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ABSTRACT 

This paper presents a formulation of differential fiatness-a concept originally 

introducfd by F'lifss, Levine, \fartin, and K.ouchon-in tfrrns of absolute equiv­

alence bel ween exLerior differenLia.l :;ysLerm. Sy8Lern:; which are differenlially ilaL 

have several useful propertifs which can he fxploited to genfrnte effective control 

8LraLegies for nonlinear :;ysLerm. The original definiLion of flaLne8s was given in 

the context of differential algebra, and required that all mappings be meromorphic 

fund.ions. The formulation of flatness presfntfd lwrf does not rfquirf any algf­

braic sLrucLure and allows one Lo u:;e Loob from ex.Lerior differenlial :;ysLem8 Lo 

lwlp charaderizf difffrentially flat systfms. In parti.::11 hr, it is shown that, under 

regularily as8umpLion:;, in Lhe case of :;ingle inpuL conLrol :;ysLem8 (i.e., codimen­

sion 2 Pfattian systems), a system is differentially fiat if and only if it is feedback 

li1warizable via static state fafdhadc Howfvfr, in higher rndimensions fafdbai::k 

lineariz.abiliLy a.bouL an equilibrium poinL and flaLne8s are rwl equivalenL: one mu:;L 

bf r,arefu l with thf role of time as 'Nell as the use of prolongations >vhid1 may not 

be realiz.able as dynamic feedback:; in a conLrol 8eLLing. Applica.Lions of differenLial 

fiatncss to nonlinear control systems and open questions arc also discussed. 

1. l'<TR.ODUCTTO'< 

The problfm of equivalfnce of nonlinear systems (in particular to linear systems, 

LhaL i:;, feedback lineariz.aLion) is LradiLionally approached in Lhe conLexL of differen­

tial geometry [15, 20]. A complete characterization of static feedback linearizability 

in Lhe rnulLi-inpuL case i8 available, and for 8ingle inpul 8y:;Lems iL has been :;hown 

that static and dynamic feedback lincarizability arc equivalent [5]. Some special 

results have bffn obtained for dyn a.mfr fafdhack linearizability of multi-input sys­

Lems, buL Lhe general problem remain:; un:;olved. Typically, Lhe condiLion:; for 

1991 lfothematic.1 S11.b.ir:d Cfoss i./fr!ltion. 9:\C I 0, 9:iR29, 9:\AO:.. 
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feedback linearizability are expressed in terms of the involutivity of distributions 

on a manifold. 

More recently it has been shown that the conditions on distributions have a 

natural interpretation in terms of exterior differential systems [13, 22]. In exterior 

differential systems, a control system is viewed as a Pfaffian module. Some of the 

advantages of this approach are the wealth of tools available and the fact that 

implicit equations and non-affine systems can be treated in a unified framework. 

For an extensive treatment of exterior differential systems we refer to [1]. 

Fliess and coworkers [8, 9, 16] studied the feedback linearization problem in the 

context of differential algebra and introduced the concept of differential flatness. 

In differential algebra, a system is viewed as a differential field generated by a 

set of variables (states and inputs). The system is said to be differentially flat 

if one can find a set of variables, called the flat outputs, such that the system is 

(non-differentially) algebraic over the differential field generated by the set of flat 

outputs. Roughly speaking, a system is flat if we can find a set of outputs (equal in 

number to the number of inputs) such that all states and inputs can be determined 

from these outputs without integration. More precisely, if the system has states 

x E ITt n, and inputs u E ITt m then the system is flat if we can find outputs y E ITt m 

of the form 

( . (l)) y=yx,u,u, ... ,u (1) 

such that, 

( . ( q)) x = x y, y, ... ' y 
(2) 

( . ( q)) u = u y,y, .. .,y . 

Differentially flat systems are useful in situations where explicit trajectory gen­

eration is required. Since the behaviour of flat systems is determined by the flat 

outputs, we can plan trajectories in output space, and then map these to appro­

priate inputs. A common example is the kinematic car with trailers, where the xy 

position of the last trailer provides flat outputs [18]. This implies that all feasible 

trajectories of the system can be determined by specifying only the trajectory of 

the last trailer. Unlike other approaches in the literature (such as converting the 

kinematics into a normal form), this technique works globally. 

A limitation of the differential algebraic setting is that it does not provide tools 

for regularity analysis. The results are given in terms of meromorphic functions 

in the variables and their derivatives, without characterizing the solutions. In 

particular, solutions to the differential polynomials may not exist. For example, 

the system: 

(3) 

is flat in the differentially algebraic sense with flat output y = x 2 . However, it is 

clear that the derivative of x 2 always has to be positive, and therefore we cannot 

follow an arbitrary trajectory in y space. 

To treat time as a special variable in the relations (2), one can to resort to 

Lie-Backlund transformations on infinite dimensional spaces [10, 11]. The latter 

paper distinguishes between "orbital (or topological) flatness" where time scalings 

are allowed, and "differential flatness" where they are not. 
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In the lwginning of this century, the French p,t~ometer ~;- Cartan developed a 

set of powerful tools for the study of equivalence of systems of differential equa­

tions [:~, 4, :!:!]. ~:qllivalence need not be restricted to systems of equal dimensions. 

In parlicular a. 8y8t.em can be prulungtd t.o a. bigger 8y8t.em on a bigger manifold, 

and equivalence between these prolongations can be studied. This is the concept of 

absolute eq11ir;alence of systems. Prolonging a system corresponds to dynamic faed­

back, and it is clear that we can benefit from the tools developed by Cartan to study 

the feedback linearization problem. 'l'he connections between Cartan prolongations 

and feedback lineari11a.bilit.y for 8ingle input. sy8Lem8 were sl udied in [2:1]. 
In this paper we reinterpret flatness in a differential geometric setting. \Ve make 

extensive JJSP of the tools offered by exterior differential systems, and the ideas of 

Carlan. This approach allow:; u:; Lo sl udy :;ome of t.he regularily is8ue8, and abo 

to give an explicit treatment of time dependence. l\:loreover, we can easily mah~ 

conneclion8 t.o t.he ex.Len8ive body of Lheory that. ex.i8t.s in differenlial geomelry. 'Ve 

show how to recover the differentially algebraic definition, and give an exterior dif­

ferential systems proof for a res11 lt proven by Mart.in [1 6, 17] in differential algebra: 

a ilat. sy8Lem can be pul into Ilrunov:;ky normal form by dynamic feedback in a.n 

open and dense set (this set need not contain an eqJJilihrium point). 

\Ve abo give a complete cha.ra.ct.eri11a.Lion of ila.Lne8tl for :;y8t.erm wilh a single 

input. In this case, flatness in the neighborhood of an equilibrium point is equivalent 

to lineari r.ahility by static state faedhack aroJJnd that point. '!'his result is stronger 

than lineariz.abilit.y by endogenou8 feedback as indica.Led by Ma.rt.in el al, [lfL 9], 

since the latter only holds in an open and dense set. \Ve also treat the case of time 

varying vernu8 Lime invariant. ilat. out.pul8, and show that. in t.he case of a. single 

input, time invariant system the Hat output can always be chosen time independent. 

In exterior differential systems, the special role of the time coordinate is expressed 

as an independence condition, i.e ., a one-form that. is nol allowed t.o vani8h on any 

of the solution curves. A fundamental problem with exterior differential systems 

is that. mo:;t. re8ult.s only hold on open den8e sel8 [HJ. H require8 extra. effort. t.o 

obtain results in the neighborhood of a point, sec for example [19]. In this paper 

too, we can only get local results by introducing regularity assumptions, typically 

in t.he form of rank condition:;. 

The organization of the paper is as follows. In Section 2 we introduce the dcfini­

t.iom perlaining t.o ab8olule equivalence and Lheir interpret.at.ion in conlrol theory. 

In Section 3 we introduce our definition of differential flatness and show how to 

recover the differential algebraic results. In Section 4 >Ye study the connections 

bet.ween ilat.ne8s and feedback lineari11a.bilit.y. In Sect.ion ti we present. our main 

theorems characterizing flatness for single input systems, and in Section 6 we sum­

mari r.e our results and point out some open questions. 

2. PrwLOKGATIOKS A)!D CoKTIWL THEORY 

This section introduces the concept of prolongations, and states some basic the­

orem8. It. rela.Le8 Lhe8e concepts t.o control Ll1eory. Proofo of mo8t. of t.he8e result.8 

can be found in [22]. 'Ve assume that all manifolds and mappings arc smooth (C0 '°) 

llnless explicitly stated otherwise. 

Definition 1 (Pfa.ffian 8yslem). A Pfaffiari ~y~lt"rn I on a. manifold JI i:; a 8ub­

modulc of the module of differential one-forms U1 (Af) over the commutative ring 
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of smooth functions C"-'(iW). A sft ofonf-formsw1
, ... ,:..v'n, gfnfratfs a Pfaffian 

system I= {~ · 1 , ... ,wn} = {2:::.fk~ · klfk E C'""'(M)}. 

In t.hi8 pa.per, we re8t.ricL a.t.t.ent.ion Lo finiLely genera.t.ed Pfa.ffian 8y8t.ern8 on finite 

dimensional manifolds. It is important to distinguish between a Pfattian system and 

its sft of gfnfrntors or thf algfhraic idfal I in A ( :H) gfnfratfd by I. Sin cf Wf arf 

only <lea.ling wit.h Pfa.ffia.n 8y8t.ern8 t.he Lenn sy'-'ltrn will henceforLh mea.n a. Pfaffia.n 

svstfm . 

• for a. Pfa.ffian 8}'8Lem I we ca.n define it.8 dtrivtd syslt:m Jil) a8 J(l) = {"'-' E 

Ild~ · = 0 mod I}, where I is the algebraic ideal generated by I. The derived 

system is itself a Pfattian system, so we can define the sequence I, J(l), J(2), ... 

>vhid1 is callfd tlw derwed flag of I. 

Assumption 1 (Regularity of Pfattian systems). l~nlcss explicitly otherwise stated, 

Wf will assllmf t hrollghollt this papfr th at t hf systfm is regular, i .f. 

1. the system and all its derived systems have constant rank. 

2. for fach k, thf fxtfrior di1farfntial systfm gf1wratfd by /(h) has a dfgrff :! 

parL wiLh con8t.anL rank. 

If t.he 8}'8Lem i8 regula.r t.he derived flag i8 decrea.sing, 80 t.here will be an N 8uch 

that JU")= JUv+l). This JUV) is called the bottom derived system. 

\Vlwn onf stlldifs thf systfm of onf-forrns corrfsponding to a systfrn of di1far­

enLia.l eq ua.Lion8, t.he independent. va.ria.ble t.ime become8 j U8L a.noLher coordina.t.e 

on thf manifold along with tlw dfpfmlfnt variahlfs. Hfncf thf notion of an indf­

pendent. va.riable i8 lo8L. If x denoLe8 t.he dependenL va.ria.ble8, a 8olut.ion t.o 8uch a 

system c: s---+ (t(s), x(s)) is a curve on the manifold. But we arc only interested 

in solution c11rvfs which i::orrfspond to graphs of functions :r(t). Hfncf Wf nffd to 

rfjfct sollltions for which ~! vanislws at sornf point. This is d01w by introd1wing 

di as an ir1deptrtdtrtce wridiliori, i.e., a. one-form Llia.L i8 not. a.llowed t.o va.ni8h on 

any of the solution curves. An independence condition is well defined only up to 

a nonvani8hing multiple a.nd modulo I. \Ve will writ.e a 8y8t.em wiLh indepemlence 

condition T as (I, T). The form Tis usually exact, but it docs not have to be. In this 

pa1wr Wf shall always takf T fxact, in agrffmfnt with its physical intfrprftation 

a8 t.irne. 

Definition 2 (ConLrol Sy8t.em). A Pfaffia.n 8}'8Lem wit.h independence condiLion 

(I, dt) is called a control system if {I, dt} is integrable. 

In local coordina.t.e8, conLrol 8}'8Lem8 ca.n be wriLt.en in t.he form: 

I = { d.r1 - fi (x, 11, t)dt, ... , d.1;11, - fn (x, 11, t)dt} (4) 

with states {:i: 1 , ... ,i:n} and inputs {u1 , ... ,up}- ~ote that a control system is 

always ass1mwd to havf indfpfndfncf condition dt. If t hf functions f arf imlfpfn­

dent. of t.ime Lhen we 8pea.k of a. lune mvariaril conLrol 8y8t.em. 

Definition 3 (Carla.n Prolongation). Let. (I, dl) be a. Pfa.ffia.n 8y8t.ern on a. rna.ni­

fold Ji. Let B be a manifold such that 7r : B ---+ AI is a fiber bundle. A Pfattian 

systfm ( J, JL* dt) on H is a Cartan prolongation of tlw systfm (I, dt) if thf following 

condiLion8 hold: 

1 . JL* (I) C .J 

2. For every int.egra.l curve of I, c: (-ct)--+ Ji, t.here i8 a. unique lifLed integral 

curve of J, c: (-c, c) ---+ B with 7r o c~ = c. 
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Assumption 2 (Regularity of Cartan prolongations). In this paper we only look 

at Cartan prolongations that preserve codimension. 

Note that all prolongations are required to preserve the independence condition 

of the original system. The above definition implies that there is a smooth 1-1 cor­

respondence between the integral curves of a system and of its Cartan prolongation. 

Cartan prolongations are useful to study equivalence between systems of differen­

tial equations that are defined on manifolds of different dimensions. This occurs in 

dynamic feedback extensions of control systems. We increase the dimension of the 

state by adding dynamic feedback, but the extended system is still in some sense 

equivalent to the original system. 

This allows us to define the concept of absolute equivalence introduced by Elie 

Cartan: 

Definition 4 (Absolute Equivalence). Two systems Ii, 12 are called absolutely equiv­

alent if they have Cartan prolongations Ji, h respectively that are equivalent in 

the usual sense, i.e., there exists a diffeomorphism <f; such that <f;* ( h) = Ji. This 

is illustrated in the following diagram: 

Ii h 

An interesting subclass of Cartan prolongations is formed by prolongations by 

differentiation: If (I, dt) is a system with independence condition on M, and du an 

exact one-form on M that is independent of {I, dt}, and if y is a fiber coordinate 

of B, then {I, du - ydt} is called a prolongation by differentiation of I. Note that 

we have omitted writing 71"* (du - ydt) where 71" : B --+ M is the surjective submer­

sion. We will make this abuse in the rest of the paper for notational convenience. 

Prolongations by differentiation correspond to adding integrators to a system. In 

the context of control systems, the coordinate u is the input that is differentiated. 

Ifwe add integrators to all controls, we obtain a total prolongation: Let (I, dt) be 

a system with independence condition, where dim I= n. Let dimM = n + p + 1. 

Let u1 , ... , up be coordinates such that du 1 , ... , dup are independent of {I, dt}, 

and let y1 , ... , Yp be fiber coordinates of B, then {I, du 1 - y1dt, ... , dup -ypdt} is 

called a total prolongation of I. Total prolongations can be defined independent of 

coordinates, and are therefore intrinsic geometric objects. It can be shown that in 

codimension 2 (i.e., a system with n generators on an n + 2 dimensional manifold), 

all Cartan prolongations are locally equivalent to total prolongations, [22]. 

We will call dynamic feedback a feedback of the form 

i = a(x,z,v,t) 

u = b(x, z, v, t). 

If t does not appear in (a, b) we call (a, b) a time invariant dynamic feedback. 

The dynamic feedback is called regular if for each fixed x and t the map b(x,.,., t) : 

( z, v) >--+ u is a submersion. An important question is what type of dynamic feedback 

corresponds to what type of prolongation. Clearly, prolongations by differentiation 

correspond to dynamic extension (adding integrators to the inputs). 

Cartan prolongations provide an intrinsic geometric way to study dynamic feed­

backs. We shall show that Cartan prolongations that extend a control system to 
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another control system can be expressed as dynamic feedbacks in local coordinates. 

The following example shows that not every dynamic feedback corresponds to a 

Cartan prolongation: 

Example 1 (Dynamic Feedback vs. Cartan prolongation). Consider the control sys­

tem 

with feedback 

Z1 = Z2 

Z2 = -z1 

u = g(z)v. 

This dynamic feedback introduces harmonic components which can be used to 

asymptotically stabilize nonholonomic systems (see [6] for a description of how this 

might be done). It is not a Cartan prolongation since ( z, v) cannot be uniquely 

determined from ( x, u). 

It must be said that the feedback in Example 1 is somewhat unusual, in that 

most theorems concerning dynamic feedback are restricted to adding some type of 

integrator to the inputs of the system. 

Definition 5 (Endogenous Feedback). Let x = f(x, u, t) be a control system. A 

dynamic feedback 

i=a(x,z,v,t) 

u = b(x, z, v, t). 

is said to be endogenous if z and v satisfying (5) can be expressed 

x, u, t and a finite number of their derivatives: 

z = a(x, u, ... , u(l), t) 

v = f3(x, u, ... , u(l), t). 

(5) 

as functions of 

(6) 

An endogenous feedback is called regular if for each fixed x and t the map b(x,.,., t): 

(z, v) f-t u is a submersion. 

Note that this differs slightly from the definition given in [16, 17] due to the 

explicit time dependence used here. The relationship between Cartan prolongations 

and endogenous dynamic feedback is given by the following two theorems. The first 

says that a regular endogenous feedback corresponds to a Cartan prolongation. 

Theorem 1 (Endogenous feedbacks are Cartan prolongations). Let I be a control 

system on an open set T x X x U which in coordinates (t, x, u) is given by x = 
f(x, u, t). Let J denote the control system on the open set T x Xx Z x V which is 

obtained from the above system by adding a regular endogenous dynamic feedback. 

Then J is a Cartan prolongation of I. 

Proof. Define the mapping F : T x X x Z x V --+ T x X x U by F(t, x, z, v) = 

(t, x, b(x, z, v, t)). Since bis regular, Fis a submersion. Furthermore bis surjective 

since the feedback is endogenous. Therefore F is surjective too. Since F is a surjec­

tive submersion, T x X x Z x V is fibered over T x X x U. Hence we have that so­

lutions (t, x(t), z(t), v(t)) of J project down to solutions (t, x(t), b(x(t), z(t), v(t), t)) 

of I. Therefore the first requirement of being a Cartan prolongation is satisfied. 
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The second requirement of unique lifting is trivially satisfied by the fact that z and 

v are obtained uniquely by equation (6). D 

Conversely, a Cartan prolongation can be realized by endogenous dynamic feed­

back in an open and dense set, if the resulting prolongation is a control system: 

Theorem 2 (Cartan prolongations are locally endogenous feedbacks). Let I be a 

control system on a manifold M with p inputs, { ui, ... , up}. Every Cartan pro­

longation J = {I, wi, ... , Wr} on B with independence condition dt such that J is 

again a control system is realizable by endogenous regular feedback on an open and 

dense set of B. 

Proof. Let r denote the fiber dimension of B over M, and let { wi, ... , Wr} de­

note the fiber coordinates. Since I is a control system, {I, dt} is integrable, and 

we can find n first integrals xi, ... , Xn. Preservation of the codimension and inte­

grability of { J, dt} means that we can find r extra functions ai, ... , ar such that 

J = {I, dzi - ai dt, ... , dzr - ar dt}. Here the Zi are first integrals of { J, dt} that are 

not first integrals of {I, dt}. Pick p coordinates v ( u, w) such that { t, x, z, v} form 

a set of coordinates of B. The v coordinates are the new control inputs. Clearly 

ai = ai(x,z,v,t) since we have no other coordinates. Also since {t,x,z,v} form 

coordinates for B, and u is defined on B, there has to be a function b such that 

u = b(x, z, v, t). Since both (t, x, u, w) and (t, x, z, v) form coordinates on B, there 

has to be a diffeomorphism <f; between the 2. From the form of the matrix o(t ap ) 
,x,z,v 

it can be seen that o(~~v) is full rank, and hence b is regular. This recovers the form 

of equation (5). Since J is a Cartan prolongation, every (x, u, t) lifts to a unique 

(x, z, v, t). From Lemma 1, to be presented in the next section, it then follows that 

we can express (z, v) as functions of x and u and its derivatives in an open and 

dense set. We thus obtain the form of equation (6). D 

3. DIFFERENTIALLY FLAT SYSTEMS 

In this section we present a definition of flatness in terms of prolongations. Our 

goal is to establish a definition of flatness in terms of differential geometry, while 

capturing the essential features of flatness in differential algebra [8, 9]. We build our 

definition on the minimal requirements needed to recover these features, namely the 

one to one correspondence between solution curves of the original system and an 

unconstrained system, while maintaining regularity of the various mappings. Our 

definition makes use of the concept of an absolute morphism [22]. 

Definition 6 (Absolute morphism). An absolute morphism from a system (Ii, dt) 

on Mi to a system (12 , dt) on M 2 consists of a Cartan prolongation (Ji, dt) on 7r : 

Bi --+ Mi together with surjective submersion <f; : Bi --+ M 2 such that <f;* (!2 ) C Ji. 
This is illustrated below: 

11 

rr!~ 
Ii h 

Definition 7 (Invertibly absolutely morphic systems). Two systems (Ii, dt) and 

(h, dt) are said to be absolutely morphic if there exist absolute morphisms from 

(Ii, dt) to (h dt) and from (h dt) to (Ii, dt). This is illustrated below: 
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Ji h 

rr,r~1" 
Ii h 

Two systems (Ii, dt) and (12 , dt) are said to be invertibly absolutely morphic if they 

are absolutely morphic and the following inversion property holds: let c1 (t) be an 

integral curve of Ii with c1 the (unique) integral curve of Ji such that c1 = 7roc1 , and 

let 1(t) = ¢2 o c1 (t) be the projection of c1 . Then we require that c1 (t) = ¢1 o ,:Y(t), 

where ,:Y(t) is the lift of I' from 12 to h. The same property must hold for solution 

curves of I 2 . 

If two systems are invertibly absolutely morphic, then the integral curves of one 

system map to the integral curves of the other and this process is invertible in 

the sense described above. If two systems are absolutely equivalent then they are 

also absolutely morphic, since they can both be prolonged to systems of the same 

dimension which are diffeomorphic to each other. However, for two systems to 

be absolutely morphic we do not require that any of the systems have the same 

dimension. 

A differentially flat system is one in which the "flat outputs" completely specify 

the integral curves of the system. More precisely: 

Definition 8 (Differential Flatness). A system (I, dt) is differentially fiat if it is 

invertibly absolutely morphic to the trivial system It = ( {O}, dt). 

Notice that we require that the independence condition be preserved by the 

absolute morphisms, and hence our notion of time is the same for both systems. 

Since an independence condition is only well defined up to nonvanishing multiples 

and modulo the system, we do allow time scalings between the systems We also 

allow time to enter into the absolute morphisms which map one system onto the 

other. 

If the system (I, dt) is defined on a manifold M, then we can restrict the system 

to a neighborhood around a point in M, which is again itself a manifold. We will 

call a system flat in that neighborhood if the restricted system is flat. 

The following discussion leans heavily on a theorem due to Sluis and Shadwick, 

[22, 21], which we recall here for completeness: 

Theorem 3. Let I be a system on a manifold M and J a Cartan prolongation of 

I on 71" : B --+ M. On an open and dense subset of B, there exists a prolongation 

by differentiation of J that is also a prolongation by differentiation of I. 

Proof. See [22], Theorem 24. D 

In order to establish the relationship between our definition and the differential 

algebraic notion of flatness, we need the following straightforward corollary to The­

orem 3. This lemma expresses the dependence of the fiber coordinates of a Cartan 

prolongation on the coordinates of the base space: 

Lemma 1. Let (I, dt) be a system on a manifold M with local coordinates (t, x) E 

lR'. 1 x rn:n and let (J, dt) be a Cartan prolongation on the manifold B with fiber 

coordinates y E rn:r. Assume the regularity assumptions 1, 2 hold. Then on an 

open dense set, each Yi can be uniquely determined from t, x and a finite number of 

derivatives of x. 
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Proof- Hy 'l'hPorern :) therP is a. prolongation by differenti a.ti on, on a.n opPn a.nd 

dense set: say h, of J, with fiber coordina tcs ::; , that is also a prolongation by dif­

f eren ti a.ti on of the original syst.Pm I, sa.y with fiber coordinates ii;;. This rnea.ns that 

Lhe (x, y, z, l) are diffeomorphic Lo (;c, w, l): y = y(x, w, l). The w are <lerivalive8 

of x, and therefore the claim is proven. D 

This lemma allows us to explicitly characterize differentially fiat systems in a 

local coordinate cha.rt. f..pt a system in local coordina.t.Ps (t, .1;) be differPntia.lly fta.t 

an<l leL Lhe corresponding Lrivial oy8Lem have local coordinaLe8 (l, y). Then on an 

opPn and dPnRP sPt tlwrP a.rP surjPctive s11 hrnersions h a.nd g >vi th thP following 

properly: Civen any curve y(I), Lhen 

:i:(t) = g(t, y(t), .. ' 'y(q)(t)) 

is a. solution oft he original syst.Pm a.nd fmt hermorP the cmvP y(t) can be ohta.ined 

from x(l) by 

(i'I y(t) = fi(t, .i:(t), ... 
1 
X" (t)). 

Thi8 followo from uoing <lefini Lion8 of a b8ol u Le rnor phi8rn8, Lhe in ver Libili Ly property, 

and Lemma 1, stating that fiber coordinates arc functions of base coordinates and 

thPir dPriva.tivPs and thP indPpPndent coordinate. 

Thio local charnct.eri11alion of differenlial flaLne88 correoponcb Lo Lhe differenLial 

algebraic definition except that h and g need not be algebraic or meromorphic. 

:\ lso, we do not requirP the system equ a.tions to hP algebraic or mPrornorphic. 'l'hP 

explicit time dependence corresponds to the differential algebraic setting where the 

diffPrPntia.l ground nPld is a nPld of functions and not rnerPly a. nPld of constants. 

The funct.ion8 g an<l h now being 8urjeclive 8ubrnernion8 enable8 uo Lo link Lhe 

concept of fiatncss to geometric nonlinear control theory where we usually impose 

regularity. \VP ernplrnsizP that WP only rPquired a. onP to onP corrPspondencP of 

solution curves a priori for our definition of fiatncss, and not that this dependence 

was in the form of dPrivatives. The parti.::11 la.r form of this depemlPnce followPd 

from our analyoi8. 

Finally, the following theorem allows us to characterize the notion of fiatness in 

terms of absolute Pquiva.lPnce. 

Thr:ormn 4. Two systems are im1ertibly absolutely morphic if and only if th fy am 

absolutely equivalent. 

Proof Sufficiency is trivial. \Ve shall prove necessity. For convenience we shall not 

mPntion inc-lPpPndeni::P i::onditions, but tlwy a.rP assumPd to lw prPsent a.nd do not 

affecL Lhe proof. Lel Ii on Afi and h on Af2 be invert.ibly abooluLely morphic. 

Let 11 on B1 be the prolongation of !1 with 11"1 : B1 -+ Af1 and similarly h on 

fl2 be Lhe prolongaLion of h wiLh 7r2 : fl2 --t Af2. LeL Lhe ab8oluLe rnorphi8rno be 

1)1 : B 2 -+ Af1 and 62 : B1-+ "112. 

\VP now arguP tha.t h is a Cartan prolongation of / 1 (a.nd heni::P / 1 and / 2 a.rP 

ab8oluLely equivalent.). 13y as8umpLion t;\1 i8 a 8urject.i ve 8ubmer8ion and every 

solution c2 of h projects clown to a solution c1 of ! 1 on A11 . The only extra 

requirPmPnt for h on cf>1 : H~ -+ Al 1 to be a (Ca.rt.an) prolongation is th a.t PVPry 

solution c1 of ! 1 has a unique lift c2 (on B 2 ) which is a solution of h. 
To show PxistPnce of a. lift, observP tha.t for a.ny givPn c 1 whid1 is a. solution of / 1 , 

we can obLain iLo unique lifL i:1 on fl1 (which oolve8 .TiL and geL iLo project.ion c2 

on A12 (which solves h) and then consider its unique lift <~ 2 on B 2 . ~ow it follows 
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FIGURE 1. Rolling penny 

from the invertibility property that </Ji o c2 = ci. In other words, c2 projects down 

to Ci. 

To see the uniqueness of this lift, suppose c2 and c3 which are solutions of h 
on B 2 , both project down to ci on Mi. Consider their projections c2 and c3 

(respectively) on M 2 . When we lift c2 or c3 to B 2 and project down to Mi we 

get ci. Which when lifted to Bi gives, say ci. By the requirement of the absolute 

morphisms being invertible ci should project down to (via ¢2 ) c2 as well as c3 . 

Then uniqueness of projection implies that c2 and c3 are the same. Which implies 

c2 and c3 are the same. 

Hence h is a Cartan prolongation of Ii as well. Hence Ii and 12 are absolutely 

equivalent. D 

Using this theorem we can completely characterize differential flatness in terms 

of absolute equivalence: 

Corollary 1. A system (I, dt) is differentially fiat if and only if it is absolutely 

equivalent to the trivial system It = ( { 0}, dt). 

Note that we require the feedback equivalence to preserve time, since both sys­

tems have the same independence condition. In the classical feedback equivalence 

we only consider diffeomorphisms of the form ( t, x, u) f-t ( t, <f; ( x), 1jJ ( x, u)). For flat­

ness we allow diffeomorphisms of the form (t, x, u) f-t (t, <f;(t, x, u), 1/;(t, x, u)). We 

could allow time scalings of the form t f-t s(t) but this does not change the indepen­

dence condition and does therefore not gain any generality. In Cartan's notion of 

equivalence all diffeomorphisms are completely general. This is akin to the notion 

of orbital flatness presented in [10], where one allows time scalings dependent on 

all states and inputs. 

Example 2. Consider the motion of a rolling penny, as shown in Figure 1. Let 

(xi, x2 ) represent the xy position of the penny on the plane, x3 represent the 

heading angle of the penny relative to a fixed line on the plane, and x4 represent 

the rotational velocity of the angle of Lincoln's head, i.e., the rolling velocity. We 

restrict x 3 E [O, 7r) since we cannot distinguish between a positive rolling velocity 

x4 at a heading angle x 3 and a negative rolling velocity at a heading angle x 3 + 71". 

The dynamics of the penny can be written as a Pfaffian system described by 

wi =sin x3 dxi - cos X3 dx2 

w 2 = cos x3 dxi + sin X3 dx2 - x4dt 

w 3 = dx3 - x5dt 

w4 = dx4 - uidt 

w 5 = dx5 - u2dt 

(7) 
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wlwre .i:.'i = x;~ is the velocity of the heading angle. The controls 11. 1 and u 2 cor­

respond to the torques around the rolling and heading axes. \Ve take dt as the 

independence condition. 

Thio oy:;Lem io <lifferenLially ilaL away from x4 = 0 u:;ing Lhe ouLpuL:; ;c 1 an<l :c2 

plus knowledge of time. If not both d.i: 1 = 0 and d.i:2 = 0 we can solve for ;1:3 using 

c.c:1 . Given these three variables plus tinw, >YP can solve for all other variables in the 

system by differentiation with respect to time. This argument also shows that the 

system is time independent differentially fiat, since we only need to know (x1 , .1;~) 

an<l Lheir deri vaLi veo up Lo order Lluee in order Lo :;ol ve for all of Lhe oLaLeo of Lhe 

system. 

Often we will be interested m a more restricted form of ft atness th at eliminates 

Lhe expliciL appearance of Lime LhaL appearn in Lhe general definiLion. 

Definition 9. An absolute morphism from a time invariant control system (11 , dt) 

to a time invariant control system ( 12 , dt) is a t1me-mdependent absolute morph18m 

if locally Lhe map:; 7r : fl1 --+ "111 and 6 : fl1 --+ M2 in <lefiniLion {) have Lhe form 

(t, x, u) >--+ (t, 17(:1:, u) , 1/'(.i:, u)), i.e. the mappings between states and inputs do 

noL <lepeml on Lime. A :;yoLem (I, dl) i:; liu1. t -ir1deptrtdtrtl difitrenlially jlal if iL i:; 

differentially fiat using time-independent absolute morphisms. 

\Jote that the example given above is time-independent differentially fiat. One 

mighL be LempLed Lo Lhink LhaL if Lhe conLrol :;yoLem Ii:; Lime invarianl and knowing 

that the trivial system is time invariant, we can assume that the absolute morphism 

,r; = c~(t, y, y( 1 I, ... , y\'1)) has to lw time independent as well. '!'hat this is not trne 

i:; illu:;LraLed by Lhe following example . 

Exmnple 3. Consider the system ii = ay, and the coordinate transformation y = 
~t+r Tl ·,_(a-l)x B-1 .. - I l l' ;i;-c ' . icn :t. - ~+,,. . ut l systcrns arc tune rnvanant, :mt t lC coorc mate 

transformation depends on time. 

t. LlNEAH. SYST.b.\'lS AJ\U LlNEAH.lL:;ABlLlTY 

The differenLial algebra approach Lo conLrol ha:; given ri:;e Lo new inlerpreLaliono 

of linearity [7, 18]. Rather than overloading the concept of linearity we feel it 

increa8eo clariLy if we oLick wiLh Lhe convenLional no Lion of lineariLy (oee for example 

[20]) and introduce a new term for the broader concept of linearity as exposed in 

[7, 18]. \Ve will try to clarify the different notions and indicate what the underlying 

approache:; and a:;oumpLion:; are. Thio will enable uo Lo eluci<lale Lhe connecliono 

with fiatncss and prolongations. The following definitions arc widely accepted and 

Laken from [2]. 

Definition 10. A dyrianmal ~y~lern io a S-Luple (X, U, YT, p). Ilere Xi:; Lhe :;el 

of states, U is a set of allowable input functions and U (T) denotes the possible 

valueo of Lhe inpuL:; aL a fixed Lime. Y i:; Lhe :;eL of oulpuLo funcliono and T i:; 

the set of times over which the system evolves. The map p : (X, U, T, T) ---+ Y , 

p(xD, U[to,t i]: t 0 , t 1 ) = y1 is the response fond.ion that maps an initial state .1; 11 at an 

iniLial Lime lo given an inpuL on an inlerval [lo, Ii], Lo an ouLpul Yl aL a final Lime 

t l · 

Definition 11 (Linear system). A dynamical system is said to be linear if 

1. The sets X, U and Y arc linear vector spaces over the same field. 
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2. b'or each fixed initial and final time (to, 11 ) respectively, the response fond.ion 

p(., ., t 0 , t 1 ) is a linear map from (X, C-') into Y. 

The linearity of the response function implies in particlllar that the origin of the 

8pace X i8 an equilibrium poinL. 

Definition 12 (Time invariant system). Let ST denote the delay map from a fonc­

Lion 8pace onLo iL8elf: (S'Tf)(l) = f(l - r). A dynamical 8Y8Lem i8 8aid Lo be lune 

invariant if 

1. The input, output, and time spaces arc closed under operation of ,'3r for all 

TE Ill:' . 

2. p(xo, u, lo, li) = p(xo, S,11, l1 + r, lo+ r). 

In particular, a system of the form 

.i: =/Lr+ Bu 

y = Cx + /J11 

(8) 

(9) 

is linear and time invariant. Herc (/1, B, C, D) arc matrices of appropriate dimen­

sions. If the system is con troll able, we can pllt it in Krunovsky normal form by a 

linear coordinate transformation: 

(/ ,) 
Y; = u;. ( 1 0) 

Definition 13 (Feedback linearizability). The time invariant nonlinear system 

x = f(;c, u) 

is f('cdback linearizable if there is a dynamic feedback 

i = a(x,z,v) 

11 = ,iJ(.1;, z, v) 

(11) 

(12) 

( 1 :~) 

and new coordinates E, = 1{r, z) and 17 = 1;:(.i:, z, v) such that in the new coordinates 

the system has the form: 

~=A.~+ flr1 (H) 

and the mapping d; maps onto a neighborhood of the origin. If dim z = 0 then we 

say the system is statir: faedhack linearizable. 

The form in equation (13) is the standard form in linear systems theory. It is 

llsefo l if one wants to design controllers for non linear systems arollnd eqllilibrium 

poinL8. 

It might be that the system can be put in the form (13) but that the coordinate 

transformation is not valid in a neighborhood of the origin oft.he target system. In 

LhaL ca8e we can 8hifL Lhe origin of Lhe linear 8}'8Lem Lo puL iL in Lhe form 

( = Jl(, + B17 + E (15) 

\Ve will call Lhi8 a '-'lal<:: "pace affine form. Thi8 form i8 called linear in [18], buL 

most results in linear systems theory cannot be applied since the origin is not an 

equilibrillm point. Hmvever, it is still llsefu l in the rnntext of trajectory generation. 

For example, a nonholonomic system in chained form ([19]) can be transformed to 

this state space affine form. 

It. i8 clear LhaL all feedback linearizable (by 8LaLic or dynamic feedback) 8}'8Lem8 

arc fiat, since we can put them into Brunovsky normal form. The converse only 
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holds in an open and dense set, as is shown by the following theorem. An analogous 

result was proven by Martin in a differentially algebraic setting [16, 17]. 

Theorem 5. Every differentially fiat system can be put in Erunovsky normal form 

in an open and dense set through regular endogenous feedback. 

Proof. Let J, lt be the Cartan prolongations of I, It respectively. Then by Theorem 

3, on an open and dense set, there is a prolongation by differentiation of lt that is 

also a prolongation by differentiation of It, say lti. Let Ji be the corresponding 

Cartan prolongation of J. Then Ji is equivalent to lti, which is in Brunovsky 

normal form. In particular, since Ji is a Cartan prolongation, it can be realized by 

regular endogenous feedback. D 

This proof relies on Theorem 3 which restricts its validity to an open and dense 

set. We conjecture that the result holds everywhere, but the above proof technique 

does not allow us to conclude that. The obstruction lies in certain prolongations 

that we cannot prove to be regular. 

We emphasize here that even though flatness implies that we can find coordinates 

that put the system into the linear form (13) we do not require the underlying 

manifolds to be linear spaces. In this sense, flatness is an intrinsic property of a 

control system defined on a smooth manifold. 

5. FLATNESS FOR SINGLE INPUT SYSTEMS 

For single input control systems, the corresponding differential system has codi­

mension 2. There are a number of results available in codimension 2 which allow us 

to give a complete characterization of differentially flat single input control systems. 

In codimension 2 every Cartan prolongation is a total prolongation around every 

point of the fibered manifold ([22]), given our regularity assumptions 1, 2. This 

allows us to prove the following 

Theorem 6. Let I be a time invariant control system: 

I= {dx1 - fi(x, u)dt, ... , dxn - fn(x, u)dt}, 

where u is a scalar control, i.e., the system has codimension 2. If I is time­

independent differentially fiat around an equilibrium point, then I is feedback lin­

earizable by static time invariant feedback at that equilibrium point. 

Proof. Let I be defined on M with coordinates (x, u, t), let the trivial system It be 

defined on Et with coordinates (y0 , t), let the prolongation of It be lt, and let lt 

be defined on Mt. This is illustrated below : 

J lt 

rr !?<:! rr, 
I It={} 

First we show that lt can be taken as a Goursat normal form around the equi­

librium point. In codimension 2, every Cartan prolongation is a repeated total 

prolongation in a neighborhood of every point of the fibered manifold ([22], The­

orem 5). Let Ita = It, In, It 2 , . . . denote the total prolongations starting at It, 

defined on fibered manifolds Eta = Et, En, .... If y1 denotes the fiber coordinate 

of En over Eta, then In has the form >..dt + µdy0 , where either >.. or µ depends 

non trivially on y1 . Since the last derived system of I does not drop rank at the 
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equilibrium, neither does /11 and we have that not both ,\ and p. vanish at the 

equilibrium . .\Jow, p i- 0 at the equilibrium point, since y0 = c is a solution curve 

to 11 , which would not have a lift to Ill if p. = 0, since dt is required to remain 

Lhe in<lepemlence con<liLion of all Carlan prolongaLiorn;. from conLinuiLy /! f. 0 

around the equilibrium point. So we can define y1 := ->./ 11, and Iti can be written 

as dy11 - y1 dt. \Ve can contim1e this process for every Cartan prolongation, both 

of It and of I. This brings Jt in Goursat normal form in a neighborhood of the 

equilibrium point . 

.\Jow we will argue LhaL we <lon'L need Lo prolong I Lo e8La.bli8h equivalence. Since 

J is a Cartan prolongation, and therefore a total prolongation, its first derived 

system will be equivalent to the first derived system of .J1• Continuing this we 

e8Lablioh equivalence bel ween I an<l Itn, where Itn = { dyo -y1 di, ... , dy,, _ 1 - y,, di}. 

So we have y =(Yo, ... , Yn) = y(:r;, u, t) . 

.\J ex.L we will 8how LhaL Yo, ... , y,, are in<lependenL of Lime, and LhaL Yo, ... , Yn-1 

arc independent of u. By assumption y0 is independent of time. Since the corre­

sponding derived systems on each side are equivalent, dy0 - y1 dt is equivalent to 

Lhe lasL one-form in Lhe derived ilag of I. Since Lhe differenlial du <loe8 nol appear 

in this one-form, y0 is independent of u. :\nalogously, y;, i = 1, ... , n - 1 are all 

in<lependenL of u. Since Lhe Yi, -i = 1, ... , n are repeaLed deri vaLi ve8 of Yo, and tiince 

I is time invariant, these coordinates arc also independent of time. 

\Ve still have to show that the mapping x >--+ y is a valid coordinate transfor­

maLion. Suppotie dyo, ... , dy,,_1 are linearly <lepemlenL aL Lhe equilibrium. Then, 

.J1 drops rank at the equilibrium, and since we have equivalence, so would /. Hut 

form Lhe form of I we can oee Lhi8 iti nol Lhe ca8e. 

Therefore Yi= y;(x),i = 0, ... ,n-1,yn = Yn(:r,u) and the system lt is just 

a chain of integrators with input y,,. The original system I is equivalent to this 

linear tiyoLem by a. coordina.Le Lra.n8formaLion on Lhe 8LaLe8 and a 8La.Le <lependenL 

and time invariant feedback. This coordinate transformation is well defined around 

Lhe equilibrium poinl. IL io Lherefore feedback lineariz.able by a 8Lalic feedback LhaL 

is time invariant. Note that ayn I O'tl i- 0 because Yn is the only of the y variables 

that depends on 11. D 

Exa1nple 4. NoLice Llia.L in our definiLion Lhe oy8Lem 

( ltl) 

is not flat around the origin, because we get 11. = 
3 
Y·~n so th at curves with iJ = 0 

and jj #- 0 have no lift. It is also not feedback linearir.able at the origin. 

\Ve will now show that in the case of a time invariant system, we don't need 

the assumption of time invariant flatness to conclude static feedback linearir.ability. 

\Ve will require Lhe following preliminary reoulL, which appeared in a. proof in [2:1]. 

Lonuua 2. Gi1!f:n a one-form o = A,:(x,11)dx; - A0 (.1:,u)dt (using implu:it sum­

nwtion) on a manifold J.f ·with. coordinates (x, u, t), and suppose we can. write 

(:\ = d .Y (x, 11, t) - U (x, 11, t)dt. '!'hen we can al.rn write(:\ as o: = dY (x) - \/ (x, 11)dt, 

i. t., we cart lakt llw furtclwrt X ·tndc:perideri l of lune arid lhe ·tnpul, artd we um 

take U independent of ti-me. If" we kn.ow in addition that n = "1; (:i:)dx; - Jlo(:r)dt, 
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then we can u:afr o as o = dY(.1;)- \·' (.1;)dt, i.f., we um takf V indfpendent of11. 

as well. 

D 

The following theorem seems to implied in [23], but the proof there refers to a 

general disi::11ssion of Cartan 's method of eq11ivalencP as applied to i::ontrol systPrns 

in [12]. \Ve work ouL Lhe proof for Lhi8 8pecial ca8e. 

Theoren1 7. il single inp"Ut ti-me invariant control system is differentially .flat if' 

artd unly if 'll i~ ft:edback lmwrtzablt: by ~lalu : , lmtt: mvariaril ftt:dback. 

I'roof Sufficiency is trivial, so we shall only prove necessity. Let the control system 

be I = { dx1 - .f1 (.1;, u) dt, ... , d.1;"' - fn (.1;, u) dt}, vvlwrP 11 is a srnlar i::ontroL i .P. the 

8y:;Lem has co<limernion 2. LeL { o:', i = l, ... , n} and { oi, i = l, ... , n} be one­

form:; ada.pLe<l Lo Lhe derived ila.g of I, It re8pecLively. Thuo, J(i) = { o 1
, ... , o·"-i} 

d / :;-, { 1 n-i} S.,. I l . l ]'"' . l d h f an t · = ot, ... ,o:t . . _mi::e cops not i::ontam tw r111Prentia 11, t P orrns 

o 1
, ... , o·"- 1 can be La.ken independenL of IL Since I i8 Lime in va.rianL, Lhe for mo 

n 1 , ... , an can be chosen independent of time. \Ve can thus invoke the second part 

of Lemma. 2 for Lhe formo o:1
, ... , o"- 1

. 

Assume n 2 2. As in Theorem 6 we have equivalence between n 1 and O'f = 

dyo(x, t) - Y1 (.1;, t)dt (if n = 1 WP havP Yn = Yn(.1;, u, t), whid1 WP will rPach 

evenLually). Since I io Lime inva.rianL we can choo8e o 1 Lime in<lepern.len L: o:1 = 
,-1,.(:i:)d.i:; - Jlo(:i:)dt. From Lemma 2 we know that we can write n 1 as d1~~, - Y1 dt 

where 10, Y1 a.re fundiorn of x only. 

Again according to Lemma 2, we can write n 2 = d1i-(:i:) - T'V(.i:)dt. l\ow from, 

0 = do) /\ o:1 
/\ n 2 

= -d}"1 /\ dt /\ d}-11 /\ dV 

we know V = l,-(Y1, Yo). And from 

0 +12 l 2 r co: /\ o: /\ n 

= -dH' /\ dl /\ dY0 /\ dF 

WP know th at --y1 := D \if DY1 -# 0. ThPn, writing /D := D \'f DY(1, (and 

equivalence in Lhe 8en8e Llia.L boLh 8y:;Lemo genera.Le Lhe :;ame ideal), 

{n1 ,n2
} :-: {d1~-, -1-1dt,1·1d1-1 +1·odYo - TVdt) 

:-: {dVo - V1dt,11dV1 +10}-1dt - Hidt} 

:-: {d1~J - Y1dl, dY1 - (---toY1 + T·V)h1dl} 

:= {dYo -1'1dt,d1'1 - Y2dt). 

dPnotPs 

(17) 

\Vhere Y2, defined Lo be 12 = (---toY1 + T·V)h•1, io indepen<lenL of (I, 11) :;ince 

(1'1 , ~/o, }"1 , Hi) arP. OnP i::an i::ontim1P this proi::ed11rP, at Pach st Pp denning a new 

coor<linaLe Yi. In Lhe la8L :;Lep Lhe variable T·V = T·V(:c, u) (Lhi:; will a.bo be Lhe 

first step if n = 1), and therefore Y~i. depends on u nontrivially. Hence we obtain 

equivalPncP betwPPn I and {dY(1 - }"1 dt, ... ,dY,,_ 1 - Y,,dt} with Y, = V;(x),i = 
0, ... , n - l, and Yn = Yn (x, ·u), i.e., feedback lineari11a.biliLy by 8La.Lic Lime inva.rianL 

feedback. D 

Corollary 2. If a lnnt: u1.vmwrtl smglt mpul syslt:m 1s d·iffertrtlrnlly ffol wt um 

al ways take the .fiat output as a .fimction of the states only: .II = y( :i:). 
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\Jonf of tlwsf rfs11lts fxtfnd fasily to higlwr codimfnsions. 'l"hf rfason for this 

is that only in codimcnsion two we can find regularity assumptions on the original 

systfm s11ch th at fVfry Cartan prolongation is a total prolongation. '!'his is rflatfd 

t.o t.he well known fact. Lhal for SISO 8}'8Lem8 8Lat.ic linearizabilily i8 equivalent. 

to dynamic lincarizability. For MI.\IO systems we cannot express these regularity 

conditions on tlw original systfm: Wf havf to d1fck rfg11 larity on tlw prolongfd 

systems. 

n. Co.\ICLUUL'W REMARKS 

\Ve have presented a definition of fiatncss in terms of the language of exterior 

diffarfntial systfms and prolongations. Om dffinition rfmains closf to thf original 

definition due t.o Flie88 [8, 9], but. iL in vol ve8 Lhe no Lion of a preferred coordinate 

corresponding to the independent varia blc (usually time). 

Using this fra.mfwork Wf Wfrf a.blf to rfcovfr all rfs11lts in thf di1farfntial al­

gebra formulation. In particular we showed that fiat systems can be put in linear 

form in an opfn and dfnsf sft. '!'his Sft nffd not contain an fq11ilihri11rn point, and 

t.hi8 lineariz.abilit.y therefore doe8 not. allow one t.o u8e m o8 t. met.hocb from linear 

systems theory. In other words, although fiatncss implies a linear f(n·m, it docs not 

nfcf ssarily imply a linfar str1irture. F'or a SISO fiat systfm Wf r fsolvfd thf rfg11-

larity issue, and established feedback lincarizability around an equilibrium point. 

\Vf also rfsolvfd tlw tirnf dfpfndfncf of fiat 011tp11ts in tlw SISO casf_ 

The mo8t. import.ant. open q ue8t.ion i8 a charaderizat.ion of flat.ne88 in codimen8ion 

higher than two. 
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