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Based on the traditional propagation model, this paper innovatively divides nodes into high- and low-energy states through
introducing Low-energy (L) state and presents a whole new propagation model which is more suitable for WSNs (wireless sensor
networks) against malicious programs, namely, SILRD (Susceptible, Infected, Low-energy, Recovered, Dead) model. In this paper,
nodes are divided into five states according to the residual energy and infection level, and the differential equations are constructed
to describe the evolution of nodes. At the same time, aiming at the exhaustion ofWSNs’ energy, this paper introduces charging as a
method to supplement the energy. Furthermore, we regard the confrontation betweenWSNs and malicious programs as a kind of
game and find the optimal strategies by using the Pontryagin Maximum Principle. It is found that charging as a defense
mechanism can inhibit the spread of malicious programs and reduce overall costs. Meanwhile, the superiority of bang-bang
control on the SILRD model is highlighted by comparing with square control.

1. Introduction

WSNs consist of a series of energy-limited nodes with moni-
toring, receiving, transmitting, and other functions that act as
connections between surrounding environment and control
centers or computers for further process. As WSNs have
gradually penetrated into every aspect of our daily life, they have
become an indispensable part of us, including environmental
monitoring, medical care, and vehicle tracking [1].

However, the shortcomings of WSNs are increasingly
exposed, such as vulnerability to malicious programs and
limited battery capacity. Due to the similarity of transmis-
sion mechanism, the propagation of malicious programs in
WSNs can be modeled by imitating the theory of epide-
miology. After decades of research studies of the initial SIR
(Susceptible, Infected, Removed) model proposed by
Kephart and White [2], the epidemiological model has been
fully developed [3–6].

Many scholars are also devoted to the study of malicious
programs’ propagation mechanism in WSNs. In order to

better protect against worm theft of security-critical infor-
mation, Haixia Peng et al. proposed a reliability-oriented
local-area model, which considers the topology ofWSNs [7].
Based on the actual scenario, Akansha Singh et al. proposed
a mathematical model that considered the influence of node
distribution density and different communication radius on
worm propagation [8]. Mohammad Sayad Haghighi et al.
proposed a dynamic propagation model with the consid-
eration of geospatial limitation [9]. Shakya [10] and Bahi
et al. [11] have even considered the spatial correlations in
WSNs. Bo Qu andWang added nodal degree into the model
as a factor affecting the infection rates [12]. .e sleep and
work interleaving policy was incorporated in a multiworm
propagation model proposed by [13]. Tang also introduced
sleep pattern to enhance the defense ofWSNs [14]. Inmobile
WSNs, the operations of providing pulse immunization to
susceptible nodes can well resist the propagation of malware
[15]. Compared with static defensive measures, mobile
patching is more effective in suppressing the spread of
mobile sensor worms [16]. Nicola Roberto Zema et al. also
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used a mobile approach to repair WSNs [17]. By adding time
delay to the propagation model, Neha Keshri et al. found it
could reduce the damage to nodes [18]. Many scholars have
considered the energy problem of WSNs, for example, Lei
Mo et al. introduced a mobile charger to add energy to the
networks [19]. However, it is not difficult to find that the
nodal energy is basically not taken into account in the
classification criteria of different states of nodes. One of the
highlights of this paper is that the energy of nodes has been
put forward and divided into high- and low-energy state
further. At the same time, the SILRD (Susceptible, Infected,
Low-energy, Recovered, Dead) model is proposed in this
paper according to the nodal states.

As it is a problem of antagonism against malicious
programs, some of the scholars also used game theory to get
the optimal strategy in the nonlinear system. By reducing the
transmission range to suppress the spread of malicious
programs, M. H. R. Khouza-ni et al. obtained the optimal
transmission range by constructing the optimal control
model [20] and also considered bandwidth consumption
and invasion risk as an optimal problem [21]. Mohamed S.
Abdalzaher and Osamu Muta proposed a Stackelberg game
approach to improve the defense mechanisms of WSNs
against the spectrum sensing data falsification attack [22]. As
a study of nonlinear systems, ChenglongWang et al. studied
the problem of online adaptive optimal controller with input
time delays [23]. Shuping He et al. proposed a scheme of
online H∞ control laws for nonlinear systems [24].
Chengcheng Ren et al. designed a suitable distributed
controller [25] and a suitable finite-time stabilizable con-
troller [26] to guarantee the positiveness and stabilization of
the closed-loop systems. As an inseparable part of game
theory, differential game has advantages in dealing with
dynamic problems. Miao and Li exploited differential game
to construct the optimal problem between network systems
and attackers [27]. Miao figured out the optimum between
throughput and energy efficiency [28]. Dong HAO and
Kouichi SAKURAI defined a game called PUE attack game
between attackers and secondary users [29]. Ding et al.
constructed a differential game between two types of nodes
inWSNs [30]. In addition to various game theories, Shuping
He et al. also used reinforcement learning [31] and policy
iteration algorithm [32] to solve the problem of optimal
control. Differential game can also solve different kinds of
problems: multiagent collision prevention [33], multipath
routing optimization [34], optimal storage capacities [35],
and minimization of transmission cost [36]. At the same
time, linear programming can also be used to find the
optimal solution [37]. In this paper, the optimal dynamic
game strategies between the malicious programs and WSNs
are obtained by using Pontryagin’s Maximum Principle.

Our contributions are summarized below.
First, an improvement on the basic epidemiological

model has been proposed. Considering the energy storage of
WSNs, the low-energy state to further satisfy the feature of
WSNs has been introduced. In the actual situation, nodes
will consume their energy as a result of daily work, and they
will definitely undergo a process from full energy to low
energy. Meanwhile, since the attack of some malicious

programs will be embodied in the faster consumption of
energy, the introduction of low-energy state can reflect the
attack degree to some extent.

Second, the effect of rechargeable factor on WSNs has
been considered. In order to maintain the normal function
ofWSNs, the rechargeable factor is introduced. As one of the
main defects of WSNs, limited energy has been restricted the
lifetime of WSNs, for nodes, which are infected by a certain
kind of malicious programs, can consume energy quickly.
.us, the influence of malicious programs can be suppressed
by charging. As the number of low-energy nodes decreases,
the cost of WSNs’ operation increases by deploying UAVs.
.erefore, this paper will reveal the balance between the two.
At the same time, the validity of the control method in the
SILRD model is further explained.

.e rest of our paper is organized as follows. In Section 2,
SILRD model with low-energy state has been proposed. At the
same time, the influence of rechargeable factors on WSNs is
considered and the corresponding differential equations are
formulated. In Section 3, differential game has been used to
figure out optimal strategies applied by WSNs and malicious
programs. In Section 4, the evolution of nodal states, the flow of
nodal energy, and the games between WSNs and malicious
programs will be revealed by simulation. In Section 5, a
conclusion of the full paper is presented here.

2. SILRD Model with WSNs

In WSNs, the total number of identical and static nodes is N
and they are distributed randomly in a flat area with S (m2).
Each node is equipped with an antenna for messaging and a
receiver for wireless charging. .e maximum radius of
node’s transmission is r (m). In this section, the SILRD
model will be proposed, and the differential equations will
dynamically reflect the transition of nodal states.

2.1. Nodal States in WSNs. At the same time, charging is
happening all the time in WSNs. .is model assumes the
attack from only one type of malicious program, that is, the
recovered nodes will not be repeatedly infected. Each node
transmits information to their surrounding nodes, which
will relay the information to remote computer or control
center step by step. Malicious programs propagate through
information transmission between nodes. Once infected
with malicious programs, the nodes will consume their
energy at a faster rate.

Based on the traditional model, the SILRDmodel further
considers energy level of each nodes and classifies nodes into
the following five states:

Susceptible (S) : a node in the Susceptible state is ex-
tremely vulnerable to malicious programs because of its
lack of defenses. Energy consumption level of these
nodes is normal.

Infected (I) : a node in the Infected state has a rapid
increase in energy consumption due to the successful
infection of malicious programs. If infected nodes are
not patched or charged in time, they will die of
exhaustion.
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Low-energy (L) : nodes in the Low-power state are
those that are infected with malicious programs or that
consume energy normally. .ese nodes are charac-
terized by low-energy level so that they cannot
maintain normal work, including data transmission
between nodes.

Recovered (R) : a node in the Recovered state is im-
mune to malicious programs. Particularly, charging
and patching occur at the same time. In other words,
nodes in recovered state are possessing not only im-
munity but also a high-energy level.

Dead (D) : a node in the Dead state is completely
dysfunctional. Even charging such a node cannot re-
store it. Meanwhile, this part of nodes due to total loss
of energy is unable to infect its neighbors.

In this paper, S(t), I(t), R(t), L(t), andD(t) are the ratio of
susceptible, infected, recovered, low-energy, and dead nodes
at time t, respectively. .e sum of these five ratios is equal to
1. .us, the following equation must be satisfied:

S(t) + I(t) + R(t) +D(t) + L(t) � 1. (1)

2.2. Transitions between Nodal States in SILRD Model.
Before the game started, only susceptible nodes and infected
nodes existed in WSNs, and their sum is equal to N. Fur-
thermore, the death of nodes because of hardware damage or
environmental factors have not been considered in this
paper.

.e transmission range of each node is πr2 (m2). .e
density of susceptible nodes in WSNs is (S(t)/S). For an
infected node, the number of susceptible nodes around
which it can infect is (πr2S(t)/S). .erefore, in wholeWSNs,
the number of susceptible nodes infected by malicious
programs is πr2I(t)S(t)/S.

In this model, the number of sensor nodes does not
increase. Before WSNs were not infected by malicious
programs, nodes inWSNs normally collect different kinds of
environmental information and transmit the processed
messages to their surrounding nodes. Malicious programs
are artificially implanted into WSNs. Besides destroying the
functionality of nodes, malicious programs can eavesdrop
on information through transmission between nodes. In the
absence of rechargeable devices, nodes will eventually shut
down as the power runs out.

It is necessary to charge WSNs because of the con-
sumption of electricity caused by normal work and the
attack by malicious programs. Infected nodes spread
malicious programs to neighbors with a certain probability.
Susceptible nodes which receive malicious programs and get
infectivity will become infected nodes. Some susceptible
nodes have not been infected by malicious programs during
their lifetime and remain in the normal working state. .is
part of the nodes will be transferred directly from the
susceptible state to low-energy state without recharging by

UAVs (Unmanned Aerial Vehicles) or the other MCs
(Moving Chargers). Some susceptible nodes will gain im-
munity to this type of malicious programs in time by re-
ceiving and installing patches from the UAVs. .e rest of
susceptible nodes will keep staying into the normal state.
Specifically, two simple schematic diagrams of the scene of
the SILRD model have also been portrayed, and the states
evolutions of nodes covered during the UAV movement are
clearly visible, as depicted in Figure 1.

.e transmission capacity of malicious programs di-
rectly determines the number of nodes transmit from the
susceptible state to infected state. Infected nodes dissipate
their own energy by enhancing the frequency of information
acquisition and the strength of communication with sur-
rounding nodes. With the increasing damage degree of
malicious programs, nodes will enter into the dead state at a
faster speed. At the same time, malicious programs can also
choose not to continue to attack the infected nodes, and
these infected nodes are only infectious but not destructive.
However, if the patches carried by UAVs are timely and
successfully installed early, the nodes will safely convert to
the recovered state.

Nodes in the recovered state are not only immune to the
malicious programs but also in a high-energy level. Nodes
that move from susceptible and infected states to recovered
states are in high-energy level, and UAVs only need to
transmit patches without charging them. On the contrary,
nodes in the low-energy state need to be charged and
patched at the same time to transform to the recovered state,
even if the nodes in the recovered state shift to the low-
energy state without energy replenishment due to normal
consumption.

Some of the nodes in the low-energy state are immune,
while others are not. Nodes in the low-energy state will
exhaust quickly, and the effect of malicious programs on
nodes transmitting from the low-energy state to dead state
has been ignored. .e flow diagram of the SILRD propa-
gation model is shown in Figure 2.

.e transition probability from the susceptible state to
infected state due to being infected by malicious programs is
PSI. .e probability of the susceptible nodes moves from the
high-energy level to low-energy level due to normal operation
is PSL. Probability of susceptible nodes being patched by
UAVs is PSR. .e probability that infected nodes will be
repaired while still at high-energy level is PIR. .e probability
that infected nodes are destroyed by malicious programs and
squander energy until exhaustion is PID. Malicious programs
in some infected nodes stop destroying, at this time, these
infected nodes can work normally with probability PIL at the
low-energy state. .e probability of nodes at the low-energy
level being successfully charged and patched by UAVs before
they run out of energy is PLR. .e probability of immune
nodes entering the low-energy level due to daily collection
and transmission is PRL. Finally, the probability of death due
to exhaustion at the low-energy level is PLD. .e rate of
change in each state is formulated from
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dS(t)

dt
� −PSIπr

2S(t)I(t)

S
− PSRS(t) − PSLS(t), (2)

dI(t)

dt
� PSIπr

2S(t)I(t)

S
− PIRI(t) − PILI(t) − PIDI(t), (3)

dL(t)

dt
� PILI(t) + PSLS(t) − PLRL(t) − PLDL(t) + PRLR(t),

(4)

dR(t)

dt
� PIRI(t) + PSRS(t) + PLRL(t) − PRLR(t), (5)

dD(t)

dt
� PLDL(t) + PIDI(t). (6)

2.3.,e Introduction of Control Variables. In this paper, the
damage caused by malicious programs to WSNs is mainly
reflected in the conversion process from the infected state to
dead state. At the same time, the propagation ability of
malicious programs depends not only on the transmission
frequency between nodes but also on themselves. .erefore,
attack modes of malicious programs include the destruction
of WSNs and their propagation.

.e defense measures of WSNs are embodied in
charging and patching various nodes. Charging nodes in
different types of states by UAVs can not only prolong the
lifespan of WSNs but also mitigate the damage from
malicious programs to some degree. Patching a node can
make it immune to the corresponding malicious programs.
.us, the defense patterns of WSNs are manifested in the
supplement of node electricity and the provision of relevant
patches.

According to the effects of the attack and defense
measures on nodal states, two hypotheses have been pro-
posed. One is that PSI and PID are controlled by malicious
programs to some degree. .e higher the attack level of the
malicious programs, the higher these two probabilities. .e
other is that PSR, PIR, and PLR are controlled by WSNs to
some degree. Similarly, the higher the defense level ofWSNs,
the higher the probability of all three.

Desired trajectory of UAV

Data transmission

Charging and patching

(a)

Charging and patching

(b)

Figure 1: Evolution of nodal states in UAV coverage area. (a).e location of the UAV at a certain moment and the nodal states before UAV
moves. (b) .e evolution of Nodal states as a result of the UAV moving with the desired trajectory from the original position.

L

D
RS

I

Figure 2:.e flow diagram of the propagationmodel..e letters in
the circle represent the corresponding state of the node. Arrows
indicate the direction of transition between node states.
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To further formulate this five transition probabilities,
equation (7) has been put forward:

PSI �
ASILSI

ASImax + ASImin

,

PID �
AIDLID

AIDmax + AIDmin

,

PSR �
DSRLSR

DSRmax +DSRmin

,

PIR �
DIRLIR

DIRmax +DIRmin

,

PLR �
DLRLLR

DLRmax +DLRmin

,



(7)

where ASI and AID represent the control levels of malicious
programs, while LSI and LIL represent the probability of
successful attack by malicious programs. In the same way,
DSR,DLR, andDIR represent the control level ofWSNs, while
LSR, LIR, and LLR represent the probability of successful
defense. ASImin and ASImax represent the minimum and
maximum values of malicious program’s control level, re-
spectively, so do the other counterparts in equation (7).

.e success rates of infection and suppression are all on a
scale of 0 to 1, as shown below:

LSI, LID, LSR, LIR, LLR ∈ [0, 1]. (8)

3. Optimal Dynamic Game Strategies for the
Malicious Programs and WSNs

As an important branch of game theory, differential game is
the theory which both parties can make decisions freely
proposed by Isaac in solving the pursuit evasion problem in
1965 [38]. Differential game refers to the game played by
multiple players in a continuous time system. At the same
time, players in the system try to optimize their independent
and ambivalent goals and finally obtain the optimal strat-
egies of the players over time. Generally speaking, differ-
ential game is a theory to study the decision-making process
of two or more players when their controls are applied to a
dynamical system described by differential equations. In the
differential game, figuring out a saddle point is the same
thing as finding out Nash equilibrium. In this section, the
cost of the game is formulated by further description of the
flow diagram, and the optimal dynamic strategies of both
sides of the game are constructed according to Pontryagin’s
Maximum Principle.

3.1. Payoff Function in the Attack-Defense Game. In this
paper, the zero-sum noncooperative differential game be-
tween malicious programs and WSNs has been discussed.
.e goal of malicious programs is to maximize the payoff
while the networks want to minimize it. After analysis by

Pontriagin’s Maximum Principle, the optimal attack strategy
for malicious programs has been obtained, and WSNs also
have the corresponding optimal countermeasures.

Definition 1. Given a fixed duration T, ](t) � (ASI(t),
AID(t)) is a strategy set of malicious programs at time t.
Identically, μ(t) � (DSR(t), DIR(t), DLR(t)) is a strategy set
of WSNs at time t.

In addition to the costs cause by malicious programs’
attack, WSNs themselves will generate a variety of costs with
time.

Nodes in the infected state, by destroying the trans-
mission mechanism between nodes, lose plenty of their own
energy and bring to a certain cost. Moreover, such nodes also
cause unexpected losses through eavesdropping on WSNs.
Although nodes in the low-energy state do not have the
ability to propagate malicious programs, they cannot work
normally due to the low-energy level, which will definitely
engender much losses. As a result of complete loss of
function of the dead node, topological structure of WSNs
will be disrupted. In the reconstruction of the new trans-
mission mechanism, it is bound to incur additional costs.
Multiple UAVs charge or patch corresponding nodes by
carrying patches and energy to some area of WSNs. During
the flight of the UAVs, a part of electricity will be consumed,
and it will be consumed in the process of SWIPT (simul-
taneous wireless information and power transfer) of UAVs.

While malicious programs create networks’ losses,
WSNs’ own defense measures will make up for this losses.
.e purpose of malicious programs is to make them as
greater as possible, whereas WSNs do the opposite, thus
forming two sides of the game.

By patching susceptible nodes, they will be immune to
some malicious programs, which ensures normal operation
of WSNs in the future. .e infected node returns to the
normal state, which not only reduces the loss that should
have occurred but also guarantees the normal operation for a
period of time. In addition to the low-energy levels, nodes in
the low-energy state are likely to contain more malicious
programs. .erefore, it should not only be replenished with
energy but also be patched to make it immune.

.e risk posed by infected nodes spreading malicious
programs is CII(t) at time t, where CI is a cost coefficient
and CI ≥ 0. .e consumption caused by using UAVs to
repair nodes while replenishing the node energy is
CLRPLRL(t) at time t, where CLR ≥ 0. .e cost of losing some
functions due to nodes at low-energy levels is CLL(t) at time
t, where CL ≥ 0. Loss of WSNs’ failure due to nodes death is
CDD(t) at time t, whereCD ≥ 0. Nodes have positive benefits
CRR(t) at time t due to having immunity, where CR ≥ 0. .e
costs of patching susceptible and infected nodes are
CSRPSRS(t) and CIRPIRI(t) at time t, respectively, where
CSR ≥ 0 and CIR ≥ 0. Nodes in the susceptible state have
CSS(t) benefit from working normally at time t, where
CS ≥ 0. At the terminal moment, susceptible and recovered
nodes will bring future benefits, so CSfS(tf) and CRfR(tf)
will be used to measure these benefits, where CSf ≤ 0 and
CRf ≤ 0. Conversely, nodes in the infected, low-energy, and
dead states will continue to affect the networks. CIfI(tf),
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CLfL(tf), and CDf
D(tf) will be used to describe these costs,

where CIf ≥ 0, CLf ≥ 0, and CDf
≥ 0.

.e payoff function of this game is shown in

J(μ(t), ](t)) � ∫tf
t0

−CSS(t) + CI + CILPIL + CPATCHPIR[ ]I(t) − CRR(t) + CDD(t) + CLRPLR + CL[ ]L(t) + CPATCHPSRS(t){ }dt+
CSfS tf( ) + CIfI tf( ) + CPATCHPSRS(t)dt + CSfS tf( ) + CIfI tf( ). (9)

According to the payoff function, we have ϕ to determine
terminal constraint of the game, as depicted in the following
equation:

ϕ � CSfS tf( ) + CIfI tf( ) + CLfL tf( ) + CRfR tf( ) + CDf
D tf( ).

(10)

3.2. Optimal Dynamic Strategies in the Attack-Defense Game

Theorem 1. In the Attack-Defense game in the SILRDmodel,
the optimal dynamic strategies of malicious programs and
WSNs are

A∗SI �

ASImax, βSI > 0,
unknown, βSI � 0,

ASImin, βSI < 0,



A∗ID �

AIDmax, βID > 0,
unknown, βID � 0,

AIDmin, βID < 0,



D ∗SR �

DSRmin, βSR > 0
unknown, βSR � 0,

DSRmax, βSR < 0,



D∗IR �

DIRmin, βIR > 0,
unknown, βIR � 0,

DIRmax, βIR < 0,



D∗LR �

DLRmin, βLR > 0,
unknown, βLR � 0,

DLRmax, βLR < 0,



(11)

where βSI , βID, βSR, βIR, and βLR satisfy the following equation:

βSI �
λI(t) − λS(t)[ ]πr2LSI(S(t)I(t)/S)

ASImax + ASImin

,

βID �
λD(t) − λI(t)[ ]LIDI(t)
AIDmax + AIDmin

,

βSR �
λR(t) − λS(t) + CPATCH[ ]LSRS(t)

DSRmax +DSRmin

,

βIR �
λR(t) − λI(t) + CPATCH[ ]LIRI(t)

DIRmax +DIRmin

,

βLR �
λR(t) − λL(t) + CLR[ ]LLRL(t)

DLRmax +DLRmin

.

(12)

Proof. According to (2)–(6) and (8), we can construct the
Hamiltonian function as shown below:

H � λS(t)
S(t)

dt
+ λI(t)

I(t)

dt
+ λL(t)

L(t)

dt
+ λR(t)

R(t)

dt
+ λD(t)

D(t)

dt
−

CSS(t) + CII(t) − CRR(t) + CLL(t) + CDD(t) − CLRPLRL(t) − CIRPIRI(t) + CSRPSRS(t).

(13)

From state functions (2)–(6) and payoff function (8), the
following characteristics have been found out:

1 .e five state functions and the payoff function are all
continuous in time

2 .e control variables are all bounded and continuous
in the state functions and payoff function

.us, there must exist a saddle point (μ∗(t), ]∗(t)) that
meets (14) according to [39]:

J μ∗(t), ](t)( )≤ J μ∗(t), ]∗(t)( )≤ J μ∗(t), ]∗(t)( ), (14)

where J(μ∗(t), ](t)) represents the cost incurred when only
the optimal strategy is selected by WSNs. J(μ∗(t), ](t)) also
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denotes that only malicious programs choose the optimal
strategy. J(μ∗(t), ](t)) indicates that not only the networks
choose the optimal strategy but also malicious programs
choose the optimal strategy.

According to [40] and the characteristics of this model,
there must be a V satisfying

V � max
](t)minμ(t)J(μ(t), ](t)) � minμ(t)max

](t)J(μ(t),

](t)) � J μ∗(t), ]∗(t)( ),
(15)

where max
](t)minμ(t)J(μ(t), ](t)) represents the cost in-

curred by WSNs in selecting the optimal strategy after the
malicious programs makes optimal decision, while
minμ(t)max

](t)J(μ(t), ](t)) denotes the cost incurred when
the order of two sides is switched.

.e following co-state differential equations (16)–(20)
determine the co-state variables λS(t), λI(t), λR(t), λL(t),
and λD(t), which are all time dependent:

dλS(t)

dt
� −

dH

dS(t)
�

λS(t) − λI(t)[ ]πr2I∗(t)A∗SILSI
ASImax + ASImin( )S + CS −

CPATCHD
∗
SRLSR

DSRmax +DSRmin

+ λS(t) − λL(t)[ ]PSL +
λS(t) − λR(t)[ ]D∗SRLSR
DSRmax +DSRmin

,

(16)

dλS(t)

dt
� −

dH

dI(t)
�

λS(t) − λI(t)[ ]πr2S∗(t)A∗SILSI
ASImax + ASImin( )S − CI +

λI(t) − λR(t)[ ]D∗IRLIR
DIRmax +DIRmin

−
CPATCHD

∗
IRLIR

DIRmax +DIRmin

+ λI(t) − λL(t)[ ]PIL + λI(t) − λD(t)( )A∗IDLID,
(17)

dλ∗L (t)

dt
� −

dH

dL(t)
�

λL(t) − λR(t)[ ]D∗LRLLR
DLRmax +DLRmin

+ λL(t) − λD(t)[ ]PLD − CL −
CLRD

∗
LRLLR

DLRmax +DLRmin

,

(18)

dλ∗R(t)

dt
� −

dH

dR(t)
� λL(t) − λR(t)[ ]PRL + CR, (19)

dλ∗D(t)

dt
� −

dH

dD(t)
� −CD. (20)

Meanwhile, the terminal value of the co-state variables
satisfies

λS tf( ) � dϕ

dS(t)
� CSf,

λI tf( ) � dϕ

dI(t)
� CIf,

λL tf( ) � dϕ

dL(t)
� CLf,

λR tf( ) � dϕ

dR(t)
� CRf,

λD tf( ) � dϕ

dD(t)
� CDf

.



(21)

According to Pontryagin’s Maximum Principle, when
([λI(t) − λS(t)]πr

2LSI(S(t)I(t)/S)/ASImax + ASImin) is
greater than 0, the malicious programs will choose the
maximum controlASImax in order tomake the cost as large as
possible. On the contrary, supposing

([λI(t) − λS(t)]πr
2LSI(S(t)I(t)/S)/ASImax + ASImin) is less

than 0, the malicious programs will choose the minimum
control ASImax to maximize the cost. Similarly, when
[λD(t) − λI(t)]LIDI(t)/(AIDmax + AIDmin) is greater than 0,
the malicious programs will choose AIDmax, and the mali-
cious programs will choose AIDmin if [λD(t)−
λI(t)]LIDI(t)/(AIDmax + AIDmin) is less than 0.

For WSNs, in case [λR(t) − λS(t) + CPATCH]

LSRS(t)/(DSRmax +DSRmin)is greater than 0, it will adopt the
minimum control DSRmin to make the cost as small as
possible. Maximum control DSRmax is taken to minimize the
cost, when [λR(t) − λS(t) + CPATCH]LSRS(t)/(DSRmax

+DSRmin)is less than 0. In terms of restoration measures for
infected nodes, if [λR(t)−λI(t)+CPATCH]LIRI(t)/(DIRmax+

DIRmin)is greater than 0, WSNs will choose the minimum
control DIRmin, while WSNs will choose the maximum
control DIRmax when [λR(t)−λI(t)+CPATCH]

LIRI(t)/(DIRmax+DIRmin) is less than 0. WSNs also takes
similar measures to nodes moving from the low-energy state
to recovered state. .e node will take the maximum control
DLRmax supposing [λR(t)−λL(t)+CLR]LLRL(t)/(DLRmax

+DLRmin)is less than 0, while the node will take the minimum
control DLRmin if [λR(t)−λL(t)+CLR]LLRL(t)/(DLRmax+

DLRmin)is greater than 0. □
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4. Simulation

In this chapter, two parts are discussed. In the first part,
based on the dynamic strategy, charging factor is further
analyzed to illustrate its advantages. .e second part will
compare and analyze with other control combinations to
highlight the points of bang-bang control. In these two parts,
simulations are verified on MATLAB R2017 B and the
memory specification of the computer is 8GB 1600MHz
DDR3.

In our assumptions, nodes are distributed at random in a
two-dimensional region with an area of 10,000 m2. .e
maximum transmission radius of a node is 10 m, and the
neighbor nodes must exist within the maximum transmis-
sion range of the nodes. UAVs will perform nodes’ patching
and wireless charging operations together. At the beginning
of the game, most of the nodes are in the susceptible state,
and the rest are in the infected state. .e maximum value of
all control levels is assumed to be 1, and the minimum value
is assumed to be 0. .e parameters are set as shown in
Table 1. According to the Pontriagin Maximum Principle,
the algorithm of the Attack-Defense Game based on the
SILRD model will be briefly explained in the form of
pseudocode in Algorithm 1.

4.1. Dynamic Strategies in the Game between WSNs and
Malicious Programs. .is section will focus on the evolution
on different nodes, control rules, and overall costs. At the
same time, it is worth noting that this section will compare
the case of no energy input.

4.1.1. ,e Variation Trend of Nodal States. Here, the vari-
ation trend of each state quantity over time under two cases
will be compared. In particular, similar state quantities are
contrasted in one simulation diagram for further analysis.
Each state quantity curve is constructed from 100 sample
points..e number of each type of nodes is evolved based on
(2)–(6)..e difference between Figures 2 and 3 is whether or
not charging involved.

It can be seen from the comparison between Figure 3(a)
and Figure 3(b) that, in the SILRD model proposed in this
paper, energy input, namely, charging, has little influence on
the number of susceptible nodes and infected nodes because
charging does not directly affect such high-energy nodes.

Although the curves of the same type of nodes are similar
in both cases, there exist numerical difference. .e number
of recovered nodes increased to 17.1% with energy input, up
by 6% compared with the case of no energy input, and low-
energy and death nodes decreased by 1.8% and 4.1%.

4.1.2. Comparison of Dynamic Optimal Control. Here, the
reason for the evolution of states’ quantities will be inves-
tigated, that is, the change of control levels of both sides in
the game. When T� 0, the initial value of each controls is
assumed to be 1. .e malicious programs select the strategy
according to (9) and (10), and WSNs choose according to
(11)–(13).

Malicious programs stopped propagation on the third
day because the peak of infection has been arrived. Even so,
the damage from malicious programs continued until the
end of the game, that is, the malicious programs have not
been cleaned up.

Similarly, WSNs stopped patching infected and sus-
ceptible nodes on the second day of the game, as depicted in
Figures 4 and 5. Because malicious programs are no longer
spreading, patching vulnerable nodes is not cost effective.
.e same applies to infected nodes. Even if the malicious
programs still exist, it costs more to patch them, so it stops.

.e difference between Figures 4 and 5 is that the former
adds control over energy input to the networks. As can be
seen from Figures 3(a) and 4, after the number of recovered
nodes reaches a peak, WSNs stop the repair of low-energy
nodes to suspend the cost of charging and patching.

4.1.3. Cost Comparison. .e costs of four cases will be
compared over here. Due to the impact of the dynamic
strategies’ end-values, only the cost simulation diagram
when T< 100 will be shown and will explain in detail. .e
costs are all constructed according to equation (8).As can be
seen from Figure 6, without taking the terminal cost
(T�100) into account, strategies with energy inputs can
actually reduce cost than strategies without them..erefore,
it is not always good to charge, and sometimes it is more cost
effective to use the networks’ residual energy. In the first ten
days, the difference between charging and noncharging
strategies is nonsignificant. However, with the development
of the iteration, the gap continues to expand. From the
comparison of costs, the strategies with charging are cost-
saving than those without charging. .us, the benefits of
charging can cover the costs of it. It is worth noting that
when the charging power is slightly reduced to about 50%,
the cost will decrease rapidly. And then as the power
continues to drop to about 10%, the cost, at 43 days, exceeds
the cost at full power.

However, the ranking of costs will change after the end
values are taken into account. At this point, the cost order
from high to low is strategies with 10% power charging
(−5.9344 × 104), strategies with full-power charging
(−9.9543 × 104), strategies without charging
(−1.7139 × 105), and strategies with 50% power charging
(−1.7772 × 105). .erefore, the maximum charging power is
not necessary when WSNs are evenly replenished. Because
larger power means more nodes are converted to the high-
energy state, but costs are also rising. .ere must exist a
number of tradeoffs that are lower than both full-power
operation and no energy input, such as the 50% power in this
paper.

4.2. Comparison of Differential Hybrid Control Strategies.
In this section, four combination control strategies are
discussed. In the above, both the control of patching and
charging belong to bang-bang control. In order to highlight
the advantages of bang-bang control in the SILRD model,
this paper compares it with another common control
method which only needs to expand the corresponding
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control into second term, that is, replace DSR with D2
SR, DIR

with D2
IR, and DLR with D2

LR. It is worth noting that the
payoff function describing the game under square control
does not change. According to the proof conditions of the
Maximum Principle in [38], there still exist a pair of saddle
points (μ∗(t), ]∗(t)) at this time, so the proofs will not be
described here again.

For the convenience of the following description, this
kind of control is named as square control in this paper.
Bang-bang control and square control will alternate between
charging process and patching process to form four different
control combinations.

4.2.1. ,e Variation Trend of Nodal States. In particular,
similar state quantities are contrasted in one simulation
diagram for further analysis.

.e trend of the number of susceptible nodes under
four strategies is basically similar, as depicted in
Figure 7(a). .e number of susceptible nodes decayed
most slowly when square control was only used to patch
high-energy nodes. When the square control is used for
charging low-energy nodes, the curves are fairly close.
.erefore, if the aim of the network is to keep the number
of susceptible nodes as high as possible, the bang-bang
control can be applied to patching high-energy nodes and
square control for charging and patching low-energy
nodes.

As can be seen from Figure 7(b), if only the square
control is used in WSNs, the number of infections will reach
a very high peak at about 13%. Applying square control to
patching high-energy nodes is more effective at suppressing
the spread of malicious programs than just only using bang-
bang control and its peak value is about 5.6%.

Table 1: Experimental parameters.

Parameter Description Value

LSI Probability of nodes converting from the susceptible state to infected state 0.1
LID Probability of nodes converting from the infected state to dead state 0.05
LSR Probability of nodes converting from the susceptible state to recovered state 0.2
PIL Probability of nodes converting from the infected state to low-energy state 0.005
LLR Probability of nodes converting from the low-energy state to recovered state 0.2
PSL Probability of nodes converting from the susceptible state to low-energy state 0.005
PLD Probability of nodes converting from the low-energy state to dead state 0.005
PRL Probability of nodes converting from the recovered state to low-energy state 0.005
CSR Cost of nodes converting from the susceptible state to recovered state 5
CIR Cost of nodes converting from the infected state to recovered state 7
CS Cost of nodes in the susceptible state 12
CD Cost of nodes in the dead state 20
CI Cost of nodes in the infected state 12
CR Cost of nodes in the recovered state 15
CL Cost of nodes in the low-energy state 15
CLR Cost of nodes converting from the low-energy state to recovered state 10
S(0) .e ratio of the initial number of susceptible nodes 95%
I(0) .e ratio of the initial number of infected nodes 5%
L(0) .e ratio of the initial number of low-energy nodes 0%
R(0) .e ratio of the initial number of recovered nodes 0%
D(0) .e ratio of the initial number of dead nodes 0%

(1) Initialize all coefficients;
(2) Define α(t) � S(t), I(t), L(t), R(t), D(t){ };
(3) Define β(t) � λS(t), λI(t), λL(t), λR(t), λD(t){ };
(4) Define c(t) � μ(t), ](t){ };
(5) if t � 0 then

(6) Substitute α(0) and c(0) into (2)–(6);
(7) Substitute α(0), β(0) and c(0) into (17)–(21);
(8) end if
(9) for t � 1 to T do

(10) Substitute α(t) and c(t) into (2)–(6);
(11) Substitute α(t), β(t) and c(t) into (17)–(21);
(12) Substitute α(t + 1) and β(t + 1) into (9)–(13);
(13) end for

ALGORITHM 1: Attack-Defense Game based on the SILRD Model.
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As can be seen from the comparison between
Figures 7(c) and 7(d), when bang-bang control is only
applied in WSNs, the number of low-energy nodes and
recovered nodes are significantly changed. In Figures 7(c)
and 7(d), the other three control combinations’ evolution
areas similarly. In other words, applying bang-bang control
to charging and patching is more effective in suppressing

low-energy nodes and boosting the number of recovered
nodes. In particular, when only bang-bang control is applied,
the peak value of recovered nodes can reach 25%.

All control combinations had lower mortality rates, as
depicted in Figure 7(e). In the first six days, there was little
difference in mortality among the combinations. For the first
41 days, applying bang-bang control and square control,
respectively, to patching and charging had the lowest
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Figure 3: Evolution of five types of nodes. In order to emphasize the impact of charging, this experiment takes charging as a research factor.
(a) .e evolution of nodes under the condition of charging (i.e., with energy inputs). (b) .e evolution of nodes under the condition of no
charging (i.e., without energy input).
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Figure 4: Optimal dynamic control with charging factors. .is
figure shows how the five control variables change over 100 days.
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Figure 5: Optimal dynamic control without charging factors. .e
difference (Figure 4) is the change of the five control variables in the
absence of UAVs within 100 days.
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Figure 7: Evolution of five types of nodes under four control combinations. Unlike the previous section, the research factor considered in
Section 4.2.1 is the control combination applied to charging and patching. .is section considers the control combination of bang-bang
control and square control. If bang-bang control is only applied to patching on high-energy nodes, then square control is applied to charging
and patching on low-energy nodes. Similarly, if bang-bang control is used to low-energy nodes, then high-energy nodes use square control.
If UAVs do not use bang-bang control, then they adopt square control. (a) .e number of S-nodes. (b) .e number of I-nodes. (c) .e
number of L-nodes. (d) .e number of R-nodes. (e) .e number of D-nodes.
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mortality. Starting at day 42, the combinations with bang-
bang control only had a lower mortality.

4.2.2. Cost Comparison. In this part, the costs of the control
combinations will be compared. .e combination with the
highest cost is the one with only the square control, as can be
seen from Figure 8. .e lowest-cost combination is the one
with only the bang-bang control. At the same time, further
analysis shows that bang-bang control can be applied to the
charging process to reduce the cost effectively.

.e reason bang-bang control produces lower costs is
because of the jump property of the control. Specifically,
when generating revenue, the jump from the minimum
control level to the maximum level can quickly yield.
Similarly, a jump from the maximum level to minimum can
quickly reduce losses.

5. Conclusion

By using residual energy of nodes as one of the classification
criteria, not only the flows of energy between nodes are
revealed but also the attack patterns of malicious programs
can be further described. .e idea of charging, though just
pro forma, can be used as a way to fend off malicious
programs and reduce mortality of nodes. Meanwhile, the
relationship between charging power and game cost has
been further revealed in this paper. .e advantages of bang-
bang control in WSNs against malicious programs are
demonstrated. When the cost of patching or charging be-
comes too high, the bang-bang control rule can quickly jump
from maximum to minimum.

When considering the process of charging nodes, this
paper assumes that charging and patching are carried out
simultaneously. However, there may be a delay between the
two process. Further analysis shows the way of charging may
be affected by various random factors, such as light, wind
speed, and human factors. .emodel would be more precise
and practical if more practical conditions were considered.
Incorporating more realistic elements into the model is a
promising direction for future work.
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