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Abstract

DIFFERENTIAL FORMS, WEITZENBOCK
FORMULAE AND FOLIATIONS

1 . Introduction .

HANSKLAUS RUMMLER

The Weitzenbdck formulae express the Laplacian of a differential form on .
an oriented Riemannian manifold in local coordinates, using the covariant
derivatives of the form and the coefñcients of the curvature tensor . In
the first part, we shall describe a certain "differential algebra formalism"
which seems to be a more natural frame for those formulae than the usual
calculations in local coordinates .

In this formalism, there appear some interesting differential operators
which may also be used to characterize local geometric properties of fo-
liations . That is the topic of the second part .

I. Differential Forms and Weitzenbóck Formulae

Relations between the curvature tensor of a compact oriented Riemannian
manifold and its topology play an important role in global differential geometry.
The oldest and still most beautiful theorein of this kind is of course the global
Gauf3-Bonnet formula . Another theorem of this type is the following one by
S . Bochner (sea [3],[1]) : If all sectional curvaturas are positive, then the first
Betti number must vanish . To prove this theorem, one can for instance show
that there are no non-trivial harmonic 1-forras, and in order to derive this
from the positivity of sectional curvature, one uses the so-callad Weitzenbdck
formulae, expressing the Laplacian of'a differential form in local coordinates
by an expression which contains coefficients of the curvature tensor . In order
to sea, how the curvature tensor comes in, we shall develop an appropriate
formalism in the next two paragraphs .

The author would like to thank the organizers of the Differential Geometry Semester in
autumn 1988 at the Centre de Recerca Matemática of the Institut d'Estudis Catalans, where
this article was written .
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2 . Ordinary and Vector-valued Differential Forms.
Let M be a differentiable (i .e . C°°) manifold, TM its tangent bundle and

T*M the cotangent bundle . A vector-valued p-form (D on M is a differentiable
(Le . C°°) section in the bundle TM O M T*M . Locally, ~P may be written as

with ordinary p-forms cp i and vector fields Xi . For x E M one can interpret
<P(x) as a p-linear alternating map from TxM x . . . x T.,M to T,,,M.
The vector space of there forms will be denoted by AP = AP(M), and we shall

write AP = AP(M) for that of ordinary p-forms . A = ® ÁP is in a natural
P=0

way an A-module, i .e . there are exterior products

A : Al' x Ál -> ÁP+v

	

and

	

A : f14 x AP --> ÁP+Q

with the obvious commutation rules .
Now let M be a Riemannian manifold . Then the Riemannian metric induces

also an "exterior inner product"

and there is also a Hodge *-operator

n

( , ) :ÁPxf19,Ap+g

* :AP->An-P,

YY

locally defined by *(F_ pi ® Xi) = F_(*cp i ) ® Xi .
Let D denote the Levi-Civita connection on M. It can be interpreted as

a map D : fl° -> .4' , and this map is extended in a unique way by maps
D : AP -> AP+i , such that the product rule

D(ypAxP)=dpAkP+(-1)PpADT

holds for (p E AP and T E Ay .
This can be done f'or a.ny linear connection on TM, but the Levi-Civita

connection sa,tisfies also the product rule for our "exterior inner product" :

d(~D,,P) = (D<P, T) + (-1)P(~b, DID)

for4>EAPandkPEA 9 .
In this formalism, the curvature tensor is simply given by

RYy Z = D2 Z(X,Y)

	

for

	

X, Y, Z E Á° ;
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and also the torsion (which vanishes in one case) ha,s a simple interpretation :
TD = D idTmt, where the identity on the tangent bundle TM is interpreted as
a vector-valued 1-forro .
The Riemannian metric induces also several maps between ordinary and

vector-valued differential forros, which we shall now describe : The first one
consist of maps

which extend the canonical isomorphism between 1-forros and vector fields . j
is simply defined by (j w, X) = ixw for w E AP and X E A° , where iX denotes
the interior derivative . j is a derivation of degree -1, i .e . it satisfies the product
rule

j(WA0)=j pA0+(-1)PcpAjO
for cp E AP and 0 E Ay . We can as well extend the inverse isomorphism
Ce -j-l :Á°--,A1 by

j : AP -, ,AP-'

(-1)2+1(Ai4>(A1, . . . ,Xa> " . . ,xP+1))'

The next map i_s the contraction with respect to the first argument, 1.e . the
map "trace" tr : AP --4 AP-I , defined by

tr <D(X,, . . . , Xp _ 1 ) = trace (D(-, X,,... ,Xp_1 ) : TM --> TM),

and the last ma.p is a sort of a. "diagonal" diag : AP -+ AP+ 1 , an extension of
the map from A° to A1 that sends the constant 1 to the identity idTM .

We shall not derive all the relations between tllose maps, but we mention
that the following two diagrams comlnute up to sign :

AP ,--

	

, A" -P

	

A'> ,--, A" -p

3 . Gradient, Divergente and Laplacian .
In our language, the classical operators grad and div may be expressed by

grad = j d : A° -> A°	and

	

div = tr D : A°	> A° .

As - by definition - j vanishes on A° and tr on A° , we may as well use the
"more symmetric" formulae

grad = j d + Dj

	

and

	

div = tr D + d tr,

and we use these formulae to define gra.dient and divergente in any degree p
foro<p<n.
The reason for adding the terms Dj a.nd d t?- which are "hidden" in degree

Yero is of course not only an esthetic one, but it is the following theorem :
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Theorem 1 . The operators grad and div satisfy ¡he following relations, by
which they are uniquely deiermined:

(1) f E A° => grad f

	

is ¡he ordinary gradient
(2) f E A° ==> grad df =D grad f
(3) cp E AP,?P E A9 ==> grad(cp n gp) = (gradW) n ?p + cP n grad0
(4) X E .9'° ==> divX

	

is the ordinary divergente
(5) cp E AP, ?P E .94 ==> div(cp n YP) = (grad cp, YP) + cp ^ divT

We shall not prove this theorem - nor the next one - but only indícate that
this can be done using local coordinates which are geodesic at a given point
x E M. Observe also that property (2) is not valid in degree p > 0, where we
have D gradw - graddw = DZj w, which does not vanish in general if the
curvature tensor is non-zero .
The properties (1) - (3) of the gradient and the well-known rules for covariant

derivation imply :

(6)
(7)

(8 )

(9)

Corollary . For cp E Ap and X E A° ,

(X, grad cp) = Dxcp,

	

the covariant derivative .

This characierizes grad cp completely .

So the gradient gradw contains the information about all the covariant de-
rivatives of the p-form w, and is thus metrically equivalent to the tensor Dw,

defined by Dw(X;X,, . . . ,Xr ) = (Dxw)(XI, . . . ,Xn) . So why not simply usé
this tensor instead of the vector-valued form gradw? One good reason is that
this tensor is only alternating in the last p arguments, and by changing the
variante of the first argument me exhibit its special role . (Antisymmetrizing
Dw would give the ordinary exterior derivative dw, because the Levi-Civita
connection D is torsion-free .)

Theorem 2. Between the operators grad, div and the classical operators
d, *, 6 = (-1)nr+n * d*, there hold the following relations:

d = agrad
S = ti- grad

* grad = grad*

* div = div*

Now let us try - for the salse of curiosity - whether we have also the relation
A = div grad as in degree zero : With the relations (6) and (7) of the above
theorem and the fact that tr j = 0 we get easily

div grad = (tr.D + dtr)(j d + Dj) = S d + dó + ti- DZj = A -}- tr DZj.

So we don't have 0 = div grad, but we make the following definition :
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¿lo := div grad

	

and

	

Ric := tr DZj .

Weitzenb5ck Formula.

O=Do-Ric

Of course, this is not really interesting as long as we don't know something
about at least two of these these operators! To begin with, let us consider the
operator Ric:
One checks easily, that Ric commutes with *, and that it is A'-linear, Le . i t

is a tensorial operator : for w E AP the value Ricw(x) at a point x E M depends
only on w(x) . The name "Ric" for this operator is justified by the following :
For two vector fields X and Y, we have for the 1-forro w = a X

(Ric w)(Y) = (tr D'X)(Y) = trace R_,yX = Ric(Y, X) = Ric(X, Y),

the well-known Ricci tensor on M!
The operator Do commutes also with *, so its kernel

n
Ho := ker Ao = ®Ho

P=o

is a *-invariant subspace of A = ®AJ . As we shall see in the next paragraph,
it is even a finite-dimensional subalgebra . For the moment, we mention the
product rule

Ao(~o A zP) = vo4p A 0 + (p A Do0 + 2(grad p, grad o) .

4 . Compact manifolds .
The reason for using differential forros rather than arbitrary, non-alternating

tensors is that we can integrate differential forros . So let M be in Chis paragraph
a compact connected oriented Riemannian manifold of dimension n .
There are global inner products on AP and AP, obtained by integration of

the pointwise inner products :

(wM := J

	

(p A *0

	

for

	

tp,0 E AP
M

and
(p, tY) :_

	

( .p, *T)

	

for 4), kP E ÁP .
M

The following lemina, will be the key formula for the further properties we
shall derive for Do :
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Lemma. With respeci t.o the global inner prodzccts, grad and -div are ad-
joinis, i . e. we have for (p E AP and YP E AP

Proof..

Theorem 3.

(grad 4, , `k) .= -(4,, div IP) .

(grad w, IP) + (cp, div ID) _ / ((gradW, *xD) + cp n *div xP)
M

= f ((grad cp, *YP) + (p n div *T)
M

n

f
div(cp n *kP),

M

but div(cp n *kP) = dtr(cp n *xP), because the second term of the divergence,
tr D(cp n *ID), va.nishes since cp n *YP is of maxiinum degree n . Thus, by Stokes'
theorem, the result follows .

This simple integral formula has some interesting consequences . The fol-
lowing one is obvious :

Proposition . (Dow, w) < 0 for all w E AP .

(Observe that with our siga convention for S the .same ho1ds for the Laplacian
.)

Dow=0~gradw=04=:~> Ow=0 and Ricw=0 .

Proof. By definition of Do, grades = 0 implies trivially Dow = 0.
Sojet Dow = 0. Then (gradw,gradw) = -(Dow,w) = 0, and so grades = 0,

which implies by theorem 2 also dw = 0 and S w = 0, hence A w = 0, which,
together with the hypothesis A ow = 0, gives also Ricw = 0. The remaining
part is again trivial .

An immediate consequence is the following corollary, if ese remember, that
grad is a. derivation of degree zero :

Corollary . Ho = ®Hó', the kernel of meo, is a subalgebra of A =®AP .
P=o

Moreover HP C HP := ker A n AP, ¡he space of harmonic p-forms.

In particular,, the space H.P must be finite-dimensional, as HP is . But there is
another proof of this fact, which gives still more information about the structure
of the space HP:
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Theorem 4. For cp, Y, E Hó,

Proof (,p, V5) = *(,pA * V), and thus

Proo£ In the expression

(W, ip) = const . =

	

1

1where (

	

,

	

) is ¡he pointwise scalar product on p-forros, induced by the Rie-
mannian metric.

d(W, V» = f * b(cp A *0) = f *tr grad(p A *0),

but this expression vanishes by the product rule and *-invariance of grad .

This theorem says, that for any x E M the evaluation map

p
evalx : HP ---->

is an isometric injection, up to the constant factor 1/vo1M . As a consequence,
HP is of dimension < (n) .p

If M is fiat, we have D2 = 0, hence Ric = 0, and thus A = Oo. So we get in
this case dim HP < oo without using the ellipticity of A . (Of course, we cannot
prove the regularity in this way : if we admit harmonic forms with coefficients
in a Sobolev space, we are not sure that the C°° ones are already all of them.)
The same property as for flat manifo1ds holds still in the case where Ric is
positive semi-definite :

Theorem 5 . If the operator Ric : Ap --i Ap is positive semi-definite, then

Hó = HP.
If Ric : Ap ---+ Ap is even positive definite, then Hó = HP = 0.

(A w, w) = (Oow,w) - (Ric w, w)

all three terms are _< 0 . So, 0 w = 0 implies (Oow, w) = 0, and that implies
grad w = 0, hence w E Hó . But (Ric w, w) must also vanish, and thus w = 0 if
Ric is positive definite .

The special case p = 1 yields of course the theorem by Bochner that we
mentioned in the introduction . Even if the sectional curvatures are only positive
in almost all plane directions at almost all points, the ordinary Rice¡ tensor is
positive definite, which means exactly that our Ric : A1 -> A1 is so .
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II . The Geometry of Foliations

1 . The characteristic form of a foliation .
We shall be interested in local geometric properties of foliations on Rieman-

nian manifolds . Therefore we loolc at the distribution in TM tangent to the
leaves . So, foliation mearas in the following simply integrable distribution (Le.
a C°°-subbundle) F C TM. For the salte of simplicity everything is oriented:
the manifold and the foliation .

Consider the situation at a point a; E Dil : The p-dimensional linear subspace
Fx C TxM is ara element of the Grassmannian manifold of all p-dimensional
oriented linear subspaces of T,;M. But things become simpler in our case, where
TxM is a Euclidean space : In this case, the Grassmannian becomes in a na-
tural way a (generating) submanifold of the linear space AP T=M, and Fx is
represented by u1 n . . . n up , where (2c,, . . . , u p ) is a positively oriented ortho-
normal basis of F,, . As analysts are more used to consider the space nP TxM
of p-forms than that of p-vectors, we can still use the Euclidean structure of
TxM to identify pPTx1VJ with n P TxM: To Fx corresponds now the p-form
X E /~ p TiAll with/\

	

/\

1

	

for a.ny pos . oriented orthononnal basis of Fx,
Xu

	

. 2c ) =( 1,

	

'

	

p

	

l 0

	

if one. of the ui's is perpendicular to Fx .

Doing this at every point T E M simultaneously, we get the characteristic form

XF of the foliation or distribution F. In the case of a foliation, the restriction
of XF to a leaf is simply the volume form for that leaf.

For calculations with the characteristic form of the distribution F, the
following simple representation is often useful :

	

Let (X, , . . . , X~) be a local
positively oriented orthonorma.l frame of vector fields ora the open subset U C
M, such that X1 ,� , Xp span F. If

	

wn ) denotes the dual frame of
1-forms, we have

w, n . . . n wp ;

and as wi(Xj) = b.ii, we get for the differentials of the wi simply

dwi(Xj,Xk) = -wi([Xi,Xk])
(X.i, [Xti, Xi1)

= (-Vi, DxkXj) - (Xi,DxiXk)
= (Dx; Xi,Xk) - (Dx, Xi,Xj) .

2 . Geometric properties of a foliation and differential properties
of its characteristic form.
To begin with, and to give a.lso a.n idea, of what kind of calculations one has

to do, let us try to find out wha.t it lneans that XF is closed :
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With the above notations that méans

dXF(Xi . . . . . . Xiy+ ,) = 0

	

for 1 < il . . .¡p+1 < n .

It is clear that dxF(Xi,, . . . , XiD+,) = 0 if more than two indices are > p . So
there remain two cases to be interpreted :

(1)

	

dXF(XI, . . . ,Xp ,Xj)=0for p+1 < j < n

and

(2)

	

dXF(XI, . . . ,Xi, . . . ,XP'X),Xk) = 0 for 1 < i < p < j < k < n

For the first case one finds easily

dXF(XI, . . . ,Xp,Xj) = (-1)p E(xi,DxjXj) = (-1)p+ip(H Xj),
i-1

where H is the mean curvature vector field of the foliation . Thus (1) means
that all leaves are minimal submanifolds . Observe that (1) says simply that the
restriction of XF to any (p + 1)-dimensional submanifold tangent to the leaves
is closed .

For the second case one gets

dXF(X,, . . . , Xi, " . . , 11 p, k .i , Xk) = (-1)`(Xi , [Xj , Xk)),

and (2) means simply that the orthogonal complement F1 is integrable . This
applies also ifF itself is not integrable . Together with the fact that *XF = XFl,
we have thus the following theorem and the two corollaries :

Theorem 6 .

	

The characteristic form of the foliation F is closed if and only
if all ¡he leaves are minimal submanifolds and ¡he orthogonal complement F1
is integrable .

Corollary 1. If the characteristic form XF of the distribution F is co-closed,
i.e . if bXF = 0, then F is integrable .

However, this condition is not necessary for the integrability ofF: If dimF=
1, we have bXF = divX, where X is the normed vector field describing F. So
bXF = 0 means in this case that the corresponding flow is volume preserving .

Corollary 2. On a compact oriented Riemannian manifold, the characte-
ristic form XF of the distribittion F is harmonic if and only if F and F1 are
foliations by minimal submanifolds.

In order to check the properties of grad XF, one needs essentially only the
following lemma, the proof of which is trivial :
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Lemma. With the notations introduced in the last section, locally
p

grad XF = Ew, n . . . n wi_1 n grad wi n wi+i A . . . n wp ,
i=1

with (grad wi(Xj), Xti) = (Dxx Xi, Xj) for 1 < i < p and 1 < j, k < n.

Before using this lemina, let us make two definitions :

Deflnition. A .distribution F CTM is said to be geodesic if DXY is tangent
to F whenever the vector fields X and Y are tangent to F.

The distribution is said to be parallel if DXY is tangent to F whenever the
vector field Y is tangent lo F and ¡he vectorfield X is perpendicular to F.

Let us make some remarles concerning these definitions :
(1) By definition, these notions are dual : F is geodesic if and only if Fl is

parallel .
(2) If F is geodesic, it is integrable and all the leaves are totally geodesic

súbmanifolds . The converse is also true : A foliation with totally geodesic
leaves is geodesic in the sense of the above definition. However, if a
distribution F is totally geodesic in the sense.that any geodesic tangent
to F at some time remains tangent to F forever, the distribution F
needs not be integrable, and so it is not necessarily geodesic in the sense
of the above definition .

(3) If F is a parallel foliation, then the Riemannian metric is bundle-like for
F, in the sense of B . Reinhar t, but the converse is only true if Fl is
integrable .

(4) The terminology is inspired by the following example in R2	{0}: The
foliation F by straight lines passing through the origin is geodesic, and
the foliation F1 by concentric circles around the origin is parallel .

The following two theorems are now easy consequences of the lemma, and
we leave their proof as an exercise :

Theorem 7. The distribution F is
geodesic

	

gradXF L F, i.e . all values are perpendicular to F,
parallel

	

gradXFJIF, i.e . all values are tangent to F.

Theorem 8 . Let F be a, foliation . Then the given Riemannian metric on
M is bundle-like for F if and only if

ixgrad XF L X

	

for every X L F.

3. Foliations of compact Riemannian manifolds .
If the inanifold M is compact, then grad XF = 0

	

DOXF = 0, and we may
apply the results of the last section of the first part to get some informations
about geodesic and parallel foliations . . The first result is a trivial consequence
of the faet that HP C HP
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Theorem 9. If the Betti number b,(M) = 0, then there is no p-dimensional
foliation on M which is at the lame time geodesic and parallel, whatever is the
Riemannian metric given on M.

In the case p = 1 we can also say something about the set of all geodesic and
parallel flows (Le . 1-dimensional foliations) on M

Theorem 10. Let M be a compact, connected, oriented Riemannian mani-
fold, and let p := diez Hó > 0. Then there is a differentiable action
4> : RP x M -+ M such that

(1) RP acts on M by isometriy ;
(2) The orbits of this action are the leaves of a geodesic and parallel p-

dimensional foliation;
(3) The projection of RP onto any orbit is a local isometry, where RP carries

the standard Euclidean structure;
(4) Any geodesic and parallel flow on M is the restriction of this action to

a 1-dimensional linear subspace of RP.

Proof.. Recall that the evaluation maps evalx : Hó -> TxM are isometric
injections, up to a constant factor, and that also j : TiM -) TxM is an
isometry. Thus, by choosing an appropria.te basis in Hó, we get a linear map

with the following properties :

X :RP -, A0

(i) evalx o X : RP -+ TxM is an isometric injection for any x E M, where
RP carries the standard Euclidean structure ;

(ii) The 1-forra wu = j' (Xu) has vanishing gradient for any u E RP .

Now, if ¡¡u¡¡ = 1, wu is the characteristic form for the flow defined by the
vector field Xn, and this flow must be geodesic and parallel . Conversely, the
characteristic form of any geodesic and parallel flow on M is in Hó and hence
of the forra wu for some u E RP with ¡¡u¡¡ = 1 . This will prove (4) once we have
shown the other properties .
We define now the action of RP on M by there flows, Le . by

<D(u, x) := expx(Xu(x» .

To prove that this is a well-defined action, we must show that the flows defined
by the vectorfields -Xu commute . So let u, v E RP . Then

DX.Xv = DX,(Xu) = (Dj wv)(Xu) = gradwv(Xu ) - j dw�(Xu ) = 0,

because with gradw� = 0 we have also dw, = 0 . Thus [Xu, XvI = Dx.Xv -

Dx,Xu = 0.
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A similar calculation shows that the vector fields X'v are Killing fields, Le .
that RP acts on M by isometries .

If el , . . . , e1, are the standard basis vectors of RP, the distribution F on M
defined by the map Ar : RP -> ~f° has just the characteristic form

xF = w, A . . . A w ey ,

which has vanishing gradient . So F is a geodesic and parallel foliation, and by
construction its leaves are the orbits of the action 45 .

Finally, evalx o X : RP --> Fx is an isometry for any x E M, and this map
is just the tangent map at the origin of the ma.p ~¿ x : RP -~ M, so this map
is a local isometry from RP onto the orbit of the point x .

4 . Final rernarks .
The last two theorems suggest that on a compact oriented Riemannian ma-

nifold the spaces HP are in general very small, much smaller than the spaces
HP of harmonic forms . In fact, the last theorem shows that the flat torus is the
only compact oriented surface admitting non-trivial 1-forms w with Oow = 0 .
But this is not necessarily so in higher dimensions : On a compact connected Lie
group endowed with an invariant Riemannian metric, all invariant forms are
already in Ho , so in this case HP = HP in any degree p. But HP ~ 0 for p > 1
does not imply the existente of geodesic a,nd parallel p-dimensional foliations .
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