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Abstract

Objective—Increased amniotic fluid concentrations of anti-microbial peptides, components of

the innate immune system, have been reported in patients with preterm labor intact membranes

and intra-amniotic infection/inflammation (IAI), as well as in patients with preterm prelabor

rupture of the membranes (PPROM). This study was designed to confirm these results using a

targeted approach, detecting DEFA1, DEFB1, GNLY, and S100A9 gene expression in the

choriamniotic membranes in pregnancies complicated with preterm labor intact membranes or

PPROM, with and without histologic chorioamnionitis.

Study design—Human fetal membranes were obtained from patients in the following groups: 1)

preterm labor intact membranes (n=15); 2) preterm labor intact membranes with histologic

chorioamnionitis (n=12); 3) PPROM (n=17); and 4) PPROM with histologic chorioamnionitis

(n=21). The mRNA expression of α-defensin-1, β-defensin-1, calgranulin B and granulysin in the

fetal membranes was determined by qRT-PCR.

Results—1) The expression of α-defensin-1 mRNA in the fetal membranes was higher in

patients with preterm labor intact membranes and histologic chorioamnionitis, than those without

chorioamnionitis (19.4-fold, p<0.001); 2) Among patients with histologic chorioamnionitis,

patients with preterm labor intact membranes had a higher α-defensin-1mRNA expression than

those with PPROM (5.5-fold, p=0.003); 3) Histologic chorioamnionitis was associated with a

higher calgranulin B mRNA expression in the chorioamniotic membranes of patients with both

preterm labor intact membranes (7.9-fold, p=0.03) and PPROM (7.6-fold, p<0.0001); 4) The

expression of calgranulin B mRNA in the fetal membranes was higher in patients with preterm

labor intact membranes without histologic chorioamnionitis than in those with PPROM without

histologic chorioamnionitis (2.7-fold, p=0.03); 5) There were no differences in the expression of

β-defensin-1 and granulysin in the chorioamniotic membranes between the study groups even in

the presence of histologic chorioamnioniotis.
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Conclusions—1) The mRNA expression of α-defensin-1 and calgranulin B in the fetal

membranes is higher in patients with preterm labor with intact membranes or PPROM than in

those without histologic chorioamnionitis; 2) histologic chorioamnionitis is associated with

differences in the pattern of α-defensin-1 and calgranulin B mRNA expression in the fetal

membranes in patients with preterm labor and intact membranes and those with preterm PROM.
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INTRODUCTION

The traditional view is that the amniotic cavity in normal pregnancy is sterile and does not

contain viable bacteria1 despite the presence of a large number of microorganisms in the

lower genital tract (vagina and ectocervix). The sterile status of the amniotic cavity is

presumably accomplished by the participation of the innate immune system, including the

cervical mucus plug,2–5 chorioamniotic membranes6–8 and cellular components of the

decidua, amnion and chorion, including neutrophils, macrophages, natural killer (NK) cells,

and trophoblasts.6,9,10

Natural anti-microbial peptides have been identified in plants, insects and vertebrates11 as

part of the innate limb of the immune system that provides protection against bacteria, yeast

and viruses.11–13 In humans, anti-microbial peptides have been detected in white blood cells

and14,15 epithelial cells,11,16–18 as well as in the placenta,9,19 decidua, fetal membranes16,20

and amniotic fluid.1,21 The latter contains defensins, bactericidal/permeability-increasing

protein (BPI), and S100B22 as well as other proteins, such as lactoferrin and calprotectin

(MRP8/14)21.

Defensins are anti-microbial peptides classified into three major groups: alpha (α), beta (β)
and theta (θ).23 α-defensins have a broad anti-microbial activity against Gram-negative and

Gram-positive bacteria, fungi, and enveloped viruses.14,23–25 These antimicrobial peptides

interact with the cell membranes of invading organisms, causing a disruption of ion-fluxes

and eventually leading to cell lysis.14,23–25 The group of α–defensins consists of six distinct

peptides, of which α-defensins-1, -2, and -3 share many similarities as their primary

structure differs by only one amino acid.12,26–28 Bone marrow precursors of neutrophils

synthesize and store these anti-microbial peptides intracellularly in azurophil

granules.12,28–32 Thus, α-defensins are often referred to as human neutrophil peptides

(HNP)-1,-2 and -3.14,33 In addition to their antimicrobial activity, α-defensins are capable of

stimulating a systemic inflammatory response as well as to chemo-attract T-cells and induce

histamine release from mast cells.34–37

β-defensins are mainly effective against Gram-negative bacteria and yeast, while some have

also microbial activity against Gram-positive bacteria.38–40 Human β-defensin-1 has anti-

microbial properties against Gram-positive and Gram-negative bacteria,39–42 as well as

adenovirus.43

Calgranulin B (MRP14, S100A9) is an additional anti-microbial peptide that forms

calprotectin (MRP8/14) heterodimer with calgranulin A (MRP8, S100A8).44 Calgranulin B

can be detected in neutrophils, monocytes and activated macrophages, as well as in

endothelial and epithelial cells.44–51 Calprotectin regulates the adhesion of myeloid cells to

the vascular endothelium and to the extracellular matrix, controlling the activation of these

effector cells and their direct anti-bacterial effect by zinc-capturing.44
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Granulysin, a 9kD protein52 secreted from cytolytic granules of cytotoxic T lymphocytes

and NK cells,53–56 is effective against Gram-positive and Gram-negative bacteria, as well as

fungi55 and mycobacteria.55 Its anti-microbial activity is mediated through the induction of

an increase in intracellular calcium and the efflux of intracellular potassium into the

pathogen, leading to the activation of sphingomyelinase and the ceramide pathway, as well

as mitochondrial damage by the activation of caspases and, consequently, apoptosis.57–59

Term parturition is associated with both an inflammatory response and the activation of the

three clinically manifested components of the common pathway of parturition, including

uterine contraction, cervical dilatation and decidual/membranes activation.60–62 Our group

demonstrated that each of these components has a distinct transcriptome during labor at

term.20,63,64 Moreover, microarray experiments have revealed that human term labor is

characterized by an acute inflammation gene expression signature in the extraplacental

membranes, which includes the differential expression of multiple genes encoding for

cytokines and chemokines known to orchestrate acute inflammatory response.65

Intrauterine infection and/or inflammation (IAI) can activate the common pathway of

parturition, and is a major cause of preterm labor and delivery.66–69 Microbial invasion of

the amniotic cavity (MIAC), spontaneous preterm labor (PTL) and preterm prelabor rupture

of the membranes (PPROM) are associated with increased intra-amniotic concentrations of

α–defensins, BPI, calprotectin, β-defensin-2,1,21 and S100B22. African American women

with elevated HNP1-3 concentrations in vaginal fluid at mid pregnancy (15–27 weeks of

gestation) had an increased risk for spontaneous preterm birth at 32–36 weeks (O.R. 2.4,

95% CI 1.2–4.7) after adjustment for maternal age, gestational age at enrollment, and

bacterial vaginosis.70 calgranulin B (S100A9), was differentially expressed in the

transcriptome of chorioamniotic membranes of women with preterm deliveries. Thus, this

study was designed to determine by RT-PCT changes in the chorioamniotic expression of

the mRNA for S100A9 (that was previously differentially expressed in microarray study20)

and additional genes encoding for the following antimicrobial peptides α-defensin-1

(DEFA1), β-defensin-1 (DEFB1), and granulysin (GNLY), of patients with preterm labor

with intact membranes and preterm PROM with and without histologic chorioamnionitis.

MATERIALS AND METHODS

Study design and population

The basis for the current study are the results of a previose microarray study that was

completed during March–April 2001, in which calgranulin B (S100A9) was differentially

expressed in the transcriptome of chorioamniotic membranes of women with histologic

chorioamnionitis who had either preterm labor with intact membranes or preterm PROM.

This confirmatory RT-PCR cross-sectional study was designed to investigate the differential

expression of the DEFA1, DEFB1, GNLY, and S100A9 genes in the fetal membranes of

patients in the following groups: 1) Preterm labor with intact membranes without histologic

chorioamnionitis (n=15); 2) Preterm labor with intact membranes with histologic

chorioamnionitis (n=12); 3) PPROM without histologic chorioamnionitis (n=17); and 4)

PPROM with histologic chorioamnionitis (n=21). Patients presenting with medical

complications, multiple pregnancies, and fetal chromosomal or congenital abnormalities

were excluded. All patients provided written informed consent prior to the collection of

samples. The collection and utilization of samples for research purposes was approved by

the Institutional Review Boards of both the Eunice Kennedy Shriver National Institute of

Child Health and Human Development (NIH/DHHS) and Wayne State University. Many of

these samples have been employed to study the biology of preterm labor and the

inflammation of the fetal membranes.
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Definitions

Spontaneous preterm labor with intact membranes was defined as the presence of regular

uterine contractions that occurred at a frequency of at least 2 in every 10 minutes and

associated with cervical changes which led to spontaneous preterm delivery (<37 weeks of

gestation).60,62 Preterm PROM was defined as the prelabor rupture of membranes occurring

< 37 weeks of gestation, diagnosed by speculum examination of vaginal pooling, nitrazine,

and ferning tests.71 Amniocentesis was performed at the discretion of the treating physician.

Amniotic fluid was analyzed for the assessment of the microbial state of the amniotic cavity.

Amniotic fluid was cultured for aerobic and anaerobic bacteria, as well as for genital

mycoplasmas.

Placental histopathologic examinations

Chorioamniotic membranes containing attached maternal decidua were obtained from

placentas delivered by spontaneous labor or Cesarean section at the Hutzel Women’s

Hospital (Wayne State University, Detroit, MI, USA). Fetal membranes were fixed in 10%

neutral buffered formalin overnight and embedded in paraffin. Five µm paraffin sections

were stained with hematoxylin and eosin, and examined using bright-field light microscopy.

Histopathologic examinations were performed by pathologists blinded to the clinical

information based on the diagnostic criteria previously described.72 Histologic

chorioamnionitis was diagnosed in the presence of acute inflammation using previously

described criteria.73,74

Total RNA extraction

The membranes were dissected from the placentas, rinsed thoroughly with a sterile ice-cold

phosphate buffered saline solution (Sigma Chemical Company, St Louis, Mo), cut into small

pieces, placed in RNAlater solution (Ambion, Austin, Texas), and stored at +4°C for no

longer than 2 weeks. Total RNA was isolated with a modification of the standard

guanidinium isothiocyanate-cesium chloride method.11 Briefly, tissues were homogenized

with a PRO200 rotor-stator homogenizer (Pro Scientific Inc, Monroe, Conn) in the presence

of 4 mol/L guanidinium isothiocyanate, 0.1 mol/L mercaptoethanol, 0.5% sarkosyl, and 5

mmol/L sodium citrate (pH 7); solid CsCl was added to the sample (final concentration, 0.25

g/mL), and the samples were centrifuged in an ultracentrifuge, according to the protocol.

RNA pellets were extracted with chloroform: isoamylalcohol, and the RNA was precipitated

with ethanol and glycogen (Roche Molecular Biochemicals, Indianapolis, Ind) as a carrier.

Before the first use, the RNA was pelleted and resuspended in water that contained RNasin

(Promega Corp, Madison, Wis).

Quantitative real-time reverse transcription–polymerase chain reaction (qRT–PCR)

2.5 µg total RNA from each sample and a positive control sample was reverse transcribed

using Superscript II reverse transcriptase, random hexamer primers, and oligo(dT) primers

(Invitrogen Life Technologies, Rockville, MD, USA). The standard curve was run with the

DEFA1, DEFB1, GNLY, and S100A9 genes and the 18S ribosomal RNA housekeeping

gene to determine the quantity of cDNA needed for an approximate cycle threshold (Ct) of

25. Subsequently, cDNA derived from an equivalent of 75 ng RNA from each sample were

run in triplicate on 96 well plates to obtain technical replicates for the target and reference

assays. A “calibrator” sample was run in triplicate in all plates to account for plate effects. In

addition, a negative control containing no RNA and 12.5 ng of human genomic DNA were

also tested in duplicates. Samples from the study groups were randomly allocated on the

plates; the DEFA1, DEFB1, GNLY, S100A9, and 18S rRNA assays were run with the same

allocation on the parallel plates. The qPCR reactions were assembled based on the TaqMan

Universal PCR Master Mix protocol (Applied Biosystems) using the 18S rRNA TaqMan
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gene expression assay (Hs99999901_s1; Applied Biosystems, Foster City, CA, USA) for the

quantification of the housekeeping gene and self-designed primers and probe for the target

genes (DEFA1, forward primer: 5'-CCCAGAAGTGGTTGTTTCCCT-3'; reverse primer: 5'-

TTTTCCTTGAGCCTGGATGCT-3'; probe: 5'-TGGAGCCAAGCTTTCGTCCCATG-3';

DEFB1, forward primer: 5'-ATTGCGTCAGCAGTGGAGG-3'; reverse primer: 5'-

AACAGGTGCCTTGAATTTTGGT-3'; probe: 5'-

CAATGTCTCTATTCTGCCTGCCCGATCTT-3'; GNLY, forward primer: 5'-

AGCAACCTCTGCCGGCT-3'; reverse primer: 5'-GACAGCAGAGGGAGTCAGGG-3';

probe: 5'-CTTCCTCGATCCAGAATCCACTCTCCAGTCT-3'; S100A9, forward primer:

5'-CAGCTGAGCTTCGAGGAGTTC-3'; reverse primer: 5'-

GCATCTTCTCGTGGGAGGC-3'; probe: 5'-CAGGTTAGCCTCGCCATCAGCATGA-3').

Data was collected by the ABI Prism 7700 Sequence Detection System (Applied

Biosystems).

Statistical analysis

Demographic and clinical characteristics of the study groups were compared using the

Pearson’s chi-square test and the Fisher’s exact test for proportions, and the Mann-Whitney

U test for non-normally distributed continuous variables using SPSS version 12.0 (SPSS

Inc., Chicago, IL, USA). Quantitative RT-PCR data was analyzed using the R statistical

software.

Gene expression levels were profiled in multiple sample groups (TCS, TIL, PPROM,

PPROM_INF, PTL, PTL_INF) by qRT-PCR experiments, using between 6 and 29 samples

per group. The RT reactions were run on 96 well plates. Samples from the study groups

were randomly allocated on the plates, and only one target gene and the 18S reference assay

were run in parallel on each given plate. Each reaction was repeated either two or three

times to obtain technical replicates for both the target assay and the reference assay. A

“calibrator” patient sample was placed on all plates to account for eventual plate effects.

Briefly, the delta-delta method75,76 was used to generate an outcome variable, Y, which is a

surrogate of the log2 concentration of the target gene in each patient sample, corrected

already for eventual plate effects.

A linear model was employed in which Y values were fitted using the Group variable and

the gestational age as predictors without including the interaction term between these two

variables. The coefficients of the two predictors in the linear model were estimated together

with their significance p-values.

The outcome variable, Y, included also a positive constant to render the Y values positive

for convenient data plotting. A False Discovery Rate adjustment76 of resulting p-values was

performed to account for all parallel tests. For each pair-wise comparison, the Group effect

was considered significant, if the adjusted p-values were < 0.05 and the magnitude of

change was at least 2-fold (one Ct unit difference). For the gestational age effect, adjusted p-

values < 0.05 were considered significant.

RESULTS

Demographic, clinical and histopathological data

Demographic and clinical characteristics of the study groups are displayed in Table I. The

diagnosis of histologic chorioamnionitis was based on the presence of maternal and/or fetal

inflammatory response in the placenta and fetal membranes. Among the 12 patients with

preterm labor intact membranes and histologic chorioamnionitis, maternal inflammatory

response was diagnosed in one case, while 11 patients had both a maternal and a fetal

inflammatory response. Among the 21 patients with PPROM and histologic
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chorioamnionitis, 7 had a maternal inflammatory response, two had a fetal inflammatory

response, and 12 had both. Amniocentesis was performed in 10 patients with preterm labor

intact membranes and 14 patients with preterm PROM. A positive amniotic fluid culture

was detected in 30% (3/10) of patients with preterm labor intact membranes and in 46.2%

(6/14) of patients with PPROM (p=0.4). The microorganisms found in amniotic fluid

cultures are presented in Table II. Within the study groups, there was no correlation between

the chorioamniotic expression of the DEFA1, DEFB1, GNLY, and S100A9 genes and

gestational age at delivery, in which these samples were collected (data not shown).

Changes in the fetal membranes mRNA expression of anti-microbial petides

α-defensin (Human neutrophil peptide)-1—Patients with histologic chorioamnionitis

had a higher α-defensin-1mRNA expression in the chorioamniotic membranes than those

without histologic chorioamnionitis [both in patients with preterm labor with intact

membranes (19.4-fold, p<0.001) and those with PPROM (2.7-fold, p=0.08)] (Figure 1).

Among women with histologic chorioamnionitis, patients with preterm labor with intact

membranes had a higher amount of α-defensin-1 mRNA expression in the fetal membranes

than those with PPROM (5.5-fold, p=0.003) (Figure 1).

β-defensin-1—Among patients with preterm labor with intact membranes and those with

PPROM, histologic chorioamnionitis was not associated with a higher β-defensin-1 mRNA

expression in the chorioamniotic membranes (p=0.2 for both comparisons). Moreover, the

expression of β-defensin-1 mRNA in the fetal membranes did not differ between patients

presenting with preterm labor with intact membranes and those presenting with PPROM,

regardless of the presence of histologic chorioamnionitis (no chorioamnionitis: p=0.2;

chorioamnionitis: p=0.2).

Granulysin—Neither in patients with preterm labor intact membranes nor in those with

PPROM, there was a relationship between the expression level of mRNA for granulysin and

the presence or absence of histologic chorioamnionitis (p=0.2 for both comparisons).

Moreover, the expression of granulysin mRNA in the fetal membranes did not differ

between patients presenting with preterm labor intact membranes and those with PPROM,

irrespective of the presence of histologic chorioamnionitis (no chorioamnionitis: p=0.2;

chorioamnionitis: p=0.2).

Calgranulin B—The expression of calgranulin B mRNA was significantly higher in the

fetal membranes of patients with histologic chorioamnionitis, regardless of whether the

patients had preterm labor with intact membranes or preterm PROM (PTL 7.9-fold, p=0.03

and PPROM 7.6-fold, p<0.0001) patients (Figure 2). The expression of calgranulin B

mRNA was higher in the fetal membranes of patients presenting with preterm labor intact

membranes without chorioamnionitis than in those with PPROM in the absence of histologic

chorioamnionitis (2.7-fold, p=0.03). This difference was not significant in the presence of

histologic chorioamnionitis (p=0.07).

DISCUSSION

Principal findings of this study

1) The expression of DEFA1 in the chorioamniotic membranes was higher in patients with

histologic chorioamnionitis than in those without chorioamnionitis, regardless of membrane

status. Moreover, among patients with histologic chorioamnionitis, those with preterm labor

with intact membranes had a higher DEFA1 expression than those with PPROM; 2)

similarly, the expression of S100A9 was higher in patients with histologic chorioamnionitis

than in those without histologic chorioamnionitis, regardless of membrane status; 3) unlike
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DEFA1, the expression of S100A9 in the fetal membranes was higher in women with

preterm labor with intact membranes than in those with PPROM only in patients without

histologic chorioamnionitis; and 4) there are no differences in the expression of DEFB1 and

GNLY in the chorioamniotic membranes between the study groups regardless of the

presence of chorioamnioniotis.

High-dimensional biology in the study of pregnancy complications

The current study confirmed, with realtime PCR, the observations made by microarray

studies by our group and presented differences in the expression pattern of S100A920, as

well as other anti-microbial peptides among patients with preterm labor with intact

membranes and those with PPROM. The use of high-dimensional biology is a promising

and evolving field in obsterics77,78. Indeed, our group previously demonstrated a distinctive

difference in the transcriptome of the chorioamniotic membranes of patients with preterm

labor with intact membranes and preterm PROM, with and without intra-amniotic infection/

inflammation20. However, the major concern of the “omics” studies is the report of false

positive results. The large number of mRNAs tested upon a single chip can currently reach

50,000 transcripts. resulting in a high number of comparisons that increases the risk for type

I error79,80. Therefore, these genomics studies can be considered as hypothesis-generating

with a less stringent p-values; and the results of the microarray analysis need to be validated

in a targeted approach by such as quantatitive realtime RT-PCR.

What are anti-microbial peptides?

The innate component of the immune system applies ancient and highly conserved

mechanisms of defense against foreign antigens.81–85 This innate system provides

immediate protection for the host against microbial challenge by recognizing the presence of

microorganisms and preventing their tissue invasion, thus limiting microbial proliferation

and inflammation.81–85 The innate immune system recognizes microbes through cellular

elements (such as neutrophils and macrophages), pattern-recognition molecules (such as the

Toll-like receptors). Anti-microbial peptides may serve as a line of defense.81–85

Defensins are a family of anti-microbial peptides classified into three major groups: alpha

(α), beta (β), and theta (θ);23,86,87 and the genes encoding for α- and β-defensins are located

in a tight cluster on chromosome 8p23.88 These peptides have a broad anti-microbial activity

against Gram-negative and Gram-positive bacteria, fungi, and enveloped viruses.14,23–25

The group of α–defensins (human neutrophil peptides) consists of six distinct peptides, of

which α-defensins-1, -2, and -3 share many similarities, as their primary structure differs by

only one amino acid.12,26–28 Bone marrow precursors of neutrophils synthesized and stored

these anti-microbial peptides intracellularly in azurophil granules.12,28–32 Due to their

origin, α-defensins are often referred to as human neutrophil peptides (HNP)-1,-2 and

-3.14,33 In addition to their antimicrobial activity, α-defensins are capable of stimulating a

systemic inflammatory response as well as to chemo-attract T-cells and induce histamine

release from mast cells.34–37

Human β–defensins are slightly longer peptides than α-defensins. They are mainly effective

against Gram-negative bacteria and yeast, though some are also effective against Gram-

positive bacteria.38–40,89 Human β–defensin-1, first discovered in 1995,90 is expressed by

the epithelium of the urinary and respiratory tracts.39,41,42 Moreover, its expression is

modulated by inflammation91–95 and can be induced by lipopolysaccharide (LPS), heat

inactivated Pseudomonas aeruginosa, as well as interferon gamma (IFNγ).91–93,95,96 Human

β–defensin-1 displays anti-microbial activity against Gram-negative bacteria and fungi, but

is relatively less potent against Gram-positive bacteria.38–40 In addition to its anti-microbial

properties, human β–defensin-1 can recruit immature dentritic cells and memory T cells,97
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thus facilitating foreign antigen presentation and generation of specific immune

response.98–100 Moreover, human β–defensin-1 can induce the production of pro-

inflammatory cytokines, [e.g., interleukin (IL)-8, IL-18, and IL-20].98–100

Calgranulin B is part of the S100 family of calcium binding proteins.44 It is an additional

anti-microbial peptide that composes the calprotectin heterodimer together with calgranulin

A, and can be detected in neutrophils, monocytes and activated macrophages, as well as in

endothelial and epithelial cells.44–51 Calgranulin B has candidastatic effect in a zinc reach

medium, an effect abrogated by calgranulin A101. In contrast, a recent report suggested that

calgranulin A is the active component of calprotectin while calgranulin B seems to regulate

calgranulin A function102. Moreover deletion of the mouse calgranulin A gene result in an

embrionically lethal phenotype103, while the targeted deletion of S100A9−/− gene protects

mice model against LPS-induced shock102, but the authors attributed this effect to the fact

that calgranulin A is highly dependent of calgranulin B and is almost undetectable in the

plasma of S100A9−/− mice despit noraml mRNA levels of S100A8102. Thus, the

Calprotectin hetrodimer of calgranulin A and calgranulin B is regarded as the active

form104. This hetrodimer regulates both the adhesion of myeloid cells to the endothelium

and extracellular matrix, and the activation of effectors cells and their direct antibacterial

effect by capturing zinc. Calprotectin concentrations of 50–250 µg/ml can inhibit the growth

of Escherichia coli, Staphylococcus aureus, and Staphylococcus epidermidis; however,

concentrations as low as 4–32 µg/ml can already inhibit the growth of Candida albicans.101

In addition, the expression of calprotectin assists the cells against the invasion of Listeria

monocytogenes, Salmonella enterica serovar typhimurium,105 suggesting that this

polypeptide complex may serve as a defense mechanism against microbial invasion. This is

relevant to our study since the fetal membranes serve as barriers against invading

microorganisms from the maternal decidua and lower genital tract, and calprotectin may

play an important role in this mechanism.

The fourth anti-microbial peptide explored in this study is granulysin. This protein is

secreted in cytolytic granules from cytotoxic T lymphocytes and NK cells.53–56 It is a 9 kD

protein with five alpha-helices connected by a short loop.52 Recombinant human granulysin

is effective against Gram-positive and Gram-negative bacteria, as well as fungi,

Mycobacterium tuberculosis, Mycobacterium leprae, Cryptococcus neoformans, and

Plasmodium falciparum.55 In addition, granulysin induces apoptosis in varicella infected

cells and block viral replication in vitro.55,106–110 The anti-microbial activity of the

positively charged granulysin is mediated through its attachment to the negatively charged

phospholipids of the invading pathogens and the subsequent induction of a coupled increase

in intracellular calcium and efflux of intracellular potassium, leading to the activation of

sphingomylinase, generation of ceramide, and mitochondrial damage by the activation of

caspases, leading to apoptosis.57–59

Innate immune and anti-microbial peptides in the reproductive system in the non-pregnant
and pregnant state

Anti-microbial peptides are prevalent in the female reproductive tract, and their

concentrations change in the different stages of the menstural cycle.111,112 Indeed, the

highest endometrial mRNA expression of β–defensin-1 is during the mid-secretory phase, of

granulysin in the late secretory phase, and of β–defensin-2 during menstruation.111,112

Treatment with hormonal contraceptives was associated with lower endometrial expression

of these anti-microbial peptides,113 suggesting that the fine-tunning of the innate immune

response in the female reproductive tract may be under hormonal regulation.

The need to protect the uppper genital tract from ascending infection is crucial during

pregnancy. Indeed, multiple mechanisms of defense against infection are thought to protect
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pregnancy. Normally, epithelia represents more than a physical barrier against

microorganisms as most epithelia produce natural anti-microbial peptides (e.g. defensins,

surfactant proteins) which can kill bacteria by damaging their cell membrane or facilitating

phagocytosis.14,23–25 However, evidence suggests that bacteria can gain access to the

amniotic cavity by penetrating intact chorioamniotic membranes,114,115 or by transplacental

passage in cases of hematogenous dissemination (bacteremia in the context of periodontal

disease116–120 or other distant infections121). Thus, the control of microbial proliferation and

the destruction of such microorganisms are required to maximize the likelihood of a normal

pregnancy outcome. Indeed, anti-microbial peptides are present in the chorioamniotic

membranes, deucida, and placenta,9,19 and the mRNA expression of human β–defensin-2

and elafin (an inhibitor of neutrophil elastase with anti-microbial activity) was shown to be

up-regulated by IL-1β in primary trophoblast cell culture.19 Multiple anti-microbial peptides

are also present in the amniotic fluid: lactoferrin,122–124 lysozyme,124–128 BPI,21

calprotectin (MRP8/14),21 LL37,125 and α–defensins 1–3.21,124,125,129 We have previously

reported that human β–defensin-2 is a physiological constituent of amniotic fluid, and its

amniotic fluid concentration increases in patients with preterm delivery and MIAC (with

either intact or ruptured membranes), as well as in those with PTL and intra-amniotic

inflammation.1

The combination of several anti-microbial peptides enhances microbial killing. For example,

there is evidence that human β–defensin-2 can act synergistically with LL-37 to kill Group

B Streptococci (GBS).130 While LL-37 alone has a minimal bactericidal concentration

(MBC) of 16 µM and human β–defensin-2 alone has an MBC of 8 µM against GBS, the

combination of these two peptides effectively reduces their MBC; and at a concentration of

4 µM each, they kill 100% of GBS.130 These studies were conducted in hypotonic media,

which maximizes the anti-microbial action of both anti-microbial peptides.130 This

observation is relevant since LL-37 is present in amniotic fluid.125 Moreover, the minimal

inhibitory concentration of human β–defensin-2 against Escherichia coli, Pseudomonas

aeruginosa, and Enterococcus faecalis is reduced in the presence of lactoferrin or

lysozyme.89 Collectively, this evidence indicates that the apparent redundancy in anti-

microbial peptides and proteins in the amniotic fluid is aimed to maximize anti-microbial

activity.

The chorioamniotic membrane is an important barrier against microbial invasion of the

amniotic fluid and fetal infection. These membranes isolate the sterile intra-amniotic

environment from the contaminated uterine and extra-uterine environment.131 Indeed,

increased mRNA expression of human β–defensins-1-3, secretory leukocyte protease

inhibitor, and elafin were reported in primary cultures of amnion cells.131 Moreover, the

administration of IL-1β stimulated the expression of human β–defensins-2 by these cells,131

supporting the anti-microbial role of these peptides in the fetal membranes.

The anti-microbial peptide profile of the fetal membranes of patients with PTL and PPROM

The findings of the current study demonstrate a distinctive pattern of anti-microbial peptide

expression in the fetal membranes of patients with preterm labor intact membranes and those

with PPROM, especially in the presence of histologic chorioamnionitis. Among patients

with preterm labor intact membranes, but not among those with preterm PROM, the

expression of the DEFA1 gene was higher in the presence of histologic chorioamnionitis.

Moreover, among patients with histologic chorioamnionitis, DEFA1 gene expression was

higher in women with preterm labor intact membranes than in those with PPROM. Of

interest, the expression of the S100A9 gene was higher in the presence of histologic

chorioamnionitis in both study groups. Nevertheless, in the absence of histologic

chorioamnionitis, patients with preterm labor intact membranes had a higher S100A9

mRNA expression than those with PPROM. These findings confirm the microarray
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results.20 Moreover, these findings also suggest that patients with preterm labor intact

membranes have a different pattern of anti-microbial peptide expression in the fetal

membrane than those with PPROM, and this pattern changes according to the presence of

histologic chorioamnionitis. Collectively, the results presented in our study raise several

questions. For example, could the profile of anti-microbial peptide expression by the

chorioamniotic membranes be associated with an increased risk for PPROM? Also, is a

higher DEFA1 expression in the fetal membranes during chorioamnionitis or an increased

S100A9 gene expression in the abscence of histologic chorioamnionitis nescessary to

maintain the integrity of the chorioamniotic membranes?

Previous studies reported that intra-amniotic infection was associated with a significant

increase in amniotic fluid concentrations of immunoreactive α–defensins-1-3,21,132 BPI,21

calprotectin21,133 and S100B, both in women with preterm labor with intact membranes and

in women with PPROM.21,22 Parturition at term was associated with a significant increase in

amniotic fluid concentrations of immunoreactive α–defensins-1-3.21 Among patients with

preterm labor intact membranes and intact membranes, the elevation of amniotic fluid

concentrations of α–defensins-1-3, BPI, calprotectin21,133 and S100B22 was associated with

intra-amniotic inflammation, histologic chorioamnionitis and a shorter diagnosis-to-delivery

interval. In addition, proteomic analysis of amniotic fluid from Rhesus monkeys and humans

with IAI identified calgranulin B and a fragment of insulin-like growth factor binding

protein 1 to be deferentially expressed134. Thus, the present study emphasizes that both α-

defensin-1 and calgranulin B have a role in the host defense in preterm labor intact

membranes and PPROM during IAI through their increased expression in the fetal

membranes and higher intra-amniotic concentrations.

Further attention has to be given to the role of α-defensins in the fetal response to infection

and perhaps to the integrity of the fetal membranes. Evidence in support of this view are: 1)

among patients with IAI, those with preterm labor intact membranes had a higher median

intra-amniotic α-defensins concentration than those with PPROM;21 and 2) among patients

with histologic chorioamnionitis, those with preterm labor intact membranes had a higher

mRNA expression of α-defensin 1 in the fetal membranes than those with PPROM.

In contrast to α-defensin 1, patients with preterm labor had a higher calgranulin B mRNA

expression in the fetal membranes than those with preterm PROM, only among women

without histologic chorioamnionitis. These suggest that the increased calgranulin B

expression in the fetal membranes and its higher intra-amniotic concentrations during

infection/inflammation may be associated with the inflammatory response of the fetal

membranes and regardless to the clinical presentation (preterm labor intact membranes or

PPROM). Moreover, in contrast to the higher concentrations of calprotectin in the amniotic

fluid of patients with PPROM than in those with preterm labor intact membranes,21 there

was no difference in calgranulin B mRNA expression in the fetal membranes of patients

with histologic chorioamnionitis, either with preterm labor intact membranes or PPROM.

Thus, further study is needed in order to elucidate the implication of the differences in the

expression of calgranulin B mRNA in the fetal membranes, among patients with preterm

labor intact membranes without histologic chorioamnionitis.

Conclusions

1) The mRNA expression of α-defensin-1 and calgranulin B in the fetal membranes is

higher in patients with preterm labor with intact membranes or PPROM than in those

without histologic chorioamnionitis; 2) histologic chorioamnionitis is associated with

differences in the pattern of α-defensin-1 and calgranulin B mRNA expression in the fetal
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membranes in patients with preterm labor and intact membranes and those with preterm

PROM.
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Figure 1.
α-defensin 1 mRNA expression in the fetal membranes of patients with spontaneous

preterm labor (PTL) or preterm prelabor rupture of membranes (PPROM). In the presence of

histologic chorioamnionitis, there was an increased expression among patients with preterm

labor with intact membranes (19.4-fold, p<0.001) or PPROM (2.7-fold, p=0.08). The

amount of alpha-defensin 1 mRNA was higher in the fetal membranes of patients presenting

with preterm labor with intact membranes and histologic chorioamnionitis than in patients

with PPROM and histologic chorioamnionitis (5.5-fold, p=0.003).
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Figure 2.
Calgranulin B mRNA expression in the fetal membranes of patients with spontaneous

preterm labor intact membranes or preterm prelabor rupture of membranes (PPROM). The

expression was increased in patients with preterm labor intact membranes (7.9-fold, p=0.03)

or in those with PPROM (7.6-fold, p<0.0001) when histologic chorioamnionitis was present.

The amount of calgranulin B mRNA was higher in the fetal membranes of patients

presenting with preterm labor with intact membranes without histologic chorioamnionitis

than in those with PPROM without histologic chorioamnionitis (2.7-fold, p=0.03). There

was no difference in calgranulin B mRNA expression in the fetal membranes between

patients with preterm labor with intact membranes or PPROM when histologic cho
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Table II

Microorganisms detected in positive amniotic fluid cultures

PPROM with
chorioamnionitis

(n=14)

preterm labor
intact

membranes
with

chorioamnionitis
(n=10)

Ureoplasma ureolyticum 3 1

Mycoplasma hominis 1 2

Gardnerella vaginalis 2 -

Lactobacillus species - 1

Peptostreptococcus species 1 -

Prevotella species 1 -

Candida albicans 1 -
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