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Abstract. In this paper, we propose a new variational framework based
on distance transform and gradient vector flow, to compute flight paths
through tubular and non-tubular structures, for virtual endoscopy. The
proposed framework propagates two wave fronts of different speeds from
a point source voxel, which belongs to the medial curves of the anatomical
structure. The first wave traverses the 3D structure with a moderate
speed that is a function of the distance field to extract its topology,
while the second wave propagates with a higher speed that is a function
of the magnitude of the gradient vector flow to extract the flight paths.
The motion of the fronts are governed by a nonlinear partial equation,
whose solution is computed efficiently using the higher accuracy fast
marching level set method (HAFMM). The framework is robust, fully
automatic, and computes flight paths that are centered, connected, thin,
and less sensitive to boundary noise. We have validated the robustness
of the proposed method both quantitatively and qualitatively against
synthetic and clinical datasets.

1 Introduction

Virtual endoscopy (VE) is a computer-based alternative to true fiber optic en-
doscopy (TE) for screening hollow organs. VE is not intended to replace TE,
but rather to complement it by providing additional supportive information.
For example VE: (1) allows the visualization of neighboring structures outside
the screened organ, and hence can assist in the pathology localization, (2) al-
lows viewing in forward and reverse directions, (3) visualize areas that are hard
to reach by TE, (4) has the ability to pass high grade stenoses, and finally (5)
VE is the only alternative offered to those patients that either refuse TE or are
severely ill [1, 2].

The extraction of 3D flight paths or discrete curve skeletons (CS) of anatom-
ical structures [3–10] is an important component of any VE system. We have
recently developed a level set based-framework for computing CS of 3D tubular
and articulated objects [11], which addresses several shortcomings of existing
techniques. The key idea is to propagate from a medial voxel wave fronts of dif-
ferent speeds. The first front propagates with a moderate speed to capture the
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(a) (b)

Fig. 1. Computed CS for non-tubular structure by (a) [12]. (b) Proposed framework.

object topology, while the second one propagates much faster at medial voxels
such that CS intersect the propagating fronts at those voxels of maximum posi-
tive curvatures. The framework is slightly modified and quantitatively validated
to show that the computed CS can be used as reliable flight paths through tubu-
lar structures for VE [12]. In [12], if the structure’s cross section deviates too
much from the circle, for example, in case of a severe stenoses, where the cross
section is nearly rectangular, the computed paths are the shortest as shown in
Figure 1(a) rather than the centered as shown in Figure 1(b), which is generated
by the proposed framework of this paper.

In this paper, we extend our recent framework [12] to compute flight paths
for both tubular and non-tubular structures by utilizing the magnitude of the
gradient vector flow, because it does not form medial surfaces for 3D objects.

2 Methods

2.1 Gradient Vector Flow

The gradient vector flow (GVF) is a bi-directional external force field that moves
active contours in highly concave regions [13]. The GVF is the vector field V (x) =
[u(x) v(x) w(x)]T , which minimizes the following energy function,

E(V ) =
∫ ∫ ∫

µ|∇V (x)|2 + |∇f(x)|2|V (x) − ∇f(x)|2dx (1)

Where x = (x, y, z), µ is a regularization parameter, and f(x) is an edge map
derived from the imaging volume I(x). For a binary volume, f(x) = −I(x). The
interpretation of Eq. (1) is that if |∇f(x)| is small, E(V ) is dominated by the
sum of squares of the partial derivatives of the vector field, yielding a slowly
varying field. On the other hand, if |∇f(x)| is large, E(V ) is dominated by the
second term, and is minimized by setting V = ∇f(x). This produces a vector
field V (x) that is nearly equal to the gradient of the edge map ∇f(x) when
it is large and slowly varying in homogeneous regions. V (x) can be computed
iteratively by solving the following decoupled partial differential equations in u,
v, and w [13].
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u(x, t + 1) = u(x, t) + ∆t(µ∇2u(x, t) − (u(x) − fx(x))|∇f(x)|2) (2)
v(x, t + 1) = v(x, t) + ∆t(µ∇2v(x, t) − (v(x) − fy(x))|∇f(x)|2) (3)
w(x, t + 1) = w(x, t) + ∆t(µ∇2w(x, t) − (w(x) − fz(x))|∇f(x)|2) (4)

V (x, 0) = ∇f(x) (5)

The iterative process is guaranteed to converge if

�t ≤ ∆x∆y∆z

6µ
(6)

where ∆x, ∆y, and ∆z are the data spacing of a given dataset. In [14], Xu has
shown that the GVF possesses as well some medial properties by suggesting two
different medialness functions based on the magnitude of the GVF, to measure
only how close a point from the skeleton of a 2D shape, rather than computing
the skeleton itself. One of the interesting properties of the GVF, V (x) over the
distance field D(x) is that it does not form medial surfaces for non-tubular 3D
objects [15] because only one boundary voxel contributes to the computation of
D(x), while more than one boundary voxels contribute to the computation of
V (x) during the diffusion process.

2.2 Single Flight Path Extraction

Consider the minimum-cost path problem that finds the path C(s) : [0, ∞) −→
Rn that minimizes the cumulative travel cost from a starting point A to some
destination B in Rn. If the cost U is only a function of the location x in the
image domain, the cost function is called isotropic, and the minimum cumulative
cost at x is defined as

T (x) = min
∫ B

A

U(C(s))ds (7)

The path that gives the minimum integral is the minimum cost path. The solu-
tion of Eq. (7) is a nonlinear partial differential equation known as the Eikonal
equation[16] Eq. (8), where F (x) = 1/U(x), and T (x) is the time at which the
front crosses x.

|∇T (x)|F (x) = 1.0 (8)

In this paper, we solve the Eikonal equation using the higher accuracy fast
marching method (HAFMM) [17]. Let A and B be medial voxels. Assume that
A is a point source PS that transmits a high speed front Eq. (9), where λ(x)
is a medial descriptor function that distinguishes medial voxels from others and
α controls the curvature of the front at medial voxels. In [12], we showed that
the minimum cost path between A and B is the medial curve or centerline
connecting them. Since the GVF does not form medial surfaces in 3D, we propose
the following medial descriptor function Eq. (10), where the magnitude of GVF
goes to zero at medial voxels.

F (x) = eα λ(x) α ≥ 0 (9)
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λ(x) =
2.0

1.0 + ‖Vn(x)‖0.05 − 1, ‖Vn(x)‖ =
‖V (x)‖ − ‖V (x)‖min

‖V (x)‖max − ‖V (x)‖min
(10)

The propagating front is monotonically increasing in time; there is only one
global minimum over the cumulative cost field T , that is PS , which has zero
travel time. Then, the path between B and A can be found by backtracking
from B along the gradient of T until A is reached. The extraction process is the
solution of the ordinary differential equation Eq. (11). C(t) traces out the CS,
which is found by solving Eq.(11) using Runge-Kutta of order 2. The error of
the method is O(h3), where h is the integration step. h is set to 1.0.

dC

dt
= − ∇T (x)

|∇T (x)| , C(0) = B (11)

For Ci = [xi, yi, zi]T ,

f(Ci) = − ∇T (Ci)
‖∇T (Ci)‖

, k1 = hf(Ci), Ci+1 = Ci + hf

(
Ci +

k1

2

)
(12)

2.3 Multiple Flight Path Extraction

In order to extract the entire CS of an anatomical structure, we have to iden-
tify the starting voxel (node) of each CS as well as the merging voxel, if the
structure contains a loop. To achieve the goal, we follow the cluster graph (CG)
approach [11], which can be summarized as follows: Initially, we compute the
normalized distance field D(x) using the HAFMM. Then, we propagate a mod-
erate speed wave from PS , which results in a new distance field D1(x). The speed
of the front is given by Eq. (13).

F (x) = eβ D(x) (13)

D1(x) is discretized by computing its integer values. The Discretization converts
the structure into a cluster graph, whose root is the cluster containing PS . Each
cluster consists of a set of neighbor voxels with the same code. The CG contains
two main types of clusters; Extreme cluster (Xcluster), which exists at the tail
of the CG and Merging cluster (Mcluster), which exists if the structure contains
a loop. The point source PS is any medial voxel that belongs to the CS of the
structure, which is the found by searching the CG for the voxel with maximum
D(x). If there exists more than one voxels with the same maximum value, we
select the one with minimum ‖V (x)‖. The medial voxel of a cluster is computed
similarly to PS but with searching the cluster rather than the CG.

The proposed framework can be summarized as follows: (1) Construct the
gradient vector flow V (x) and then compute λ(x) Eq. (10), (2) Construct the
minimum distance field D(x), (3) Find the point source PS , (4) Propagate a
moderate speed wave from PS Eq. (13), discretize the resultant distance field
D1(x), and construct the CG, (5) Identify the extreme and merging nodes, (6)
Construct a new distance field D2(x) from PS by propagating a fast speed wave
Eq. (9), (7) If the object contains loops, extract their CS as suggested in [12],
and finally, (8) Extract those CS that originate from extreme nodes and ends
with PS or ends on a previously extracted path to prevent overlapped paths.
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3 Results and Discussion

We have quantitatively validated the proposed framework against ground truth
CS that are generated analytically and then discretized. Each phantom is created
by translating a sphere of a fixed or varying radius along its ground truth CS.
The phantoms are designed to mimic the geometrical and topological proper-
ties of anatomical structures such as: (1) high curvature and torsion (e.g., blood
vessels), (2) sudden change in the organ’s cross section (e.g., colon or aneurysm
in vessels), and (3) several branching nodes (e.g., blood vessels and tracheo-
bronchial trees). To study the sensitivity of the proposed method to noise, 50%
of phantom’s boundary voxels are corrupted by additive noise to simulate seg-
mentation error as shown in Figure 2. A quantitative analysis was carried out
by computing the amount of overlap, average, and maximum distance between
the ground truth and computed CS for both noise-free and noisy phantoms. The
quantitative results are presented in Table 1. Although the amount of overlap is
less than 90 %, the average and maximum distance never exceeded 0.42 and 1.41
mm (e.g., 1-2 voxels), respectively. In the presence of noise, the amount of over-
lap has been decreased by only 8 %, while the average and maximum distance
has been increased slightly. To conclude, the computed CS are always adjacent
to the ground truth ones, which is quite acceptable for flight paths in VE.

(a) Colon (b) Trachea (c) Vessels

Fig. 2. Noisy synthetic phantoms: (a) Colon. (b) Trachea. (c) Vessels. The voxels of
the ground truth, computed, and overlapped CS are represented by green, red, and
black spheres, respectively.

Table 1. Quantitative validation for noise-free and noisy phantoms

Phantom Colon Trachea Vessels
Size 200 × 357 × 50 200 × 357 × 50 220 × 110 × 210
State Noise-Free Noisy Noise-Free Noisy Noise-Free Noisy

Percentage of Overlap 72 % 65 % 82 % 76 % 65 % 64 %
Average Distance (mm) 0.33 0.42 0.18 0.19 0.42 0.46

Maximum Distance (mm) 1.41 2.0 1.0 1.41 1.41 2.0
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Case Study (Virtual Colonoscopy): The goal of this case study is to bring
about one of the important goals of virtual colonoscopy (VC) as a diagnostic
tool. The ideal scenario is that the segmented colon maintains the intricate
details of the real colon, and that the virtual camera projects views as detailed
as those shown in real colonoscopy. If that is achieved, then analysis of projected
views can be used for automatic colon scanning against abnormalities, and hence
an early detection of colon cancer using VC would be a strong possibility. Our
research group is currently pursuing this goal.

In order to illustrate the potential of this research in colonoscopy, the proposed
framework has been tested on several CT datasets acquired using Siemens Sensa-
tion CT scanner. The dataset volume is 512 × 512 × 580 with voxel size 0.74 ×
0.74 × 0.75. All patients have undergone standard cleansing preparations prior to
scan. In Figure 3(e-l), we show different polyps captured by the virtual camera for
different colons as shown in Figure 3(a-d). The average running time for these large
datasets was 9 minutes on a 2.6GHz AMD Linux workstation with 4.0 GB RAM.

(a) Colon 1 (b) Colon 2 (c) Colon 3 (d) Colon 4

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 3. Virtual Colonoscopy (a-d) Computed CS for different colon datasets (e-l) Polyp
views captured by the virtual camera
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The proposed framework is controlled by two main parameters α in Eq.(10),
which controls the centeredness of the computed flight path and β in Eq.(13),
which controls the generation of the CG. Experimental results showed that the
lower bound for α is equal to 15.0, while a suitable range of β is 2.0 < β < 4.0.
We automated the framework by setting α = 20.0 and β = 3.0.

We have slightly modified the original GVF to suit the nature of the problem
as follows: (1) f(x) = I(x) such that the vector field points towards the center
of the object. (2) The computation of the GVF is restricted to the internal
voxels of the structure and hence computationally more efficient than the original
GVF. (3) The GVF field is not normalized to maintain the medialness property,
otherwise the magnitude of the GVF is unity everywhere. The GVF parameters
are set as follows: µ = 0.15, ∆t = 0.5, and the number of iterations is set to 100.

The complexity of the framework in the worst case for n voxels is O(3nlogn+
kn). The complexity of computing the distance field using the HAFMM and the
GVF is given by nlogn and kn, respectively, where k is the number of iterations.

4 Conclusion and Future Work

In this paper, we have proposed a general framework for computing flight paths
through tubular and non-tubular structures using partial differential equations
(PDE). Unlike all voxel-based methods, the framework does not require voxel
sizes to be isotropic because the solution of the PDE takes into account the data
spacing. The computed flight paths are highly centered, connected, topology
preserving, and forms a graph at no additional cost.

Most of the processing time of the proposed method is spent on the compu-
tation of the GVF because it requires extensive floating point operations. There-
fore, in the future, we intend to implement the GVF in the graphical processing
unit (GPU) to alleviate its computational complexity.
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by 3DR Inc., Louisville, Kentucky.
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