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Differential Gene Expression Graphs: a data structure for classification
in DNA Microarrays

Alfredo Benso, Stefano Di Carlo, Gianfranco Politano, and Luca Sterpone

Abstract— This paper proposes an innovative data structure
to be used as a backbone in designing microarray phenotype
sample classifiers. The data structure is based on graphs and
it is built from a differential analysis of the expression levels
of healthy and diseased tissue samples in a microarray dataset.
The proposed data structure is built in such a way that, by
construction, it shows a number of properties that are perfectly
suited to address several problems like feature extraction,
clustering, and classification.

I. INTRODUCTION

DNA microarrays are small solid supports, usually mem-
branes or glass slides, on which sequences of DNA are fixed
in an orderly arrangement. Tens of thousands of DNA probes
can be attached to a single slide. DNA microarrays are used
to analyze and measure the activity of genes. Researchers
can use microarrays and other methods to measure changes
in gene expression and thereby learn how cells respond to a
disease or to some other challenge [1], [2].

Among the different applications of microarrays, a chal-
lenging research problem is how to use genes expression
data to classify diseases on a molecular level. Statistical
classification is a procedure in which individual items are
placed into groups based on quantitative information on one
or more characteristics inherent in the items (referred to as
traits, variables, characters, etc.) and based on a training set
of previously labeled items. In the case of microarrays it in-
volves assessing gene expression levels from different exper-
iments, determining spots/genes whose expression is relevant
(feature extraction and clustering), and then applying a rule
to design the classifier from the sampled microarray data
(classification). An expression-based microarray phenotype
classifier takes a vector of gene expression levels as input
and outputs a class label to predict the class (phenotype) the
input vector belongs to [3].

The main problem in this type of classification is the huge
disparity between the number of potential gene expressions
(thousands) w.r.t. the number of samples (usually less than
a hundred). This disparity impacts the major aspects of the
classifier design: the classification rule, the error estimation,
and the feature selection. Many machine-learning techniques
have been applied to classify microarray data. These tech-
niques include artificial neural networks [4], [5], [6], [7],
Bayesian approaches [8], [9], support vector machines [10],

Manuscript received June 16, 2008. This work was not supported by any
organization.

A. Benso, S. Di Carlo, G. Politano, and L. Sterpone are with the
Department of Control and Computer Engineering of Politecnico di Torino,
Corso Duca degli Abruzzi 24 -10129 Torino Italy. Emails: {alfredo.benso,
stefano.dicarlo, gianfranco.politano, luca.sterpone}@polito.it

[11], [12], decision trees [13], [14], and k-nearest neighbors
[15].

Evolutionary techniques have also been used to analyze
gene expression data. Genetic algorithms and genetic pro-
gramming are mainly used in gene selection [16], [17],
optimal gene sets finding [18], disease prediction [19], and
classification [20], [21], [22], [23]. Approaches that combine
multiple classiers have also received much attention in the
past decade, and this is now a standard approach to improv-
ing classification performance in machine-learning [24], [25],
[26], [27], [28].

All these techniques mainly focus on the definition or
application of statistical methods and algorithms on the huge
amount of often messy data provided with microarrays. With
this paper we want to shift the attention towards the data
itself, by proposing a new data structure for representing
classes of phenotypes and feature relationships that, by
construction, easily allows feature selection, clustering and
classification.

The proposed data model called Differential Gene Expres-
sion Graph (DGEG) is not an alternative to traditional data
structures used to represent microarray experiments such as
Gene Expression Matrices (GEM) [29]. It complements these
models by providing a methodology to organize information
in a more analysis-friendly format. DGEGs clearly express
relationships among expressed and silenced genes in both
healthy and diseased tissues experiments. Moreover, they
support the identification of potential informative genes, i.e.,
genes that strongly correlate with the identification of the
phenotype represented by the considered dataset.

To demonstrate the effectiveness and flexibility of the pro-
posed data representation, the paper presents a new DGEG-
based classifier and its application to a set of microarray
experiments for three well known diseases: Diffuse Large B-
Cell Lymphoma, Lymphocytic Leukemia Watch&Wait and
Lymphocytic Leukemia. Instead of using traditional statis-
tical approaches, the classifier is based on the topological
analysis of the DGEG. Experimental results show that it
is able to provide very reliable results, correctly classifying
100% of the considered samples.

The paper is organized as follows: Section II describes
how to build a Differential Gene Expression Graph starting
from a set of experiments, and Section III proposes an
example of a classifier based on DGEGs. Section IV presents
some experimental results and Section V concludes the paper
suggesting future activities.



II. BUILDING DIFFERENTIAL GENE EXPRESSION GRAPHS

A microarray experiment typically assesses a large number
of DNA sequences (e.g., genes, cDNA clones, or expressed
sequence tags ESTs) under multiple conditions, e.g., a col-
lection of different tissue samples. The result of a microarray
experiment is a gene expression dataset usually represented
in the form of a real-valued expression matrix, called Gene
Expression Matrix (GEM) [29], [30].

A Gene Expression Matrix M defined for a set of m
samples, each involving n genes is defined as:

M : i ∈ {1, 2, . . . , n} × j ∈ {1, 2, . . . ,m} → ei,j ∈ < (1)

where:

• Each row ~gi (1 ≤ i ≤ n) is associated with a gene gi. It
identifies the expression pattern of gi over m samples;

• Each column ~sj (1 ≤ j ≤ m) is associated with a
sample. It represents the gene expression profile of the
sample;

• Each element ei,j of M measures the expression of gi

in sample j.

The original GEM obtained from the scanning process of a
set of microarrays usually contains noise, missing values, and
systematic variations arising from the experimental proce-
dure. This raw data is therefore usually pre-processed before
performing any type of analysis. Examples of pre-processing
techniques can be found in [31], [32], [33].

In [34] we introduced the concept of Gene Expression
Graph (GEG) built from a GEM M . A GEG is a non-oriented
weighted graph GEG = (V,E) where each vertex vi ∈ V
corresponds to a gene gi of M . Two nodes u and v are
connected by an edge in the graph iff the corresponding
genes gu and gv are both expressed in the same sample.
Each edge (u, v) ∈ E is weighted with the number of times
gu and gv are simultaneously expressed in the same sample
over the m samples included in the training set M .

One of the main difficulties with this model is the cor-
rect identification of expressed and silenced (not expressed)
genes. This task is based on the identification of a threshold
representing a Boolean cutoff to decide whether a gene
is expressed or not. The high sensitivity of the GEG to
this threshold makes any attempt at building GEG-based
classifiers not robust enough.

To overcome this problem we propose a new graph
model named Differential Gene Expression Graph (DGEG).
DGEGs consider the differential expression between healthy
and diseased samples. They not only overcome GEGs limi-
tations, but also allow the cancellation of most of the ”noise”
often present in microarray data. This noise is usually due
to differences in the gene expression profiles of the healthy
and diseased samples not related to the disease.

The use of DGEGs implies the availability of a training
set including, for each sample and for each considered gene,
the expression level of both an healthy and a diseased tissue.
This information can be organized in an extended Gene
Expression Matrix (eGEM) introducing a third dimension

to store healthy and diseased tissues information. A eGEM
eM can be thus defined as:

eM :k ∈ {healthy, diseased} × i ∈ {1, 2, . . . , n}×
j ∈ {1, 2, . . . ,m} → ek,i,j ∈ <

(2)

This requirement makes DGEGs better suited for c-DNA
microarrays, which always embed both healthy and diseased
tissue samples. Application to other types of microarrays is
under investigation.

The Differential Expression (DEi,j) of gene gi in sample j
is the difference between the expression of gi in the diseased
tissue (ediseased,i,j ∈ eM ) and the one in the healthy one
(ehealty,i,j ∈ eM ):

DEi,j = ediseased,i,j − ehealty,i,j (3)

If |DEi,j | > Tdiff , where Tdiff is a differential thresh-
old, gi is considered differentially expressed in sample j;
otherwise, the gene is considered not related to the disease,
since it does not show a significant difference between the
two samples. The differential analysis guarantees a signifi-
cant increase in the robustness of the procedure to identify
expressed genes (see Section IV-B ) and allows building more
precise classification algorithms (see section III).

A Differential Gene Expression Graph built over an eGEM
eM can be thus defined as a non-oriented weighted graph
DGEG = (V,E, Tdiff ) where:
• V is the set of vertexes. vi ∈ V is associated with

gene gi of eM . It exists in the DGEG only if gi is
differentially expressed in at least one sample of eM ;

• E = {(u, v) | u, v ∈ V } is the set of edges connecting
the vertexes (genes). Edges show relationships among
expressed and silenced genes. Two vertexes u and v are
connected by an edge iff the corresponding genes are
differentially expressed in at least one sample of eM ;

• Tdiff is the differential threshold used to build the
graph.

If n genes are differentially expressed in the same sample
each corresponding vertex will be connected to the other
n − 1 in the graph, creating a clique. This property is very
important since it could be exploited for the development of
new feature extraction algorithms (not in the scope of this
paper).

The weight wu,v of each edge (u, v) ∈ E corresponds
to the number of times the two corresponding genes are
simultaneously differentially expressed in the same sample
over the m samples included in eM . In a graph representing
a single sample (microarray), each edge will be weighted as
1. Adding additional experiments will modify the graph by
introducing additional edges and/or by modifying the weight
of existing ones.

Finally, each node vi ∈ V of a DGEG related to a gene
gi of the training set is also labeled with a set of additional
information, useful for classification purposes:
• The Name and UnigeneID [35] of gi;
• The Cumulative Expression Counts (CECi) of gi.

CECi is computed as follows: starting with CECi =



0, for each sample j in eM the value of DEi,j is
analyzed. If DEi,j is positive (i.e., gi is expressed in
the diseased sample but silenced in the healthy one)
CECi is incremented by one; if DEi,j is negative (i.e.,
gi is silenced in the diseased sample but expressed in
the healthy one) CECi is decremented; if DEi,j = 0
(i.e., gi is expressed/silenced in both samples) CECi is
not modified. In this way a node with a positive CEC
corresponds to a gene that most of the time is expressed
in the diseased sample and silenced in the healthy one,
while a negative CEC indicates a gene that is most of
the time silenced by the disease.

Fig. 1 and Fig. 2 show an example of DGEG construction
from a set of six samples. Each sample is composed of
4 genes. The top part of Fig. 1 reports the six considered
microarrays and the corresponding eGEM. The bottom part
summarizes the Differential Expressions, shading in gray
those genes that have a difference lower than the chosen
threshold (100). From these values it is possible to build the
DGEG of Fig. 2, where each vertex corresponds to a gene
that is differentially expressed in at least one experiment.
To give an example of how to compute the CEC for each
vertex and the weight of each arc, let us look in more
details at vertexes A and B. If we look at the Differential
Expression table, we see that the DE of gene A is positive
in 4 experiments (Exp. 1, 2, 4, and 6), negative in one (Exp.
5), and below the threshold in one (Exp. 3). The Cumulative
Expression Count of node A in the DGEG is therefore
CECA = 4 − 1 = 3. Gene B, instead, is differentially
expressed with a negative sign in five experiments, and below
the threshold in one experiment: its CEC is therefore -5.
To compute the weight of the edge (A, B) it is enough to
count the number of experiments in which both genes are
differentially expressed (this time without taking into account
the sign). They are experiments 1, 2, 5, and 6; the weight
wA,B is therefore 4.

If new samples become available from new experiments
referring to the same pathology, the related information can
be easily added to the corresponding DGEG without any
additional memory requirement; DGEGS memory occupa-
tion is in fact determined only by the number of considered
genes, and is independent from the number of Microarray
experiments in the training set.

III. DGEG BASED CLASSIFICATION

DGEGs are an excellent data structure for building ef-
ficient classifiers. The classifier presented in this paper
provides what we call a Proximity Score (PS) between a
DGEG representing a given pathology (DGEGpat), and a
DGEG representing a single microarray experiment/sample
(DGEGexp). The proposed score tries to measure how
much DGEGexp is similar to DGEGpat in terms of ex-
pressed/silenced genes (analyzing the CEC of the nodes),
and relationship between gene expressions (considering the
weight of each edge).

The classification rule is therefore implemented as a
weighted comparison between the two graphs and is com-
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puted according to Eq. 4 where SMS identifies a Sample
Matching Score and MMS identifies a Maximum Matching
Score.

PS = SMS/MMS (4)

The Sample Matching Score analyzes the similarity of
DGEGpat and DGEGexp considering only those vertexes
(genes) available in both graphs. It is computed as:

SMS =
∑

∀(i,j)∈Eexp
V

Epat

(
Zi · wi,j ·

|Zi|
|Zi|+ |Zj |

)

+
(

Zj · wi,j ·
|Zi|

|Zj |+ |Zj |

) (5)

where (i, j) are edges appearing both in DGEGexp and
DGEGpat and Zx is the Z-Score of vertex x computed as:

Zx = CECxpat
· CECxexp (6)

By construction, each vertex x in DGEGexp has a Cu-
mulative Expression Count (CECxexp

) equal to −1 (if the
gene is expressed in the healthy sample but silenced in the
diseased one), 0 (if the gene expression is the same in both
samples), or +1 (if the gene is expressed in the diseased
sample and silenced in the healthy one).

The purpose of the Z-Score is to quantify to what extent
the expression of gene x in DGEGexp is ”similar” to



the expression of the same gene in the training dataset
represented by DGEGpat. The more genes have a positive
Z-Score, the higher will be the similarity, and therefore
the SMS, of the sample with respect to the considered
DGEGpat. The Z-Score may assume the following values:
• > 0 if both DGEGexp and DGEGpat have the gene

differentially silenced or expressed;
• < 0 if DGEGexp has the gene differentially silenced

and DGEGpat has it differentially expressed, or vicev-
ersa.

The two terms of Eq. 5 are the Z-Scores of each gene
multiplied by a portion of the weight of the considered arc.
This portion is computed as the percentage of the Z-Score
of the gene w.r.t. the total Z-Score of the pair.

The Maximum Matching Score is the maximum SMS that
would be obtained with all genes in DGEGexp perfectly
matching all genes in DGEGpat with Z-Score of each gene
always positive. It is computed as:

MMS =
∑

∀(i,j)∈Epat

(
wi,j ·

CEC2
i + CEC2

j

|CECi|+ |CECj |

)
(7)

IV. EXPERIMENTAL RESULTS

The experimental results presented in this paper focus on
assessing the effectiveness of the DGEG based classifier
proposed in Section III. Three different training sets of
microarray experiments have been used to generate three
DGEGs for three different phenotypes.

A. Data source and Training Dataset

The training datasets used for the experimental design
come from the cDNA Stanford Microarray database [36].
This source contains a large amount of data that in many
cases refers to old experiments done on first generations
of microarrays affected by probe sensing problems, reduced
gene-set, and lack of UnigeneID for many spots. All genes
without valid UnigeneID have been discarded. Moreover,
since old microarrays duplicated spots in order to have more
reliable results, during the DGEG generation we considered
differentially expressed those genes expressed in at least one
of their copies on the microarray.

Even if the model allows the use and combination of
data coming from different types of microarrays embedding
different genes, in our experimental design we considered
samples with the same microarray technology and gene sets.

We considered three different data sets:
1) Diffuse Large B-Cell Lymphoma (Bcell);
2) Lymphocytic Leukemia Watch&Wait (CLLww);
3) Lymphocytic Leukemia (CLL).
The Bcell data set is a group of 53 microarrays related

to the Diffuse Large B-Cell Lymphoma (a non-Hodgkin
Lymphoma disease), it produces a DGEG of 6031 correctly
named (using UniGeneID) nodes (12% reduction w.r.t. [34]).
The CLLww data set is a group of 22 microarrays focusing
on Lymphocytic Leukemia Watch&Wait. From this set we
extracted valid information for 6324 genes (17% reduction

w.r.t. [34]). Finally, the third dataset (CLL) targeting Lym-
phocytic Leukemia is a group of 12 experiments from which
we were able to extract valid information for 5370 genes
(22% reduction w.r.t. [34]).

The threshold Tdiff used to extract the differentially
expressed genes has been set to 300. The procedure to
define the threshold is quite easy and requires plotting all
the differential expressions of the genes in the dataset, and
then setting a threshold that allows excluding the desired
level of noise.

B. Classifier

To verify the usability of the proposed model for sample-
based classification algorithms, we applied the classification
procedure described in Section III using, as samples, six
different sets of microarrays data downloaded from Stanford
Microarrays Database. None of these samples were part of
the training sets used to generate the DGEGs. Each set
contains from 8 to 11 distinct samples. We used the three
datasets described in section IV-A as classes in which to
classify the samples.

Each sample set targets a different phenotype:
1) Chronic Lymphocytic Leukemia - Untreated

Watch&Wait;
2) Lymphoma Classification - Hematopoietic cell lines;
3) Lymphoma Classification - Normal Lymphoid subset;
4) Lymphoma Classification - CLL;
5) Solid tumor Ovarian;
6) Diffuse Large B-cell Lymphoma Subset of B-cell

sample not used during the graph creation and used
here as cross-validation of the B-cell dataset.

The implemented algorithm correctly classified 100% of
the samples. This means that we never had a false posi-
tive/negative classification. We want to point out that the
classifier is not based on abstract statistical methods, but it
works by analyzing and somehow measuring the similarities
between the two graphs. It is also very interesting to note
that, using DGEGs and the Proximity Measure, the classifier
is not forced to provide a result. For example, the samples of
”Solid tumor Ovarian” have all been scored with a negative
or null PM, meaning the classifier correctly decided that the
given samples were not part of any class (see Fig. 3).

Fig. 3 shows the result of the classification for the six
pathologies, where for each sample set we report the average
Proximity Measure against the three datasets.

The classification results can be analyzed as follows:
• Pathology #1 is correctly matched with the CLLww

dataset and also has a high score when compared with
the CLL dataset. This result is acceptable since the two
datasets represent very similar diseases;

• Pathology #2 is correctly classified as distant from all
three datasets;

• Pathology #3 has a very low score for all datasets.
It is correctly classified as distant from all datasets,
but, being anyway a Lymphoma related disease, it also
shows a slight similarity with all three datasets;



Fig. 3. Classifier results for all samples

• Pathology #4 is correctly classified as a Lymphocytic
Leukemia disease; a detailed view of the classification
of all 8 samples is in Fig 4;

• Pathology #5, which is a solid tumor, is correctly
classified as highly different from the three datasets;

• Pathology #6 is correctly classified as a BCell
Leukemia.

Fig. 4. Classification of the 8 samples of CLL. All samples are correctly
classified

The most important result in our opinion is the ability of
this classifier to correctly process and identify samples that
show very similar pathologies. This result seems to suggest
that the DGEG is able, by construction, to give more weight
to genes and gene relationships that unequivocally identify a
particular pathology. Obviously this ability also depends on
the quality of the training set, but this is a common problem
to all supervised classification methods.

Finally, we need to introduce a few considerations about
the influence of the differential threshold used to build the
graph (Tdiff ) on the quality of the classification. Table I
shows the Proximity Measure produced by the classifier for
seven samples of ”Lymphoma Classification - CLL” consid-
ering DGEGs built with four different threshold. The possible
range of expression in the considered training dataset and
samples is between 0 and 60,000, but with more than 95%
of the expression values falling between 0 and 2,500. The
result of the table clearly shows the reduced influence of the

threshold on the classification process. In all the experiments
the classifier was able to weight with an higher score the
CLL dataset (the correct classification for the used samples),
regardless the used threshold. Moreover, in all cases the
proximity score shows a value higher then 65% providing a
good confidence in the result. The only exception concerns
sample 1. For this sample, with a threshold of 10000, even if
the classifier is able to distinguish between the three classes,
the proximity score is very low. Actually this result is not a
fault of the classifier. The considered sample has many spots
not correctly readable including most of the genes selected
as relevant by the DGEG (see Fig. 5).

Fig. 5. Bad microarray sample

V. CONCLUSIONS AND FUTURE WORKS

In this paper we presented the Differential Gene Expres-
sion Graph, a new data structure designed for the analysis
of gene expression data in microarrays experiments. To
demonstrate the flexibility of the data model we implemented
a classifier based on the analysis of topological information
extracted from the DGEGs. The full potential of this new
model is still under investigation, but it is believed to be
able to provide a very useful ground for the development of
new gene expression analysis algorithms. In particular our
work is now mainly focused on:
• Improving the classification algorithm; this can be done

by defining heuristics to remove the ”noise”, i.e., those
genes or gene relationships that are not correlated with
the identification of the disease. Noise reduction will
create more robust and reliable DGEGs to be used as
classifiers;

• Defining a feature extraction algorithm. This task is ex-
pected to provide very good results since, by construc-
tion, groups of genes which create strong differences
between healthy and diseased samples are cliques in
the graph.

• Extending the DGEG approach to single-channel Mi-
croarrays. In this case the problem is to identify a
pairing between healthy and diseased samples that in



Sample# Treshold B-Cell CLLw&w CLL Sample# Treshold B-Cell CLLw&w CLL

0

30 0.421512 0.637974 0.945681

4

30 0.518139 0.795215 0.939897
100 0.472778 0.651784 0.945307 100 0.507771 0.823667 0.951198
5000 0.287631 0.490266 0.887320 5000 0.200811 0.367865 0.739417

10000 0.070065 0.216501 0.650009 10000 0.136883 0.321477 0.624720

1

30 0.464888 0.605682 0.935293

5

30 0.303774 0.455125 0.721196
100 0.506362 0.629990 0.927602 100 0.381741 0.518469 0.805219
5000 0.216905 0.335258 0.676495 5000 0.333166 0.437727 0.819134

10000 0.010301 0.098026 0.188105 10000 0.105602 0.366950 0.679881

2

30 0.428275 0.671583 0.756701

6

30 0.524386 0.635336 0.903806
100 0.490301 0.737127 0.867379 100 0.523178 0.667139 0.903260
5000 0.246763 0.447746 0.806067 5000 0.447694 0.591003 0.937333

10000 0.116466 0.458306 0.848801 10000 0.262381 0.511725 0.864490

3

30 0.414909 0.675115 0.727648

7

30 0.406475 0.637323 0.722645
100 0.459270 0.735869 0.855962 100 0.455502 0.671919 0.811719
5000 0.311963 0.558636 0.936386 5000 0.242996 0.441234 0.827963

10000 0.157106 0.379690 0.769671 10000 0.202751 0.311736 0.608221

TABLE I
INFLUENCE OF Tdiff IN THE CLASSIFICATION OF THE LYMPHOMA - CLL

our method is necessary to compute the differential
expression of each gene. To accomplish that, we are
investigating the possibility of creating a reference
”healthy expression profile”, constructed from a dataset
of Microarray experiments on healthy samples.
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