors. 162 

2.1 Larval challenge 163 

OsHV-1 µVar inoculum was prepared from oysters that had been stored at −80°C and 164 

previously tested positive by qPCR (primers: GTCGCATCTTTGGATTTAACAA [BF] and 165 

ACTGGGATCCGACTGACAAC [B4], after Martenot et al. [2010]). A whole tissue 166 

homogenate was filtered and the virus concentration was determined via qPCR using BF and 167 

B4 primers in a SYBR Green assay. Oyster larvae were produced from selectively bred 168 

broodstock maintained by the Cawthron Institute (Nelson, New Zealand) and reared in a 170 169 

L conical flowthrough tank to 16 days post-fertilisation, using standard industry protocols. A 170 

cohort of healthy larvae was distributed among 12 × 2L beakers containing sterile synthetic 171 

seawater, at a density of 7 larvae mL-1. OshV-1 inoculum was added to six beakers at a 172 

concentration previously determined to cause mortality, with the remaining beakers serving 173 

as negative controls (i.e., six replicates per treatment). After 48 hrs, behavioural observations 174 

were made and all larvae were snap frozen and stored at –80°C until metabolite analysis. 175 
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2.2 Metabolite extraction, analysis and identification  176 

Metabolites were co-extracted with an internal standard using a cold methanol-water method 177 

and derivatised via methyl chloroformate (MCF) alkylation according to Villas-Bôas et al. 178 

(2011), then analysed via gas chromatography mass spectrometry (Thermo Trace GC Ultra 179 

system) according to Smart et al. (2010). Deconvolution of chromatographic data was 180 

performed using the Automated Mass Spectral Deconvolution and Identification System 181 

(AMDIS v2.66) software.  Metabolites were identified using Chemstation software (Agilent 182 

Technologies) and customised R xcms-based scripts (Aggio et al. 2011) to interrogate an in-183 

house library of MCF derivatised compounds.  184 

2.3 Statistics 185 

Peak intensity data were normalised against the internal standard and by sample-specific 186 

biomass, prior to being autoscaled. All statistical analyses were conducted using 187 

Metaboanalyst 3.0 (Xia et al. 2015b). Univariate analyses were performed to screen 188 

metabolite profile differences between controls and treatments, including foldchange 189 

analysis, students t-test , Significant Analysis of Metabolites/Microarrays (SAM) and 190 

Empirical Bayes Analysis of Metabolites/Microarrays (EBAM). Agglomerative Hierarchical 191 

Cluster Analysis (HCA), k-means clustering (kMC) and Principal Components Analysis 192 

(PCA) were used as unsupervised multivariate cluster analyses to identify natural groupings 193 

of samples based on the underlying structure of the data. Projection to Latent Structures 194 

Discriminant Analysis (PLS-DA) and Random Forrest (RF) analysis were used as supervised 195 

multivariate classification analysis methods. The PLS-DA model was validated using Leave 196 

One Out Cross Validation (LOOCV), the model performance was assessed via R2 and Q2 197 

values, and important classifiers were identified via their Variable Importance in Projection 198 

(VIP) scores. RF Receiver Operator Characteristic (ROS) curves were generated by Monte-199 
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Carlo Cross Validation (MCCV) using balanced subsampling. Quantitative Enrichment 200 

Analysis (QEA [Xia & Wishart 2010]) and Network Topology Analysis (NTA [Nikiforova & 201 

Willmitzer 2007]) were used as pathway analysis methods to investigate functional 202 

relationships among the annotated metabolites.  Biochemical pathways in the Kyoto 203 

Encyclopedia of Genes and Genomes database (Kanehisa & Goto 2000) involving two or 204 

more annotated metabolites with simultaneous QEA p-values < 0.05, QEA false discovery 205 

rates [FDRs] < 0.1, and with NTA Pathway Impact (PI) scores > 0.1 were considered as 206 

potential primary target pathways of interest. Correlation analysis was used to identify major 207 

differences in pairwise metabolite correlations (Pearson). Correlation Network Analysis 208 

(CNA) was performed to provide enhanced visualisation of metabolite relationships using 209 

Cytoscape 3.0 software (Shannon et al. 2003) and the ExpressionCorrelation plugin 210 

(Karnovsky et al. 2012).     211 

3. RESULTS 212 

The metabolite profiles of oyster larvae exposed to OsHV-1 µVar were compared to those 213 

from non-exposed control larvae in order to gain insights into the pathogenic mechanisms of 214 

infection. Observations of larval behaviour were made every 12 hrs during the trial until first 215 

signs of differences between virus-exposed larvae and controls were discerned, i.e., changes 216 

in swimming speeds, trajectories and distributions within the water column. After 48 hrs, 217 

organisms that had been challenged with OsHV-1 µVar tended to be aggregated in the lower 218 

30–50% of the water columns compared to control larvae which were more evenly 219 

distributed. When examined under the microscope, virus-exposed larvae also displayed 220 

slower motility and abnormal swimming patterns (i.e., horizontal planar circular motions 221 

rather than random) characteristic of OsHV-1 infections reported previously (Burge & 222 

Friedman 2012; DoA 2015; OIE 2016). However, larval coloration (a commonly used crude 223 
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assessment which can indicate severe poor health status) generally appeared to be visually 224 

similar between treatments. Mortality assessments revealed that 100% of oyster larvae in all 225 

beakers were alive at the time of sampling for metabolomics.  226 

3.1 Univariate analysis 227 

 GC-MS analysis of larval extracts detected a total of 105 unique metabolites after QC 228 

filtering of the data. Of these, 75 were attributed specific chemical identities by matching 229 

chromatographic and mass spectral information against our in-house metabolite library 230 

(Supplementary Table 1). The remaining 30 features are currently listed as ‘unknowns’ since 231 

no matches were found (Supplementary Table 2). Univariate statistical analyses showed a 232 

number of differences in the metabolite profiles between control and virus-infected larvae 233 

(Figure 1). SAM identified 30 metabolites as being differentially (p < 0.05) expressed 234 

between larvae exposed to OsHV-1 µVar and control larvae with an FDR of 3.1% (Figure 235 

1A), whereas EBAM identified 28 metabolites as being differentially expressed with an FDR 236 

of 4.7% (Figure 1B). The summarised results of student’s t-test, SAM and EBAM are 237 

displayed in Figure 1C, along with their relative fold changes. Taking the results of these 238 

analyses together, the abundances of nine metabolites were likely under expressed in virus-239 

infected larvae compared to the metabolic baseline of control organisms, and 20 metabolites 240 

were likely over expressed. Full details of the univariate statistical analyses are provided in 241 

Supplementary Tables 1 and 2. 242 

3.2 Unsupervised multivariate cluster analysis 243 

 Unsupervised multivariate analyses of entire metabolite profiles revealed that good 244 

separation between control and virus-infected larvae could be obtained based on the 245 

underlying structure of the data (Figure 2). HCA correctly positioned samples into two main 246 

groups (group 1, controls n = 6; group 2, treatment n = 6) (Figure 2A), indicating that the 247 
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within-class variation was considerably lower than the between-class variation. kMC 248 

corroborated this by also correctly assigning larval samples into groups based on the 249 

treatment that they received (Figure 2B; inserted table). PCA produced a 2-D score plot 250 

containing two distinct clusters of samples which appropriately reflected their class labels and 251 

with no indication of sample outliers (Figure 2C). The two clusters are separated along PC1 252 

with the relative abundances of around 40 metabolites explaining much of the divide (see 253 

Supplementary Tables 1 and 2 for the PCA loadings). Although the calculated 95% 254 

confidence interval ellipses overlapped, the accumulative variation among all samples 255 

explained by PC1 and PC2 was only 46.0%. It is therefore possible that the OsHV-1 µVar-256 

infected larval samples may be separated from control samples along other PC vectors not 257 

discernible in the 2-D score plot which might be revealed via supervised multivariate 258 

techniques.  259 

3.3 Supervised multivariate classification analysis 260 

 Supervised multivariate classification analysis was clearly able to discriminate larval 261 

samples based on the treatment they received (Figure 3). Compared to PCA, the 2-D PLS-DA 262 

score plot better separated virus-infected from control larval samples along the x-axis (Figure 263 

3A), with good cross-validated model performance using the first two latent variables 264 

(Accuracy = 100%; R2 = 96.9%; Q2 = 79.6%) (Figure 3B). PLS-DA additionally informed 265 

upon which metabolites were most important for the classification model via their VIP scores 266 

(Figure 3C). Significant classifiers for the separation between virus-infected and control 267 

groups were ranked, yielding 43 metabolites (35 annotated and 8 unannotated) with VIP 268 

scores > 1.0 (Figure 3C and Supplementary Tables 1 and 2). In addition to the 30 differing 269 

metabolite abundances identified via SAM and/or EBAM (Figure 1C), PLS-DA also 270 
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recognised 2-aminobutyric acid, glycine, hexanoic acid, homocysteine, putrescine, valine, 271 

and four additional unannotated metabolites as being important classifiers.  272 

 The RF machine learning algorithm was further employed as a complimentary feature 273 

selection method to similarly rank the most salient metabolite features responsible for class 274 

separation via a different statistical approach more resistant to over fitting than PLS-DA 275 

(Figure 4). A default RF classification model was first constructed using ten features (i.e., ~ 276 

√n) and 500 permutations, which correctly classified all samples. A series of ROC curve 277 

analyses were then performed to generate various n-feature classification models which were 278 

validated using MCCV sub-sampling to assess predictive accuracies (Figure 4A). The 279 

predictive accuracies of the 5-, 10-, and 15-feature RF models were 94.5, 98.0, and 100%, 280 

respectively, with AUC’s of 0.985, 1.0, and 1.0, respectively (Figure 4B). ROC curve 281 

analysis of the 5-feature model with corresponding confidence intervals is shown in Figure 282 

4C, and the predicted class probabilities of the model is shown in Figure 4D. The average 283 

importance and selected frequencies of metabolites in the 5-feature RF model are shown in 284 

Figure 4E and Figure 4F, respectively. Most metabolites identified as potential biomarker 285 

candidates via SAM, EBAM and PLS-DA were also selected to some degree by RF which 286 

further corroborates their significance as key classifiers of larval health condition. The most 287 

frequently selected compounds (> 20%) with high measures of average importance (> 1.0) 288 

were fumaric acid, 4-hydroxyphenylacetic acid, glutamine, glutaric acid, myristic acid, 2-289 

aminoadipic acid, and two unannotated metabolites. As indicated by RF, a low error of 290 

classification could be obtained with few compounds.   291 

3.4 Functional biochemical pathway analysis 292 

Based on the profiles of annotated metabolites, metabolic pathway analyses were performed 293 

to reveal the most relevant pathways related to the pathophysiology of oyster larvae exposed 294 
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to OsHV-1 µVar (Figure 5) (see Supplementary Table 3 for full analysis details). A total of 295 

43 biochemical pathways were recognised from within the KEGG database which contained 296 

one or more of the annotated metabolites detected. Pathways involving two or more detected 297 

metabolites and with simultaneous QEA p-values < 0.05, QEA FDR values < 0.1, and NTA 298 

Pathway Impact (PI) values > 0.1 were screened as potential primary target pathways of 299 

interest relating to the treatment effect. According to these selection criteria, 12 biochemical 300 

pathways were identified with evidence of metabolic disturbances in virus-exposed larvae 301 

(Figure 5A), comprising of: glycolysis/gluconeogenesis; pyruvate metabolism; tricarboxylic 302 

acid cycle; glyoxylate and dicarboxylate metabolism; aminoacyl-tRNA biosynthesis; tyrosine 303 

metabolism; alanine, aspartate and glutamate metabolism; arginine and proline metabolism; 304 

glycine, serine and threonine metabolism; cysteine and methionine metabolism; D-glutamine 305 

and D-glutamate metabolism; and nicotinate and nicotinamide metabolism. Nine further 306 

pathways that were identified statistically via QEA (p < 0.05) but did not meet one or more of 307 

our other ideal impact assessment criteria were screened as potential secondary target 308 

pathways of interest, comprising of: purine metabolism; pyrimidine metabolism; tryptophan 309 

metabolism, lysine degradation; nitrogen metabolism; fatty acid biosynthesis; fatty acid 310 

elongation in mitochondria; biosynthesis of unsaturated fatty acids, and fatty acid 311 

metabolism.  312 

3.5 Correlation analysis 313 

Pairwise metabolite–metabolite correlation matrices of Pearson coefficients for each 314 

treatment group were separately constructed and displayed at heatmaps (Figure 6). In general, 315 

substantial treatment-induced differences in the relationships between metabolites were 316 

exposed, as demonstrated by the many contrasting colours of same cells between the two 317 

heatmaps. From these totals of 5565 pairwise comparisons within each dataset, 167 strong 318 
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linear correlations (R2 values > 0.7 or < –0.7) were found to be highly differentially expressed 319 

(i.e., positive vs negative relationships) between larvae infected with OshV-1 µVar and 320 

baseline controls. Correlation network analyses (CNA) with selection criteria of R2 > 0.9 or < 321 

–0.9 were then separately performed on control and virus-exposed larval datasets to 322 

summarise and reveal the major correlation differences in the metabolic networks (Figure 7).  323 

4. DISCUSSION 324 

The aim of this study was to evaluate changes in the C. gigas oyster larval metabolome 325 

induced by ostreid herpesvirus and determine whether metabolomics-based approaches can 326 

deliver novel mechanistic insights into immunological defence systems of early life-stage 327 

marine invertebrates. Thus, we performed a comprehensive determination of metabolic 328 

alterations in oyster larvae exposed to the newly emerging and highly virulent OsHV-1 µVar 329 

genotype via GC/MS-based metabolomics. Our findings revealed that viral exposure had an 330 

effect on many metabolites involved in central carbon metabolism, across broad chemical 331 

classes with various functional roles. These virus-induced changes in the metabolite profiles 332 

enabled us to discriminate healthy from unhealthy larvae via multivariate clustering and 333 

classification techniques, discern relationships among metabolites, identify entire 334 

biochemical pathways evidenced of being altered, and further focused our attention towards 335 

specific mechanisms of immunity characteristic of the pathophysiological condition. We 336 

identified coordinated changes in tricarboxylic acid (TCA) cycle-related metabolites in virus-337 

exposed larvae indicative of abnormal energy metabolism and biosynthesis of an 338 

antimicrobial product, and also detected subtle signs of potential oxidative stress, 339 

transformation or degradation of extracellular matrix scaffolding, and disruption of normal 340 

lipid metabolism suggestive of requirements for viral appropriation of host-cell biomaterial, 341 

among other processes. Confirmation of these hypotheses based on the metabolomics data 342 
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will require further investigation using functional assays at other levels of biological 343 

organisation.    344 

4.1 Lipid metabolism 345 

Enveloped viruses, such as those from the herpesviridae family, are known to physically and 346 

metabolically remodel host cells during infection to create optimal environments for their 347 

replication by manipulating lipid signalling and metabolism (Chukkapalli et al. 2012; 348 

Rosenwasser et al. 2016). Such viruses instructively alter host metabolism in order to supply 349 

the high quantities of fatty acids which are required as vital lipid envelope components during 350 

virion assembly (Koyuncu et al. 2013). Although the precise induction mechanisms have not 351 

yet been elucidated, enrichment of host fatty acid (FA) production is a common response of 352 

different organisms to infection by various enveloped viruses (Mazzon & Mercer 2014; Hsieh 353 

et al. 2015; Sanchez & Lagunoff 2015), including herpes-type viruses such as human 354 

cytomegalovirus (HMCV) (Spencer et al. 2011; Seo et al. 2013; Purdy et al. 2015) and 355 

Kaposi’s sarcoma-associated herpesvirus (Bhatt et al. 2012). An emerging theme is that these 356 

lipid-modifying pathways are linked to innate antiviral responses which can be modulated to 357 

inhibit viral replication (Chukkapalli et al. 2012). For example, HCMV stimulates free fatty 358 

acid (FFA) production to enable and enhance assembly of infectious virions by activating 359 

expression of ACC1 host mRNA, the gene encoding for the rate-limiting enzyme acetyl-CoA 360 

carboxylase (ACC) involved in the initial commitment stage of de novo FA synthesis 361 

(Spencer et al. 2011); whereas pharmacological inhibition of host ACC substantially limits 362 

the ability of HCMV to replicate (Munger et al. 2008). More recently, Koyuncu et al. (2013) 363 

reported that siRNA-induced knockdown of a suite of other enzymes involved in FA 364 

synthesis (fatty acyl-CoA synthetases and elongases) inhibited herpesvirus replications, 365 

whereas knockdown of proteins responsible for FA catabolism (the peroxisomal β-oxidation 366 
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enzyme acetyl-CoA acyl-transferase 1) and the first step of triglyceride synthesis (1-367 

acylglycerol-3-phosphate O-acyltransferase 9) enhanced viral replication by elevating the 368 

available FFA pool. Thus, the FA synthesis pathway is currently gaining considerable 369 

attention as a prime target for the development of innovative therapeutics that are not 370 

dependent on mechanisms of adaptive immunity, and therefore resilient to emerging virus 371 

variants which have become resistant to anti-viral therapies (Goodwin et al. 2015).  372 

 Looking at the global metabolic changes in larvae induced by OsHV-1 µVar 373 

exposure, there was a signature consisting of FFAs, presumably involving either a change in 374 

the relative rates of production and/or breakdown. These variation patterns contributed 375 

towards earmarking FA pathways (FA metabolism, FA β-oxidation and FA elongation in 376 

mitochondria) as being candidate targets of interest in our study via secondary bioinformatics 377 

techniques, and also were key metabolites causative to the perturbations observed within the 378 

differential metabolic correlation networks. Under the starvation conditions we employed 379 

during the viral challenge, an effect on basal lipolysis would be the most obvious potential 380 

mechanism for the FFA changes observed here. Compared to non-infected control larvae, the 381 

general increase in medium and long chain FFAs (C16:0, C18:3n-6, C20:4n-6, C20:5n-3, 382 

C22:2n6, C22:6n-3) and microalgal-derived dietary FFAs (C14:0, C16:1n-7) in virus-infected 383 

larvae are indicative of enhanced catabolism of endogenous triacylglycerol lipid supplies. 384 

This pre-metamorphic host-response appears to be somewhat similar to that of post-385 

metamorphic life stages. Proteomic-based analyses of adult Pacific oysters experimentally 386 

infected with OsHV-1 µVar recently identified that a key enzyme involved in the first step of 387 

lipid hydrolysis, triacylglycerol lipase (TGL), was over-accumulated in virus-exposed 388 

animals which likely reflects enhanced lipolysis during initial stages of infection (Corporeau 389 

et al. 2014). Furthermore, transcriptomic-based analyses revealed over-expression of genes 390 

encoding for TGL and phospholipase A2 (an enzyme that releases FAs from the second 391 
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carbon group of glycerol in phospholipids) in OsHV-1 µVar-infected oysters (He et al. 2015), 392 

and several other studies also report triglyceride levels being substantially decreased in 393 

juvenile and adult oyster hosts exposed to the virus (Pernet et al. 2010, 2014; Tamayo et al. 394 

2014).  In adult oysters, FFA accumulations do not appear to coincide with the reduced lipid 395 

contents following OsHV-1 µVar infection likely due to them being transitory intermediates 396 

(Tamayo et al. 2014), for which simultaneously enhanced rates of β-oxidation could explain. 397 

However, infected adult oysters display a down-accumulation in fatty acid-binding protein 398 

(FABP) (Corporeau et al. 2014), a chaperone involved in trafficking FFAs across the 399 

mitochondrial membrane, and, at the height of the viral load, decreased Fabp transcription 400 

and expression of a gene encoding the alpha subunit of FA oxidation complex (He et al. 401 

2015), all of which would limit β-oxidation rather than promote it. Thus, aside from being 402 

used for host energy metabolism, the FFAs produced during virus-induced lipolysis in oysters 403 

may be used as precursor synthesis molecules for constructing the lipid envelope during virus 404 

assembly and proliferation; as previously reported for HCMV infections.  405 

 Although FFA levels at a particular time reflect the complex metabolic balance 406 

between lipolysis, β-oxidation, and any other FA production (e.g., de novo synthesis) or 407 

consuming processes (e.g., triglyceride synthesis and utilisation for virion assembly), the 408 

FFA accumulations we observed are consistent with the general findings of other studies 409 

which have investigated various models of herpes-type infections. Perhaps a key point of 410 

difference in host-virus interactions between OsHV-1 and vertebrate-infecting herpesviruses 411 

could be the primary source from which the FAs are derived from (i.e., lipolysis vs de novo 412 

synthesis). We recommend that targeted analyses of these pathways are additionally 413 

conducted at transcriptional and translational levels, in combination with metabolite profiling, 414 

in order to tease out the mechanistic intricacies of OsHV-1 µVar-induced modulation of host 415 

lipid metabolism in oyster larvae. With FAs being necessary components required for OsHV-416 
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1 replication and proliferation, establishing the precise viral targets of host lipid metabolism 417 

could assist in the development of antiviral therapeutics, and/or identification of unique 418 

disease resistant genomic or metabolic traits for selective breeding purposes.   419 

4.2  TCA cycle and immunoresponsive gene 1 420 

Host metabolism changes are suggestive of immunoresponsive gene 1 (Irg1) like activation, 421 

which directly affects carbon flux through the TCA cycle and modifies energy metabolism. 422 

Irg1 is commonly and highly expressed in vertebrate macrophages during inflammation and 423 

infection by a variety of pathogens (Preusse et al. 2013). Irg1 encodes immune-responsive 424 

gene 1 protein/ cis-aconitic acid decarboxylase (IRG1/CAD) which links cellular metabolism 425 

with immune defence by catalysing the decarboxylation of cis-aconitic acid (the citrate → 426 

isocitrate isomerisation intermediate in the TCA cycle) to itaconic acid (ITA) (Michelucci et 427 

al. 2013; Vuoristo et al. 2015). ITA is a metabolite with potent antimicrobial properties 428 

(Naujoks et al. 2016), and was identified in our study as being over-accumulated in virus-429 

exposed oyster larvae. ITA being discovered as the gene product of Irg1 is arguably one of 430 

the most important biological insights made in recent times (Sévin et al. 2015), and was only 431 

revealed through taking a non-hypothesis driven metabolomics profiling approach as we have 432 

in the current study. ITA has newly been recognised as a crucial regulatory metabolite 433 

involved in posttranscriptional mechanisms of reprogramming mitochondrial metabolism 434 

through modulation of substrate level phosphorylation, TCA cycle flux and succinic acid 435 

signalling (Mills & O’Neill 2016; Cordes et al. 2016; Németh et al. 2016), production of 436 

inflammatory cytokines (Lampropoulou et al. 2016) and its ability to alter cellular redox 437 

balance (Tretter et al. 2016).  438 

 Upregulation of Irg1 transcription leads to a characteristic metabolic signature of a 439 

“broken TCA cycle” in stimulated macrophages (O’Neill 2015; O’Neill & Pearce 2016; 440 
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O’Neill et al. 2016). ITA accumulation represents the first of two distinctive break-points in 441 

the pathway due to decreased transcription of isocitrate dehydrogenase (IDH; catalyses 442 

isocitrate → α-ketoglutarate), and the redirection of cis-aconitic acid metabolism via enriched 443 

Irg1-encoded IRG1/CAD expression (Jha et al. 2015; Yanamoto et al. 2015). The increased 444 

production of ITA decreases citric acid oxidation through the cycle. To compensate for the 445 

reduced flux under such conditions, Maisser et al. (2016) showed that glutamine uptake is co-446 

enhanced with Irg1 expression, serving to replenish the pathway with α-ketoglutaric acid 447 

through glutaminolysis. In agreement, the reduction in free glutamine content that we 448 

observed in OsHV-1 µVar-exposed larvae is consistent with such an anaplerotic mechanism. 449 

Herpes-infected human cells can switch substrate utilisation from glucose to glutamine to 450 

accommodate the biosynthetic and energetic needs of the viral infection, and allow glucose to 451 

alternatively be used biosynthetically (Chambers et al. 2010). Virus-induced reprogramming 452 

of glutamine metabolism and anaplerosis of the TCA cycle at this particular point appears to 453 

be critical for successful replication of herpes-type viruses, as well as maintenance of cellular 454 

viability during latent infections (Sanchez et al. 2015; Thai et al. 2015). 455 

 The second characteristic break-point in the TCA cycle occurs at succinate 456 

dehydrogenase/ respiratory Complex II (SDH/CII), the enzyme which catalyses the oxidation 457 

of succinate → fumarate, and also crucially regulates respiration in the electron transport 458 

chain (Mills & O’Neill 2016). ITA is a competitive inhibitor of SDH/CII (Cordes et al. 2016), 459 

and thus, when ITA levels increase, enzyme activity is attenuated leading to an accumulation 460 

of succinic acid and a concomitant decrease in oxidative phosphorylation (OxPhos) 461 

(Lampropoulou et al. 2016). Directly in line with this second TCA cycle break-point feature, 462 

oyster larvae exposed to OsHV-1 µVar exhibited elevated levels of succinic acid. The 463 

functional purpose of reprogramming host cell metabolism to accumulate succinic acid in 464 

response to pathogen infections appears to stem in part from its ability to mediate 465 
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inflammatory responses. Aside from having a fundamental role in the TCA cycle, succinic 466 

acid can act as a regulatory signal, via succinate receptor 1 (GPR91/SUCNR1), to induce 467 

production of pro-inflammatory cytokines (TNF-α, IL-1β) which can enhance immune-468 

stimulatory capacity, but also can exasperate disease when produced in excess (Rubic et al. 469 

2008; Tannahill et al. 2013; Mills & O’Neill 2014; Littlewood-Evans et al. 2016). 470 

GPR91/SUCNR1 is therefore involved in sensing the immunological danger exposed by 471 

Irg1/ITA-induced succinic acid accumulations, thus further establishing direct links between 472 

immunity and cellular respiration.  473 

 Rather than downstream TCA cycle intermediates being depleted as a consequence of 474 

this second break at SDH/CII, the metabolic response involves enrichment of the aspartate-475 

arginosuccinate shunt pathway which provides a compensatory mechanism to replenish the 476 

system (Jha et al. 2015), thus leading to significant increases in levels of fumaric and malic 477 

acids regardless of SDH/CII inhibition (Lampropoulou et al. 2016). In agreement, both of 478 

these TCA metabolites were over-accumulated in virus-exposed larvae. Thus, our metabolite 479 

data suggest that larval oyster cells have a comparable host response to OsHV-1 µVar as 480 

mammalian macrophages when stimulated or infected with other viruses. To the best of our 481 

knowledge, this is the first report of such metabolic reprogramming of the TCA cycle in an 482 

invertebrate with the specific metabolite signature of pathogen-induced Irg1 transcription 483 

directly in accordance with vertebrate cell models. How OsHV-1 might stimulate genomic 484 

components leading to activation of Irg1 transcription in oysters is not known, but would 485 

likely share some parallels with mechanisms of higher taxa (see Owens & Malham 2015; 486 

Naujoks et al. 2016; Tallam et al. 2016). 487 

  Only two cases of Irg1 involvement in marine mollusc immune responses 488 

have thus far been reported. Martín-Gómez et al. (2012) detected an up-regulation of Irg1 489 

transcription in the flat oyster, Ostrea edulis, exposed to Bonamiosis disease under light and 490 
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heavy infection scenarios, which suggest that Irg1 could play a role at early infection stages 491 

with prolonged expression at later stages. Furthermore, although not stated nor discussed in 492 

their manuscript, He et al. (2015 [supplementary material]) identified via untargeted gene 493 

expression profiling that the C. gigas Irg1 transcript was over-expressed 9-fold in adult 494 

oysters exposed to OsHV-1 at the height of the viral replication process. In combination with 495 

our findings of a classic metabolic signature for Irg1 over-expression and enhanced aconitase 496 

activity in virus-exposed larvae, these data are supportive of an active role of Irg1 and its 497 

metabolic product, ITA, in the innate immunity of oysters, and further provide the first 498 

reports of such associated pathophysiological mechanisms of disease in marine invertebrates. 499 

Moreover, these data also suggest that this particular metabolic reprogramming mechanism 500 

develops very early in the oyster lifecycle, and is a conserved feature of immunity across the 501 

metamorphic boundary. These findings provide fresh insights into the early evolution of 502 

innate immunity. We suggest that a detailed characterisation of this system, including 503 

endogenous regulatory networks and exogenous effectors, be conducted through ontogeny 504 

which may provide useful information for identifying disease resistant traits. Investigation of 505 

other mechanisms associated with altered host energy metabolism, such as the Warburg 506 

effect, may also deliver important insights into the pathophysiology of the disease.    507 

4.3 Warburg effect 508 

The Warburg effect is an abnormal metabolic shift that was first discovered in proliferating 509 

cancer cells (Ferreira 2010). It has since been detected in vertebrate cells infected by viruses 510 

(Delgado et al. 2010, 2012; Darekar et al. 2012; Thai et al. 2014), and was recently 511 

implicated as an actuated pathway during viral infections in shrimp and oysters (Corporeau et 512 

al. 2014; Su et al. 2014; Hsieh et al. 2015; Fan et al. 2016; Li et al. 2016). Herpes-type 513 

viruses are known to activate oncogenes, thus providing a mechanistic link with cancerous 514 
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cell phenotypes (Mesri et al. 2014). The Warburg effect is distinguished by a high rate of 515 

glycolytic flux and unusual aerobic fermentation of glucose to lactic acid even though there is 516 

enough oxygen available for OxPhos to proceed (Kelly & O’Neill 2015). It is often 517 

accompanied by the activation or enrichment of other metabolic pathways that provide 518 

energy and direct the flow of carbon and nitrogen, such as the pentose phosphate pathway, 519 

nucleotide biosynthesis, lipolysis, and glutaminolysis (Zaidi et al. 2013; Tannahill et al. 2013; 520 

Su et al. 2014; Sanchez & Lagunoff 2015; Li et al. 2016), and also with mechanisms of innate 521 

immunity such as Irg1 activation/ ITA over-accumulation (Kelly & O’Neill 2015). 522 

 Metabolic alterations characteristic of the Warburg effect involves increased 523 

glycolysis, elevated levels of lactic acid, and changes in rates of nicotinamide adenine 524 

dinucleotide phosphate (NADPH) production/utilisation. These effects result from the 525 

diversion of glucose metabolism, glutamine oxidation, and requirements of reducing 526 

equivalents for FA biosynthesis and for mounting anti-oxidant responses to Reactive Oxygen 527 

Species (ROS) via re-oxidisation of glutathione (vander Heiden et al. 2009; Weljie & Jirik 528 

2011; Senyilmaz & Teleman 2015). Although the precise initiating mechanism/s responsible 529 

for reprogramming the glycolytic and gluconeogenic pathways that result in these metabolite 530 

changes are not yet completely understood (Vijayakumar et al. 2015), succinic acid 531 

accumulations act as an innate immunity regulatory signal to trigger a switch in core 532 

metabolism from OxPhos to glycolysis. Succinic acid stabilises the alpha subunit of hypoxia 533 

inducible factor 1 (HIF-1α) thereby activating transcription of genes which downregulates 534 

OxPhos (e.g., via indirect inhibition of pyruvate kinase to reduce TCA cycle flux), enhances 535 

glycolysis (e.g., via increased production of hexokinase and glucose transporters), and 536 

promotes lactic acid production (e.g., via regulation of lactate dehydrogenase and 537 

monocarboxylate transporter 4) (Ben-Shlomo et al. 1997; Selak et al. 2005; Semenza 2010; 538 

Palsson-McDemott & O’Neill 2013; Tannahill et al. 2013; Mills & O’Neill 2014). Thus, with 539 
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ITA-induced inhibition of SDH/CII, succinic acid may be an important metabolite linking 540 

Irg1 activation with the Warburg effect in virus infected cells. 541 

 Compared to baseline control larvae, lactic acid was over-accumulated in OsHV-1 542 

µVar-exposed larvae, whereas NADPH levels were lower. Secondary bioinformatics analysis 543 

of the metabolomics data also recognised glycolysis/gluconeogenesis and nucleotide 544 

metabolism as being differentially modulated as a larval host response to the virus, which 545 

could reflect an active Warburg-like effect. Our findings align with those of Corporeau et al. 546 

(2014) who utilised a proteomic-based approach to assess global protein changes in adult 547 

oysters infected with OsHV-1 µVar. Altered host protein expressions included changes in 548 

mitochondrial membrane permeability (accumulation of voltage-dependant anion channels 549 

[VDAC]), and enhanced glycolysis via an increase in the glycolytic enzyme Triose phosphate 550 

isomerase and decreases in the gluconeogenic enzymes Fructose 1,6-biphosphatase and 551 

Malate dehydrogenase (MDH); signatures which resemble induction of the Warburg effect 552 

(Chen et al. 2011; Maldonado & Lemasters 2012; Corporeau et al. 2014). Supporting the 553 

findings of Corporeau et al. (2014), increased and decreased expressions of genes encoding 554 

VDAC and MDH, respectively, were detected in adult oysters exposed to the virus (Renault 555 

et al. 2011; He et al. 2015). Taken together, these characteristic evidences at various levels of 556 

organisation (i.e., gene, protein and metabolite) suggest an involvement of the Warburg effect 557 

as a pathophysiological feature of OsHV-1 µVar infection.  558 

 It is thought that the Warburg effect in cancer cells is adapted to facilitate the uptake 559 

and incorporation of nutrients into the biomass needed to produce new cells during 560 

proliferation at the expense of efficient, albeit slow, ATP production via OxPhos (vander 561 

Heiden et al. 2009; Zhang et al. 2012). The functional purpose for selection of energy 562 

inefficient lactic acid fermentation over OxPhos in virus-exposed oysters is less clear. 563 

However, it is possible that the Warburg effect is ‘strategically’ induced by OsHV-1 as a 564 
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metabolic reprogramming mechanism beneficial to the pathogen. With the catabolism of 565 

glucose exceeding the bioenergetics needs of cells during Warburg activation (Thomas 2014), 566 

the high yields of intermediates created through enriched glycolysis and a truncated TCA 567 

cycle could be used for production of purine and pyrimidine nucleotides and other 568 

components required for viral DNA synthesis and envelope assembly. Aerobic fermentation 569 

would also provide energy for these processes more swiftly than through OxPhos and with 570 

less risk of constraining glycolytic flux via ATP-induced negative feedback inhibition (Zhang 571 

et al. 2012; Sanchez & Lagunoff 2015), thus facilitating rapid and persistent viral replication.  572 

4.4 Oxidative stress 573 

We hypothesised that significant changes in the abundances of metabolites reflective of 574 

oxidative stress would be represented in OsHV-1 Var-exposed oyster larvae. Exposure to 575 

invading pathogens initially triggers robust innate immune responses, and a rapid release of 576 

reactive oxygen species (ROS) called an oxidative burst is usually registered soon afterwards 577 

(Torres et al. 2006).  ROS are beneficial since they can facilitate degradation of invading 578 

pathogen biomaterial, and also act as signalling molecules to potentiate other immune 579 

responses, such as activation of interferons and their regulatory factors (Chiang et al. 2006). 580 

However, when produced in excess, they can cause irreparable damage to crucial host cells 581 

through degradation of macromolecular cellular components, including lipids, proteins, and 582 

DNA (Pisoschi & Pop 2015). During viral infections, this can actually promote virus 583 

proliferation by enhancing dispersion from lysed or apoptotic cells (Stehbens 2004). Thus, 584 

oxidative bursts should ideally be reduced before attaining critical levels, and can be achieved 585 

through an intricate balance of co-regulated antioxidant processes. These include production 586 

of the antioxidant metabolite glutathione (GSH) and a number of enzymes which regulate 587 

GSH turnover, directly recycles ROS, or are involved in repairing ROS-induced damage 588 
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(Knight 2000; Apel & Hirt 2004). Adult and juvenile oysters exposed to OsHV-1, or showing 589 

variable susceptibilities to disease associated with the virus, display differential expression of 590 

these enzymes, and/or the genes which encode them (Fleury et al. 2010; Fleury & Huvet 591 

2012; Schmitt et al. 2013; Normand et al. 2014; Corporeau et al. 2014; He et al. 2015). This 592 

indicates a change in ROS balance and induction of oxidative stress as a response to the 593 

infection, and also suggests that the ROS-regulatory system is an important feature which 594 

underpins disease resistance.  595 

 We detected a relatively high coverage of metabolites within the glutathione 596 

metabolism pathway. However, subtle variations of metabolites central to network topology, 597 

such as glutathione itself, were not differentially expressed resulting in the entire pathway 598 

being only marginally affected (p = 0.057). On the other hand, the transulphuration pathway 599 

(cysteine and methionine metabolism) which is responsible for supplying precursor 600 

metabolites for glutathione synthesis under low-mid stress conditions was altered, which 601 

indicates a mild oxidative stress response. The subtle signs of oxidative stress and perturbed 602 

redox balance in virus-exposed larvae indicate that the homeostatic control mechanisms 603 

responsible for governing the production and detoxification of ROS were functioning at 604 

optimal capacities and well within acceptable boundaries. These findings suggest that OsHV-605 

1 either does not induce major oxidative stress in oyster larvae beyond the adaptive ability of 606 

the ROS-regulatory system, or that the level or stage of infection in our study was low or 607 

early, respectively. These results also may highlight a potential limitation in the exclusive use 608 

of metabolomic-based approaches to recognise changes in metabolic activity under 609 

circumstances where enzymatic regulation tightly constrains metabolite levels within the 610 

range of normal baseline variations. Indeed, cellular metabolism, and glutathione turnover/ 611 

ROS regulation in particular, is extremely well-adapted to achieve this feat. Thus, to better 612 
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define the influence of OsHV-1 on oxidative stress parameters, further analysis of enzymes 613 

associated with glutathione recycling and ROS regulation would be required. 614 

4.5 Other signatures 615 

A number of other metabolites were considered to be important features responsible for larval 616 

health class discrimination in PCA, PLS-DA and RF models. These included elevated levels 617 

of 4-hydroxyphenylacetic acid, 4-hydroxyproline, and 2-aminoadipic acid and a reduction in 618 

nicotinic acid contents. Four unannotated metabolites were also important in the multivariate 619 

models. Future efforts to identify these molecules may further complement our interpretations 620 

or provide new insights into the virus-host interaction.  621 

 4-hydroxyphenylacetic acid (4-HPA) is a tyrosine-derived metabolite with antioxidant 622 

activity that can scavenge reactive oxygen and nitrogen species in vitro and in vivo (Biskup et 623 

al. 2013), and also has an ability to reduce excessive release of proinflammatory cytokines 624 

which protects against inflammation and disease (Liu et al. 2014; Ford et al. 2016). Increased 625 

levels of 4-HPA are associated with various mammalian disease pathologies and inborn 626 

errors in metabolism (Kikuchi et al. 2010; Nishiumi et al. 2010; Hori et al. 2011; Manna et al. 627 

2015; Xiong et al. 2015; Kurko et al. 2016). An accumulation of this metabolite during such 628 

disease onsets has been attributed to differential catabolic pathways of tyrosine (Xiong et al. 629 

2015). In our study, tyrosine metabolism was identified as a pathway with signs of being 630 

differentially regulated. It was recently demonstrated that the mechanism by which 4-HPA 631 

reduces proinflammatory cytokine production involves suppression of their transcription via 632 

promotion of HIF-1α protein degradation (Liu et al. 2014). Thus, with a functional role in 633 

downregulating HIF-1 activity, 4-HPA could directly compete with Irg1/ITA/succinic acid-634 

induced HIF-1α stabilisation. As a result, HIF-1 induced enrichment of pathways responsible 635 

for redirecting carbon and nitrogen metabolism in trajectories which support OsHV-1 636 
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proliferation might be moderated, whereas the negative host consequences associated with 637 

co-induced respiratory dysfunction and excessive inflammation may partially be alleviated. 638 

 4-hydroxyproline (4-HP) is produced via the posttranslational hydroxylation of 639 

proline and is formed in proteins only after peptide linkage (Cooper et al. 2008). 4-HP is 640 

predominantly found in collagen, a major structural component of the extracellular matrix 641 

(ECM) scaffold in marine invertebrate embryos and larvae (Spiegel et al. 1989; Phang et al. 642 

2010). Thus, accumulation of free 4-HP is a specific biomarker of collagen degradation, and 643 

indicator of cell structure damage through compositional transformation of the ECM (Karna 644 

& Palka 2002; Phang et al. 2008). The production of free 4-HP resulting from ECM 645 

degradation is thought to play a role in initiating the apoptotic cascade  via activation of the 646 

caspase-9 protease (Cooper et al. 2008), as well as promoting HIF-1 activity by inhibiting the 647 

degradation of HIF-1α (Surazynski et al. 2008). Matrix metalloproteinases (MMPs), are 648 

responsible for degrading the ECM. MMPs play crucial roles during normal embryonic and 649 

larval development, such as in cell growth and differentiation, tissue remodelling, and 650 

mechanisms of immunological defense (Mannello et al. 2003, 2005; Mok et al. 2009). 651 

However, MMPs can be excessively produced in pathological situations  (Itoh et al. 2006; 652 

Phang et al. 2008). Physical stress, oncogenic transformation, ROS and cytokines are all 653 

inducible factors (Mancini & Battista 2006; Reuter et al. 2010). MMPs and their importance 654 

in restructuring the ECM as a response to pathogens have previously been implicated in 655 

OsHV-1 infections and disease resistance vs susceptibility traits of oysters (McDowell et al. 656 

2014; Nikapitiya et al. 2014; Rosani et al. 2015). The elevated levels of free 4-HP in OsHV-1 657 

µVar-exposed larvae indicates that collagen degradation in the ECM was enhanced, although 658 

further investigation will be required to determine whether the 4-HP accumulations represent 659 

negative consequences for the host due to significant cell structure damage.  660 



M
A

N
U

S
C

R
IP

T

 

A
C

C
E

P
T
E

D

ACCEPTED MANUSCRIPT

 2-aminoadipic acid (2-AAA) is a component of the lysine metabolism pathway and is 661 

recognised as a small-molecule biomarker of oxidative stress (Sell et al. 2007; Zeitoun-662 

Ghandour et al. 2011). Its presence has been linked with regulation of glucose homeostasis 663 

(Yuan et al. 2011; Wang et al. 2013), and elevated levels have been reported as a putative 664 

biosignature of respiration chain disorders (Smuts et al. 2013). Production of 2-AAA in fish 665 

is associated with low oxygen transport capacity (Allen et al. 2015), and can be induced in 666 

shellfish by exposure to physiological stressors (Chen et al. 2015; Koyama et al. 2015). 667 

Accumulations of 2-AAA are also associated with oncogene activation and carcinogenesis, 668 

leading to its recent candidacy as a potential new clinical biomarker for various cancers (Hori 669 

et al. 2011; Bellance et al. 2012; Jung et al. 2013; Rosi et al. 2015; Ren et al. 2016). 670 

Production of 2-AAA correlates with the bioenergetic signature characteristic of a switch in 671 

cellular respiration modes from OxPhos to aerobic glucose fermentation (Hori et al. 2011; Aa 672 

et al. 2012; Bellance et al. 2012). Thus, the accumulation of 2-AAA in virus-exposed larvae 673 

is consistent with the global changes we detected in organic acid metabolism reflective of 674 

TCA cycle reprogramming, reduced mitochondrial respiration and ATP production, 675 

activation of the Warburg effect, and subtle signs of oxidative stress. 676 

 Nicotinic acid (NA) plays an important role in redox reactions and can be converted 677 

to nicotinamide (NAM) in vivo. In invertebrates and some fish, NA and NAM are important 678 

precursors for synthesis of the pyrimidine nucleotide coenzymes NAD+ and NADP+ which 679 

participate in many hydrogen transfer processes, such as fatty acid synthesis, lipolysis and 680 

glycolysis (Ng et al. 1997; Sauve 2008; Houtkooper et al. 2009; Cantó et al. 2015; Yuasa & 681 

Ball 2015; Yuasa et al. 2015). NAD+ is also a substrate and signalling metabolite required for 682 

regulation of transcription, proteasomal function, and posttranslational protein modifications 683 

involved in DNA replication, recombination, repair mechanisms and maintenance of genomic 684 

stability (Bürkle 2001; Surjana et al. 2010; Vyas et al. 2013; Fouquerel & Sobol 2014; Cantó 685 



M
A

N
U

S
C

R
IP

T

 

A
C

C
E

P
T
E

D

ACCEPTED MANUSCRIPT

et al. 2015). Unlike most metabolic redox reactions which reversibly oxidise or reduce 686 

pyrimidine nucleotides to maintain constant levels of NAD+/NADP+, substrate utilisation and 687 

NAD+-dependant signalling processes are highly consumptive, and regeneration from niacin 688 

precursors is required when such mechanisms are activated (Lin 2007; Chiarugi et al. 2012). 689 

The reduction of free NA in virus-exposed larvae is consistent with its role in these processes 690 

which are upregulated during herpes-type viral infections (Grady et al. 2012; Li et al. 2012). 691 

Herpes-induced consumption of NAD+ as a substrate for enzymes involved in host DNA 692 

modifications is likely a response to DNA damage pathways being activated by replication of 693 

the viral genome (Grady et al. 2012). However, efficient virus replication itself and synthesis 694 

of viral proteins are also reliant on NAD+ substrate supply (Li et al. 2012). Thus, the 695 

importance of NA and NAD+/NADP+ metabolism in host-pathogen interactions is gaining 696 

considerable attention as targets for the treatment of infectious diseases in humans (Mesquita 697 

et al. 2016). Interestingly, activation of the Warburg effect involves the unusual 698 

overproduction of NAD+ via enhanced fermentation of glucose (i.e., pyruvic acid + NADH 699 

→ lactic acid + NAD+) (Chiarugi et al. 2012), and may serve/function as a replenishing 700 

mechanism in response to NAD+ depletion to complement de novo synthesis from its niacin 701 

precursors. 702 

4.6 Study limitations 703 

During an infection, viruses have an ability to alter host metabolites in order to benefit their 704 

replication. However, the host can also mount responses against the pathogen via changes in 705 

host metabolism pathways, such as triggering inflammation. Unfortunately, at this early stage 706 

of the research we do not know which metabolic features have roles in virus pathogenesis and 707 

which of the signatures can be attributed to host defence. This is an important aspect to 708 

decipher, and will require highly focused investigation. A critical step to achieve this will be 709 
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to characterise the functional genome of OsHV-1 µVar. Furthermore, our study did not 710 

include a temporal sampling design. During an infection, viruses can trigger various 711 

metabolic changes at different replication stages. For example, the Warburg effect may be 712 

triggered at the stage of virus genome replication, whereas lipid metabolism may be altered at 713 

the stage of virion assembly prior to release of mature virion particles from host cells. In 714 

order to contextualise host metabolic perturbations within the framework of viral 715 

propagation, future efforts should be made to incorporate a fine scale temporal sampling 716 

design, analysis of multiple targets (genes, proteins and metabolites), and a detailed 717 

characterisation of the virus replication process; although, lack of bivalve cell lines continue 718 

to hamper virus research in these taxa (Yoshino & Bayne 2013).    719 

5. CONCLUSION 720 

In summary, we identified and measured the metabolic responses of oyster larvae during 721 

exposure to the virulent ostreid herpesvirus microvariant which has recently been responsible 722 

for mass mortalities of shellfish around the globe. Viruses can reshape their host’s 723 

metabolism to create a unique metabolic state that supports their specific requirements. 724 

Indeed, profiling of larval metabolites revealed virus-induced reprogramming of host-725 

encoded metabolic networks, including alterations to the glycolytic pathway, the TCA cycle, 726 

and lipid metabolism. Intriguingly, we observed metabolic response parallels with a number 727 

of innate immune system mechanisms previously characterised in mammalian cell models, 728 

such as induction of the Warburg effect and downstream metabolic consequences of 729 

immunoresponsive gene 1 like activation. The functional genomes of OsHV-1 and its 730 

variants are mostly unknown at present, but it is likely that virus-encoded auxiliary genes also 731 

provide infected host cells with novel metabolic capabilities, and the outcomes of their 732 

transcription may be manifested within our results. These findings provide the first 733 
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comprehensive insights into early ontogenic host physiology and susceptibility of oysters 734 

towards OsHV-1 µVar. Characterisation of host-virus interactions can provide knowledge to 735 

enable development of therapeutic agents and identify traits for improving the outcome of 736 

selective breeding programmes. Our study also highlights the value of metabolomics-based 737 

approaches in elucidating host-virus interactions and the metabolic networks which 738 

characterise and underpin the pathophysiological state, and further supports its application for 739 

investigating pathogenesis of disease in early life stage oyster models. 740 
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Figure 1. Metabolites detected as being significantly different (p < 0.05) between control and OsHV-

1 µVar-infected larvae. (A) Significant Analysis of Metabolites (SAM) plot. (B) Empirical Bayes 

Analysis of Metabolites (EBAM) plot. (C) Summary of statistically different metabolite levels between 

treatment groups with their respective Log2 fold change values (virus-infected [red circles] / control 

[green circles] larvae).  

 

Figure 2. Unsupervised multivariate cluster analyses of metabolite profiles from larvae infected with 

OsHV-1 µVar vs control larvae. (A) Hierarchical Cluster Analysis (Euclidian distance; Ward’s method). 

(B) Table of results from k-Means cluster analysis where k clusters = 2 (Cn = control sample n; Vn = 

virus-infected sample n). (C) Principal Component Analysis (PCA) score plot.  (D) PCA scree plot 

showing variation explained by n PC (blue line), and the cumulative variance explained in n PC’s 

(green line). 

 

Figure 3. Supervised multivariate classification analyses of metabolite profiles from larvae infected 

with OsHV-1 µVar vs control larvae. (A) Projection to Latent Structure Discriminant Analysis (PLS-DA) 

score plot with accuracy of 100%, multiple correlation coefficient (R
2
) of 96.9%, and cross-validated 

R
2
 (Q

2
) of 79.6%. (B) Variable Importance in Projection (VIP) scores for the PLS-DA model.   

 

Figure 4. Multivariate machine learning and predictive modelling of larval sample classes via Random 

Forest (RF) analysis with Monte-Carlo Cross Validation (MCCV). (A) Predictive accuracies of RF 

models with different n features. (B) Area Under Curve (AUC) generated from Receiver Operating 

Characteristic (ROC) curve analysis of RF models with 5, 10, 15, 25, 50 and 100 features. (C) AUC of 

the 5-feature RF model. (D) Predicted class probabilities (average of the MCCV) for each sample 

using the best classifiers (based on AUC) of the 5-feature RF model. (E) The average importance of 

metabolites in the 5-feature RF model based on ROC curve analysis, with the most discriminating 

feature in descending order of importance. (F) The selected frequencies of metabolites in the 5-

feature RF model based on ROC curve analysis.   

 

Figure 5. Secondary bioinformatics of annotated metabolites. (A) Topology-based pathway analysis 

showing metabolic networks in oyster larvae potentially affected by OsHV-1 µVar. The most 

impacted metabolic pathways are specified by the volume and the colour of the spheres (yellow = 

least relevant; red = most relevant) according to their statistical relevance and pathway impact (PI) 

values resulting from Quantitative Enrichment Analysis (QTA) and Network Topology Analysis (NTA), 

respectively. (B–E) Examples of four pathways containing relatively high metabolite coverages: (B) 

Tricarboxylic acid cycle (p < 0.001, FDR < 0.000, PI = 0.26); (C) Alanine, aspartate and glutamate 

metabolism (p < 0.001, FDR = 0.002, PI = 0.72); (D) Glutathione metabolism (p = 0.057, FDR = 0.107, 

PI = 0.48); (E) Cysteine and methionine metabolism (p = 0.033, FDR = 0.076, PI = 0.60). Boxes which 

vary from yellow to red represent metabolites (KEGG ID codes) that were detected and annotated 

with our methods. Their colour indicates the level of significance (light yellow: p > 0.05, light orange 

to red: p < 0.05) from unpaired t-tests (control vs treatment). Light blue boxes/compounds in the 

pathways were not detected, but were used as background information for QEA to calculate the 

proportion of identified compounds within each pathway, and in NTA to determine the position 

(relative-betweeness centrality) and importance of each metabolite.    
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Figure 6. Metabolite–metabolite Pearson correlation heatmaps of healthy control larvae (A) vs. 

unhealthy virus-exposed larvae (B). The order of metabolites are the same for each of the heatmaps 

so direct comparisons can be made for particular regions.   

 

Figure 7. Correlation Network Analysis of control (A) vs. virus exposed larvae (B). Metabolite–

metabolite Pearson correlations > 0.9 are represented by grey solid lines, whereas those that are < -

0.9 are represented by dashed grey lines. 

 

 

 

 

 

Supplementary Table 1. List of identified metabolites showing the effect of OsHV-1 infection on 

oyster larvae. Up and down arrows represent metabolite levels which were identified as being 

significantly higher or lower in the virus infected group compared to control animals (via t-test, SAM 

and/or EBAM), or with high (> 1.0) Variable of Importance (VIP) scores in the PLS-DA model. 

 

Supplementary Table 2. List of unannotated metabolites showing the effect of OsHV-1 infection on 

oyster larvae. Up and down arrows represent metabolite levels which were identified as being 

significantly higher or lower in the virus infected group compared to control animals (via t-test, SAM 

and/or EBAM), or with high (> 1.0) Variable of Importance (VIP) scores in the PLS-DA model.  

 

Supplementary Table 3. List of altered metabolic pathways in larval hosts during viral (OsHV-1 μVar) 

infection. 
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Figure 1. 
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Figure 3.  
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Figure 4.  
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Figure 5.  
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Figure 6.  
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Figure 7.  
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HIGHLIGHTS 

 

•  Herpesvirus-induced metabolic responses were investigated in oyster larvae by GC-MS  

•  Host metabolism changes are suggestive of Irg-1-like activation 

•  Energy and lipid metabolism was substantially disturbed during infection  

•  Activation of immunoresponsive gene 1 and the Warburg effect is hypothesised 

•  Metabolomics is a powerful approach to study disease in early oyster life stage 


