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Differential forgetting of prototypes
and old instances: Simulation by an
exemplar-based classification model
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A common finding in studies of classification learning is that ability to classify the prototype
of a category declines much less over a retention interval than does the ability to classify
the previously seen exemplars themselves. We demonstrate here that this finding does not
necessarily indicate the existence. in memory. of a representation of the prototype. MINERVA,
a computer-simulation model that encodes memory traces only of presented exemplars, was
tested on an appropriate task. Differential forgetting of prototypes and old instances was
shown by a version of the model that assumed that (1) classification is based on the exemplar
trace most similar to the test stimulus and (2) individual properties are lost from the traces
over time in an all-or-none fashion. It is suggested that, in general, the key to the prediction of
differential forgetting may be the concomitance of forgetting and generalization.

One way for a device to learn to classify stimuli is to
develop a prototype of each category representing the
"central tendency" of instances that have been encoun­
tered and to assign each new stimulus to the category
whose prototype it most closely matches. It has been
claimed that, at least in certain tasks, humans learn
classification in this way. The most compelling evidence
for this conclusion has come from studies comparing
changes over a retention interval in classification per­
formance on exemplars and on the prototypes from
which the exemplars were derived. Specifically, several
studies have shown that the ability to classify old exem­
plars declines substantially over time, whereas the ability
to classify prototypes, not seen during origina11earning,
declines little and in some cases may even improve
(Homa, Cross, Cornell, Goldman, & Schwartz, 1973;
Posner & Keele, 1970; Strange, Kenney, Kessel, &
Jenkins, 1970). This differential forgetting suggeststhat
the prototype has a representation of its own. If the
prototype were classified according to its similarity to
traces of the individual instances, the argument goes,
then classification of the prototype would decline as
rapidly as classification of the instances themselves.
Acceptance of this argument, in addition to confirming
a prototype view of classification learning, might be
interpreted as supporting the distinction between epi­
sodic and generic memories. It would identify the two
types of memory with different forgetting rates
(Hintzman, 1978, pp. 374-376).

The argument, however, is not necessarily correct. We
present here the results of a computer simulation of
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classification learning, using a model in which only old
instances, and not prototypes, are stored. The model is
capable of predicting differential forgetting rates for
prototypes and old exemplars, providing that certain
assumptions are met. We shall give special consideration
to the conditions that are necessary to produce this
result.

THE MODEL

The simulation model, dubbed MINERVA, was
developed as the first stage of a test of adequacy of a
multiple-trace account of the effects of repetition on
memory. The theory is similar to that of Semon (1923;
see also Schacter, Eich, & Tu1ving, 1978) in assuming
that each individual experience gives rise to its own
memory trace and that performance that may suggest
that a separate, generic representation has been abstracted
out of the individual experiences is actually based on
the retrieval of these episodic traces, either singly or
in concert. As applied to the classification learning task,
the theory is most similar to those of Brooks (1978)
and Medin and Schaffer (1978), in that it denies that
exposure to exemplars gives rise to a generic prototype
representation, and it assumes that only the traces of
individual exemplars are stored. Classification is accom­
plished through a version of what Reed (1972) calls the
"proximity algorithm"; that is, the one or more traces
most closely matching the new stimulus determine how
the stimulus will be classified. In the following descrip­
tion of the model, we have attempted to convey enough
details so that the reader will understand how the simu­
lation was done. The discussion will be concerned with
those characteristics of the model necessary to produce
differential forgetting of prototypes and old exemplars,
which is our focus of interest here.
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All experiences are assumed to be configurations of
primitive elements or properties. The set of primitive
elements includes not only features (e.g., blue, triangle),
but also relations (e.g., larger than, inside). Both new
stimuli and memory traces are represented as con­
figurations of these properties. In the program itself,
a list of allowable properties relevant to the task at
hand is provided by the programmer at the beginning of
each simulation run.

When a stimulus is input, each of its properties is
assigned a strength (S). In the following example and in
the simulations reported here, S = 1.0 has arbitrarily
been assigned to features and S =.5 to relations. Note
that in the complete description of the stimulus, a rela­
tion and its inverse (e.g., larger than, smaller than)
are both represented. A typical stimulus description is
as follows. Stimulus 2: category =A; number of objects
=2 (e and f); properties of Object e-size =larger than
f (S =.5), color =yellow (S =1), shape =square (S =1),
position =above f (S =.5); properties of Object f­
size =smaller than e (S =.5), color =red (S =I),
shape =triangle (S =I), position =below e (S =.5).

The initial encoding of a memory trace is simply a
copy of the stimulus description. Each primitive property
employed in a trace description is linked from its repre­
sentation in the list of allowable properties to the
appropriate "object" in the memory trace (e.g., in the
above example, Object e or f).

A new input is matched for similarity against all
traces in memory. (In the theory, this is assumed to be
done in parallel; in the simulation, of course, it is done
serially.) Call the input I and a given trace T. Then SI
and ST are the strengths of a given property in the input
and the trace, respectively. The degree of match between
the input and the trace is computed by a modified
version of Tversky's (1977) formula:

OnT) O-T) (T-I)
M(I,T) = LSI· ST - Lsi - LSt·

Here, lliT represents properties shared by I and T,
1-T represents properties in I but not T, and T-I
represents properties in T but not I. The match is
determined "object by object." Thus, in order for a
perfect match to occur, it is not enough that all the same
features and relations exist in I and in T, they must also
have the same configuration (e.g., the yellow square
must be above the red triangle, and not vice versa).
That is to say, if the relation is the same but the con­
figuration is not, this relational property will fall in sets
I-T and T-I, and not in InT.

It is assumed that a retrieval cue will retrieve only
traces with which it has considerable overlap and, there­
fore, that poorly matching Ts will not influence the way
I is classified. There is no a priori basis for deciding how
good a match must be in order to be involved in classifi­
cation; however, we have arbitrarily drawn the line at
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zero in the above formula. That is, all of the classifica­
tion procedures to be described operate only on posi­
tive values of M(I,T).

We have compared four ways of predicting the
accuracy of classification of an input, I. Assume that the
correct category is A and the incorrect category is B.
The four predictors of classification are: (1) A average,
the mean of the positive M(I,TA) values, (2) A-B
average, the difference between the mean of the positive
M(I,TA) values and the mean of the positive M(I,TB)
values, (3) A best, the maximum M(I,TA) value, and
(4) A-B best, the difference between the maximum
M(I,TA) and the maximum M(I,TB)' Procedures 1 and 2
make use of central tendencies, and in this respect they
are like prototype models. However, the "prototype"
here does not have a unitary representation; it is com­
puted at the time of retrieval. More important, it is the
central tendency of positive M(I,T) values only; Ts
dissimilar to I do not influence how I is classified. Thus,
Procedure 2 uses what Reed (1972) termed the prox-

. imity algorithm, but in this case with the number of
contributing traces variable, rather than fixed. Pro­
cedures 3 and 4 are best-match procedures, similar to
those advocated by Brooks (1978) and by Medin and
Schaffer (1978). Procedure 4 is, essentially, the prox­
imity algorithm, with the number of contributing traces
per category equal to one. In all four procedures, how­
ever, only positive M(I,T) values contribute. If there
are no such values in a given category, both the mean
and maximum M(I,T) values default to zero.

We have also compared two ways of producing for­
getting. In one, each S value in a trace is decremented by
a certain proportion of its present value on each for­
getting cycle [i.e., St+1 =(1 - 8)St, where 0';;;; 8 .;;;; 1] .
In the other, on each cycle, a property is deleted from
the trace in an all-or-none fashion with a given probability,
F. The first of these, decremental forgetting, does not
affect the relative numbers of properties falling in the
sets InT, 1-T, and T-I. The second, however, does.
When forgotten, a property originally in lliT shifts to
1-T; one originally in T-I in effect disappears.

PRELIMINARY TESTS

Medin and Schaffer (1978) performed several experi­
ments designed to differentiate an exemplar-based theory
of classification learning from theories that assume that
classification is based upon representations of proto­
types. In each experiment, stimuli varied on four binary
dimensions. Training stimuli were divided into two
categories, A and B, in such a way that the prototype
and exemplar-based theories made clearly different
predictions concerning both the relative difficulties of
acquisition of the training stimuli and the classification
of new transfer stimuli that the subjects had not seen
before. In all the Medin and Schaffer experiments, their
exemplar-based theory fit the data very well.
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Although the present model differs from that of
Medin and Schaffer (1978) in a number of ways that we
will not go into here, we expected it to behave similarly,
particularly when classifying on the basis of best match.
Accordingly, simulations were run of Medin and
Schaffer's (1978) Experiment 1. Data were generated
for 32 simulated subjects, with one cycle of all-or-none
forgetting (F = .25) prior to testing, to simulate imper­
fect acquisition. Correlations between each of our
classification procedures and the mean confidence
ratings obtained by Medin and Schaffer, for training and
transfer stimuli combined, were: A average, r =.73;
A-B average, r =.84; A best, r =.82; A-B best, r =.88.
A similar simulation of Medin and Schaffer's Experi­
ment 2 (using F =.35) yielded: A average, r =.70;
A-B average, r =.82; A best, r =.78; A-B best, r =.85.
Thus, the ordering of the three classification procedures
was the same for both experiments, with A-B best
giving the best fit in both cases. These fits are not as
good as those of the Medin and Schaffer model, which
has several free parameters, and the fits could no doubt
be improved by allowing S values for different attributes
to vary, as a means of taking dimensional salience in
account. Such an exercise, however, would be costly and
trivial. The important point to note is that, using the
A-B best classification rule, the model makes essentially
the same predictions as the Medin and Schaffer (1978)
theory. This provides added evidence for their conclu­
sion that the classification performance of their subjects
was based on individual stored instances or exemplars,
rather than on representations of prototypes.

each stimulus set. Forgetting was all or none, with
F = .25. Each simulation included one test with no
forgetting, one test after one iteration of the forgetting
procedure, and one test after three. All 16 stimuli were
tested each time, and all four classification measures
were computed.

Mean values for old exemplars, new exemplars, and
prototypes are shown for each measure in Figure 1.
When classification was based on average matches
(A average and A-B average) prototypes were classi­
fied better than old exemplars, and old exemplars were
classified better than new exemplars, and this ordering
did not change as a function of number of forgetting
cycles (time). The reasons for the ordering should be
obvious: Prototypes are similar to all stored exemplars
and, therefore, match well on the average. The trace of
an old exemplar contributes to its average match, but
there is no trace to provide this advantage to a new
exemplar, and thus classification of new exemplars is
poorest of all.

The two best-match measures (A best and A-B best)
show a different pattern, one very much like that pro­
duced by human subjects (Homa et aI., 1973; Posner &
Keele, 1970; Strange et aI., 1970): Old exemplars may
be classified best on an immediate test, but they lose
their advantage over time. Performance on prototypes
changes little as a function of time and may exceed that
on old exemplars after a long retention interval. Perfor­
mance on new exemplars lies below and parallels that on
prototypes.

6-----6 PROTOTYPES
---- OLD EXEMPLARS
0------0 NEW EXEMPLARS

Figure 1. Effects of zero, one, and three iterations of the
all-or-none forgetting procedure on classification of old exem­
plars, new exemplars, and prototypes according to four pre­
dictors of performance.
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EFFECTS OF FORGETTING ON THE
CLASSIFICATION OF EXEMPLARS

AND PROTOTYPES

To simulate a typical experiment on the forgetting
of prototypes, two prototype stimuli were selected and
seven exemplars were generated from each one. The
prototypes, each having seven independent binary
dimensions, were A, a large blue square above a small
red triangle, and B, a large red circle above a small
yellow triangle. Seven exemplars of each category were
then generated by changing the value of one dimension
at a time. Relational properties, such as above-below,
which are necessarily redundant, were treated as unitary.
(As in the example given earlier, the two aspects of each
such relational property were given initial strengths of
S = .5, rather than S = 1.)

For each simulated subject, the classifications of 12
stimuli (six exemplars from each category) were stored
in memory. These will be referred to as the old exem­
plars. The two remaining exemplars (the new exemplars),
one per category, were used in testing only, as were the
two prototypes. The exemplars held out as new were
rotated within each category, producing seven different
sets of stimuli. Seven simulations were run, one using



Why did this interaction emerge from the simulation
using best-match measures? Classification of an old
exemplar declines rapidly because, in the beginning, it
matches one trace (its own) the best, but the more
times the forgetting procedure is invoked, the poorer
that match becomes. The prototype matches six stored
exemplars fairly well, but not perfectly. As properties
are deleted from these traces in a random fashion, the
traces match the prototype, on the average, less and less
well. But if classification is based on the best match,
rather than the average match, then it is likely that at
least one of the six traces will still match the prototype
fairly closely. Indeed, if a trace loses only the one
property that differentiates it from the prototype,
its similarity to the prototype, as measured by M(I,T),
will actually increase. The forgetting curve for the
prototype crosses that for old exemplars, then, because
the prototype has a statistical advantage. As information
is lost, it is better to be close to all six original exemplars
than to be identical to only one. The explanation for
the new exemplar curve is the same as that for the pro­
totype curve, except that the new exemplar is more
unique than the prototype; it is no more similar to the
old exemplars than the old exemplars are to each other.
The new exemplar and old exemplar curves, therefore,
should approach the same value, but never cross.

We have not presented here data resulting from the
decremental forgetting procedure, which simply decreases
the strengths assigned to properties, because preliminary
investigations showed no interesting interactions. Differ­
ential forgetting of prototypes and old exemplars, given
the trace structure and matching function we have
employed, appears to require that forgetting of properties
be all or none. That is, merely decreasing the strengths
of properties does not make them jump from IrlT to
1-T, or from T-I to oblivion, and such jumps seem to
be necessary to produce the obtained effects. Pre­
sumably, however, a strength-plus-threshold model could
mimic the behavior of the model that was successful
here.

DISCUSSION

The version of MINERVA that was most successful
on these classification tasks is similar to several other
theories in the literature. like the theories of Brooks
(1978) and Medin and Schaffer (1978), it assumes that
only individual exemplars are represented in memory.
MINERVA must be seen as a member of the class of
models in which relationships among features, not simp­
ly the features themselves, are involved in classification
(cf. Medin & Schaffer, 1978), because classification is
based on exemplars, and each exemplar is a conjunction
of features.

The successful A-B best rule, as was noted earlier,
is essentially the same as Reed's (1972) proximity algo­
rithm, in the special case in which classification is
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determined by the single exemplar trace that is most
like the test stimulus. It is important to note that this
rule does not mean that the test stimulus will be auto­
matically assigned to the category to which the most
similar exemplar belongs, because the loss of informa­
tion in memory can make the trace of that exemplar
less like the test stimulus than is the trace of some
other exemplar. The assumption of all-or-none for­
getting of features borrows from Bower's (1967) multi­
component theory of the memory trace, and this suggests
that some version of that theory would predict the
behavior shown in the present simulations.

What we have demonstrated most clearly here is that
differential forgetting of prototypes and old exemplars,
as shown by Homa et al. (1973), Posner and Keele
(1970), and Strange et al. (1970), cannot be taken as
conclusive evidence for the abstraction of a prototype
during classification learning, for there is at least one set
of assumptions that predicts this result purely from the
forgetting of old exemplars, with no ad hoc mechanisms
required. Our findings thus provide added support for
the notion that classification learning may be based
solely on memory for past instances, without involving
the representation of a prototype or abstract idea.

In part, this explanation of differential forgetting
might have been anticipated on the basis of past
empirical findings alone. In a recognition memory task,
Bahrick, Clark, and Bahrick (1967) showed that over a
retention interval, even as the frequency of hits is falling,
the frequency of false alarms to stimuli very similar to
the target can increase; that is, generalization increases
over time. A distractor item very similar to several
targets (i.e., a "prototype") would, of course, benefit
from several overlapping generalization gradients and
presumably could, after sufficient time, seem more
"familiar" than any of the original targets themselves.
Such a prediction is easily extended from recognition
memory to the classification task.

These considerations suggest that the key to predict­
ing differential forgetting of prototypes and old exem­
plars is not all-or-none forgetting or the proximity
algorithm per se, but the concomitance of forgetting and
generalization. Encoding, forgetting, retrieval, and
matching assumptions interact, and so other combi­
nations of assumptions might be expected to mimic
the behavior of MINERVA. Medin and Schaffer (1978)
have proposed that, in contrast to the present view,
generalization might be the primary and forgetting the
secondary process (see also Gibson, 1940). While this
hypothesis might be rejected on other grounds (cf.
Underwood, 1961), it seems possible that some version
of the Medin and Schaffer theory would predict the
differential forgetting results.

The present results do not, of course, show that
prototype theories are wrong. But they do show that the
acceptance of such theories should not rest on the dif­
ferential forgetting result alone. Other, converging
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evidence is needed to support prototype theory. One
approach to providing such evidence has been explored
by Robbins, Barresi, Compton, Furst, Russo, and
Smith (1978), who showed that in learning the reversal
of exemplar-response pairs, subjects reversed immediately
after original learning made many more errors on
changed than on unchanged pairings, while those reversed
after a long delay found changed and unchanged pair­
ings about equally difficult to learn. This is what would
be expected if the basis of performance were changing,
over time, from traces of individual instances to a repre­
sentation of a prototype; Robbins et al. interpreted
their data in this way. Unfortunately, the same find­
ing would be expected if, over time, subjects became
less able to distinguish among instances, and thus less
able to tell which pairings had changed and which had
remained the same. Thus, unequivocal support for a
prototype theory as opposed to an exemplar-based
theory of classification learning still appears to be lacking.

REFERENCES

BAHRICK, H. P., CLARK, S., & BAHRICK, P. Generalization
gradients as indicants of learning and retention of a recognition
task. Journal of Experimental Psychology, 1967, 75, 464-471.

BOWER, G. H. A multicomponent theory of the memory trace.
In K. W. Spence & J. T. Spence (Eds.), The psychology of
learning and motivation (Vol. 10). New York: Academic Press,
1967.

BROOKS, L. Nonanalytic concept formation and memory for
instances. In E. Rosch & B. B. Lloyd (Eds.), Cognition and
categorization. Hillsdale, N.J: Erlbaum, 1978.

GIBSON, E. J. A systematic application of the concepts of general­
ization and differentiation to verbal learning. Psychological
Review, 1940,47, 196-229.

HtNTZMAN, D. L. The psychology of learning and memory.
San Francisco: Freeman, 1978.

HOMA, D., CROSS, J., CORNELL, D., GOLDMAN, D., & SCHWARTZ,
S. Prototype abstraction and classification of new instances as
a function of number of instances defining the prototype.
Journal ofExperimental Psychology, 1973, 101, 116-122.

MEDIN, D. L., & SCHAFFER, M. M. Context theory of classifica­
tion learning. Psychological Review, 1978,85,207-238.

POSNER, M. I., & KEELE, S. W. Retention of abstract ideas.
Journal ofExperimental Psychology, 1970, 83, 304-308.

REED, S. K. Pattern recognition and categorization. Cognitive
Psychology, 1972, 3, 382-407.

ROBBINS, D., BARRESI, J., COMPTON, P., FURST, A., Russo, M.,
& SMITH, M. A. The genesis and use of exemplar vs. prototype
knowledge in abstract category learning. Memory & Cognition,
1978,6,473-480.

SCHACTER, D. L., EICH, J. E., & TULVING, E. Richard Semon's
theory of memory. Journal of Verbal Learning and Verbal
Behavior, 1978,17,721-743.

SEMON, R. [Mnemic psychology] (B. Duffy, trans.). London:
George Allan & Unwin, 1923.

STRANGE, W., KENNEY, T., KESSEL, F., & JENKINS, J. Abstrac­
tion over time of prototypes from distortions of random dot
patterns. Journal ofExperimental Psychology, 1970, 83, 508-510.

TVERSKY, A. Features of similarity. Psychological Review, 1977,
84, 327-352.

UNDERWOOD, B. J. An evaluation of the Gibson theory of verbal
learning. In C. N. Cofer (Ed.), Verbal learning and verbal
behavior. New York: McGraw-Hill, 1961.

(Received for publication February 8, 1980;
revision accepted April 23, 1980.)


