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DIFFERENTIAL FORMS
WITH VALUES IN GROUPS

ANDERS KOCK

In the context of synthetic differential geometry, we present a

notion of differential form with values in a group object,

typically a Lie group or the group of all diffeomorphisms of a

manifold. Natural geometric examples of such forms and the role

of their exterior differentiation is given. The main result is a

comparison with the classical theory of Lie algebra valued forms.

In synthetic differential geometry, one encounters formal manifolds,

and in these it makes sense to talk about two points being neighbours [JO].

In terms of this neighbour notion, it makes sense to talk about

differential forms with values in a group G . This is equivalent to a

classically considered notion of Lie algebra valued differential form

(namely with values in the Lie algebra of G ), and the comparison between

these two notions is the main result presented here. However, the

definition of coboundary of 0- and 1-forms with values in G is, both

from the analytic and geometric viewpoint, more natural than the classical

Lie algebra valued notions. Thus, the Maurer-Cartan form Q for a Lie

group G appears as the coboundary of the identity map of G (which is a

zero-form). In particular, it is closed, dQ. = 0 , and this can be

reinterpreted as the Maurer-Cartan formula.

Also, the two well known lemmas (cf. , for example, [6] or [4])
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358 Anders Kock

concerning maps from connected and simply connected manifolds into a Lie

group-become just the statements that H (M, G) = G and H (M, G) = 0 ,

where H denotes "deRham cohomology with values in G ". The result about

H (which can be expressed: "closed 1-forms are exact") is proved in §7.

The crux of the comparison is that "our" <2w corresponds to the Lie

algebra valued <iw + %[ti), w] , where u corresponds to tj .

The notion of G-valued form also works for the case where G is a •

"big" group, like Diff(F) , for F a (formal) manifold, and the

"connection form" associated to a distribution (or connection) can be

explained in straightforward geometric terms as a Diff(F)-valued form. We

attempt this geometric explanation in §1, where we also try to give a

geometric explanation of "closed forms are exact", as being infinitesimally

true by the very definition of coboundary of forms (for ''linear" forms, a

similar explanation was given in [13]; of. [JJ]). However, the finite

integration theory does not (and should not) work for big groups like

Diff(F) ; this is commented on in §8.

I want to acknowledge several discussions with A. Joyal; first of all

he has a for a long time advocated that one should define and utilize some

notion of 1-neighbour in the synthetic context, and in particular consider

the notion of infinitesimal simplex derived from it {of. (l.l) and §3

below). Secondly he, in collaboration with R. Bkouehe, considered the dual

cochain notion, with values in a commutative group; also they considered a

connection notion, of which ours is a special case, namely: an action of

the graph of the 1-neighbour relation for M on an arbitrary object over

M . They then defined its curvature to be a measurement of the defect of

associativity of this action. For the special case we consider, the

coboundary of the connection form is such a measure.

We remind the reader of the following notation and terminology from

[70]: if M is a formal manifold and x € M , we have a subset M. (x)

containing x , called the 1-monad around x . It consists of the

1-neighbours of x . We use the word "neighbour" instead of 1-neighbour

throughout the present article. The notation x ~ y or x —— y means

that x and y are neighbours (this is a symmetric relation). Likewise

Mm(x) denotes the ""-monad around x ; it is = D (n) (that is, °°-monad
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Differential forms 359

around 0 £ FT ) for some n , and is an etale subset.

Also, since we shall compare our group-valued forms with more

classical vector space valued "multilinear alternating" forms, we shall

consistently call the latter linear forms. For an account of such in

synthetic differential geometry, we refer the reader to [II] or [13].

Linear forms, and the coboundary operator for them, are consistently

denoted with an "overbar": 3w and so on.

1. Geometric meaning

A (number valued) 1-form is a law w which to a pair of neighbour

points x, y associates a number w(x, y) , for example the amount of work

required to go from a; to y ; we require u(a;, x) = 0 . We may also

have 1-forms with values in transformation groups - for instance going

from x to a neighbour point y on a space curve effects a change

(rotation) of the Frenet frame; if x = y , the rotation is the identity.

If we "transfinitely often" keep passing from a point to a neighbour

point, thus tracing out a curve, the infinitesimal "amounts of work" or
t:changes" w(x, y) will accumulate to a finite number, or change,

respectively. This is the process of (curve-) integration which gives us

finite numbers, or finite transformations, respectively.

If we go along different curves or paths from one point to another, we

may not get the same value by the integration, not even if the two curves

are homotopic. Alternatively, going around a closed curve may not give us

the neutral element e of the group as value, not even if the curve is

null-homotopic. However, in the latter case we would expect that if the

value obtained by curve integration along any infinitesimal closed curve is

e , then we also get e by going around finite null-homotopic curves.

We want to find conditions under which this reasoning is correct.

First of all, what are the infinitesimal closed curves by which we fill in

the finite null-homotopic ones? We take these to be triangles x, y, z ,

where (x, y), (y, z) and (3, x) are neighbours:
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(1.1)

1

We define the curve integral around this (starting in x ) to be

(1.2) u>(z, x) • u>{y, z) • m(x, y) ,

where • denotes the multiplication of the value group. (We choose the

ordering in (1.2) rather than the more forward-looking

w(x, y) • u(y, z) • u(z, x) ,

because we want the value groups to be transformation groups which act from

the left.) The element (1.2) is denoted du>(x, y, s) . In fact, du> is a

2-form with values in the group in question, and its vanishing (that is,

having e as its only value) means precisely that integrating w around

any triangle (l.l) gives e .

If we can perform the passage from infinitesimal to finite (null-

homotopic) closed curves, alluded to above, we have

(1.3) <ia) = e = > w depends only on the end points of k
^k

(in simply connected domains M ) and by the standard procedure, this in

turn leads to the construction of a function / : M -*• G such that

(l.M f(y) • f(x)~ = w(x, y) for x ~ y

namely letting f(z) = w , where a is a point chosen once and for

>k(a,z)

all, and k{a, s) is any curve starting in a and ending in z . How

(l.l») can be expressed df = w , so that (1.3) says

(*) dw = 0 =» a) = df .

As an example of how one may arrive at a 1-form with values in the

group Oiff(F) of all bijective maps F •+ F , consider a distribution V

on M x F transverse to the fibers of the projection to M , where M and

F are formal manifolds; this means that around each (x, u) € M x F ,
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Mthere is given a subset V(x, u) c M (x, u) which by proj : M * F

maps bijectively to M (x) . Thus, if u € F , and x ~ y in M , there

is a unique u' with (y, u') (. M(x, u) . Thus, the pair x, y defines

an automorphism of F , u *—*• u' , which we denote w(x, y) . Thus w is

a 1-form on M with values in Diff(F) (which is a very big group - not

a formal manifold).

Heuristically, the "line" connecting x to y lifts (for the given

u ) to the "line" connecting (x, u) to (y, u') , and this "line" lies in

V(x, u) , and thus V defines an infinitesimal path-lifting. The finite

curve integration of u amounts to lifting of finite paths. To say

dui(x, y, z) = e , where (x, y, z) is an infinitesimal triangle (l.l) in

M, means that (for any initial value u € F ), the triangle lifts to a

closed triangle ("no infinitesimal holonomy"). To say u> = df for some

f : M -*• Diff(F) (locally) can by a little combinatorics be seen to imply

that V arises from a foliation, the leaf through (x, u) being the graph

of y >—>• f(y)f(x)~ (u) ; "din = 0 =* w = df" in this case expresses a theorem

about integrability of distributions. In §8 we will demonstrate that the

condition dbs = 0 "is" the usual analytic condition in Frobenius' Theorem

about distributions.

Now, Diff(F) does not "admit integration over finite intervals" in

the sense to be explained in §6, whence we cannot really derive (*), unless

we can assert that the form in question takes values in a subgroup of

Diff(F) that does admit integration, or alternatively, if M is small

enough. We discuss this in §8.

2. Some infinitesimal arithmetic

We assume R to be of line type in the strong sense of [9], or

W
satisfy Axiom 1 of ['?].

As usual, we define

D(n) = { ( d l 5 . . . , dn) € FT I di • d. = 0 Vi , o) c if1 .

Mote that D(2n) cz D(n) x D(n) . An intermediate object i s

https://doi.org/10.1017/S0004972700005426 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700005426


362 Anders Kock

D(2n) = ..., dn), (6X, .... 6J | [di &j + d.. 6̂  0)

A [di • ̂ . = 0) A (6i • 8j = 0) Vi, j} .

We write d for (d , ..., d) . Note M (v) = u + D(n) for u € fl" .

Note also 0 ~ d ~ 6 ~ 0 if and only if (d, 6) € 0(2n) . Since 2 is

invertible in i? , we have furthermore d. • 6. = 0 for any

(d, 6) t D(2n) and i = 1, ..., n . We have

PROPOSITION 2.1. Any map D(n) •* if with 0 «—> 0 is the

restriction of a unique linear map R -*• R .

(For n = 1 , this is the "basic ("Kock-Lawvere") axiom.)

PROPOSITION 2.2. Any map D{n) x D{n) •* if with (0, d) i—• 0 and

(d, 0) i—> 0 j for all d € D(n) , is the restriction of a unique bilinear

map if1 x if1 ^ if .

PROPOSITION 2.3. Any map f : D{2n) •+ if with (0, d) •—* 0 and

(d, 0) i—>• 0 j for all d € D(n) , is the restriction of a unique bilinear

skew symmetric map n x if -*- if .

We give the proof for the last one only. It suffices to consider the

case m = 1 . The Weil algebra defining D(2n) is

*[*!• .-., *n,
yi> •••• ̂ / J

where k is the ground field (assumed to be of characteristic not equal to

2 ), and J is the ideal generated by all X. • X., Y. ' Y. , and
•&• 3 '• 0

X. ' Y . + X. • Y. . A k-linear basis for this Weil algebra is given by
i- 0 3 i-

the classes (mod J) of the polynomials

1 , X., , . . . , X , Y , . . . , Y , [X. - Y. - X. ' Y.) . . ,
' 1 n' 1 ' ' n' v i j j ^- '^<J

as can easily be seen by recalling that a bilinear form is uniquely the sum

of a symmetric and a skew one; and the X. • Y . - X. • Y. for i < j
i* 3 3 i-

form a k-basis for the skew bilinear forms.

W
From Axiom 1, it then follows (c/. [)7], p. 92) that for any
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/ : D(2n) -*• R , there are unique r, s-, s'. , and t. . such that, for all

s.d. +Is!6.+ V i. . • fd.6.-d .6.1 .

(d, 6) € D(2n) ,

dlt ..., dn), (61 6j

If / further satisfies the conditions of the proposition, the r, s. ,

and s'. are all 0 , and the t. .'s define the required "bilinear skew map

R*1 x R™ -* R . The uniqueness follows from the uniqueness of the t. .'s .

Note that a symmetric bilinear map N x ir -*• i? has zero restriction

to D{2n) ; and in particular:

PROPOSITION 2.4. For aw/ bilinear <j> : i?" x R" •+ R j> w e ̂ ape

cj)(d, 6) = %((J>(d, 6)-<f>(6, d)) for all (d, 6) € 5(2n) .

3. Group valued forms

Let M be a formal manifold. An infinitesimal k-simplex (Joyal) is

a (k+l)-tuple of elements in M, [xn, ..., xv] so that x. ~ a;. , for all
u A; v 3

i, j . A k-form with values in a group G is a law which to any

infinitesimal k-simplex associates an element in C , and associates e

if two of the vertices x. and x. of the simplex are equal.

Such forms have, in another context, been considered by Bkouche and

Joyal who use them (with G = R ) to define deRham cohomology

(unpublished). We shall be interested mainly in non-commutative groups

G , and therefore only in low dimensions k = 0, 1, 2 .

A 0-form on M with values in G is just a map f : M -*• G . Its

coboundary, df , is the 1-form given by

df(x, y) = fly) - f(x)-1 for x ~ y .

If a) is a 1-form, we define

dirt(x, y, z) = ui(z, x) ' w(z/, 2) • w(x, y)

for x ~ y ~ z ~ x ; under suitable assumptions on G , du will be a
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2-form on M , of. Proposition U.I. We denote (for k = 0, 1, 2 ) by 0

the ?c-form whose only value is e . Clearly d(df) = 0 . Since any map

g : M -*• M' between formal manifolds preserves the property of being

neighbours:

x ~ y =* g(x) ~ g(y) ,

a k-form u) on M' immediately gives rise to a fe-form g*(w) on A/ .

Clearly, g*(du) = d{g*u) .

If the value group G itself is a formal manifold, we have the

identity map i : G "*• G as a 0-form on G . Its coboundary di- is the

Maurer-Cartan form ^ on G :

tt(x, y) = di{x, y) = y • x~X for x ~ y .

Clearly

(3.D dn = o ;

we shall see in §5 that this is really the Maurer-Cartan formula. Also,

for any f : M + G ,

(3.2) df = d(/*i) = f*(di) = f*Sl .

4. Certain infinitesimal curve integrals

If w i s a C-valued 1-form on a formal manifold M , we want to

consider

(U.I) w(j/, a;) • w(x, j/) for x ~ j /

and

(U.2) i»)(3, x) • u(!/, z) • u{x, y) for x ~ y ~ s ~ x .

If M = K (or any etale subobject thereof), these can also be

written

(U.3) w(x+d, x) • o)(x, x+d) for d € 0(w)

and

(U.U) w(x+6, x) • w(x+d, x+6) • u(x, x+d) for (d, 6) € 5(2n) .

These are to be thought of as infinitesimal "curve integral back and

forth!: and infinitesimal l:curve integral around a triangle11, respectively.
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We also want to consider the infinitesimal curve integral around a

parallelogram:

(U.5) w(x+6, a:) • w(x+d+6, x+6) • w(x+d, x+d+6) • m(x, x+d)

for (d, 6) € D(n) x D(n) .

PROPOSITION 4.1. Let G be a subgroup of the group Diff(F) of all

bijeotive maps F •* F , where F is a formal manifold. If w is a

1-form with values in such G , we have:

(i) the value of (U.1) is e , for all x ~ y , (expressing

that u is alternating); and

(ii) (k.h) gives e , for all (d, 6) € D(n) , if and only if

(it.5) gives e for all (d, 6) € D{n) * DM .

Proof. For all of the five expressions, we consider their effect on a

fixed u £ F . We choose a frame around u and since the question is

local, we may as well assume FcB (etale subset); for (U.l) and (U.2)

we also choose a frame around x , reducing them to C+.3) and (i*.it)

respectively; in particular, we assume M c R (etale subset).

For fixed y € M , u £ F ,

w(j/, -)(u) is a map MAy) •+ MAu) ,

thus, by Proposition 2.1, given by a unique affine R •*• FT whose linear

part we denote A(y, u, -) , in other words

co(x, x+d)(u) = u + A(x, u, d) .

Let us note that

u(a;+d, x){u) = u + A(x+d, u, -d)

= u + A(x, u, -d) + DxA{x, u, -d)(d) ,

where DA denotes partial Jacobian of A with respect to its first

variable. Since D A(x, u, s)(t) is bilinear in S and t , and

d € D(n) , the last term vanishes, so that we have

tu(x+d, x)(u) = u + A{x, u, -d) = u - A{x, u, d) .

How let us calculate the effect of (1».3) on u :
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w(x+d, x) • w(x, x+d)(u)

= w ( x + d , x)[u+A(x, u, d ) )

= u + 4 ( x , w, d) - A(x, U+A{X, U, d ) , d)

= u + 4 ( x , w, d) - 4 ( x , w, d) - DJi{x, u, d)A(x, u, d)

(where D.A is partial Jacobian with respect to the second variable). The

last term here equals 0 because it again is from S(d, d) for some

bilinear B . So the effect of (It.3) on u is u . This proves (i).

To prove (ii) , we calculate {k.k) and (k.5) by the same technique; we

get, after cancelling all S(d, d) and B(6, &) for B bilinear, that

(k.h) - u = DxA{x, u, 6)(d) + D2(x, u, &){A(x, U, d)) , (d, 6) e D(2n) .

Similarly, we get

(U.6) (U.5) - u = ̂ ( x , u, 6)(d) - D±A(x, u, d)(6)

+ D2A(x, u, 6)[A(x, U, d)) - D2A(x, u, d)[A(x, u, <5))

for (d, 6) € D{n) x D{n) , The expression derived here is bilinear in

d, 6 ; denote it C (d, 6) . Thus C : if1 x I?1 + FT is given by the

same formula; it is clearly skew symmetric. Comparing it with the

expression derived for (1*.U), and using Proposition 2.k, we thus have

Uk.k) - u = hC (d, 6) for all (d, 6) € D(2n) ,x ,u
(U.7)

(1».5) - u = C u(d, 6) for all (d, 6) € D{n) * D{n) ,

from which (ii) follows, using Proposition 2.3.

5. Lie algebra valued forms

Our theory is, when it comes to coordinate calculations, equivalent to

the classical theory of Lie algebra valued differential forms. To make

this comparison, we first state two, generally useful, propositions.

PROPOSITION 5.1. Let M and N be formal manifolds. There is, for

arbitrary x € M , u £ N _, a natural bijective correspondence between

(1) maps M (x) •* tl taking x to u ,

(2) linear maps T M -*• T N ,
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the passage from (l) to (2) given by sending cp : MAx) ->• N into

[t >—*• cp o t] .

This is well-known; see, for example, [JO], Remark 6.1.

PROPOSITION 5.2. Let M and F be formal manifolds. There is, for

arbitrary x € M 3 a natural bijective correspondenae between

(1) maps MAx) -*• Diff(F) taking x to id j

(2) linear maps T M •+ Vect(F) [that is, T. (Diff(f)) ) , '
i*' i d

where Vect(F) is the vector space o/ aZZ- vector fields on F . T?ze

passage from (l) to (2) is given by sending cp : M -»• Diff(F) to

* : T M •*• Vect(F) , where

*(t)(w, d) = <p[t(d))(u) , t € TM , d t D , u € F .

Proof. First, we argue that the 4> constructed is i?-linear. It is

easily seen to be homogeneous (that is commute with multiplication by

scalars from R ). But because F is infinitesimally linear, V = Vect(F)

is an /?-module for which Proposition 1.10.2 of [/)] can be applied, to give

the linearity. We next produce the passage from (2) to (l). We choose a

frame around x 6 M , identifying M (x) with D{n) (n = dim M) , and

TM with K . Let there be given a linear

T M = if1 -£+ Vect(F) .

cc

Let $. = $(e.) where e. is the ith canonical basis vector of FT ;

*. is a vector field on F . We define cp : D(n) •*• Diff(F) by putting
If

(for u i F , and d = [d±, .. . , d) £ D(n) )

cp(d, u) =*1(d1, *2(d2, .-., \{dn, u)) ...) ,

where #. is identified with a map D x F -*• F .

To see that the processes are mutually inverse, first note that the

process cp •—*• $ described in the proposition in coordinates can be

described as follows; it suffices to describe *. :
7s
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*.(<f, u) := cp(O, ..., d, ..., 0)(u)

(d in the ith place). To prove cp -*•$-»- cp leads back to the original

(p then means proving

<p{dx, 0, ..., O) o (p(0, d2, ..., 0) o ... o <p(0, 0, ..., d J U )

= (p(dlt ..., dn)(u) .

Both sides here (for fixed u ) are maps D(n) -*• F , and to see that they

are equal, it suffices to see, "by infinitesimal linearity of F (which is

a consequence of F being a formal manifold), that they have equal

restrictions to the n "axes" of D(n) , which is evident from

<j>(0, ..., 0) = identity .

Conversely, start with $ . It suffices to see that the old

$. (= $(e.)) and the new #. agree, that is to prove

*Ad, u) = <p(0, ..., d, ..., 0)(w) ;
Is

but

cp(O, ..., d, ..., 0)(u) = ^ ( 0 , *2(0, ..., ̂ (d, ... (*n(0, u)) ...))) ,

and the result follows because $,(0, u) = u .

If in Proposition 5-1 we take N = G (a group which is a formal

manifold) and u = e , the proposition expresses that we have a natural

one-to-one correspondence between 1-forms w on M with values in G ,

and ''ordinary" linear differential 1-forms ui on M with values in

T G (= LG) (for the "ordinary" notion of linear differential forms in

synthetic setting, see [13]). Similarly, from Proposition 5-2 it follows

that we have a natural one-to-one correspondence between 1-forms u on M

with values in Diff(F) , and linear 1-forms w on M with values in the

vector space Vect(F) (which, even though it is not finite dimensional,

admits synthetic calculus since each individual T F does). Linear

differential forms with values in Vect(F) have been considered

classically; of., for example, Haefliger, [5],

To complete the comparison, we also need to consider 2-forms.

PROPOSITION 5.3. Let M be a formal manifold, and let N be a
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formal manifold, or Diff(F) , where F is a formal manifold. Let x € M

be arbitrary, and let u (. N be arbitrary in the former case, and equal to

the identity map in the latter. Then there is a bijective natural

correspondence betueen

(1) those maps

M _ ( x ) = {{y, s ) | a j ~ 2 / A y ~ 2 A s ~ z } — > N

which take (x, z) and (y, x) to u , and

(2) bilinear skew symmetric maps

T M x T M —-* T N
XX U

(the codomain is Vect(F) , if u = e € Diff(F) ).

Proof. Here we have to do the whole work in coordinates, by choosing

frames, and then prove independence of the choice. Let us do the case

N = Diff(F) . So identify MAx) with D(2n) . For fixed u € F we

have, by choosing a frame around u and working with coordinates there,

cp(d, 6)(u) = u + Ajd, 6) ,

where A : D(2n) •+ FT (k = dim F) takes (d, 0) and (0, 6) to zero.

Now A extends uniquely to a skew bilinear R x n •*• FT , by Proposition

2.3. Thus the information contained in cp is: to each u , a skew

bilinear H X FT -»• R , which is also the information in (2). We omit the

details about independence of choice of frames, and so on.

From Proposition 5.3 follows that we have a bijective correspondence

between 2-forms 9 on M with values in G , and ordinary "linear"

2-forms B on M with values in LG for any G which is either a formal

manifold, or Diff(F) with F a formal manifold.

If we let at denote exterior differentiation of ordinary linear

differential forms, we may ask what is the relationship between So and

3J3 ? The answer involves the Lie bracket structure on LG (calculated via

right invariant vector fields on G ).

THEOREM 5.4. Let G be a group which is a formal manifold, or

Diff(F) for F a formal manifold. Let M be a formal manifold, and w
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a 1-form on M with values in G . Then, for w , w € T M ,

(5.1) (dii){wx, w2) = h&i{wv w2) + [5(uj , w(u2

Equivalently

( 5 - 2 ) S

[u, 6](M, y) := [5>{tO,

Proof. Since the former case is easily reduced to the latter, we

shall only do the Diff(F) case. We may do it in coordinates. We use

notation as in §U. For (d, 6) € 3(2n) , we calculated, in (U.7),

du(x, x+d, x+S)(u) = u + %C (d, 6)

with

(5"3) °x,u^l' W2^ = D1A(X> "' W2)(
WJ " V ^ X ' "• WlHw

2)
+ D24(x, M, W2)(4(ar, u, ŵ )̂) - ̂ ( x , M, W ^ ^ a : , u, V*2))

for all (w , W ) € fl" x Rn . Thus the skew bilinear I?1 x F?1 ->• R giving

the coordinate information of dw at x and u is %C (-,-). The
x ,u

two terms in (5-3) involving DA will be shown to be 3w (w W )(M) ,
i x j. if

and the two terms involving C> 4 will be shown to be

[w (w ) , w (w )J(M) . Now the first is rather clear, since the vector

space structure on Vect(F) is calculated in T F for each fixed u € F

separately. Keeping u fixed and omitting it from notation, the

expression

is the standard expression for the exterior differential of the 1-form

given by A .

We now turn to calculating the tangent vector at u involving the Lie

bracket. Let us, for [d , d) € D x D arbitrary, calculate
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^ K ) («> d
±) = u + ^ t * . M, <£,_ • w1) = M' ,

• ^ ( W g H " ' . d 2 ) = « ' + A{x, U', d2 • w2)

= u + 4 (a;, M, ^ • Wx) + A(x, U+A{X, U, d± • W.J , <?2 • Wg)

= u + A[x, u, d± • wx) + 4 (a;, u, d2 • W2)

+ D2A[x, U, d2 - \H2)[A[X, U, d± • W1)) .

If instead we calculate

wx(w1) (^(Wg) [u, d2), dx) ,

and subtract, we are left with

D2A{x, U, d2 • VI2)[A(X, U, d± • wx)) -D2A(x, U, d± • w ^ ^ ) ^ ^ , u, d2 • w2))

and using linearity of A in the third variable, this is

(5-k) d± • d2 • {D2A[X, U, \H2)[A[X, U, W ^ ^ ) ) - ^ ^ ^ , U, w1)(-4(a;, u, w2))}

proving that the field vector of the vector field

at u is the expression in the curly bracket in (5.*0> which is the second

line in (5.3), as desired. This proves the theorem.

The linear Maurer-Cartan form fi on a group G is given by

t i—>• [d i—• t{d) • t(0)~ J , where t : D -*• G is an arbitrary tangent

vector. If G is a formal manifold, the C-valued Maurer-Cartan form 9.

introduced in §2,

n(x, y) = y • x~ for x ~ y

corresponds to fi . Since Q i s closed, (3.1) (being the coboundary of

the ident i ty map), we get , by se t t ing the l e f t hand side of (5.2) equal to

0 :

COROLLARY 5,5. The linear Maurer-Cartan form U satisfies

dQ, = -%[fi, Q] .

This is the classical Maurer-Cartan formula.
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6. Finite curve integrals

As in [12], we shall assume that the basic ring R (the line) is

equipped with a preorder relation, making all intervals [a, b] etale. We

shall generalize the integration axiom for maps [a, b] -*• R : we say that

the group G admits integration if the following statement holds (that is,

is internally valid):

(6.1) for all a - b and for every G-valued 1-fonn w on the

interval [a, b] there exists a unique g : [a, b~\ •*• G with

g(a) = e and dg = o> .

This generalizes the integration axiom £JZ] when one observes that an

(R, +)-valued 1-form on [a, b] is of the form f{x)dx for a unique

/ : [a, b] -»• R . The proof of [IZ] that the "first" full Dubuc model [7]

satisfies the integration axiom can "be generalized to prove that any Lie

group admits integration, but it does not apply to Diff(F) . The

classical fact used about Lie groups is the following:

PROPOSITION 6.1. Let (classically) X, be an ]a, b[-parametrized

family of right invariant vector fields on a Lie group G . Then there is

a curve g : ]a, b[ •+ G with (for all t € ]a, b[ )

(6.2) g'(t) = Xf[g{t)) for all t € ]a, b[ ,

and any two such curves differ by right multiplication by a unique y € G .

Proof. For a t-parametrized vector field X on a manifold G , we

may to each c € ]a, b[ and each y £ G find an open interval around a

and a function g defined on it with g{c) = y and satisfying (6.2).

However, since our vector field X (for each t ) is right invariant, the

interval around c can be chosen uniformly, independent of the initial

value Y • From this it is easy to prove that one can piece the local

solutions together to a global one, ]a, b[ -> G .

Note that (6.1) implies that we can find a g : [a, b] -*• G ,

giy) ' g(x)~ = "(a;, y) for all x ~ y ,

or equivalently,

giy) = bi(x, y) • g{x) for all x ~ y .
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Such a g we call a primitive or an indefinite (right) integral of w .

(There is also a dual notion, asking for a g satisfying

g(y) = g(x) • w(x, y) , but we shall not deal with it.) If j is a

primitive of 0) , then so is g • a for any a € G , clearly.

Conversely, we may note that if g and g are two primitives of the

1-form 0) on [a, b] , then the uniqueness assertion in (6.1), applied to

g • g{a) and g • g(a)~ allows us to conclude

g = g • g(a)~ • g(a)

so any two primitives of U) differ by right multiplication "by a constant

in G .

In the rest of §6, G denotes a group admitting integration.

If a) is a G-valued 1-fonn on M (a formal manifold), and

k : [a, b] -*• M is a curve on M , we define

a) := g(b) ' g(a)
-1

where g : [a, b] ->• G is a primitive of fc*w . Clearly, it does not

matter which primitive we choose. Also, for a — b — a , we have, for any

k : [a, c] -*• M ,

and

0) = 0) • 0)

k >k\[b,c] ]k\[a,b]

I u = u[k(a), k(b)) if a ~ b .

(Note that, like in [12], we implicitly retain the information of the end

points in the notation [a, b] : the interval is not determined by its

underlying set.)

We can also, like in [J2], prove that if

f : [alt bx] •* [a, b]

has /(a ) = a , f[b) - b , then for k : [a, b] -*• M we have
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a) =
kof

so that the integral of w over a curve "does not depend on its

parametrization'' if we retain the information of i ts end points. This is

the justification for the pictorial shorthand used in the following lemma;

"I" denotes [0, l ] .

LEMMA 6.2. Assume w is a G-valued 1-form on I x I . Then the

integrals of w around the two paths from ( 0 , 0 ) to ( 1 , 1 ) are equal,

provided the two integrals of co around any infinitesimal rectangle

±,
are equal.

Proof. This i s much similar to the corresponding fact about .ff-valued

i n t e g r a l s , as exposed in [73] , or [77] , §1.15. Consider the pic ture

c c

D D '

We first prove that the integral both ways round from A to H agree, by-

proving that the two functions /. : I -*• G sending a to, respectively,

u and
'ABC 'ADC

have the same differential: df = df (and, evidently, the same value for

a = 0 , namely w(a_, a +d ) ). This will imply, by the uniqueness

assertion in the integration axiom, that f = /_ , hence f (l) = f~(l) ,

which are the two desired integrals. We have
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r
'ADC

(6.3) df[a a+d) = f • f
1 x L 'AD'r' '

-I
-\ •! -I

'D'C >DD' K

- 1 r-1

C 'DD' 'AD 'AD 'DC

- 1

'DC

whereas

( 6 . U ) dfja a+d) = * * '
^ x x -1 JCC" -"SC M B ^'BC 'AB

>CC

However, the assumption about infinitesimal rectangles implies

D'C 'DD' 'CC 'DC

-1
from which the equality of (6.3) and (6.^) follows by multiplying by

'DC

on the right.

Next, we prove that the two functions g. : I ->• G , sending a to,

respectively

a) and a) ,
'OAE 'OFE

are equal, by proving that they have the same differential: dg. = dg0

(and evidently same value for a. = 0 , namely w ). This proof is

'OF

similar to the proof already carried out for the strip, and utilizing the

result for the strip.

7. When closed forms are exact

Our main result will be on pathwise connected and simply connected

formal manifolds. We need however for technical reasons a notion slightly

stronger than "pathwise connected" namely "stably pathwise connected". A
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formal manifold M of dimension n will be said to have this property if

it is pathwlse connected (it is non-empty, and for any two points in it,

there is a path k : I -*• M having the two given points as endpoints), and

if it satisfies the conclusion of the following proposition.

PROPOSITION 7.1. Let M be an etale subset of iP . Then, for any

path, k : I -»• M and any z ~ ^ (l) , there is a sequence k , ... , k of

paths, all beginning in k {0) = x , and with k (l) = z , as well as an

element [d , ..., d ) € D(n) , such that each path k. is homotopic to

the path k. by a homotopy of duration d. keeping x fixed.

(A 'homotopy of duration d (. D ' is a map I x D -*• M , having the two

desired paths as its restrictions on / x {o} and J x {d} ,

respectively.J

Proof. Let y = k (l) , z = y + d with d = [d, ..., d) . Then

we will construct the k.'s to have endpoints

z + [d±, ..,, dv 0, .... 0) .

We define

k.As, 6) = k.(s) + s • (0, ..., 6, ..., 0)
t"t"L t-

with 6 in the (-£+l)st position. The n durations are taken to be

d±, ..., dn , respectively.

To say that M is simply connected, we mean that any two paths k

and k , beginning at x and ending at y , can be connected by a

homotopy K : I x I -*• M keeping x and y fixed:

K(t, i) = k.{t) , i = 0, 1 , for all t € I ,

K(0, s) = x for all s € I ,

K(l, s) = y for all s € I .

We assume that the group G admits integration, as in §6.

THEOREM 7.2. If M is a stably pathwise connected and simply

connected formal manifold, then any closed G-valued 1-form is exact.
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Proof. Let 0 be a closed 1-form, dQ = 0 . Choose a point x € M

(M i s inhabi ted) , and define, for y S. M ,

fly) = ( e
>Wx,y)

where k(x, y) is any path I -*• M beginning in x and ending in y .

This is independent of the choice of path, for, if k and k are two

such, we connect them with a homotopy K as above. Then u := K*Q is a

closed 1-form on J x J . This means that the curve integral (U.2) around

infinitesimal triangles in J x J vanishes. By Proposition U.I,

therefore, the curve integral of w around infinitesimal parallelograms

vanishes also, or, equivalently, the curve integral both ways round from

the lower left vertex to the upper right vertex in such a parallelogram are

equal. By Lemma 6.2 the two curve integrals of to around I x I are

equal. But w = K*3 is the zero form on two of the sides of I x I ,

because K is constant here, and equals k*Q and k*Q , respectively, on

the other two. This means 0 = 0 , which is the desired
iv iv
K0 Kl

conclusion for well-definedness of / .

We shall finally prove df = 0 . Let y ~ z , and choose a path kQ

from z to y , as well as paths k , ..,, k with k (l) = z , as in the

conclusion of Proposition 7.1, using M stably pathwise connected.

Mapping I in an affine way to [p, d.] by mapping 0 to 0 and 1 to

d. reparametrizes the ith infinitesimal homotopy in Proposition 7.1 to
1s

an /-parametrized one, and Lemma 6.2 applies again. This time, the 1-end

of the homotopy gives a contribution, namely, as is easily seen,

The 'difference' between 0 and 0 , that is f(z) • fly) , is

0 "n

therefore

(7.D 9(fe«-l(l)>

Since 0 is closed, and k. ,(l), fe.(l), k- -,(1) form an infinitesimal

https://doi.org/10.1017/S0004972700005426 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700005426


378 Anders Kock

triangle,

so the expression (T.l) reduces to

) 9(i/, 3) .

This proves df = 0 , and thus the theorem.

We may read Theorem f .2 as giving conditions when a formal manifold M

has the property that closed 1-forms are exact, or n(M, G) = 0 (deRham

cohomology with values in G ). The next theorem similarly deals with

O-forms, or H°(M, G) .

THEOREM 7.3. If M is a pathwise connected inhabited (that is,

'non-empty') formal manifold, then any map h : M -»• G with dh = 0 is

constant.

Proof. Choose an x € M (M being inhabited). We prove h(y) = h{x)

for all y € M . By pathwise connectedness, we may find a path

k : [a, b~\ -* M with k(a) = x , k{b) = y . It suffices to see that

h ° k is constant. Now

d(h o k) = kHdh) = fc*(0) = 0 .

So h ° k is a primitive of the zero 1-form on [a, b] ; clearly the map

e with constant value e is also such. Since any two primitives of a

1-form differ by right multiplication by a constant, we conclude

h o k = e • g

or h o k = g .

Theorems 7.2 and 7-3 are equivalent to the 'Two lemmas on Maurer-

Cartan forms' from, say, [4]; of. also [6].

COROLLARY 7.4. Let M and G be as in Theorem 7.3, and let

f,f:M->-G be maps. Then

(7.2) f(x) = f(x) - g

for fixed g € G if and only if

(7.3) f*n = }*n

where Q is the Maurer-Cartan form on G ; equivalently, if and only if
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( 7 . U ) df = df .

Proof. The equivalence of the last two conditions is immediate from

(3.2) (df = f*Q) . If f(x) = f(x) • g , one immediately gets df = df ,

so assume finally the latter. Consider

and calculate, for x

dg(x,

~ y

y)

glx) := /(a

= f(y)'1 • i

= f(y)-1 • ̂

= /(j/)"1 • c

:)"••• • / ( a )

' • (fur1 • /i

'(y) • f(x)'1 •

2/(a, y) ' ?U)

?/(a;, J/) • fix)

?(x)

so by Theorem 7.3, g is constant.

Clearly, (7-3) holds for the non-linear {G-valued) Maurer-Cartan

form if and only if it holds for the linear (LC-valued) one. When we read

(7.3) the latter way, the equivalence (7-2) <=» (7.3) is Lemma 1.3 in [4].

COROLLARY 7.5. Let M and G be as in Theorem 1.2, and let cj> be

a linear 1-form on M with values in LG . Then the following two

conditions are equivalent:

(7.5) there exists a map f : M •* G with f*il = ip (where Q is the

linear Maurer-Cartan form);

(7.6) d<p = -%[(j>, ip] .

Proof. If (7.5) holds, (7.6) follows from the Maurer-Cartan formula

(Corollary 5-5). Conversely, assume (7.6). Let cp be the (non-linear)

1-form on M with values in G corresponding to ip . Then, by (5.2),

dtp = %(dip+%[<p, cp]) ,

which is zero, by (7-6), so dp = 0 . Hence by Theorem 7.2, cp is exact:

<P = df

for some / : M -*• G , or, equivalently by (3.2),

<P =

whence
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This proves the corollary.

The corollary is Lemma (l.U) in [4], except for a minus sign, due to

different conventions.

8. Remarks on Frobenius distributions

We consider a distribution P on M x F , transversal to the fibres

of the projection p : M x F •+ M , as in §1, with W and F formal

manifolds. As there, we get a Diff(F)-valued 1-form w on M ('the

connection form'). It is characterised by the fact that, for all x ~ y

in M , and u, w' € F ,

(8.1) co(x, t/)(w) = M' if and only if {y, u') € V(x, u) .

We say that a tangent t : D ->• M * F is subordinate to P if

t(d) € P(t(O)J for all d (. D . For technical reasons, we need the

following condition on V :

(8.2) for a t : D -*- M x F to be subordinate to P , it suffices

that t{d1 • d2) € f(t(O)) for all [d d^\ Z D x D .

A vector field X on an etale subset U of M x F is called

subordinate to P if each of its field vectors are, that is, if

X(s, d) € P(s) for all s i U and d . We say that V is a Frobenius

distribution if the Lie bracket [X, Y] of any two P-subordinate vector

fields X and Y is again P-subordinate.

This aim of this section is to give a geometric proof (a proof not

involving any calculations with + , only composition in the group

Diff(F) ) of (1) *=> (2) in the following theorem (where (l) *=> (3) is

classical; see, for example, [5]).

THEOREM 8.1. Let V be a distribution on M x F , transversal to

the fibres of the projection to M , and assume (8.2) holds. Then the

following three statements are equivalent:

(1) P is a Frobenius distribution;

(2) dm = 0 (where w is the Diff(F)-valued connection form);

(3) du = -%[w, to] (where w is the Vect(F)-valued linearized
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connection form).

Proof. From Theorem 5.U follows the equivalence of (2) and (3). To

prove (l) *=* (2), we need a lemma, concerning some further "infinitesimal

curve integrals", amending Proposition U.I. Let X and Y "be vector

fields on a formal manifold N , and consider, for some fixed m € N and

[d, d) € D x D the five points (cf., for example, [JJ], 1-9.3)

m, n = x[m, cLj , p = r(n, d,,), <? = Xfc, -dj , r = Y[q, -dg)

so that r = [X, Y][m, d • d_) . (These five points form what we may call

a Lie-pentagon for J, Y, d , cf .)

LEMMA 8.2. For any closed G-valued 1-form 8 , the "curve
integral" of 6 around the pentagon m, n, p, q, r , is e :

0(r, m) • 6(<7, r) • 9(p, g) • 9(n, p) • 9(m, n) = e .

Proof. Since everything is local, we may assume that N is an etale

subset of R . The proof now consists in dissecting the pentagon into an

infinitesimal parallelogram as in (U.5), and three infinitesimal triangles

as in (i*.U). Around the parallelogram and around each of the triangles,

the 'curve-integral' in question is 0 , by dQ = 0 and Proposition U.I.

The dissection is constructed as follows. We may assume

X(x, d) = x + d - ?(x) for all x € N and d € D ,

for some E, : N + K*1 ("the principal part of X "); this follows from the

basic axiom for R . Similarly, Y has a principal part n, : N •*• E1 .

The five points under consideration are then

m ,

n = m + d ' E,(m) ,

p = m + d • 5(w) + d2 ' ri(m + d • £,(m))

= m + d± • Um) + d2 • n(m) + dx • d2 • X(r\)(m)

(where r̂(n) is the partial derivative of r\ in the direction of the

vector field X J; and similarly

q = m + d2 • n(m) + d1 ' d2 •
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v = m {x(r))(m)-Y(O(m))

where

m = m

n = m + d ,

p = m

<? = m

r = m

d
2
 = ' and

6 = d1 • d • 7(5) (OT) . We further consider

q' := m + d2 + 6X .

Then the parallelogram rnnpq' is of the kind considered in (U.5) (note

d + 6 € 0(n) because d and 5 both contain d. € O as a factor) ,

and we have the triangles pqq', qq'm, qrm , each of which are of the kind

considered in (U.U). Note, for instance, that

q = p _ d1 - 62 ,

q> = p - dx

and (-d -6 , -d ) € D(2n) because both d and 6. contain the factor

d€ D . This proves the lemma.

To prove (2) °* (l) in the theorem, let 5 and 21 be P-subordinate

vector fields on an etale subset U c_ M x F , and consider a Lie pentagon

for 5, T, dx, d2 •. m = [m, vj , n = (n, v^, ..., r = (r, v^ , say.

Because the vector fields 5 and T are P-subordlnate, we get from (8.1)

the second equality sign in

(p*w)((m, u 1 ) , (n, fgJHu-J = u(m, n ) ^ ) = i>2 ;

similarly

w2) = T>3, w(p, ,
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so that the "curve integral" of p*w around the first four legs of the

pentagon is an element of Diff(F) which sends v to v . But because

p*u> is closed, it follows from the lemma that the "curve integral" of p*w

around the whole pentagon is zero (equals id € Diff(F) ), so that we must

have

p*(u)((r, i>5), [m, v^)[v^ = v± ,

or equivalently

w(m, r ) ^ ) = y? ,

or equivalently, by (8.1), (r, v ) € V(m, v ) . But

[r, v3) = [S, T]{[m, v±), d± • d2) ,

by the definition of Lie brackets in terms of Lie pentagons. Assumption

(8.2) then allows us to conclude that the tangent [S, T][[m, v ), -) is

subordinate to P . Since [m, v J was an arbitrary element in

U c M x F , we conclude that [5, T] is D-subordinate.

Finally, to prove (l) =* (2), assume that V is a Frobenius

distribution. To prove dui = 0 , it suffices to consider the restriction

of u to an arbitrary °°-monad in M , which we in turn may identify with

®aSn} S. " '•> in °"ther words, let us work in coordinates. By Proposition

U.I, it suffices to prove that the "curve integral" (U.5) around an

infinitesimal parallelogram is zero. Consider, for fixed m € D^in) c /

the value (U.5) as a function of (d, i) , so as a function

Din) x D(n) •* G = Diff(F) . To prove that it is constant with value

e € G , it suffices, by infinitesimal linearity of G , to prove that its

value is e on elements in D(n) x D{n) of form (<f. • e., d • e.) ,

where e. and e. are any two of the canonical basis vectors of ll1 .v 0

Keeping i and j fixed, we have two vector fields X and Y on

D^in) , with principal part constant equal to e. and e. , respectively.
1 3

Clearly the vector fields commute: [X, Y] = 0 . Before proceeding, we

need some generalities about lifts of vector fields.

For any tangent vector t : D -*• M and u € P , there is a unique
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t : D •* M x F satisfying

t(0) = [t(0), u) and t subordinate to V ,

which we call the lift of t starting in u (relative to V ). We

clearly have

(8.3) t{d) = [t(d), io(t(O), *(d))(u))

where w is the connection form for V .

For a vector field Z on U c_ M , there is a lifted vector field Z

on U x F , namely

Z(x, u) = l i f t of Z(x) starting in w ,

and Z is a ^-subordinate vector field. For an arbitrary distribution

V , [Z , Z ]~ is in general different from [z , Z ] , but if V is a

Frobenius distribution,

(8.U) [z1, z2]~ = [z l f z2] .

For, by the Frobenius property, both are O-subordinate, and both project

to [z , Z ] by p (meaning that the field vector of either of them at

any point of the fibre over m projects to the field vector of [z. , Z_]

at m ). However, by uniqueness of lifts of tangent vectors, there is at

most one such vector field.

Returning to the proof, since V is Frobenius and X and 7

commute, we have by (8.1+) that [X, j] = 0 , that is, the lifts X and Y

commute, which means that in any Lie pentagon for X and 2 , the first

and fifth points are equal. So, for m € D^n) , u, € F ,

[d.., d2) € D x D , we have

(3.5) x[x[Y[x[[m, v±), d±), d2), -dj, -d2) = (m, vj .

Using ( 8 . 3 ) , we can rewri te t h i s in terms of the connection form; by

( 8 . 3 ) ,

X{[m, vx), dx) = {m, cofa, X[m, dj) [vj)

= [m, u(m, m + dx • e^) (i^)) ;

substituting into (8.5) and doing a similar thing three more times, we
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finally calculate that the left hand side of (8.5) appears as [r, u j

with v equal to the result of applying the element of Diff(F)

displayed in (It.5) to v (provided we in (it.5) write d • e. for d ,
1 X 7-

d_ • e. for 6 , and m for x ). Since, by (8.5), v also equals

V , we conclude that the element (it.5) has trivial action on v . Since

v was arbitrary, this proves (it.5) equal to e € Diff(F) . As argued,

this implies du = 0 . This finishes the proof of the theorem.

We note that Diff(F) is "too big'' to admit integration, in general,

in other words, the three equivalent conditions on u) in the theorem do

not imply that u) = df for some f : M -*• Diff(F) . One would not expect

that: the Frobenius distribution on R x Ft given by the differential
2

equation y ' = y has the property that for no proper interval on the

x-axis (around x , say) does there, for every initial value \xn> J/J J

exist a solution extending over the interval.

I still do not know how to formulate, in a way adequate for the

synthetic setting, the local integration which Diff(F) should have. One

would probably have to replace the "global': group Diff(F) by the

''inductive groupoid" [3], or "pseudogroup" of local diffeomorphisms of F .
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