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ABSTRACT.   Under an assumption of regularity a manifold with an /-struc-

ture satisfying certain conditions analogous to those of a Kahler structure admits

a fibration as a principal toroidal bundle over a Kahler manifold.   In some natural

special cases, additional information about the bundle space is obtained. Finally,

curvature relations between the bundle space and the base space are studied.

Let M  "+s  be a  C00 manifold of dimension  2t2 + s.   If the structural group of

M     +s   is reducible to  UÍn) x Oís), then M     +s   is said to have an f-structure of

rank 2n.   If there exists a set of 1-forms  ¡77  , • • • , rf\  satisfying certain proper-

ties described in § 1, then M¿n+S   is said to have an f-structure with comple-

mented frames.   In  [l]   it was shown that a principal toroidal bundle over a Kahler

manifold with a certain connection has an /-structure with complemented frames

and drj   = • • • = dr]    as the fundamental 2-form.  On the other hand, the following

theorem is proved in §2  of this paper.

Theorem 1.   Let M  n+s  be a compact connected manifold with a regular nor-

mal f-structure.   Then M  n+s  is the bundle space of a principal toroidal bundle

over a complex manifold N2n (= M2n+S/Jii). Moreover, if M2n+S   is a K-manifold,

then  N  n  is a Kahler manifold.

After developing a theory of submersions in §3, we discuss in §4 further

properties of this fibration in the cases where  dr¡x = 0, x = 1, • ■ • , s  and  drix =

clxF, F  being the fundamental 2-form of the /-structure.

Finally in ^5  we study the relation between the curvature of M  n+s  and

N2n.

Since  1/(72) x Ois) C 0(2?2 + s), M  n+s  is a new example of a space in the

class provided by Chern in his generalization of Kahler geometry [4]. S. I. Gold-

berg's paper [5]  also suggests the study of framed manifolds as bundle spaces

over Ka'hler manifolds with parallelisable fibers.

1.   Normal /-structures.   Let  M  n+s  be a  2« + s-dimensional manifold with an

/-structure.  Then there is a tensor field / of type  (1, 1) on  M that is of rank
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2tz  everywhere and satisfies

<V /3+/ = 0.

If there exist vector fields  tf , x = 1, • • ■ , s  on M2n+s  such that

(2) fíx = 0,       7*víy) = S*,       rfo/=û,     /2=-/ + ^®c;y,

we say M  "+s   has an f-structure with complemented frames.   Further we say that

the /-structure is  normal if

(3) [/, /] + drf® ¿fx = 0,

where  [/, /]   is the Nijenhuis torsion of /.  It is a consequence of normality that

[fx> £ ] = 0.  Moreover it is known that there exists a Riemannian metric g  on

M2n+S   satisfying

(4) g(X, Y) = g{fX, fY) + £   ^(X^iy),
X

where  X  and   Y  are arbitrary vector fields on M     +s.  Define a 2-form  F  on

M2"+*   by

(5) F{X,Y) = giX,fY).

A normal /-structure for which  F  is closed will be called a K-structure  and a

K-structure for which there exist functions  a  , ■ ■ ■ , as   such that  axF = i^r/x for

x = 1, • • • , s  will be called an S-structure.

Lemma 1.   // M  n+s, 72 > 1, has an S-structure, then the  ax  are all constant.

Proof.   axF = djf  so that dax A F = 0  since  ¿F = 0.  However  F¡¿0so

dax = 0 and hence  a*   is constant.

The special case where the ax ate all 0 or all 1 has been studied in [1]. Also,

the following were proved.

Lemma 2.   // MAn+s  has a K-structure, the  f    are Killing vector fields and
^ ryj x j

drfiX,  Y) = - 2(VYTjx){X).  Here V  is the Riemannian connection of g  on M  "+s.

From Lemma 2, we can see that in the case of an S-structure  axfY -

- 2Vytj .
Y*x

Lemma 3.  // M2n+S  has a K-structure, then

ÏÏxF)iY, Z) = -   £ {rlx{Y)dif{fZ, X) + rfiZAdrfiX, fY)).
2    x

2.  Proof of Theorem 1.   In Chapter 1 of [9]  R. S. Palais discusses quotient

manifolds defined by foliations.  In particular, a cubical coordinate system

\U, {u   , ■ • • , un)\  on an 72-dimensional manifold is said to be  regular with respect
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PRINCIPAL TOROIDAL BUNDLES 177

to an involutive Tzz-dimensional distribution if i<9(77z)/t9z/xS, x = 1, • ■ • , m,  is a

basis of m     for every m £ U  and if each leaf of Jli  intersects  U  in at most one

777-dimensional slice of {U, iu   , • • • , un)\.  We say M  is  regular if every leaf of

M  intersects the domain of a cubical coordinate system which is regular with re-

spect to JR.

In  [9]   it is proven that if Jfi  is regular on a compact connected manifold M,

then every leaf of Jfl  is compact and that the quotient M/M is a compact differ-

entiate manifold.  ¡Moreover the leaves of Uli  are the fibers of a  C°°  fibering of

M  with base manifold zV!/jTÏ  and the leaves are all C°°  isomorphic.

We now note that the distribution M spanned by the vector fields  tfj, • • • , çf

of a normal /-structure is involutive.  In fact we have by normality

0 = [/, iMy, Q + drf <£,, {z)£x = f%, ¿y - rf (tfy, ÇJ£m = - [*y, £,]

from which it easily follows that M is involutive.  If 31!  is regular and the vector

fields  <f    ate regular we say that the normal /-structure is  regular.   Thus from the

results of  [9]  we see that if M  "+s   is compact and has a regular normal /-struc-

ture, then M  n+s  admits a  C°° fibering over the (2z7)-dimensional manifold N " =

M  n'ys/M with compact,  C°°  isomorphic, fibers.

Since the distribution  m of a regular normal /-structure consists of s 1-dimen-

sional regular distributions each given by one of the  <f 's, if M  n+s   is compact,

the integral curves of ¿;    ate closed and hence homeomorphic to circles  S  . The

rf 's  being independent and regular show that the fibers determined by the distri-

bution m ate homeomorphic to tori   Ts.

Now define the  period function ky, of a regular closed vector field X by

Ax(ztz) = infii > 0|(exp îXKttz) = ttz i.

For brevity we denote  kA     by  À  .  W. M. Boothby and H. C. Wang [3]  proved
Ç x x j

that Ax(tz7)  is a differentiable function on M  n+s. We now prove the following

Lemma 4.   The functions  À    are constants.
' x

The proof of the lemma makes use of the following theorem of A. Morimoto [7].

Theorem (Morimoto [7]). Let M be a complex manifold with almost complex

structure tensor J. Let X be an analytic vector field on M such that X and JX

are closed regular vector fields. Set pirn) = Xxim) + ^fl.\. Am). Then p is a holo-

morphic function on M.

Proof of lemma.   For s  even,

s/2

I  =f+ £ (Vl® £ * - rf* ® Q,       i=l,..., s/2, i*= 1 + s/2,
z'=l
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178 D. E. BLAIR, G. D. LUDDEN AND KENTARO YANO

defines a complex structure on  M = M  "+s  (cf. [6]).  It is clear from the normality

that <fxis  a  holomorphic vector field. For s odd,  a  normal  almost  contract  struc-

ture  {f, f0, 7/n)  is defined where  f.   and  r/0  generically denote one of the  tf 's

and 77  's  respectively [6].  It is well known that this structure induces a complex

structure /   on M = M  n+s x S   . Moreover, by the normality,  f0   considered as a

vector field on  M  is analytic.  Then  p{m) = À (772) + \J— 1À Am)  or piim, q)) =
_ , x x

A^   ((»2. q)) + V- l^if  ((TO. ?))? q  £ S   , for s  odd, is a holomorphic function on

M   by the theorem of Morimoto.  Since M   is compact, p  must be constant.  Thus

À -  is constant on  M  and since  X {{m, q)) = À (ttz), à    is constant on  M  "+s.
X X •     i" xx      "       X

Let  C    = À (ttz), then the circle group S     of real numbers modulo  C     acts on

M2"+s  by  (/, ttz) —» (exp if )(m),  i £ R.   Now the only element in  Ts = S j x • • •

x 5     with a fixed point in M  n+s   is the identity and since  M     +s   is a fiber space

over N2n, we need only show that M2n+S  is locally trivial [3].   Let \Ua\ be a

cover of N "  such that each  Ua is the projection of a regular neighborhood on

M     +s   and let sa: ¡7a—► M     +s  be the section corresponding to Z2    = constant,

• • ■ , us = constant.  Then the maps  *i  : Uax Ts —» M     *s  defined by

yaip, tv ■•-, ts) = (exp01<f1 + ... + tjs)){sa{p))

give coordinate maps for M .

Finally  (cf. [l]) we note that  y = (77  , • • • , t¡s) defines a Lie algebra valued

connection form on M     +s  and we denote by  77   the horizontal lift with respect to

y. Define a tensor field /   of type  (1, 1)  on N2n  by JX = n^fnX.  Then, since the

distribution i_  complementary to M  is horizontal with respect to y,

/ 2X = njn nJnX = nj2 nX = -X.

Moreover

[/, /](.V, Y) =-[X, Y] + \jrJnX, nJnY] - njn[nJnX, Y] - nJn[X, wJuY]

= - nJjrX, nY] + rrJ.frrX, fnY] - n^fn n^ifn'X, n Y]-nJn nJjrX, fnY]

= n^ifKrfX, nY] - rf([nX, nY]), Q + n*[fnX, fnY] - nj[fnX, nY] - nj[nX, fnY]

= **([/, []{nX, nY) + drfinX, nY)crJ

= 0.

Thus we see that N       is a complex manifold.

We define an Hermitian metric  G  on  N2n  by  G(X,  Y) = ginX, "nY).  Indeed

GijX, JY) = gQnJnX, nnJnY) = gifnX, fnY)

= ginX, nY) - £ r,xinX)r,xinY) = G(X, Y).
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Now define the fundamental 2-form ÎÎ by fl(X,  V) = GÍX, JY).  Then for vector

fields  X,  Y  on M2"+s  we have

n*ttiX, Y) = üinjí, rrj) = Ginji, Jnj)

= g(™*X, njnj) = gi- f2X, nnJY) = g(- f2X, ¡Y) = g(X, fY) = F(X, Y).

Thus  F = 77*n.  If now dF - 0, then  0 = dn*Q, - n*dÇl and hence  dO, = 0  since 77*

is injective.  Thus the manifold N  "  is Kà'hlerian.

3. Submersions.  Let V denote the Riemannian connection of g  on  M  n+-s.

Since the çf 's  are Killing, g is projectable to the metric  G  on  N  ".  Then follow-
* /^

ing [8]  the horizontal part of V~   77 V  is  77VXY where as we shall see  V  is the
nX ^

Riemannian connection of G. Now for an 5-structure we have seen that V<\,çf   =
'v *\, ^ X  x

axfX fot any vector field X  on M  n+s.  By normality / is projectable  (QA  / = 0)
Sx

and the  a   's  are constants; thus we can write

"^

V~  cf    =-nH   X,
nX'x x

where  H     is a tensor field of type  (1, 1) on  N  ".
x ^      *\^

We can now find the vertical part of V~   77 Y.
r nX

gi\xnY, fx) = - gGY,^Jx) = ginY, nH  X).

Thus we can write

V- nY = »TV y + i*(x, y)<f
77.V x x

where each  hx  is a tensor field of type  (0, 2) and

G(/7xX, Y) = hxÍX, Y).

Lemma 5.   Q >   (77 X) = 0 /or ««y vector field X  on  N  ", where  Q ¿r     z's tee

operator of Lie differentiation in the <f    direction.

Proof.  We have that g(ç   , 77X) = 0  for y = 1, • • ■ , s.  By Lemma 2, the if

are Killing, that is Ç ¿-  g = 0.  From the normality of /,   G ¿r   if   =0.  Hence, we
Sx Sx v

have that

g(Ê , Z¿ (ff.Y)) = 0,       y = l,...,s,

and so CA   (77 X)  is horizontal. However,
Sx

nJLçGx) = 7tJÍx, *X] = K fx, ̂ X] = 0

and so  G ¿-   (77 X)  is vertical.
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180 D. E. BLAIR, G. D. LUDDEN AND KENTARO YANO

Using the lemma we see that V,   77X = V<v   f    for any vector field  X  on N     .
Sx 77 X   x

Since  f    is Killing, we have

0 = g(V-/x> nX) = - g(fx, V^X) = - g(fx, ¿nX, X)fy) = - hxiX, X)

fot all X.  That is to say hx{X, Y) = - hx{Y, X) fot all X  and  Y. Now we have

that

0=V^ (£y)_V- (?X)-GrX,ffy]
nx 77V

(6) = ̂ V _ VyX - [X, Y]) + ihxiX, Y)-hxiY, X) + «fy* Qx, ÏY))^

= ̂ (Vxy _ VyX - [X, Y]) + (»*(X, Y) + ¿rf^X, SY))£x,

where we have used the following lemma.

Lemma 6.   [77X, nY] = ttTX,  Y] - drjxinX, nY)^x-

Proof.  Since  77J77X, nY] = [tt^ttX, tt^ît Y] = [X,  Y]  we see that n[X,  Y]  is

the horizontal part of [77 X, 77 Y].  By Lemma 2, we have

dr,x{nX, nY) = - 2(V^?7X)(^X) = - 2g(V^   f     77X) = + 2g(f , V^nX).
ttY 1TY   x x       ttY

Also drfQx, nY) = - drfinY, nX) - - 2g(f , V^   nY).  Thus
x      77X

2dr1xGx, nY) = 2g(f , V-n,  *X - V^  „Y)
6   ~*        77V ^

¿jr*(irX, 77Y)fx = £   g(fx, [rrX, nY])$x   = vertical part of  [nX, nY].
X

From  (6) we see  VXY - VyX - [X,  Y] = 0  and  ¿X(X,  Y) = - VidrfQx, nY).

Furthermore,

XGiY, Z) = nXginY, nZ) = gi^JnY, nZ) + ginY, V^ wZ)
nX nX

= ginVxY, nZ) + gi^y, # V) = <*V' Z) + G(Y' V>-

Thus, we have the following proposition.

Proposition.  V  is the Riemannian connection of G  on  N  ".

4. The S-structure case.   Let zM  "+s,   72 > 1, be a manifold with an S-structure.

Then, as we have seen, there exist constants  ax,  x = I, • • • , s, such that axF =

drf. We will consider two cases, namely  2 {ax)2 = 0 and  S (a,*)    ^ 0.

In the first case each dr¡   = 0 and by Lemma 2 each f    is Killing, hence the
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regular vector fields  £,, • • • , if    are parallel on M  n+s.  Moreover the complemen-

tary distribution a, (projection map is - /    = / — rf ® £ ) is parallel.  If now the

distribution =L   is also regular, we have a second fibration of M  n+s  with fibers

the integral submanifolds  L  "  of Jl  and base space an s-dimensional manifold

Ns.  Thus by a result of A. G. Walker [10]  we see that although  M2n+S  is not

necessarily reducible  (even though it is locally the product of N  n and  Ts)  it

is a covering space of N  " x Ns  and is covered by  L  " x Ts.   In summary we

have

Theorem 2.   // zM  n+s   is as in Theorem 1 with  drf = 0,  x - 1, ■ ■ ■ , s, and A.

regular, then  M  "+s   z's a covering space of N  n x zVs, where Ns   is the base

space of the fibration determined by =L.

Now as in Theorem 1, since the if  's, x = 1, ■ ■ ■ , s, ate regular, we could

fibrate by any  s - t  of them to obtain a fibration of M  "+s  as a principal Ts~l

bundle over a manifold P  "+t.  By normality the remaining  t  vector fields are pro-

jectable to P  n+t. Moreover they are regular on P  "+'; for if not, their integral

curves would be dense in a neighborhood   U  over which M  n+s   is trivial with

compact fiber  Ts~'  contradicting their regularity on M  "+s.  Thus P "+'  is a

principal  Tl  bundle over N  ",

Theorem 3.   If tá2n+s, n > 1, is as in Theorem 1 with drf = axF and

S (<xx)   4 0. then M  "+s   is a principal  Ts~     bundle over a principal circle bun-

dle P2n+    over N  " and the induced structure on P "+     is a normal contact met-

ric  (Sasakian) structure.

Proof.  Without loss of generality we suppose  as 4 0.  Then fibrating as

above by  <f,, • • • , çf _ ,   we have that M  "+s   is a principal Ts~     bundle over a

principal circle bundle P2" + ]   over N2n.  Let p: M2"+s —> P2n + l  denote the pro-

jection map.  By normality  /, çf , r¡s  ate projectable, so we define  c/>, cf, 77 on

P2n+1  by

<px=P*fpx,  £ = pJs>   vW = vs(px)

where p denotes the horizontal lift with respect to the connection (77 , • • • , rf~ )

considered as a Lie algebra valued connection form as in the proof of Theorem 1.

Then by a straight-forward computation we have

77(6 = 1,       (pí=Q, 7709=0,       (p2 =-/ + çf®-7, [<p, có] +rf ®dr¡=0,

that is,  (r/j, çf, 77)  is a normal almost contact structure on P "+   .  Defining a met-

ric g  by giX, Y) = gipX, pY) we have  g(X, çf ) = 77U)  and giqJX, cbY) = ¿(X,  Y)-

T]ÍX)riÍY).  Moreover setting 0(X,  y) = g(X, (f>Y) we obtain  F = p*0.   Thus since
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¿77s = asF, p*$ = dris/as  and

$(X, y) = gipX, pcJY) = dr,s(pX, pY)/as

= ÍXriíY) - Yr/ÍX) - r¡sí(pX, pY]))/as= dr¡ÍX,  Y)/as

since  77s   is horizontal.  Thus we have that r/Adr))" = r)Aas<$>)" ¿ 0  and hence

that P2n + 1  has a normal contact metric structure with çf regular.

Remark 1. While it is already clear that P n+ is a principal circle bundle

over N n, it now also follows from the well-known Boothby-Wang and Morimoto

fibrations.

Remark 2.  Under the hypotheses of Theorem 3, it is possible to assume with-

out loss of generality that  ax  equals  0 or  l/yjt where  t.  is the number of non-

zero  ax  and hence there exist constants  ßx, q = 1, • • • , s - 1, such that   rjq =

lxß xrf  and If = S^^1   are 1-forms with drf = 0  and drf = F.   Then /, if

and the dual vector fields  çf    again define a K-structure on M  n+s.  If now this

K-structure is regular, then, since the distribution spanned by  f,, • • • , Ç _,   and

its complement are parallel, M n+s  is a covering of the product of P "+    and a

manifold  Ps~     as in the proof of Theorem 2.

Remark 3. In [1] one of the authors gave the following example of an S-man-

ifold as a generalization of the Hopf-fibration of the odd-dimensional sphere over

complex projective space, n : S n+ —» PC". Let A denote the diagonal map and

define a space  H n+s  by the diagram

¡fn + s -A-,5272+1 x ... x Ç272+1

77' x ■ ■ • x 77'

PC"-Z-,PC"    xA..xPC"

that is  H2n+S = \iPv ...,PS)€ S2n + l x • • • x S2n^\nAP A = . . . = n\P s)\ and

thus  H     +s   is diffeomorphic to S  n+   x Ts~   .  Further properties of the space

H2n+S  ate given in   [l], [2].

If however the drf's ate independent then there can be no intermediate bun-

dle P2n+t  over N2n  suchthat M2n+S  is. trivial over P2n+t.

Remark 4. If M      5 is as  in Theorem 1 with the drf's  independent, then there

is no fibration by s — /  of the <f 's  yielding a principal toroidal bundle P n+t

over N2n  such that M2n+S = P2n+t x 77s"'.  For suppose P2n+t   is such an inter-

mediate bundle, then it is necessary that V-v,   çx = 0 (see e.g.  [8]) and thus the
77 A

?7x's  are parallel contradicting the independence of the drf's.

5.  Curvature.   Let  R  and  R  denote the curvature tensors of V and V re-

spectively.  Then
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nXnY nX  nY nY   nX [7rX,77y]

= g&GVyZ + hxiY, z)fJ - v^ Gv z + ¿*(x, z)f■)
77X * x jj y A 'X

'X.

- v-w    .,n ~   ~     j- nZ, nW)
"■[X, Y\-dvx(n X,nY)Çx

= g^Vx V - /,X(Y, Z)^xX) - ff VyVxZ + hxiX, Z)n{HY)

- n Vjx yjZ - í/íf (77X, nY)niHxZ), nW)

= G{RXYZ, W) - X (¿X(Y, ZMX, W) - ¿X(X, Z)hxiY, W) + drfinX, nY)hxiZ, W))
X

= GiRXYZ, W) - £ ihxiY, Z)hx{X, W) - hx{X, Z)hxiY, W) - 2¿X(X, Y)bx{Z, IV)).
X

In  [1], one of the present authors developed a theory of manifolds with an /-

structure of constant /-sectional curvature.  This is the analogue of a complex

manifold of constant holomorphic curvature.  A plane section of M  n+s  is called

an /-section if there is a vector X  orthogonal to the distribution spanned by the

f 's  such that  JX, fX\ is an orthonormal pair spanning the section.  The sectional

curvature of this section is called an ¡-sectional curvature  and is of course given

by g(RX/x^' /X^" ^ "+S xs sa'^ to De °^ constant f-sectional curvature if the

/-sectional curvatures are constant for all /-sections. This is an absolute con-

stant.  We then have the following theorem.

Theorem 5.   If M  n+s  is a compact, connected manifold with a regular S-struc-

ture of constant f-sectional curvature  c, then N  "  is a Kahler manifold of con-

stant holomorphic curvature.

Proof.   That N2n  is Kahler follows from Theorem 1.   By definition there exist

a   , • • • , as, necessarily constant such that  axF = drf.  If X  is a unit vector on

N  ", then we have

G(Rx/x/X,X) = g(^/x^x,7r-X)

+ ¿Z iV2axFGjX,nJX)y2axFGx,nX)
X

- y2axF{nX, n]XY/2axFin]X, nX)

-2iy2)axF{nX, n]X)V2axF{n]X, nX))

= r + 34Z iax)2{F{nX,fnX))2
X

= c + Va Z^, (aX) »    which is constant.
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Remark.  This agrees with the results in [l]  on H ,  H  "+s   is a principal

toroidal bundle over PC"  and  PC"  is of constant holomorphic curvature equal

to  1.  Also, clx = 1   for x = 1, • • • , s  and H "+s  was found to be of constant /-

sectional curvature equal to  1 - 3s/4.
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