
Differential Fault Analysis on CLEFIA

Hua Chen, Wenling Wu, and Dengguo Feng

State Key Laboratory of Information Security, Institute of Software,
Chinese Academy of Sciences, Beijing 100080, P.R. China

{chenhua,wwl,feng}@is.iscas.ac.cn

Abstract. CLEFIA is a new 128-bit block cipher proposed by SONY
corporation recently. The fundamental structure of CLEFIA is a gen-
eralized Feistel structure consisting of 4 data lines. In this paper, the
strength of CLEFIA against the differential fault attack is explored. Our
attack adopts the byte-oriented model of random faults. Through induc-
ing randomly one byte fault in one round, four bytes of faults can be
simultaneously obtained in the next round, which can efficiently reduce
the total induce times in the attack. After attacking the last several
rounds’ encryptions, the original secret key can be recovered based on
some analysis of the key schedule. The data complexity analysis and
experiments show that only about 18 faulty ciphertexts are needed to
recover the entire 128-bit secret key and about 54 faulty ciphertexts for
192/256-bit keys.

Keywords: Block Cipher, Generalized Feistel Structure, Differential
Fault Attack.

1 Introduction

The idea of fault attack was first suggested in 1997 by Boneh, DeMillo and
Lipton[1], which makes use of the faults during the execution of a cryptographic
algorithm. Under the idea, the attack was successfully exploited to break an
RSA CRT with both a correct and a faulty signature of the same message.
Shortly after, Biham and Shamir proposed an attack on secret key cryptosys-
tems called Differential Fault Analysis (DFA)[2], which combined the ideas of
fault attack and differential attack. Since the presentation of DFA, many re-
search papers have been published on using this cryptanalysis technique to suc-
cessfully attack various cryptosystems, including ECC, 3DES, AES, RC4, and
so on[3][4][5][6][7][8][9][10][11].

The block cipher CLEFIA was proposed by SONY corporation recently[12].
It is a 128-bit block cipher which supports 128-bit, 192-bit and 256-bit keys. The
fundamental structure of CLEFIA is a generalized Feistel structure consisting of
4 data lines. There are two 32-bit F-functions per one round, which respectively
use two different S-boxes and two different diffusion matrices. The key schedul-
ing part shares the generalized Feistel structure with the data processing part.
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The number of rounds is 18, 22, and 26 for 128-bit, 192-bit, and 256-bit keys,
respectively.

In [12], the strength of CLEFIA against some well-known attacks were exam-
ined by the designers, including differential cryptanalysis, linear cryptanalysis,
impossible differential cryptanalysis, related-key cryptanalysis and so on. How-
ever, the differential fault attack was not mentioned.

In this paper, an efficient differential fault attack against CLEFIA is presented.
The attack adopts the byte-oriented model of random faults. In the attack,
four bytes of faults can be simultaneously obtained in one round by inducing
randomly one byte fault in the last round, which can efficiently reduce the total
induce times. After obtaining the subkeys in the last several rounds, and through
some analysis of the key schedule, the whole secret key can be determined with
only 18 faulty ciphertexts on average for 128-bit key and 54 faulty ciphertexts
on average for 192 or 256-bit key. The experimental results also verify the facts.

This paper is organized as follows. In Section 2, the basic description of CLE-
FIA is presented. Then the basic idea of our attack is given in Section 3. Section
4 provides the detailed attacking procedure for different key sizes, the data com-
plexity analysis of our attack and the experimental results through the computer
simulation. Finally, the conclusion remarks are presented in section 5.

2 Description of CLEFIA

In this section, the basic description of CLEFIA is presented. Due to the page
limitation, only GFNd,r, F-functions, encryption function and key scheduling
are introduced. The lacking of introducing the other parts of CLEFIA will not
affect the description of our attack.

In the following description of CLEFIA, let ab represent the bit length of a is
b, | represent concatenation and ta represent the transposition of a vector a.

Description of GFNd,r. CLEFIA uses a 4-branch and an 8-branch Type-2
generalized Feistel network[13]. Denote d-branch r-round generalized Feistel net-
work as GFNd,r. In CLEFIA, GFNd,r employs two different 32-bit F-functions
F0 and F1 whose input/output are defined as follows.

F0, F1 =
{

{0, 1}32, {0, 1}32 → {0, 1}32

RK(32), x(32) �→ y(32)

For d 32-bit input Xi and output Yi (0 ≤ i < d), and dr/2 32-bit round keys
RKi (0 ≤ i < dr/2), GFNd,r(d = 4, 8) are defined as follows.

GFN4,r =
{

{{0, 1}32}2r, {{0, 1}32}4 → {{0, 1}32}4

RK0(32), ..., RK2r−1(32), x0(32), ..., x3(32) �→ y0(32), ..., y3(32)

GFN8,r =
{

{{0, 1}32}4r, {{0, 1}32}8 → {{0, 1}32}8

RK0(32), ..., RK4r−1(32), x0(32), ..., x7(32) �→ y0(32), ..., y7(32)
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The detailed description of GFN4,r is as follows.

Step 1. T0|T1|T2|T3 ← X0|X1|X2|X3
Step 2. For i = 0 to r − 1 do the following:

Step 2.1 T1 = T1 ⊕ F0(RK2i, T0), T3 = T3 ⊕ F1(RK2i+1, T2)
Step 2.2 T0|T1|T2|T3 ← T1|T2|T3|T0

Step 3. Y0|Y1|Y2|Y3 ← T3|T0|T1|T2

The description of GFN8,r is similar to GFN4,r, and not introduced here.
The inverse function GFN−1

d,r are realized by changing the order of RKi and
the direction of word rotation at Step 2.2 and Step 3 of GFN4,r.

F-Functions. F-functions F0 : (RK(32), x(32)) �→ y(32) can be described as
follows:

Step 1. T ← RK ⊕ x
Step 2. Let T ← T0|T1|T2|T3, Ti ∈ {0, 1}8

T0 = S0(T0), T1 = S1(T1)
T2 = S0(T2), T3 = S1(T3)

Step 3. Let y ← y0|y1|y2|y3, yi ∈ {0, 1}8

t(y0, y1, y2, y3) = M0
t(T0, T1, T2, T3)

F0 uses two different 8×8 S-boxes S0 and S1. S0 is constructed by combining
4 × 4 small S-boxes. S1 is constructed with the inverse transform plus affine
operation in finite field. The diffusion matrix M0 is a 4 × 4 Hadamard-type
matrix. Figure 1 depicts the F-function F0.
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y0

Fig. 1. F -function F0

F1 : (RK(32), x(32)) → y(32) is similar to F0 except that, the order of S-boxes
is S1, S0, S1, S0 and M0 is substituted by M1. M1 is also a 4× 4 Hadamard-type
matrix.

For both M0 and M1, the multiplications between matrices and vectors are
performed in GF (28) defined by the lexicographically first primitive polynomial
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z8 + z4 + z3 + z2 + 1. M−1
0 and M−1

1 respectively represents the inverse matrix
of M0 and M1.

2.1 Encryption Function

The encryption function of CLEFIA is denoted as ENCr. Let P, C ∈ {0, 1}128

be a plaintext and a ciphertext, which can be divided into P = P0|P1|P2|P3 and
C = C0|C1|C2|C3, Pi, Ci ∈ {0, 1}32, 0 ≤ i ≤ 3. Let WK0, WK1, WK2, WK3 ∈
{0, 1}32 be whitening keys and RKi ∈ {0, 1}32(0 ≤ i < 2r) be round keys
provided by the key scheduling. Then, r round encryption function ENCr can
be described as follows.

ENCr :

⎧⎨
⎩

{{0, 1}32}4, {{0, 1}32}2r, {{0, 1}32}4 → {{0, 1}32}4

WK0(32), ..., WK3(32), RK0(32), ..., RK2r−1(32), P0(32), ..., P3(32)
�→ C0(32), ..., C3(32)

The detailed description is as follows.

Step 1. T0|T1|T2|T3 ← P0|(P1 ⊕ WK0)|P2|(P3 ⊕ WK1)
Step 2. T0|T1|T2|T3 ← GFN4,r(RK0, ..., RK2r−1, T0, ..., T3)
Step 3. C0|C1|C2|C3 ← T0|(T1 ⊕ WK2)|T2|(T3 ⊕ WK3)

Figure 2 depicts the encryption function ENCr.

2.2 Key Scheduling

The key scheduling generates whitening keys WKi(0 ≤ i < 4), and round keys
RKj(0 ≤ j < 2r).

Let K be a k-bit key, where k is 128, 192 or 256. The key scheduling is divided
into the following two sub-parts.

(1) Generating an intermediate key L from K.
(2) Expanding K and L to generate WKi and RKj .

The key scheduling is explained according to the sub-parts.
For the 128-bit key scheduling, the 128-bit intermediate key L is generated by

applying GFN4,12 which takes twenty-four 32-bit constant values CON128
i , 0 ≤

i < 24 as round keys and K = K0|K1|K2|K3 as an input. Then K and L are
used to generate WKi(0 ≤ i < 4) and RKj(0 ≤ j < 36) in the following steps.

Step 1. L ← GFN4,12(CON
(128)
0 , ..., CON

(128)
23 , K0, ..., K3)

Step 2. WK0|WK1|WK2|WK3 ← K
Step 3. For i = 0 to 8 do the following:

T ← L ⊕ (CON
(128)
24+4i|CON

(128)
24+4i+1|CON

(128)
24+4i+2|CON

(128)
24+4i+3)

L =
∑

(L)
if i is odd. T = T ⊕ K
RK4i|RK4i+1|RK4i+2|RK4i+3 ← T



288 H. Chen, W. Wu, and D. Feng

F0

RK0 WK0

F1

RK1 WK1

F0

RK2

F1

RK3

...

… … …

F0

RK2r-2

WK2

F1

RK2r-1

WK3

C0 C1 C2 C3

P0 P1 P2 P3

RK5

F1

RK4

F0

Fig. 2. ENCr

The DoubleSwap function
∑

: {0, 1}128 → {0, 1}128 is defined as follows:

X128 �→ Y128
Y = X [7 − 63]X [121 − 127]X [0 − 6]X [64 − 120]

Figure 3 depicts the
∑

function.
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The following steps show the 192-bit/256-bit key scheduling and the value of
k is respectively set as 192 and 256.

Step 1. Set k = 192 or k = 256
Step 2. If k = 192 : KL ← K0|K1|K2|K3, KR ← K4|K5|K̄0|K̄1

else if k = 256 :KL ← K0|K1|K2|K3, KR ← K4|K5|K6|K7
Step 3. Let KL = KL0|KL1|KL2|KL3, KR = KR0|KR1|KR2|KR3

LL|LR ← GFN8,10(CON
(k)
0 , ..., CON

(k)
39 , KL0, ...KL3, KR0, ..., KR3)

Step 4. WK0|WK1|WK2|WK3 ← KL ⊕ KR

Step 5. For i = 0 to 10 (if k = 192) or 12 (if k = 256) do the following:

If (i mod 4) = 0 or 1:
T ← LL ⊕ (CON

(k)
40+4i|CON

(k)
40+4i+1|CON

(k)
40+4i+2|CON

(k)
40+4i+3)

LL =
∑

(LL)
if i is odd, T = T ⊕ KR

else:
T ← LR ⊕ (CON

(k)
40+4i|CON

(k)
40+4i+1|CON

(k)
40+4i+2|CON

(k)
40+4i+3)

LR =
∑

(LR)
if i is odd, T = T ⊕ KL

RK4i|RK4i+1|RK4i+2|RK4i+3 ← T

3 Basic Idea of Our Attack

3.1 Fault Model and Basic Assumptions

The byte-oriented model of random faults is adopted in our attack and the basic
assumptions are as follows.

(1) Only one byte fault can be induced into the register storing the inter-
mediate results. The adversary knows neither the location of the fault nor its
concrete value.

(2) For one plaintext, two different ciphertexts under the control of the same
secret key are available to the attacker: the right ciphertext and the faulty one.
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3.2 Basic Idea of Our Attack

Let r be the round number of CLEFIA algorithm. The basic idea for our differ-
ential fault attack on CLEFIA is as follows:

(1) choose randomly a plaintext and obtain the corresponding right ciphertext.
(2) Disturb another encryption of the plaintext until one random byte fault

is successfully induced into T0 of the (r − 1)-th round, which causes four bytes
faults into T0 of the r-th round, and obtain the corresponding faulty cipher-
text. Calculate the candidate values of all the bytes of RK2r−2 using differential
analysis technique. Repeat the induce procedure until all the bytes of RK2r−2
are recovered; Similarly, RK2r−1 can be recovered by inducing fault into T2 of
(r − 1)-th round.

(3) Disturb another encryption of the plaintext until one random byte fault
is successfully induced into T0 of the (r − 2)-th round, which causes four bytes
faults into T0 of the (r − 1)-th round, and obtain the corresponding faulty ci-
phertext. Calculate the candidate values of all the bytes of RK2r−4⊕WK3 using
differential analysis technique. Repeat the induce procedure until all the bytes
of RK2r−4 ⊕ WK3 are recovered; Similarly, RK2r−3 ⊕ WK2 can be recovered
by inducing fault into T2 of (r − 2)-th round.

(4) Disturb another encryption of the plaintext until one random byte fault
is successfully induced into T0 of the (r − 3)-th round, which causes four bytes
faults into T0 of the (r−2)-th round, and obtain the corresponding faulty cipher-
text. Calculate the candidate values of all the bytes of RK2r−6 using differential
analysis technique. Repeat the induce procedure until all the bytes of RK2r−6
are recovered; Similarly, RK2r−5 can be recovered by inducing fault into T2 of
(r − 3)-th round.

(5) If the key size is 128, jump to step (6); else continue inducing faults according
to the similar procedures as step (2)-step (4) until RK2r−8 ⊕ WK2, RK2r−7 ⊕
WK3, RK2r−10, RK2r−9, RK2r−12⊕WK3, RK2r−11⊕WK2, RK2r−14, RK2r−13,
RK2r−16 ⊕ WK2, RK2r−15 ⊕ WK3, RK2r−18 and RK2r−17 are all recovered.

(6) Based on the recovered round keys, analyze the key scheduling of CLEFIA,
and deduce the whole secret key K.

4 DFA on CLEFIA

4.1 Notations and Symbols

In order to clearly illustrate the following attacking procedure, some notations
and symbols are to be defined.

Firstly, Xj
i = (xj

i,0, x
j
i,1, x

j
i,2, x

j
i,3) and Y j

i = (yj
i,0, y

j
i,1, y

j
i,2, y

j
i,3), j ∈ {0, 1},

are respectively defined as the input and output of the S-boxes in Fj of the i-th
round. Y j

i is also the input of Mj of the i-th round. Zj
i = (zj

i,0, z
j
i,1, z

j
i,2, z

j
i,3),

j ∈ {0, 1}, is defined as the output of Mj of the i-th round.
ΔXj

i = (Δxj
i,0, Δxj

i,1, Δxj
i,2, Δxj

i,3) and ΔY j
i = (Δyj

i,0, Δyj
i,1, Δyj

i,2, Δyj
i,3),

j ∈ {0, 1}, are respectively defined as the input and output differences of the
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S-boxes in Fj of the i-th round. ΔZj
i = (Δzj

i,0, Δzj
i,1, Δzj

i,2, Δzj
i,3), j ∈ {0, 1}, is

defined as the output difference of Mj of the i-th round.
Then define IN j(a, b) = {x ∈ GF (28)|Sj(x) ⊕ Sj(x ⊕ a) = b}, a �= 0, b ∈

GF (28), j ∈ {0, 1}.
For the 128-bit key scheduling, denote Li = (Li

0, L
i
1, L

i
2, L

i
3) as the initial

value of L and T i = (T i
0, T

i
1, T

i
2, T

i
3) as the final value of T in the i-th iteration

in Step 3. For the 192/256-bit key scheduling, denote Li
L = (Li

L0, L
i
L1, L

i
L2, L

i
L3)

as the initial value of LL, Li
R = (Li

R0, L
i
R1, L

i
R2, L

i
R3) as the initial value of LR

and T i = (T i
0, T

i
1, T

i
2, T

i
3) as the final value of T in the i-th iteration in Step 5.

Finally, let Ci,j(0 ≤ i, j ≤ 3) represent the j-th byte of Ci.

4.2 Attacking Procedure with 128-Bit Key

The attacking procedure with 128-bit key is as follows.

(1) Select randomly a plaintext P , and obtain the right ciphertext C under
the secret key K = (K0, K1, K2, K3).

(2) Attack the 18-th round encryption and recover RK34 and RK35.
a) Induce one byte random fault into T0 of the 17-th round and obtain the

corresponding faulty ciphertext C∗ = (C∗
0 , C∗

1 , C∗
2 , C∗

3 ). So ΔX0
18 = (C0,0 ⊕

C∗
0,0, C0,1 ⊕C∗

0,1, C0,2 ⊕C∗
0,2, C0,3 ⊕C∗

0,3), ΔZ0
18 = (C1,0 ⊕C∗

1,0, C1,1 ⊕C∗
1,1, C1,2 ⊕

C∗
1,2, C1,3 ⊕ C∗

1,3), ΔY 0
18 = M−1

0 (ΔZ0
18).

b) Therefore, x0
18,i ∈ IN j(Δx0

18,i, Δy0
18,i), 0 ≤ i ≤ 3, j = i mod 2. Because

x0
18,i = C0,i ⊕ RK34,i, RK34,i ∈ (C0,i ⊕ IN j(Δx0

18,i, Δy0
18,i)).

c) Repeat the procedure of a) and b) until RK34 can be uniquely determined.
d) Through the similar procedure of a)-c), RK35 can be recovered by inducing

one byte random fault into T2 of the 17-th round.
(3) Attack the 17-th round encryption and recover RK32 ⊕WK3 and RK33 ⊕

WK2.
a) Induce one byte random fault into T0 of the 16-th round and obtain the

corresponding faulty ciphertext C∗ = (C∗
0 , C∗

1 , C∗
2 , C∗

3 ). It is easy to deduce
ΔX0

17 = C3 ⊕ C∗
3 ⊕ ΔZ1

18 = C3 ⊕ C∗
3 ⊕ F1(C2 ⊕ RK35) ⊕ F1(C∗

2 ⊕ RK35).
ΔZ0

17 = (C0,0 ⊕ C∗
0,0, C0,1 ⊕ C∗

0,1, C0,2 ⊕ C∗
0,2, C0,3 ⊕ C∗

0,3), ΔY 0
17 = M−1

0 (ΔZ0
17).

b) Therefore, x0
17,i ∈ IN j(Δx0

17,i, Δy0
17,i), 0 ≤ i ≤ 3, j = i mod 2. Be-

cause x0
17,i = C3,i ⊕ WK3 ⊕ z1

18,i ⊕ RK32,i, RK32,i ⊕ WK3,i ∈ (C3,i ⊕ z1
18,i ⊕

IN j(Δx0
17,i, Δy0

17,i)).
c) Repeat the procedure of a) and b) until RK32 ⊕ WK3 can be uniquely

determined.
d) Through the similar procedure of a)- c), RK33 ⊕ WK2 can be recovered

by inducing one byte random fault into T2 of the 16-th round.
(4) Attack the 16-th round encryption and recover RK30 and RK31.
a) Induce one byte random fault into T0 of the 15-th round and obtain the

corresponding faulty ciphertext C∗ = (C∗
0 , C∗

1 , C∗
2 , C∗

3 ).
b) ΔX0

16 = C2 ⊕ C∗
2 ⊕ ΔZ1

17 = C2 ⊕ C∗
2 ⊕ F1(RK33, X

1
17 ⊕ RK33) ⊕ F1(RK33,

X1
17 ⊕RK33 ⊕ΔX1

17). To compute F1(RK33, X
1
17 ⊕RK33), it is no need to know

the value of RK33 because RK33 ⊕ (X1
17 ⊕ RK33) = X1

17. Since X1
17 has been
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known in step (3), F1(RK33, X
1
17 ⊕ RK33) can be calculated out. Similarly, to

compute F1(RK33, X
1
17⊕RK33⊕ΔX1

17), X1
17⊕ΔX1

17 should be known. It is easy
to deduce ΔX1

17 = C1 ⊕ C∗
1 ⊕ ΔZ0

18 = C1 ⊕ C∗
1 ⊕ F0(RK34, C0) ⊕ F0(RK34, C

∗
0 ),

so ΔX0
16 can be calculated out.

c) ΔZ0
16 = ΔX0

17 = C3⊕C∗
3 ⊕ΔZ1

18 = C3⊕C∗
3 ⊕F1(RK35, C2)⊕F1(RK35, C

∗
2 ).

So ΔY 0
16 = M−1

0 (ΔZ0
16).

d) Therefore, x0
16,i ∈ IN j(Δx0

16,i, Δy0
16,i), 0 ≤ i ≤ 3, j = imod2. Because

x0
16,i = C2,i ⊕F1(RK33, X

1
17 ⊕RK33)⊕RK30,i, RK30,i ∈ (C2,i ⊕F1(RK33, X

1
17 ⊕

RK33) ⊕ IN j(Δx0
16,i, Δy0

16,i)).
e) Repeat the procedure of a)- d) until RK30 can be uniquely determined.
f) Through the similar procedure of a)- e), RK31 can be recovered by inducing

one byte random fault into T2 of the 15-th round.
(5) Analyze the 128-bit key scheduling and recover K.
a) In step 3 of the 128-bit key scheduling, RK32, RK33, RK34 and RK35 are

generated when i = 8. As RK34 and RK35 have been recovered, T 8
2 = RK34

and T 8
3 = RK35 are also known. As i is not odd, L8

2 = T 8
2 ⊕ CON

(128)
58 , L8

3 =
T 8

3 ⊕ CON
(128)
59 .

b) Through the inverse transformation of
∑

and L7
2 can be calculated out.

As i = 7 is odd, T 7
2 = L7

2 ⊕ CON
(128)
54 ⊕ K2. Because T 7

2 = RK30 is known, K2
can also be calculated out. Therefore, WK2 = K2 is obtained. As RK33 ⊕ WK2
has been recovered, RK33 is also obtained. So T 8

1 = RK33 is also recovered.
c) Apply the inverse transformation of

∑
, L7

3 can be calculated out. As T 7
3 =

L7
3 ⊕ CON

(128)
55 ⊕ K3 and T 7

3 = RK31 has been known, K3 can be obtained.
Therefore, WK3 = K2 is obtained. As RK32 ⊕ WK3 has been recovered, RK32
is also obtained. So T 8

0 = RK32 is recovered.
d) As all the bytes of T 8 have been obtained, L8 can be easily calculated

out. Repeat the inverse transformation of
∑

until L0 is deduced. So K =
GFN−1

4,12(CON
(128)
0 , ..., CON

(128)
23 , L0) is recovered.

4.3 Attacking Procedure with 192/256-Bit Keys

The attacking procedure with 192-bit key and 256-bit key is very similar. Due to
the page limitation, only the attacking procedure with 192-bit key is presented
as follows.

(1) Attack respectively the 22-nd, 21-st, 20-th, 19-th, 18-th, 17-th, ...., and 14-
th round encryption, recover RK42, RK43, RK40 ⊕ WK3, RK41 ⊕ WK2, RK38,
RK39, RK36 ⊕WK2, RK37 ⊕WK3, RK34, RK35, RK32 ⊕WK3, RK33 ⊕WK2,
RK30, RK31, RK28 ⊕ WK2, RK29 ⊕ WK3, RK26 and RK27. Here, the similar
methods in the 128-bit attacking procedure are adopted to recover the above
subkey values.

(2) Analyze the 192-bit key scheduling and recover K.
a) In step 5 of the 192-bit key scheduling, RK26 and RK27 are generated when

i = 6. As RK26 and RK27 have been recovered, T 6
2 = RK26 and T 6

3 = RK27 are
also known. As i is not odd, L6

R2 = T 6
2 ⊕ CON

(192)
66 , L6

R3 = T 6
3 ⊕ CON

(192)
67 .
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b)Through the transformation of
∑

, L7
R3 can be calculated out. As i = 7 is

odd, T 7
3 = L7

R3 ⊕ CON
(192)
71 ⊕ KL3. Because T 7

3 = RK31 is recovered, KL3 can
be calculated out.

c) RK34 and RK35 are generated when i = 8. Since RK34 and RK35 have
been recovered, T 8

2 = RK34 and T 8
3 = RK35 are also known. As i is not odd,

L8
L2 = T 8

2 ⊕ CON
(192)
74 , L8

L3 = T 8
3 ⊕ CON

(192)
75 .

d) Through the transformation of
∑

, L9
L3 can be calculated out. As i = 9

is odd, T 9
3 = L9

L3 ⊕ CON
(192)
79 ⊕ KR3. Because T 9

3 = RK39 has been recovered,
KR3 can be calculated out. As WK3 = KL3 ⊕ KR3, WK3 is recovered. Since
RK40⊕WK3, RK37⊕WK3, RK32⊕WK3 and RK29⊕WK3 have been recovered,
RK40, RK37, RK32 and RK29 can be obtained.

e) RK42 and RK43 are generated when i = 10. As RK42 and RK43 have been
recovered, T 10

2 = RK42 and T 10
3 = RK43 are also known. L10

R2 = T 10
2 ⊕CON

(192)
82 ,

L10
R3 = T 10

3 ⊕ CON
(192)
83 . Through the inverse transformation of

∑
, L7

R2 can be
calculated out. T 7

2 = L7
R2 ⊕CON

(192)
70 ⊕KL2. As T 7

2 = RK30 has been recovered,
KL2 can be calculated out.

f) As RK32 is known, T 8
0 = RK32 is also obtained. L8

L0 = T 8
0 ⊕ CON

(192)
72 .

Through the transformation of
∑

, L9
L2 can be calculated out. T 9

2 = L9
L2 ⊕

CON
(192)
78 ⊕ KR2. Because T 9

2 = RK38 is recovered, KR2 can be calculated out.
g) As WK2 = KL2 ⊕ KR2, WK2 is recovered. Since RK41 ⊕ WK2, RK36 ⊕

WK2, RK33 ⊕WK2 and RK28 ⊕WK2 have been obtained, RK41, RK36, RK33
and RK28 can be recovered. Thus

L10
R = (RK40|RK41|RK42|RK43)⊕ (CON

(192)
80 |CON

(192)
81 |CON

(192)
82 |CON

(192)
83 ),

L8
L = (RK32|RK33|RK34|RK35) ⊕ (CON

(192)
72 |CON

(192)
73 |CON

(192)
74 |CON

(192)
75 )

can be obtained.
h) Repeat the inverse transformation of

∑
until L0

L and L0
R are deduced. So

KL|KR = GFN−1
8,10(CON

(192)
0 , ..., CON

(192)
39 , L0

L|L0
R) is recovered.

4.4 Data Complexity Analysis

In CLEFIA, two different S-boxes S0 and S1 are adopted. S0 is generated by
combining 4×4 small S-boxes. S1 is constructed with the inverse operation plus
affine transform in finite field. For the non-empty IN0(a, b)(a �= 0, b ∈ GF (28))
of S0, the propagation of (a, b)s satisfying |IN0(a, b)| ≤ 4 is 96.2%. For the case of
|IN0(a, b)| = 2, 2 faulty ciphertexts should be generated to recover the input of
S0. For the case of |IN0(a, b)| = 4, about 4 faulty ciphertexts should be generated
to recover the input of S0. So about 3 faulty ciphertexts on average are needed
to recover the input of S0. For the non-empty IN1(a, b)(a �= 0, b ∈ GF (28)) of
S1, the propagation of (a, b)s satisfying |IN1(a, b)| = 2 is 99.2%. So about 2
faulty ciphertexts on average are needed to recover the input of S1.

In the attacking procedure in section 4.2 and 4.3, if the i-th round is to be
attacked, the (i−1)-th round will be randomly induced one byte fault, which can
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cause four bytes faults to simultaneously happen in the i-th round. So in order
to recover a subkey or the sum of a subkey and a post-whitening subkey, only
about 3 faulty ciphertexts on average are needed. As one round encryption is
composed of two F function and two subkeys are used, about 6 faulty ciphertexts
on average should be obtained. For 128-bit key, three round encryptions are to be
attacked, so about 18 faulty ciphertexts on average are required. For 192/256-bit
keys, nine round encryptions are to be attacked, so about 54 faulty ciphertexts
on average are required.

4.5 Computer Simulation

Our attack method has been successfully implemented through the computer
simulation. The programming language is Visual C++ 6.0 and the operation
system is Windows XP. The attack experiments are repeated ten times on CLE-
FIA with 128-bit, 192-bit and 256-bit key respectively.

Table 1 gives the induce number of DFA on CLEFIA. Apparently, in most
cases, the induce number is 18 for 128-bit key and 54 for 192/256-bit keys, which
verify the former data complexity analysis results.

Table 1. Experimental Results of DFA on CLEFIA

the i-th experiment 128-bit 192-bit 256-bit
1 19 54 54
2 19 54 55
3 18 54 54
4 18 54 54
5 18 55 54
6 20 54 54
7 18 54 54
8 18 55 54
9 18 54 55
10 18 54 55

5 Conclusion

In this paper, the differential fault analysis on CLEFIA is explored. The byte-
oriented model of random faults is adopted in our attack. Four bytes of faults
can be simultaneously obtained in one round by inducing randomly one byte
fault in the last round, which can efficiently reduce the total induce times in the
attack. After obtaining the subkeys in the last several rounds, and through some
analysis of the key schedule, only 18 faulty ciphertexts on average are needed to
recover the whole value of secret key for 128-bit key and 54 faulty ciphertexts
on average for 192/256-bit keys. The experimental results through the computer
simulation also verify the theoretical complexity analysis results.
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