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ABSTRACT

This paper prescnts a formulation of differential flatness—a concopt originally
introdnced by Fliess, Levine, Martin, and Rouchon—in terms of absalute equiv-
alence belween exterior dillerential systems. Systems which are differentially Nat
have several useful praperties which can he exploited to generate effective control
stralegies [or nonlinear systems. The original delinition of Dalness was given in
the context of differential algebra, and required that all mappings be meromorphic
functions. The formulation of flatness presented here does not require any alge-
braic structure and allows one (o use tools [rom exterior dilferential systems to
help characterize differentially flat systems. In particular, it is shown that, under
regularity assumpticns, in the case of single inpul control systems {Le., codimen-
sion 2 Plaffian systcms), a system is differentially flat if and only if it is fecdback
linearizable via static state feedbhack. However, in higher codimensions feedback
linearizability aboul an equilibrium point and [abness are not equivalenl: one musl
be careful with the role of titme as well as the use of prolongations which may not
be realizable as dyunamic feedbacks iu a conlrol setting. Applications ol dillerential
flatness to nonlincar control systems and open guestions are also discussed.

1. INTRODUCTION

The prablem of equivalence of nonlinear systems (in particnlar to linear systems,
that is, leedback linearization) is traditionally approached in the context of dilleren-
tial geometry [15, 20]. A complete characicrization of static feedback lincarizability
in the mulbi-inpul case is available, and [or single inpul syslerns il has been shown
that static and dynamic feedback lincarizability arc cquivalent [5]. Some special
results have been ohtained for dynamic feedhack linearizability of multi-input sys-
lerns, bul the general problem remains unsolved. Typically, the conditions [or
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[eedback Tinearizability arce expressed in terms ol the involutivity ol disiributions
on a manilold.

More recently it has been shown that the conditions on distributions have a
natural interpretation  terms ol exterior dilferential systems [13, 22]. In exterior
differential systems, a control system is viewed as a Plallian module. Some ol the
advantages ol this approach are the wealth ol tools available and the fact that
mplicit equations and non-alline systems can be Greated ina uniflicd Framework.
For an extensive treatment ol exterior differential systems we refer to [1].

IMliess and coworkers [8, 9, 16] studied the feedback lincarization problem in the
context ol dillerential algebra and introduced the concepte ol duffcrential flainess.
In differential algebra, a system s viewed as a differential ficld generated by a
seto ol variables (states and puts). The system s said 1o be diflerentially (lat
il one can find a scl ol variables, called the (lat outputs, such that the systenn is
(non-diflferentially) algebraic over the diflferential field generated by the set ol flat
outputs. Roughly speaking, a system is (lat il we can find a set ol outputs (equal in
number to the number ol npuis) such that all states and inputs can be determined
lrom these outputs without integration. More precisely, il the system has states
€ I and inputs w € B then the systenn s flat il we can lind ouiputs y € 17
ol the form

y = ,I/(,l‘,IL,I'L,...,Il(I)) (1)

such that,

=y g,y @)
W= aly i),

Diflerentially (lat systems are uselul in situations where explicit trajectory gen-
cration is required. Since the hehaviour of flat systems s determimed by the (lad
oulpuls, we can plan trajectories e oulput space, and then map these Lo appro-
priate mputs. A common example is the kinematic car with trailers, where the ay
position ol the Tast trailer provides (lat outputs [18]. This implies that all Teasible
trajectories ol the system can be determined by specilying only the trajectory of
the last trailer. Unlike other approaches in the literature (such as converting the
kinematics ito a normal form), this techmque works globally.

A limitation of the diflferential algebraic seiting is that it does not provide tools
lor regularity analysis. "The results are given i terms ol meromorphic Tunctions
in the variables and their derivatives, without characterizing the solutions.  In
particular, solutions 1o the diflerential polynomials may not exisi. For example,
the system:

L] = U

. 3
o — l‘% ( )

is flat in the differentially algebraic sense with flat output y = xz,. However, it is

clear that the derivative of x5 always has to be positive, and therefore we cannot

follow an arbitrary trajectory in y space.

To treat time as a special variable in the relations (2), one can to resort to
Lie-Bécklund transformations on infinite dimensional spaces [10, 11]. The latter
paper distinguishes between “orbital (or topological) flatness” where time scalings
are allowed, and “differential flatness” where they are not.
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In the heginning of this century, the French geometer E. Cartan develaped a
sct of powerful tools for the study of cquivalence of systems of differential cqua-
tions [3, 4, 22]). Kgnivalence need nat be restricted to systems of equal dimensions.
In parbicular a system can be prolonged (o a bigger system on a bigger manifold,
and equivalence botween these prolongations can be studied. This 1s the coneept of
absolute equivalence of systems. Prolonging a system corresponds to dynamic feed-
back, and it 1s clear that we can benefit from the tools developed by Cartan to study
the feedback linearization problem. The conmections hetween Cartan prolongations
and [eedback linearizability [or single inpul syslems were studied 1o [23].

In this paper we reinterpret flatness in a differential geometric setting. We make
extensive nse of the toals offered by exterior differential systems, and the ideas of
Clartan. This approach allows us Lo study some ol the regularily issues, and also
to give an explicit treatment of time dependence. Motreover, we can easily make
conneclions o the extensive body of theory thal exists in diflerential geornetry. We
show how to recover the differentially algebraic definition, and give an exterior dif-
ferential systems proof for a result proven by Martin [16, 17] in differential algebra:
a [lal systemn can be pul inlo Brunovsky normal form by dynamic [eedback in an
open and dense set (this set need not contain an eqnilibrium point).

We also give a complele characterization of flatness lor sysiems with a single
input. In this casc, flatness in the neighborhood of an cquilibrium point is cquivalent
to linearizability by static state feedback around that point. This result is stronger
than linearizability by endogenous [eedback as indicated by Martin el al, [16, 9],
gince the latter only holds in an open and dense set. We also treat the case of time
varying versus Uinie invariant lal oulputs, and show thal in the case of a single
input, time invariant system the flat output can always be chosen time independent.
In exterior differential systems, the special role of the time coordinate is expressed
as an lndependence condition, i.e., & one-form thal is not allowed o vanish on any
of the solution curves. A fundamental problem with cxterior differential systems
is thal most resulis only hold on open dense sets [14]. Il requires exira eflorl to
cbtain results in the neighborhood of a point, sce for cxample [19]. In this paper
too, we can only get local results by introducing regularity assnmptions, typically
i the form of rank conditions.

The organization of the paper is as follows. In Section 2 we introduce the defini-
lions pertaining to absolute equivalence and their wlerpretalion in control theory.
In Section 3 we introduce our definition of differential flatness and show how to
recover the differential algebraic results. In Section 4 we study the connections
belween latness and [eedback linearizabilily. In Seclion 5 we presenl our main
theorems characterizing flatness for single input systems, and in Section 6 we sum-
marize our resnlts and point out some open questions.

2. PROLONGATIONS AND CONTROL TIHEDORY
This section introduces the concept of prolongations, and states some basic the-
orerns. It relales these concepls to control theory, Prools ol most of these resulls

can be found in [22]. We assume that all manifolds and mappings arc smooth {(€7*°)
nnless explicitly stated otherwise.

Definition 1 (Plaflian system). A Pfaffian system I on a manifold M is a sub-
module of the module of differential one-forms (1 {M) over the commutative ring
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1

of smooth functions (M), A set of one-forms w
syatem I = {w!, ... ,&®) = {Efeu®|fe € O (M)].

LW, generates a Pfaffian

T this paper, we restrict allention Lo linitely generated Plalian syslerns on linite
dimensional manifolds. It 18 important to distinguish between a Plaflian system and
its set of generators ar the algehraic ideal T in A{A1) generated by [. Since we are
only dealing with Plallian sysiermns the term system will hencelorth mean a Plallian
system.

For & Plaian system 7 we can deline ils derived system 'V as 111 = Lw €
Idw = 0 mod T}, where T is the algebraic ideal generated by I. The derived
system is itsclf a Pfaffian system, so we can define the sequence I, 7G4 7210
which is called the derived flag of 1.

Assumption 1 (Regularity of Pfaffian systems). Unless cxplicitly otherwisc stated,
we will assnme throughont this paper that the system is regular, i.e.
1. the system and all its derived systems have constant rank.
2. for each k, the exterior differential system generated by /%) has a degree 2
parl willi constantl rank.

Il the system is regular the derived ag is decreasing, so there will be an N such
that J¥7 = FIN+D This ) is called the bottom derived systom.

When ane studies the system of one-forms corresponding to a system of differ-
ential equalions, the independent variable time becomes just another coordinate
on the manifold along with the dependent variables. Hence the notion of an inde-
pendent variable is lost. I ¢ denoles the dependent variables, a solution o such a
systern ¢ 1 5 — (2(s), (s)) is a curve on the manifold. But we are only interested
in salution curves which correspond ta graphs of functions z(t]). Hence we need to
reject solntions for which j—z vanishes at some point. This is done by introducing
di as an independence condilion, 1.e., a one-lorm that 1s nol allowed o vanish on
any of the solution curves. An independence condition 1s well defined only up to
a nonvanishing mulliple and modulo 7. We will wrile a system with independence
condition 7 as (I, 7). The form 7 is usually exact, but it docs not have to be, In this
paper we shall always take 7 exact, in agreement with its physical interpretation
as Lie,

Definition 2 (Control System). A Plallian system with independence condition
(7, dt) 1s called a control system if {1, dt} is integrable.

In local coordinates, control systenis can be written in the lorm:
f=Aduy — file, u,t)dt, oo dey, — Fule,u,t)dt} (4)

with states {@;,... . 2zn} and inputs {w;, ..., up). Note that a control system is
always assumed to have independence condition df. If the functions f are indepen-
dent of time then we speak of a lime tnveriant control system.

Definition 3 (Cartan Prolongation). Lel {I,dl) be a Plallian systetn on a mani-
fold M. Let B be a manifold such that w1 B — M 1s a fiber bundle. A Pfaffian
system (J/, #*dt) on B is a Cortan prolongation of the system ([, dt) if the following
conditions hold:
| Il W )
2. Tor every inlegral curve of [, ¢ 1 (—e,e) — M, Lhere is a unique lilted integral
curve of J, & : (—¢,c) -+ B with moé = ¢.
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Assumption 2 (Regularity of Cartan prolongations). In this paper we only look
al Cartan prolongations that preserve codimension.

Note that all prolongations are required {o preserve the independence condition
ol the original system. The above defintiion implies that there s a smooth -1 cor-
respondence between the integral curves ol a system and ol 1is Cartan prolongation.
Cartan prolongations arc usclul 1o study equivalence between systems ol dilleren-
tial cquations that are delined on manifolds of diflferent dimensions. "This occurs
dynamic feedback extensions ol control systems. We inercase the dimension ol the
state by adding dynanmic leedback, but the extended system s still i some sense
cquivalent to the original system.

This allows us to deline the concepl ol absolute equivalence imtroduced by e
Cartan:

Definition 4 (Absolute lquivalence). Twosystems 1y, 1y are called absolulcly cquiv-
alent il they have Cartan prolongations .y, o respectively that are equivalent i
the usual sense, oo, there exists a diffcomorphism ¢ such that ¢*(J+) = J. This

is Hlustrated e the Tollowing diagram:

! I

Anoteresting subclass of Cartan prolongations is formed by prolongalions by
defforenteadion: 10 (1, dE) is acsystem with imdependence condition on M and du an
exaclt one-form on M that is independent of {1, di}, and il y is a liber coordinate
ol 13, then {1, du — ydi} s called a prolongation by diffcrentiction ol I, Note that
we have omitled writing 7 (du — ydt) where 0 3 — M s the surjective submer-
sion. We will make this abuse in the rest ol the paper for notational convenience.,
Prolongaiions by dillerentiation correspond to adding iniegrators 1o a sysicim. In
the context ol control systems, the coordimate w s the input that s difTferentiated.

I we add integrators to all controls, we obtaim a lolal prolongation: Let (1, dl) be
a system with independence condition, where dim [ = . Let dim M =+ p+ |
Lot wy, oo wy e coordinales such that duwy, ... du, arc independent. of [1,di},
and let gy, ooy be liber coordinates of 13, then {1 dwy —yidt, oo duy, — g di ) s
called a tolal prolongalion ol 1. Tolal prolongations can be delined mdependent of
coordinates, and arc therclore mirinsic gecometric objects. T can be shown that i
codimension 2 (.., asystem with o generators on an n4 2 dimensional manifold),
all Cartan prolongations are locally equivalent to total prolongations, [22].

We will call dynamae fecdback a feedback ol the Torm

F=alw, z,0,l)
u=>b(x,zv,1t).

If t does not appear in (a,b) we call (a,b) a time invariant dynamic feedback.
The dynamic feedback is called regular if for each fixed = and ¢ the map b(x, ., ., ?) :
(z,v) = wis asubmersion. Animportant question is what type of dynamic feedback
corresponds to what type of prolongation. Clearly, prolongations by differentiation
correspond to dynamic extension (adding integrators to the inputs).

Cartan prolongations provide an intrinsic geometric way to study dynamic feed-
backs. We shall show that Cartan prolongations that extend a control system to
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another control system can be expressed as dynanmic feedbacks i local coordinates.
The Tollowing example shows that not every dynanmic lfeedback corresponds 1o a

Clartan prolongation:

Example 1T (Dynamic Feedback vs. Cartan prolongation). Consider the control sys-
Lem

wilh leedback

Zo = =2
w=yg(z)v.
This dynamic leedback introduces harmonic components which can be used {o
asy mptotically stabilize nonholonomic systems (see [6] for a desceription ol how this
might be done). Htois not a Cartan prolongation since (z,v) cannot be uniquely
determined from (a, w).

1o must he said that the feedback e Bxample Tis somewhal anusual, in thad
most theorems concerning dynamic feedback are resiricted o adding some type ol
integrator to the inputs of the sysiem.

Definition 5 (Endogenous Feedback). Let @ = [, u,l) be a control system. A
dynamic feedback

)
).

= al

w=b(

XL I
& v

A
o
=

v

is said to be endogenous il = and o satislying (D) can be expressed as Tunctions of
2o, b and acfintte number ol therr dervatives:

(6)

An endogenous leedback is called reqularil for cach lixed 2 and £ the map b, ., 1)
(z,v) = w s a submersion.

Note that this differs slightly from the definition given in [16, 17] due to the
exphicit time dependence used here. The relationship between Cartan prolongations
and endogenous dynamic feedback is given by the Tollowing two theorems. 'The first

. . y i . .
says Lhatl a regular endogenous Teedback corresponds 1o a Cartan prolongation.

Theorem 1 (IEndogenous feedbacks are Cartan prolongations). Lol 1 be a condiol
system on an open scl T X< U whach i coordiales (L, a) s groen by @ =
J(x,u, ). Lelt J denole the control systemn on the open sel 1" x X x Z x V' which s
obtained from the above system by adding a reqular endogenous dynamic feedback.
Then J is a Cartan prolongation of 1.

Proof. Define the mapping F' : T x X x Z xV =5 T x X x U by F(t,z,z,v) =
(t,x,b(x,z,v,1)). Since b is regular, F is a submersion. Furthermore b is surjective
since the feedback is endogenous. Therefore F' is surjective too. Since F'is a surjec-
tive submersion, 7' x X x Z x V is fibered over T'x X x U. Hence we have that so-
lutions (¢, z(t), z(t), v(t)) of J project down to solutions (¢, z(¢), b(x(t), z(¢), v(t), 1))
of I. Therefore the first requirement of being a Cartan prolongation is satisfied.
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The second requirement of unique lifting is trivially satisficd by the Fact that = and
v are oblaied unmiquely by equation (6). 1

Conversely, a Cartan prolongation can he realized by endogenous dynamie leed-
bhack in an open and dense set, il the resulting prolongation is a control systen:

Theorem 2 (Cartan prolongations are locally endogenous lfeedbacks). Lol T be a
conlrol system on a manifold M owil p pads, Ly, oo u b Bocry Cartan pro-
longation J = {1, wy, ... w,} on B wilh indcpendence condition di such thal J s
agawm a conlrol systcm s realizable by cndogenous reqular fecdback on an open and

densc scl of 13,

Proof. Let o denote the fliber dimension of /3 over M| and let w0 e} de-
note the fiber coordinates. Since [ s a control system, {1, dl} s integrable, and
we can lind n first integrals a0y, Preservation ol the codimension and mite-
grability ol {/,di} means that we can find - extra Tunctions ay, ..., «. such that
J=Aldzy—aydt, oo dz —andty Here the z;are lirst integrals of {J, di} that are
not. lirst integrals ol {1, dt}. Pick p coordinates v(w, w) such that {42, = ¢} form
a selo ol coordinates of 3. The ¢ coordinates are the new control imputs. Clearly
a; = (2, 2, 0.0) since we have no other coordinates. Also sinee {4, 2,0} Torm
coordinates Tor 13, and w is delined on 13, there has to be a function b such thal
w=0(x, 2,0, 0). Sinee both (4,0, w w) and (L, 2, 0) Torm coordinates on /3,

has Lo he a diffcomorphisn ¢ hetween the 20 From the form ol the madrix -

ob
U ERD]

ol equation (). Since J is a Cartan prolongation, every (2w, t) lilts Lo a unique

1o can be seen thal is Tull rank, and henee bas regular. This recovers the Torm
(0, 2,000 From Lemmad | Lo be presented i the nextosection, it then Tollows thad
we can express (2, 0) as Tunctions ol a and w and ils derivatives inan open and
dense set. We thus obtain the Torm ol equation (6). O

3. DIFFERENTIALLY 'LAT SYSTEMS

In this section we present a delinition of flatness i terms ol prolongations. Our

goal 18 1o establish a delinition of (lainess i terms ol differential geometry, while
capturing the essential Teatures of latness in dilferential algebra [8, 9], We build our
definition on the minimal requirements needed 1o recover these features, namely the
one Lo one correspondence hetween solution curves ol the original system and an
unconstrained system; while maimtaining regularity ol the various mappings. Our
delinition makes use ol the concept. of an absolute morphism [22].
Definition 6 (Absolute morphism). An absolulc morphisin [rom a system (1, dl)
on My Lo asystem (1o, dl) on My consists of a Cartan prolongation (Jy, dl) on 7 :
131 — M, together with surjective submersion ¢ @ 137 — My such that ¢*(1,) C Jy.
This 1s 1llustrated below:

J1

T
I 1>

Definition 7 (Invertibly absolutely morphic systems). Two systems ([, dt) and
(I2,dt) are said to be absolutely morphic if there exist absolute morphisms from
(I1,dt) to (I2,dt) and from ([2,dt) to (I, dt). This is illustrated below:
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J Sy

! I

T'wo systems (1, di) and (s, di) are said to be wocrldbly absolulcly morphae il they
are absolutely morphic and the following inversion property holds: let ¢ (£) be an
integral curve ol Iy with ¢ the (unique) mtegral curve ol Jy such that ¢ = woeé, and
let 5 (1) = ¢gu o (1) be the projection ol ¢ Then we require that ¢ (1) = ¢y o 5(1),
where y(4) 15 the it ol 5 from 1o Lo Jo. The same property must hold for solution
curves ol ..

Il two systems are invertibly absolutely morphic, then the integral curves ol one
system map to the mtegral curves of the other and Chis process s invertible i
the sense described above, 11 two systems are absolutely equivalent then they are
also absolutely morphic, since they can both he prolonged 1o systems ol the same
dimension which are diffcomorphic to cach other.  THowever, Tor (wo systems (o
he absolutely morphic we do not require thai any ol the systems have the same
dimension.

A differentially flat systenm s one i which the “flat outputs™ completely specily
the niegral curves of the system. More precisely:

Definition 8 (Dillerential Flatness). A system (I, dl) is defferentially flad it s
invertibly absolutely morphic to the trivial system /. = ({0}, dt).

Notice thal we require that the independence condition be preserved by the
absolute morphisms, and hence our notion ol time is the same for both systems.
Since an independence condition s only well delined up to nonvanishing muliiples
and modulo the system, we do allow time sealings between the systems We also
allow time to enter mto the absolute morphisms which map one system onto the
other.

M the system (1, dE) s delined on amanilold A then we can restrict the system
to a ncighborhood around a point in M| which is again itsell a manifold. We will
call a system flat in that neighborhood il the restricied systen s (lat.

The Tollowing discussion leans heavily on a theorem due to Sluis and Shadwick,
[22, 21], which we recall here Tor completeness:

Theovem 3. Lol 1 be a system on a manifold M and J a Carlan prolongalion of
Fonm: BB —= M. Onan open and donse subscl of 13, there caisls a prolongalion
by difforentialion of J thal s also a prolongalion by diffcrentiation of 1.

Proof. See [22], Theorem 24. ]

In order to establish the relationship between our definition and the difterential
algebraic notion of flatness, we need the following straightforward corollary to The-
orem 3. This lemma expresses the dependence of the fiber coordinates of a Cartan
prolongation on the coordinates of the base space:

Lemma 1. Let (I,dt) be a system on a manifold M with local coordinates (t,x) €
R x R™ and let (J,dt) be a Cartan prolongation on the manifold B with fiber
coordinates y € R”. Assume the reqularity assumptions 1, 2 hold. Then on an
open dense set, each y; can be uniquely determined from t,xz and a finite number of
derivatives of .
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Proof. By 'T'heorem 3 there is a prolongation by differentiation, on an open and
dense sct, say I, of J, with fiber coordinates z;, that is also a prolongation by cif-
ferentiation of the original system /, say with fiber coordinates w,. This means that
the (&, y, z, () are diffeomorphic to (&, w,{): v = gz, w,{). The w are derivatives
of », and therefore the claim 1s proven. O

This lemma allows us to explicitly characterize differentially flat systoms in a
local caordinate chart. Let a system in local coordinates (¢, #) be differentially flat
and lel the corresponding trivial system have local coordinales (¢, y). Then on an
open and dense set there are surjective snbmersions h and g with the following
property: Given any curve y(t), theu

e(ty = gt y(t),. ..,y (1)
is a solution of the original system and furthermore the curve y(¢) can be obtained
[rom «(!) by

y(t) = h(t,e(t),.. . 2.
This [ollows [rom using delinitions of absolule morphisims, the invertibility property,
and Lemma 1, stating that fiber coordinates arc tunctions of basc coordinates and
their derivatives and the independent coordinate.

This local characterization of differential alness corresponds o the dillerential
algebralc definition cxcept that i and g neced not be algebraic or meromorphic.
Also, we do not require the system equations to he algebraic or meromorphic. 'The
cxplicit time dependence corresponds to the differential algebraic sctting where the
differential gronnd field is a field of functions and not merely a field of constants.
The lunctions g and b now being surjective subrrersions enables us lo linl the
concept of flatness to geometric nonlincar control theory where wo usually imposc
regularity. We emphasize that we only required a one to one correspondence of
solution curves a priort for our definition of flatness, and not that this dependence
was in the form of derivatives. The particular form of this dependence followed
[rom our analysis.

Finally, the following theorem allows us to characterize the notion of Hatness in
terms of absolute equivalence.

Theorem 4. Two systems are invertibly absolutely morphic if and only if they are
absolutcly cquivalont,

Proof. Sufficiency 1s trivial. We shall prove necessity, For convenicnce we shall not
mention independence conditions, but they are assumed to be present and do not
allect the prool. Let Iy on My and I; on My be invertibly absolutely morphic.
Let J) on B be the prolongation of 1) with =) © By — M| and similarly J» on
35 be the prolongation of Iy with mg @ By — My, Lel the absolule morphisins be
@ Bs — M) and (flg : B — M.

We now argue that Js is a Cartan prolongation of [y (and hence 1y and /s are
absolutely equivalent). DBy assumplion ¢ is a surjective submersion and every
solution ¢s of J2 projects down to a solution c; of I; on M;. The only cxtra
requirement for Jy on ¢y @ By — My to be a (Cartan) prolongation is that every
solution ¢; of I; has a unique lift ¢ {on B2) which is a solution of Ja.

To show existence of a lift, observe that for any given ¢ which is a solution of /4,
we call oblain ils unique 1ift & on By (which solves J1), and gel ils projection ¢;
on Mz (which solves I5) and then consider its unique lift ¢ on Bs. Now it follows
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I'tcure 1. Rolling penny
S B

From the mvertibility properiy that ¢y o ¢y = ¢, In other words, ¢4 projects down
Lo .

To see the uniqueness ol this Ll suppose ¢y and ¢35 which are solutions ol /.,
on 135, both project down to ¢y on M. Consider therr projeciions ¢y and ey
(respectively) on Moo When we Lt e or 3 Lo By and project down to M| we
gel o Which when Lified to 73] gives, say ¢ By the requirement ol the absolute
morphisms being invertible ¢ should project. down to (via ¢s) ¢» as well as ey,
Then unigqueness ol projection implies that es and ey are the same. Which implies
¢y and ¢y are the same.

Henee Jy s a Cartan prolongation ol 11 as well. Hence [ and Iy are absolutely
cquivalent. L]

Using this theorem we can completely characterize diflerential (lainess in terms
ol absolute equivalence:

Covollawy 1. A systcm (1, dl) s differenteadly flal of and only of ol s absolulcly
cquivalent Lo the Lrivial system 1 = (10}, dU).

Note that we require the feedback equivalence 1o preserve time, since hoth sys-
tems have the same dependence condition. ITn ithe classical feedback equivalence
we only consider diffcomorphisms ol the Torm (42, w) v (L ¢ (), ¢ (e, w)). Por lad-
ness we allow diffeomorphisms of the Tormy (L, w) — (L o(0 e w), (0 e a)). We
could allow time scalings of the form £ — s(4) but. this does not change the indepen-
dence condiiion and does therelore not gain any generality. In Cartan’s notion ol
cquivalence all diffeomorphisms are completely general. This is akin to the notion
ol orbital Nalness presented in [10], where one allows time scalings dependent on
all states and mputs.

Example 2. Consider the motion ol a rolling penny, as shown in IMigure 1. Lel,
(2, 0) represent the vy position of the penny on the plane, ag represent the
heading angle of the penny relative o a lixed Tine on the plane, and ey represent
the rotational veloceity of the angle ol Lincoln’s head, 1.e. the rolling velocity. We
restrict g € [0, 7) since we cannol distinguish hetween a positive rolling velocity
z4 at a heading angle z3 and a negative rolling velocity at a heading angle xs + 7.
The dynamics of the penny can be written as a Pfaffian system described by

w' = sinws dr, — cos x5 dry
w? = cosxydry + sin o3 dzy — Tadt
w3 = drs — zsdi (7)

Wt =drg — uydi

W’ = drg — usdi
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where 5 = &4 18 the velocity of the heading angle. The controls w; and ws cor-
respond to the torgues around the rolling and heading axes. We take dt as the
independence condition.

This system is dilferentlially Nat away frorm x4 = 0 using the oulpuls 21 and x4
plus knowledge of time. If not both de) = 0 and des = 0 we can solve for @5 using
wh. Given these three variahles plus time, we can solve for all other variahles in the
gyatcem by differentiation with respect to time. This argument also shows that the
system is time independent differentially flat, since we only need to know [z, )
and their derivalives up to order three in order Lo solve [or all of (e stales of the
svstem.

Often we will be interested in a more restricted form of flatness that eliminates
Lhe explicil appearance of Lime thal appears in the general definition.

Definition 9. An absolutc morphism from a time invariant control system ([, dit)
ta a time invariant contral system (/u4, dt} is a time-independent absolute morphism
il locally the maps m : By — My and ¢ : By — M5 in delinition 6 have the form
(t,z,u) — (t,plz,u), v (z, u)), i.c. the mappings between states and inputs do
notl depend on time. A system (7, di) 18 lime-independent differentiolly flut il 14 is
differentially flat using time-independent absolute morphisms.

Note that the example given above is time-independent differentially flat. One
might be tempted Lo thinle thal il the conbrol system [ is Uime invariant and knowing
that the trivial system i1s time invariant, we can asswmne that the absolute morphism
z=a(t gy, .. ,y"\":') has to he time independent, as well. T'hat this is not true
is Mustrated by the [ollowing example.

Example 3. Consider the system gy — ay, and the coordinate transformation y —

a2 ; . a—1jx - . - -
22ctt¥, Then z = (‘., +jj‘ . Both systems arc time invariant, but the coordinate

transformation depends on time.

1. LINEAR SYSTEMS AND LINEARIZABILITY

The dillerential algebra approach to control has given rise Lo new interprelations
of lincarity [7, 18]. Rather than overloading the concept of lincarity we feel it
inereases clarily if we stick with the conventional notion ol linearily (see lor example
[20]) and introduce a new term for the broader concept of lincarity as cxposed in
[T, 18]. We will try to clarify the different notions and indicate what the underlying
approaches and assurnplions are. This will enable us o elucidate the conneclions
with flatness and prolongations. The following definitions arc widely accepted and
laken from [2].

Definition 10. A dynamical sysiem is a b-luple (X, U, Y, T, p). Tlere X iz Lhe sel
of states, I7 1s a sct of allowable input functions and U(T) denotes the possible
values of the inputs al a lixed time. Y is the sel of oulpuls [unclions and T' is
the st of times over which the system cvolves, The map p - (X, U, T.T) = Y,
plra, Uy ty, 1) = y1 is the respanse function that maps an initial state 4 at an
initial time £y given an lnpul on an interval [{g, £1], to an outpul ¥ ab a linal time
i,

Decfinition 11 (Linear system). A dynamical system is said to be linear if

1. The sets X, U7 and Y arc lincar vector spaces over the same field.,
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2. For each fixed initial and final time (¢4, %1) respectively, the response function
p(., 1o, 1) is a lincar map from (X, 77) into Y.

The linearity of the response function implies in particnlar that the origin of the
space X 1s an equilibrium point.
Definition 12 (‘T'ime invariant system). Let S; denote the delay map from a fune-
lion space onto isell: (57 )(¢) = St — 7). A dynamical system is said o be lome
variant if
1. The input, output, and time spaces arc closed under operation of Sy for all
ek,
20 pleg,u, by, ) = plag, S;u, by + 7 g+ 7).
In particular, a system of the form
& = Ar 4+ Bu (8)
y=Cx+ Du (9)
is lincar and time invariant. Here (A, B, (', I} arc matrices of appropriate dimen-

gions. If the systemn is controllable, we can put it in Brunovsky normal form hy a
lincar coordinate transtformation:

" = (10)
Definition 13 (Feedback lincarizability). The time invariant nonlincar system
= [z, ) (11)
18 fecdback lincarizable if there 1s a dynamic feedback
i=al(x,z,v) (12}
u=3r, z ) (13)

and new coordinates & = ¢z, z) and 5 = #(z, z, v) such that in the new coordinates
the system has the form:

gf = Af+ By (11}

and the mapping ¢ maps onto a neighborhood of the origin, If dimz = 0 then we
say the system is static feedhack linearizable.

The form in equation (13) 1s the standard form in lincar systems theory. It 1s
nseful if one wants to design controllers for nonlinear systems arcund equilibrium
polnls.

It might be that the system can be put in the form (13) but that the coordinate
transformation is not valid in a neighbarhood of the arigin of the target system. In
Lhal case we can shill the origin of the linear system Lo pul it in the [orm

£= A+ Bn+ E (15)

We will call this a stale space affine lorm. This form is called linear in [18], but
most results in lincar systems theory cannot be applicd since the origin is not an
equilibrinm point. However, it is still nseful in the context of trajectory generation.
For cxample, a nonholonomic system in chained form ([19]) can be transtormed to
this state space affine form.

Tt is clear that all feedback linearizable (by static or dynamic feedback) systems
arc flat, since we can put thom into Brunovsky normal form. The converse only
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holds in an open and dense sel; as s shown by the Tollowing theorem. An analogous
result. was proven by Martin in a differentially algebraic setting [16, 17].

Theorvem 5. [fecry differentially flal system can be pul an Brunovsky novial formn
e anopen and densc st hrough vegular cndogenous fecdback,

Proof. LeiJ, 0 be the Cartan prolongations ol 1) 1 respectively. "Then by 'Theorem
3, 0n an open and dense set, there s a prolongation by dillerentiation ol ./, that is
also a prolongaiion by dillerentiation ol 1, say Jy. Let Jy be the corresponding
Cartan prolongation ol /. "Then Jp s equivalent to Jop, which is in Brunovsky
normal form. In particular, since Jy s a Cartan prolongation, it can he realized by
regular endogenous leedback. ]

This prool relies on Theorem 3 which restricts its validity (o an open and dense
scl. We conjecture that the result holds everywhere, hut the above prool technique
doces not allow us o conclude that. "The obstruction hies e certain prolongations
that, we cannol prove (o be regular.

We emphasize here that even though latness implies that we can lind coordinates
that put the system into the linear form (13) we do not require the underlying
manilolds to be Tinear spaces. In this sense, [lainess s an intrinsic property ol a

control system delined on a smooth manifold.

. I'LATNESS FORSINGLED INPUT SYSTEMS

FFor single input control systems,; the corresponding diflerential system has codi-
mension 2. There are a number of results available in codimension 2 which allow us
Lo give a complete characterization ol differentially (lat single input control sysicims.
In codimension 2 every Cartan prolongation is a tolal prolongation around cvery
point ol the fibered manifold ([22]), given our regularity assumptions 1, 2. This
allows us to prove the Tollowing

Theorem 6. Lol 1 b a tune mvariant conlrol system:
= Adwy — [y (e u)dt, oo doy, — [ (e w)dl )

where w s a scalar conlrol, .., the system has codimension 2. 1T a5 line-
mdependont difforentally flal arvownd an cqualibrinon pomd, then T s feedback lin-
carizable by stalie Lone mvariant feedback al thal cquaibram poind.

Proof. Let T be delined on M with coordinates (e, w, 1), let the trivial system 1 be
defined on B with coordinates (yo, 1), let the prolongation of 1 be Ji and let
he delined on M, . "This s tllustrated below :

1 L ={}

First we show that J; can be taken as a Goursat normal form around the equi-
librium point. In codimension 2, every Cartan prolongation is a repeated total
prolongation in a neighborhood of every point of the fibered manifold ([22], The-
orem 5). Let Ly = It, I11, Ita, ... denote the total prolongations starting at I,
defined on fibered manifolds Byy = By, Bi1, . ... If y; denotes the fiber coordinate
of By over By, then I;; has the form Adt + udyg, where either A or p depends
non trivially on y;. Since the last derived system of I does not drop rank at the



14 VAN NIEUWSTADT, RATHINAM, AND MURRAY

equilibrinm, neither does /7 and we have that not hoth A and g vanish at the
cquilibrinum. Now, g # 0 at the equilibrium point, since gy = ¢ 18 a solution curve
to [, which wonld not have a lift to [y if g = 0, since dt is required to remain
lhe independence condition of all Carlan prolongations. Trom continuily g # 0
around the cquilibrium point. So we can define y; := —A/y, and L) can be written
as dyp — i dt. We can continue this process for every Cartan prolongation, both
of I; and of I. This brings J; in Goursat normal form in a necighborhood of the
equilibrinm point.

Now we will argue thatl we don’l need o prolong [ 1o establish equivalence. Since
J 18 a Cartan prolongation, and thercfore a total prolongation, its first derived
gvstemn will be equivalent to the first derived system of J,. Continuing this we

establish equivalence between T and I, , where L, = {dyg—wdt, ... dyn_1—yndi}.
So we have y = (Yo, ..., ¥n) = yl&, 1, 1).
Nexl we will show thal yy. . .. , ¥, are independent of ime, and that yo, ... Yn-1

arc mdependent of w. By assumption go 1s independent of time. Since the corre-
sponding derived systems on each side are equivalent, dy, — i dt i3 equivalent to
Lhe lash one-form in the derived lag of 7. Since the diferential du does not appear
in this one-form, ¥ is independent of w. Analogonsly, w2 = 1,... .0 — 1 are all
independent, of w. Since the y;,7 = 1,. .., n are repeated derivatives of gy, and since
I 1s time invariant, these coordinates arc also independent of time.

We still have to show that the mapping » — ¥ is a valid coardinate transfor-
mablon. Suppose dyg, ..., dya—1 are linearly dependent al (he equilibrium. Then,
Jy drops rank at the equilibrium, and since we have equivalence, so wonld /. But
form the form of I we can see this is nol the case.

Thercfore y; = wi(r). i = 0,... ,n — Lyn = yn(x, u) and the system J¢ is just
a chain of integrators with input ,. The original system [ is equivalent to this
linear system by a coordinate transformabion on the states and a slate dependent
and time invariant foodback. This coordinate transtormation 1s well defined around
the equilibrium point. I is therelore [eedback linearizable by a static leedback that
18 time invariant. Note that Jy, /8w # 0 because g, 1s the only of the v varables
that depends an u. |

Example 4. Notice (hal in our delinilion the system

Ty —u
&) = a3 (16}
y =

is not flat aronnd the origin, becanse we ger u = 3—;2% so that curves with 5 = 0
and # £ 0 have no lift. It is also not feedback linearzable at the origin.

We will now show that in the case of a time invariant system, we don’ need
the assumption of time invariant flatness to conclude static feedback linearizability.
We will require the following preliminary result, which appeared in a prool in [23].

Lemma 2. (Fiven a one-form o = A;(x,w)de; — Aoz, v)dt (using implicit sum-
mation) on « manifold M with coordinates (r,u.t), and supposc we can writc
a=dX(x,u,t) = Ulx,u,8)dt. Then we can also write o as oo = dY (&) — V (2, u)dt,
te., we can take the function X independent of time and the inpul, and we can
take U independent of time. If we know in addition that oo = Ay{z)de; — Ag(x)dt,
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then we can scale o as o = dY (x) — V(2)dt, ie., we can take V' independent of u
as woell.
Proof. See [23). O

The following theorem scems to implicd in [23], but the proof there refers to a
general discussion of Cartan’s method of equivalence as applied to control systems
in [12]. We work oul the prool [or this special case.

Theorem 7. A singlc input time muvariant control system s differentially flat of
and only i il is feedback linearizable by stalic, time tnvariant feedback.

Proof. Sufficicney is trivial, so we shall only prove necessity. Lot the control system

be I = {dey — fi(e,w)dt, ... de, — f (2, u)dt}, where u is a scalar control, i.e. the
systemn has codimension 2. Let {of, i = 1.... . n} and {al,i = 1, .. ., n} be one-
[orms adapted to the derived flag of I, I, respectively. Thus, 7% = {a®,. .., o”~%}
and I.ll:-l) = {ol, o :(}';"4}. Since [ does not contain the differential du, the forms
at, .. o™ can be laken independent of w. Since I is lime invariant, the lorms
1., ... 0, can be chosen independent of time. We can thus invoke the sccond part
ol Leuuud 2 for the forms o, ..., a™ "L

Assume n > 2. As In Thm)lcm 6 we have 0<|unalcnl e between ol and af =

dyaiz,t) — (2, 8)dt (it n = 1 we have y, = w.(x,u.t), which we will reach

evenlually). Since [ is Lime invarianl we can choose al Lime mdependeut al =

As(2)dz; — Ag(x)di. From Lemma 2 we know that we can write ol as dY; — Yidt
where Yy, Y7 are [unclions of x only.
Again according to Lemma 2, we can write o = dV(2) — W{z)dt. Now from,
0 =dal At Aa?
=AY, AdtAdYy AdY
we know V' = ¥V (Y], ¥,). And from
0% do” Aat Aa?
= —dW A dtAdYy AdV
we knaw that v = 8V/9Y7 # 0. 'Then, writing v = 8V/3Y,, (and = denotes
equivalence in the sense thial both syslems generale Lhe same ideal),
{al, 0?) = [dYs — Yidi, 11dY) +y0dYy — Wdt)
1dYy — Yidt. y1dY) +ya¥idt — Wt}
~ {dY, — Ydl dYy — (—yo¥1 + Wi/ndt}
= {dYy — Yidt, dY) — Yadt]. (17)

12

2

Where Y3, defined o be Y3 = [(—yo¥1 + W)/y., is independent ol (£, u) since
(¥, 0, Y7, W) are. One can continne this procedure, at each step defining a new
coordinale ¥;. In the last step the variable W = W{x, u) (this will also be the
first step if # = 1), and therefore ¥, depends on u nontrivially, Hence we obtain
equivalence between [ and {dY¥, — Yidt, ... dY¥,_ — Y.dt} with Y] Y( Vi =
0,....n—=1, and ¥, = ¥, (&, u). Le., [eedback linearizabilily by static time invariant

feedback. O

Corvollary 2. If a time invartant single wnpul system s differentially flal we can
always take the flat output as o function of the states only: y — y(x),
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None of these resnlts extend easily to higher codimensions. 'I'he reason for this
18 that only in codimension two we can find regularity assumptions on the original
systemn such that every Cartan prolongation is a total prolongation. "T'his s related
lo the well known [act that Tor SISO systems stabic linearizability is equivalent,
to dynamic lincarizability. For MIMO systcms we cannot cxpress these regularity
conditions on the original system: we have to check regularity an the prolonged
svstoms.

6. ClONCLUDING REMARKS

We have presented a definition of flatness in terms of the language of cxterior
differential systems and prolongations. Our definition remains clase to the original
definilion due 1o Fliess [8, 9], but it involves the notion of a preflerred coordinale
corrcsponding to the independent variable (usually timc).

Lsing this framework we were able to recover all resnlts in the differential al-
gebra formulation. In particular we showed that flat systems can be put in lincar
form in an open and dense set.. "T'his set need not contain an equilibrium point, and
this linearizability therefore does nol allow one Lo use mosl methods [rom linear
gyatcms theory. In other words, although flatness implics a lincar form, 1t docs not
necessarily imply a linear structure. For a SISO flat system we resolved the regu-
larity issuc, and cstablished feedback lincarizability around an cquilibrium point.
We also resolved the time dependence of flat outputs in the SISO case.

The most imporbant open gquestion is a characterization ol lalness in codimension
higher than two.
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