DIFFERENTIAL GEOMETRIC STRUCTURES ON PRINCIPAL TOROIDAL BUNDLES

BY

DAVID E. BLAIR, GERALD D. LUDDEN AND KENTARO YANO

ABSTRACT. Under an assumption of regularity a manifold with an f-structure satisfying certain conditions analogous to those of a Kähler structure admits a fibration as a principal toroidal buadle over a Kähler manifold. In some natural special cases, additional information about the bundle space is obtained. Finally, curvature relations between the bundle space and the base space are studied.

Let $M^{2 n+s}$ be a C^{∞} manifold of dimension $2 n+s$. If the structural group of $M^{2 n+s}$ is reducible to $U(n) \times O(s)$, then $M^{2 n+s}$ is said to have an f-structure of rank $2 n$. If there exists a set of 1 -forms $\left\{\eta^{1}, \ldots, \eta^{s}\right\}$ satisfying certain properties described in $\oint 1$, then $M^{2 n+s}$ is said to have an f-structure with complemented frames. In [1] it was shown that a principal toroidal bundle over a Kähler manifold with a certain connection has an f-structure with complemented frames and $d \eta^{1}=\cdots=d \eta^{s}$ as the fundamental 2-form. On the other hand, the following theorem is proved in $\S 2$ of this paper.

Theorem 1. Let $M^{2 n+s}$ be a compact connected manifold with a regular normal f-structure. Then $M^{2 n+s}$ is the bundle space of a principal toroidal bundle over a complex manifold $N^{2 n}\left(=M^{2 n+s} / \mathcal{M}\right)$. Moreover, if $M^{2 n+s}$ is a K-manifold, then $N^{2 n}$ is a Käbler manifold.

After developing a theory of submersions in §3, we discuss in §4 further properties of this fibration in the cases where $d \eta^{x}=0, x=1, \ldots, s$ and $d \eta^{x}=$ $\alpha^{x} F, F$ being the fundamental 2 -form of the f-structure.

Finally in $\oint 5$ we study the relation between the curvature of $M^{2 n+s}$ and $N^{2 n}$.

Since $U(n) \times O(s) \subset O(2 n+s), M^{2 n+s}$ is a new example of a space in the class provided by Chern in his generalization of Kähler geometry [4]. S. I. Goldberg's paper [5] also suggests the study of framed manifolds as bundle spaces over Kähler manifolds with parallelisable fibers.

1. Normal f-structures. Let $M^{2 n+s}$ be a $2 n+s$-dimensional manifold with an f-structure. Then there is a tensor field f of type $(1,1)$ on $M^{2 n+s}$ that is of rank

Received by the editors January 10, 1972 and, in revised form, April 18, 1972.
AMS (MOS) subject classifications (1969). Primary 5372; Secondary 5730, 5380.
Key words and phrases. Principal toroidal bundles, f-structures, Kähler manifolds.
$2 n$ everywhere and satisfies

$$
\begin{equation*}
f^{3}+t=0 \tag{1}
\end{equation*}
$$

If there exist vector fields $\xi_{x}, x=1, \cdots, s$ on $M^{2 n+s}$ such that

$$
\begin{equation*}
f \xi_{x}=0, \quad \eta^{x}\left(\xi_{y}\right)=\delta_{y}^{x}, \quad \eta^{x} \circ f=0, \quad f^{2}=-I+\eta^{y} \otimes \xi_{y} \tag{2}
\end{equation*}
$$

we say $M^{2 n+s}$ has an f-structure with complemented frames. Further we say that the f-structure is normal if

$$
\begin{equation*}
[f, f]+d \eta^{x} \otimes \xi_{x}=0 \tag{3}
\end{equation*}
$$

where $[f, f]$ is the Nijenhuis torsion of f. It is a consequence of normality that $\left[\xi_{x}, \xi_{y}\right]=0$. Moreover it is known that there exists a Riemannian metric g on $M^{2 n+s}$ satisfying

$$
\begin{equation*}
g(X, Y)=g(f X, f Y)+\sum_{x} \eta_{x}(X) \eta_{x}(Y) \tag{4}
\end{equation*}
$$

where X and Y are arbitrary vector fields on $M^{2 n+s}$. Define a 2-form F on $M^{2 n+s}$ by

$$
\begin{equation*}
F(X, Y)=g(X, f Y) . \tag{5}
\end{equation*}
$$

A normal f-structure for which F is closed will be called a K-structure and a K-structure for which there exist functions $\alpha^{1}, \ldots, \alpha^{s}$ such that $\alpha^{x} F=d \eta^{x}$ for $x=1, \ldots, s$ will be called an S-structure.

Lemma 1. If $M^{2 n+s}, n>1$, has an S-structure, then the α^{x} are all constant.
Proof. $\alpha^{x} F=d \eta^{x}$ so that $d \alpha^{x} \wedge F=0$ since $d F=0$. However $F \neq 0$ so $d \alpha^{x}=0$ and hence α^{x} is constant.

The special case where the α^{x} are all 0 or all 1 has been studied in [1]. Also, the following were proved.

Lemma 2. If $M^{<n+s}$ bas a K-structure, the ξ_{x} are Killing vector fields and $d \eta^{x}(X, Y)=-2\left(\widetilde{\nabla}_{Y} \eta^{x}\right)(X)$. Here $\tilde{\nabla}$ is the Riemannian connection of g on $M^{2 n+s}$.

From Lemma 2, we can see that in the case of an S-structure $a^{x} f Y=$ $-2 \widetilde{\nabla}_{Y} \xi_{x}$.

Lemma 3. If $M^{2 n+s}$ bas a K-structure, then

$$
\left(\tilde{V}_{X} F\right)(Y, Z)=\frac{1}{2} \sum_{x}\left(\eta^{x}(Y) d \eta^{x}(f Z, X)+\eta^{x}(Z) d \eta^{x}(X, f Y)\right) .
$$

2. Proof of Theorem 1. In Chapter 1 of [9] R. S. Palais discusses quotient manifolds defined by foliations. In particular, a cubical coordinate system $\left\{U,\left(u^{1}, \ldots, u^{n}\right)\right\}$ on an n-dimensional manifold is said to be regular with respect
to an involutive m-dimensional distribution if $\left\{\partial(m) / \partial u^{x}\right\}, x=1, \ldots, m$, is a basis of \mathbb{M}_{m} for every $m \in U$ and if each leaf of $\Pi_{\text {intersects } U} U$ in at most one m-dimensional slice of $\left\{U,\left(u^{1}, \ldots, u^{n}\right)\right\}$. We say \mathbb{M} is regular if every leaf of π intersects the domain of a cubical coordinate system which is regular with respect to π.

In [9] it is proven that if \mathbb{M} is regular on a compact connected manifold M, then every leaf of \mathbb{M} is compact and that the quotient M / \mathbb{M} is a compact differentiable manifold. Moreover the leaves of \mathbb{M} are the fibers of a C^{∞} fibering of M with base manifold M / M and the leaves are all C^{∞} isomorphic.

We now note that the distribution \mathbb{M} spanned by the vector fields ξ_{1}, \ldots, ξ_{s} of a normal f-structure is involutive. In fact we have by normality

$$
0=[f, f]\left(\xi_{y}, \xi_{z}\right)+d \eta^{x}\left(\xi_{y}, \xi_{z}\right) \xi_{x}=f^{2}\left[\xi_{y}, \xi_{z}\right]-\eta^{x}\left(\left[\xi_{y}, \xi_{z}\right]\right) \xi_{x}=-\left[\xi_{y}, \xi_{z}\right]
$$

from which it easily follows that \mathbb{M} is involutive. If π is regular and the vector fields ξ_{x} are regular we say that the normal f-structure is regular. Thus from the results of [9] we see that if $M^{2 n+s}$ is compact and has a regular normal f-structure, then $M^{2 n+s}$ admits a C^{∞} fibering over the ($2 n$)-dimensional manifold $N^{2 n}=$ $M^{2 n+s} / \pi /$ with compact, C^{∞} isomorphic, fibers.

Since the distribution \mathbb{M} of a regular normal f-structure consists of $s 1$-dimensional regular distributions each given by one of the ξ_{x} 's, if $M^{2 n+s}$ is compact, the integral curves of ξ_{x} are closed and hence homeomorphic to circles S^{1}. The ξ_{x} 's being independent and regular show that the fibers determined by the distribution \mathbb{N} are homeomorphic to tori T^{s}.

Now define the period function λ_{X} of a regular closed vector field X by

$$
\lambda_{X}(m)=\inf \{t>0 \mid(\exp t X)(m)=m\}
$$

For brevity we denote $\lambda_{\xi_{x}}$ by λ_{x}. W. M. Boothby and H. C. Wang [3] proved that $\lambda_{x}(m)$ is a differentiable function on $M^{2 n+s}$. We now prove the following

Lemma 4. The functions λ_{x} are constants.
The proof of the lemma makes use of the following theorem of A. Morimoto [7].
Theorem (Morimoto [7]). Let M be a complex manifold with almost complex structure tensor J. Let X be an analytic vector field on M such that X and $J X$ are closed regular vector fields. Set $p(m)=\lambda_{X}(m)+\sqrt{-1} \lambda_{J X}(m)$. Then p is a bolomorphic function on M.

Proof of lemma. For s even,

$$
\tilde{f}=f+\sum_{i=1}^{s / 2}\left(\eta^{i} \otimes \xi_{i^{*}}-\eta^{i^{*}} \otimes \xi_{i}\right), \quad i=1, \ldots, s / 2, i^{*}=i+s / 2
$$

defines a complex structure on $M=M^{2 n+s}$ (cf. [6]). It is clear from the normality that ξ_{x} is a holomorphic vector field. For s odd, a normal almost contract structure $\left(\tilde{f}, \xi_{0}, \eta_{0}\right)$ is defined where ξ_{0} and η_{0} generically denote one of the ξ_{x} 's and η_{x} 's respectively [6]. It is well known that this structure induces a complex structure J on $M=M^{2 n+s} \times S^{1}$. Moreover, by the normality, ξ_{0} considered as a vector field on M is analytic. Then $p(m)=\lambda_{x}(m)+\sqrt{-1} \lambda_{x} *(m)$ or $p((m, q))=$ $\lambda_{\xi_{0}}((m, q))+\sqrt{-1} \lambda_{J \xi_{0}}((m, q)), q \in S^{1}$, for s odd, is a holomorphic function on M by the theorem of Morimoto. Since M is compact, p must be constant. Thus λ_{x} is constant on M and since $\lambda_{x}((m, q))=\lambda_{x}(m), \lambda_{x}$ is constant on $M^{2 n+s}$.

Let $C_{x}=\lambda_{x}(m)$, then the circle group S_{x}^{1} of real numbers modulo C_{x} acts on $M^{2 n+s}$ by $(t, m) \rightarrow\left(\exp t \xi_{x}\right)(m), t \in R$. Now the only element in $T^{s}=S_{1}^{1} \times \cdots$ $\times S_{s}^{1}$ with a fixed point in $M^{2 n+s}$ is the identity and since $M^{2 n+s}$ is a fiber space over $N^{2 n}$, we need only show that $M^{2 n+s}$ is locally trivial [3]. Let $\left\{U_{a}\right\}$ be a cover of $N^{2 n}$ such that each U_{a} is the projection of a regular neighborhood on $M^{2 n+s}$ and let $s_{\alpha}: U_{\alpha} \rightarrow M^{2 n+s}$ be the section corresponding to $u^{1}=$ constant, $\cdots, u^{s}=$ constant. Then the maps $\Psi_{\alpha}: U_{a} \times T^{s} \rightarrow M^{2 n+s}$ defined by

$$
\Psi_{a}\left(p, t_{1}, \cdots, t_{s}\right)=\left(\exp \left(t_{1} \xi_{1}+\cdots+t_{s} \xi_{s}\right)\right)\left(s_{\alpha}(p)\right)
$$

give coordinate maps for $M^{2 n+s}$.
Finally (cf. [1]) we note that $\gamma=\left(\eta^{1}, \ldots, \eta^{s}\right)$ defines a Lie algebra valued connection form on $M^{2 n+s}$ and we denote by $\tilde{\pi}$ the horizontal lift with respect to y. Define a tensor field J of type $(1,1)$ on $N^{2 n}$ by $J X=\pi_{*} f \tilde{\pi} X$. Then, since the distribution $\&$ complementary to M is horizontal with respect to γ,

$$
J^{2} X=\pi_{*} \tilde{\pi} \pi_{*} \tilde{\pi} X=\pi_{*} f^{2} \tilde{\pi} X=-X
$$

Moreover

$$
\begin{aligned}
& {[J, J](\therefore, Y)=-[\therefore, \because]+\left[\pi_{*} \tilde{\pi} X, \pi_{*} f \tilde{\pi} Y\right]-\pi_{*} j \tilde{\pi}\left[\pi_{*} \tilde{\pi} X, Y\right]-\pi_{*} f \tilde{\pi}\left[X, \pi_{*} \tilde{\pi} Y\right]} \\
& =-\pi_{*}[\tilde{\pi} X, \tilde{\pi} Y]+\pi_{*}[\tilde{\pi} X, \tilde{\pi} \check{Y}]-\pi_{*} f \tilde{\pi} \pi_{*}[\tilde{f} X, \tilde{\pi} Y]-\pi_{*} f \tilde{\pi} \pi_{*}[\tilde{\pi} X, \tilde{\pi} Y] \\
& =\pi_{*}\left(f^{2}[\tilde{\pi} X, \tilde{\pi} Y]-\eta^{x}([\tilde{\pi} Y, \tilde{\pi} Y]), \xi_{x}\right)+\pi_{*}[\tilde{\pi} X, \tilde{\pi} Y i]-\pi_{*} f[\tilde{\pi} X, \tilde{\pi} Y]-\pi_{*} f[\tilde{\pi} X, f \tilde{\pi} Y] \\
& =\pi_{*}\left([f, f](\tilde{\pi} X, \tilde{\pi} Y)+d \eta^{x}(\tilde{\pi} X, \tilde{\pi} Y) \xi_{x}\right) \\
& =0 \text {. }
\end{aligned}
$$

Thus we see that $N^{2 n}$ is a complex manifold.
We define an Hermitian metric G on $N^{2 n}$ by $G(X, Y)=g(\tilde{\pi} X, \tilde{\pi} Y)$. Indeed

$$
\begin{aligned}
\tilde{G}(J X, J Y) & =g\left(\tilde{\pi} \pi_{*} \tilde{\pi} X, \tilde{\pi}_{*} \tilde{\pi} Y\right)=g(\tilde{\pi} X, f \tilde{\pi} Y) \\
& =g(\tilde{\pi} X, \tilde{\pi} Y)-\sum \eta^{x}(\tilde{\pi} X) \eta^{x}(\tilde{\pi} Y)=G(X, Y)
\end{aligned}
$$

Now define the fundamental 2-form Ω by $\Omega(X, Y)=G(X, J Y)$. Then for vector fields \tilde{X}, \tilde{Y} on $M^{2 n+s}$ we have

$$
\begin{aligned}
& \pi^{*} \Omega(\tilde{X}, \tilde{Y})=\Omega\left(\pi_{*} \tilde{X}, \pi_{*} \tilde{Y}\right)=G\left(\pi_{*} \tilde{X}, J \pi_{*} \tilde{Y}\right) \\
& \quad=g\left(\tilde{\pi} \pi_{*} \tilde{X}, \tilde{\pi} J \pi_{*} \tilde{Y}\right)=g\left(-f^{2} \tilde{X}, \tilde{\pi} \pi_{*} f \tilde{Y}\right)=g\left(-f^{2} \tilde{X}, \tilde{Y}\right)=g(\tilde{X}, f \tilde{Y})=F(\tilde{X}, \tilde{Y})
\end{aligned}
$$

Thus $F=\pi^{*} \Omega$. If now $d F=0$, then $0=d \pi^{*} \Omega=\pi^{*} d \Omega$ and hence $d \Omega=0$ since π^{*} is injective. Thus the manifold $N^{2 n}$ is Kählerian.
3. Submersions. Let $\widetilde{\nabla}$ denote the Riemannian connection of g on $M^{2 n+s}$. Since the ξ_{x} 's are Killing, g is projectable to the metric G on $N^{2 n}$. Then following [8] the horizontal part of $\tilde{\nabla} \tilde{\pi}_{X} \tilde{\pi} Y$ is $\tilde{\pi} \nabla_{X} Y$ where as we shall see ∇ is the Riemannian connection of $\underset{\sim}{G}$. Now for an S-structure we have seen that $\widetilde{\nabla} \tilde{X}^{\pi} \xi_{x}=$ $\alpha^{x} \tilde{f}$ for any vector field \tilde{X} on $M^{2 n+s}$. By normality f is projectable $\left(\mathcal{R}_{\xi_{x}} f=0\right)$ and the α^{x} s are constants; thus we can write

$$
\tilde{\nabla}_{\tilde{\pi} X} \xi_{x}=-\widetilde{\pi} H_{x} X
$$

where H_{x} is a tensor field of type $(1,1)$ on $N^{2 n}$.
We can now find the vertical part of $\tilde{\nabla} \tilde{\pi} X$

$$
g\left(\widetilde{\nabla}_{\pi X} \tilde{\pi} Y, \xi_{x}\right)=-g\left(\tilde{\pi} Y, \tilde{\nabla}_{\pi X} \xi_{x}\right)=g\left(\tilde{\pi} Y, \tilde{\pi}_{x} X\right)
$$

Thus we can write

$$
\widetilde{\nabla} \tilde{\pi} X \tilde{\pi} Y=\tilde{\pi} \nabla_{X} Y+b^{x}(X, Y) \xi_{x}
$$

where each b^{x} is a tensor field of type $(0,2)$ and

$$
G\left(H_{x} X, Y\right)=b^{x}(X, Y)
$$

Lemma 5. $\mathfrak{R}_{\xi_{x}}(\tilde{\pi} X)=0$ for any vector field X on $N^{2 n}$, where $\mathfrak{R}_{\xi_{x}}$ is the operator of Lie differentiation in the ξ_{x} direction.

Proof. We have that $g\left(\xi_{y}, \tilde{\pi} X\right)=0$ for $y=1, \ldots, s$. By Lemma 2, the ξ_{x} are Killing, that is $\mathfrak{R}_{\xi_{x}} g=0$. From the normality of $f, \mathfrak{R}_{\xi_{x}} \xi_{y}=0$. Hence, we have that

$$
g\left(\xi_{y}, \mathfrak{R}_{\xi_{x}}(\tilde{\pi} X)\right)=0, \quad y=1, \cdots, s
$$

and so $\mathfrak{R}_{\xi_{x}}(\tilde{\pi} X)$ is horizontal. However,

$$
\pi_{*} \mathfrak{R}_{\xi_{x}}(\tilde{\pi} X)=\pi_{*}\left[\xi_{x}, \tilde{\pi} X\right]=\left[\pi_{*} \xi_{x}, \pi_{*} \tilde{\pi} X\right]=0
$$

and so $尺_{\xi_{x}}(\tilde{\pi} X)$ is vertical.

Using the lemma we see that $\tilde{\nabla}_{\xi_{x}} \tilde{\pi} X=\tilde{\nabla}_{\tilde{\pi} X} \xi_{x}$ for any vector field X on $N^{2 n}$. Since ξ_{x} is Killing, we have

$$
0=g\left(\tilde{\nabla}_{\tilde{\pi} x} \xi_{x}, \tilde{\pi} x\right)=-g\left(\xi_{x}, \tilde{\nabla} \tilde{\pi}_{x} \tilde{\pi} x\right)=-g\left(\xi_{x}, b^{y}(x, x) \xi_{y}\right)=-b^{x}(x, X)
$$

for all X. That is to say $b^{x}(X, Y)=-b^{x}(Y, X)$ for all X and Y. Now we have that

$$
\begin{align*}
0 & =\tilde{\nabla}_{\pi}(\tilde{\pi} Y)-\tilde{\nabla}_{\pi} Y(\tilde{\pi} X)-[\tilde{\pi} X, \tilde{\pi} Y] \\
& =\tilde{\pi}\left(\nabla_{X} Y-\nabla_{Y} X-[X, Y]\right)+\left(b^{x}(X, Y)-b^{x}(Y, X)+d \eta^{x}(\tilde{\pi} X, \tilde{\pi} Y)\right) \xi_{x} \tag{6}\\
& =\tilde{\pi}\left(\nabla_{X} Y-\nabla_{Y} X-[X, Y]\right)+\left(2 b^{x}(X, Y)+d \eta^{x}(\tilde{\pi} X, \tilde{\pi} Y)\right) \xi_{x},
\end{align*}
$$

where we have used the following lemma.
Lemma 6. $[\tilde{\pi} X, \tilde{\pi} Y]=\tilde{\pi}[X, Y]-d \eta^{x}(\tilde{\pi} X, \tilde{\pi} Y) \xi_{x}$.
Proof. Since $\pi_{*}[\tilde{\pi} X, \tilde{\pi} Y]=\left[\pi_{*} \tilde{\pi} X, \pi_{*} \tilde{\pi} Y\right]=[X, Y]$ we see that $\tilde{\pi}[X, Y]$ is the horizontal part of $[\tilde{\pi} X, \tilde{\pi} Y$]. By Lemma 2, we have

$$
d \eta^{x}(\tilde{\pi} X, \tilde{\pi} Y)=-2\left(\tilde{\nabla}_{\tilde{\pi} Y} \eta^{x}\right)(\tilde{\pi} X)=-2 g\left(\tilde{\nabla}_{\tilde{\pi} Y} \xi_{x}, \tilde{\pi} X\right)=+2 g\left(\xi_{x}, \tilde{\nabla}_{\tilde{\pi} Y} \tilde{\pi} X\right)
$$

Also $d \eta^{x}(\tilde{\pi} X, \tilde{\pi} Y)=-d \eta^{x}(\tilde{\pi} Y, \tilde{\pi} X)=-2 g\left(\xi_{x}, \tilde{\nabla} \tilde{\pi} X\right.$

$$
2 d \eta^{x}(\tilde{\pi} X, \tilde{\pi} Y)=2 g\left(\xi_{x}, \tilde{\nabla}_{\tilde{\pi} Y} \tilde{\pi} X-\tilde{\nabla}_{\tilde{\pi} X} \tilde{\pi}_{Y}\right)
$$

or

$$
d \eta^{x}(\tilde{\pi} X, \tilde{\pi} Y) \xi_{x}=\sum_{x} g\left(\xi_{x},[\tilde{\pi} X, \tilde{\pi} Y]\right) \xi_{x}=\text { vertical part of }[\tilde{\pi} X, \tilde{\pi} Y]
$$

From (6) we see $\nabla_{X} Y-\nabla_{Y} X-[X, Y]=0$ and $b^{x}(X, Y)=-1 / 2 d \eta^{x}(\tilde{\pi} X, \tilde{\pi} Y)$. Furthermore,

$$
\begin{aligned}
& X G(Y, Z)=\tilde{\pi} X g(\tilde{\pi} Y, \tilde{\pi} Z)=g\left(\tilde{\nabla}_{\tilde{\pi} X} \tilde{\pi} Y, \tilde{\pi} Z\right)+g(\tilde{\pi} Y, \tilde{\nabla} \tilde{\pi} X \\
&=g(\tilde{\pi} Z) \\
&\left.\nabla_{X} Y, \tilde{\pi} Z\right)+g\left(\tilde{\pi} Y, \tilde{\pi} \nabla_{X} Z\right)=G\left(\nabla_{X} Y, Z\right)+G\left(Y, \nabla_{X} Z\right)
\end{aligned}
$$

Thus, we have the following proposition.
Proposition. ∇ is the Riemannian connection of G on $N^{2 n}$.
4. The S-structure case. Let $M^{2 n+s}, n>1$, be a manifold with an S-structure. Then, as we have seen, there exist constants $\alpha^{x}, x=1, \ldots, s$, such that $\alpha^{x} F=$ $d \eta^{x}$. We will consider two cases, namely $\Sigma_{x}\left(\alpha^{x}\right)^{2}=0$ and $\Sigma_{x}\left(\alpha^{x}\right)^{2} \neq 0$.

In the first case each $d \eta_{x}=0$ and by Lemma 2 each ξ_{x} is Killing, hence the
regular vector fields ξ_{1}, \ldots, ξ_{s} are parallel on $M^{2 n+s}$. Moreover the complementary distribution $£$ (projection map is $-f^{2}=I-\eta^{x} \otimes \xi_{x}$) is parallel. If now the distribution \mathscr{L} is also regular, we have a second fibration of $M^{2 n+s}$ with fibers the integral submanifolds $L^{2 n}$ of \mathscr{L} and base space an s-dimensional manifold N^{s}. Thus by a result of A. G. Walker [10] we see that although $M^{2 n+s}$ is not necessarily reducible (even though it is locally the product of $N^{2 n}$ and T^{s}) it is a covering space of $N^{2 n} \times N^{s}$ and is covered by $L^{2 n} \times T^{s}$. In summary we have

Theorem 2. If $M^{2 n+s}$ is as in Theorem 1 with $d \eta^{x}=0, x=1, \ldots, s$, and $\mathscr{\perp}$ regular, then $M^{2 n+s}$ is a covering space of $N^{2 n} \times N^{s}$, where N^{s} is the base space of the fibration determined by \mathcal{L}.

Now as in Theorem 1 , since the ξ_{x}^{\prime} 's, $x=1, \ldots, s$, are regular, we could fibrate by any $s-t$ of them to obtain a fibration of $M^{2 n+s}$ as a principal T^{s-t} bundle over a manifold $P^{2 n+t}$. By normality the remaining t vector fields are projectable to $P^{2 n+t}$. Moreover they are regular on $P^{2 n+t}$; for if not, the ir integral curves would be dense in a neighborhood U over which $M^{2 n+s}$ is trivial with compact fiber T^{s-t} contradicting their regularity on $M^{2 n+s}$. Thus $P^{2 n+t}$ is a principal T^{t} bundle over $N^{2 n}$.

Theorem 3. If $M^{2 n+s}, n>1$, is as in Theorem 1 with $d \eta^{x}=\alpha^{x} F$ and $\Sigma_{x}\left(\alpha^{x}\right)^{2} \neq 0$, then $M^{2 n+s}$ is a principal T^{s-1} bundle over a principal circle bundle $P^{2 n+1}$ over $N^{2 n}$ and the induced structure on $P^{2 n+1}$ is a normal contact metric (Sasakian) structure.

Proof. Without loss of generality we suppose $\alpha^{s} \neq 0$. Then fibrating as above by $\xi_{1}, \cdots, \xi_{s-1}$ we have that $M^{2 n+s}$ is a principal T^{s-1} bundle over a principal circle bundle $P^{2 n+1}$ over $N^{2 n}$. Let $p: M^{2 n+s} \rightarrow P^{2 n+1}$ denote the projection map. By normality f, ξ_{s}, η^{s} are projectable, so we define ϕ, ξ, η on $P^{2 n+1}$ by

$$
\phi X=p_{*} f \tilde{p} X, \quad \xi=p_{*} \xi_{s}, \quad \eta(X)=\eta^{s}(\tilde{p} X)
$$

where \tilde{p} denotes the horizontal lift with respect to the connection $\left(\eta^{1}, \ldots, \eta^{s-1}\right)$ considered as a Lie algebra valued connection form as in the proof of Theorem 1. Then by a straight-forward computation we have

$$
\eta(\xi)=1, \quad \phi \xi=0, \quad \eta \circ \phi=0, \quad \phi^{2}=-I+\xi \otimes \eta, \quad[\phi, \phi]+\xi \otimes d \eta=0
$$

that is, (ϕ, ξ, η) is a normal almost contact structure on $P^{2 n+1}$. Defining a metric \dot{g} by $\dot{g}(X, Y)=g(\tilde{p} X, \tilde{p} Y)$ we have $\dot{g}(X, \xi)=\eta(X)$ and $\dot{g}(\phi X, \phi Y)=\dot{g}(X, Y)_{-}$ $\eta(X) \eta(Y)$. Moreover setting $\Phi(X, Y)=\dot{g}(X, \phi Y)$ we obtain $F=p^{*} \Phi$. Thus since
$d \eta^{s}=\alpha^{s} F, p^{*} \Phi=d \eta^{s} / \alpha^{s}$ and

$$
\begin{aligned}
\Phi(X, Y) & =g(\tilde{p} X, \tilde{p} \phi Y)=d \eta^{s}(\tilde{p} X, \tilde{p} Y) / \alpha^{s} \\
& =\left(X \eta(Y)-Y \eta(X)-\eta^{s}([\tilde{p} X, \tilde{p} Y])\right) / \alpha^{s}=d \eta(X, Y) / \alpha^{s}
\end{aligned}
$$

since η^{s} is horizontal. Thus we have that $\eta_{\Lambda}(d \eta)^{n}=\eta_{\Lambda}\left(\alpha^{s} \Phi\right)^{n} \neq 0$ and hence that $P^{2 n+1}$ has a normal contact metric structure with ξ regular.

Remark 1. While it is already clear that $P^{2 n+1}$ is a principal circle bundle over $N^{2 n}$, it now also follows from the well-known Boothby-Wang and Morimoto fibrations.

Remark 2. Under the hypotheses of Theorem 3, it is possible to assume without loss of generality that α^{x} equals 0 or $1 / \sqrt{ } t$ where t is the number of nonzero α^{x} and hence there exist constants $\beta_{q}^{x}, q=1, \ldots, s-1$, such that $\bar{\eta}^{q}=$ $\Sigma_{x} \beta_{q}^{x} \eta^{x}$ and $\bar{\eta}^{s}=\Sigma_{x} \alpha^{x} \eta^{x}$ are 1 -forms with $d \bar{\eta}^{q}=0$ and $d \bar{\eta}^{s}=F$. Then $f, \bar{\eta}^{x}$ and the dual vector fields $\bar{\xi}_{x}$ again define a K-structure on $M^{2 n+s}$. If now this K-structure is regular, then, since the distribution spanned by $\bar{\xi}_{1}, \ldots, \bar{\xi}_{s-1}$ and its complement are parallel, $M^{2 n+s}$ is a covering of the product of $P^{2 n+1}$ and a manifold P^{s-1} as in the proof of Theorem 2.

Remark 3. In [1] one of the authors gave the following example of an S-manifold as a generalization of the Hopf-fibration of the odd-dimensional sphere over complex projective space, $\pi^{\prime}: S^{2 n+1} \rightarrow P C^{n}$. Let Δ denote the diagonal map and define a space $H^{2 n+s}$ by the diagram

that is $H^{2 n+s}=\left\{\left(P_{1}, \cdots, P_{s}\right) \in S^{2 n+1} \times \cdots \times S^{2 n+1} \mid \pi^{\prime}\left(P_{1}\right)=\cdots=\pi^{\prime}\left(P_{s}\right)\right\}$ and thus $H^{2 n+s}$ is diffeomorphic to $S^{2 n+1} \times T^{s-1}$. Further properties of the space $H^{2 n+s}$ are given in [1], [2].

If however the $d \eta^{x}$'s are independent then there can be no intermediate bundle $P^{2 n+t}$ over $N^{2 n}$ such that $M^{2 n+s}$ is trivial over $P^{2 n+t}$.

Remark 4. If $M^{2 n+s}$ is as in Theorem 1 with the $d \eta^{x}$,s independent, then there is no fibration by $s-t$ of the ξ_{x} 's yielding a principal toroidal bundle $P^{2 n+t}$ over $N^{2 n}$ such that $M^{2 n+s}=P^{2 n+t} \times T^{s-t}$. For suppose $P^{2 n+t}$ is such an intermediate bundle, then it is necessary that $\tilde{\nabla}_{\tilde{\pi} X} \xi_{x}=0$ (see e.g. [8]) and thus the η^{x} 's are parallel contradicting the independence of the $d \eta^{x}$'s.
5. Curvature. Let \widetilde{R} and R denote the curvature tensors of $\widetilde{\nabla}$ and ∇ respectively. Then

$$
\begin{aligned}
& =g\left(\tilde{\nabla}_{\tilde{\pi} X}\left(\tilde{\pi} \nabla_{Y} Z+b^{x}(Y, Z) \xi_{x}\right)-\tilde{\nabla}_{\tilde{\pi} Y}\left(\tilde{\pi} \nabla_{X} Z+b^{x}(X, Z) \xi_{x}\right)\right. \\
& \left.-\tilde{\nabla}_{\tilde{\pi}[X, Y]-d \eta x} \tilde{\pi} X, \tilde{\pi}_{Y)} \xi_{x} \tilde{Z}^{2}, \tilde{\pi} W\right) \\
& =g\left(\tilde{\pi} \nabla_{X} \nabla_{Y} Z-b^{x}(Y, Z) \tilde{\pi}\left(H_{x} X\right)-\tilde{\pi} \nabla_{Y} \nabla_{X} Z+b^{x}(X, Z) \tilde{\pi}\left(H_{x} Y\right)\right. \\
& \left.-\tilde{\pi} \nabla_{[X, Y]} Z-d \eta^{x}(\tilde{\pi} X, \tilde{\pi} Y) \tilde{\pi}\left(H_{x} Z\right), \tilde{\pi} W\right) \\
& =G\left(R_{X Y} Z, W\right)-\sum_{x}\left(b^{x}(Y, Z) b^{x}(X, W)-b^{x}(X, Z) b^{x}(Y, W)+d \eta^{x}(\tilde{\pi} X, \tilde{\pi} Y) b^{x}(Z, W)\right) \\
& =G\left(R_{X Y} Z, W\right)-\sum_{x}\left(b^{x}(Y, Z) b^{x}(X, W)-i j^{x}(X, Z) i j^{x}(Y, W)-2 b b^{x}(X, Y) \not b^{x}(Z, W)\right) \text {. }
\end{aligned}
$$

In [1], one of the present authors developed a theory of manifolds with an f structure of constant f-sectional curvature. This is the analogue of a complex manifold of constant holomorphic curvature. A plane section of $M^{2 n+s}$ is called an f-section if there is a vector X orthogonal to the distribution spanned by the ξ_{x} 's such that $\{X, f X\}$ is an orthonormal pair spanning the section. The sectional curvature of this section is called an f-sectional curvature and is of course given by $g\left(\tilde{R}_{X f X} X, f X\right) . M^{2 n+s}$ is said to be of constant f-sectional curvature if the f-sectional curvatures are constant for all f-sections. This is an absolute constant. We then have the following theorem.

Theorem 5. If $M^{2 n+s}$ is a compact, connected manifold with a regular S-structure of constant f-sectional curvature c, then $N^{2 n}$ is a Käbler manifold of constant bolomorphic curvature.

Proof. That $N^{2 n}$ is Kähler follows from Theorem 1. By definition there exist $\alpha^{1}, \ldots, \alpha^{s}$, necessarily constant such that $\alpha^{x} F=d \eta^{x}$. If X is a unit vector on $N^{2 n}$, then we have

$$
\begin{aligned}
G\left(R_{X J X} J X, X\right)= & g(\tilde{R} \tilde{\pi} X \tilde{\pi} J X \tilde{\pi} J X, \tilde{\pi} X) \\
& +\sum_{x}\left(1 / 2 \alpha^{x} F(\tilde{\pi} J X, \tilde{\pi} J X) \frac{1}{2} \alpha^{x} F(\tilde{\pi} X, \tilde{\pi} X)\right. \\
& -1 / 2 \alpha^{x} F(\tilde{\pi} X, \tilde{\pi} J X) \frac{1}{2} \alpha^{x} F(\tilde{\pi} J X, \tilde{\pi} X) \\
& \left.-2(1 / 2) \alpha^{x} F(\tilde{\pi} X, \tilde{\pi} J X) \frac{1}{2} \alpha^{x} F(\tilde{\pi} J X, \tilde{\pi} X)\right) \\
= & c+3 / 4 \sum_{x}\left(\alpha^{x}\right)^{2}(F(\tilde{\pi} X, f \tilde{\pi} X))^{2} \\
= & c+3 / 4 \sum_{x}\left(\alpha^{x}\right)^{2}, \quad \text { which is constant. }
\end{aligned}
$$

Remark. This agrees with the results in [1] on $H^{2 n+s} . H^{2 n+s}$ is a principal toroidal bundle over $P C^{n}$ and $P C^{n}$ is of constant holomorphic curvature equal to 1 . Also, $a^{x}=1$ for $x=1, \ldots, s$ and $H^{2 n+s}$ was found to be of constant f sectional curvature equal to $1-3 s / 4$.

REFERENCES

1. D. E. Blair, Geometry of manifolds with structural group $\mathcal{U}(n) \times \mathcal{O}(s)$, J. Differential Geometry 4 (1970), 155-167. MR 42 \#2403.
2. - On a generalization of the Hopf fibration, An. Univ. "Al. I. Cuza" Iasi 17 (1971), 171-177.
3. W. M. Boothby and H. C. Wang, On contact manifolds, Ann. of Math. (2) 68 (1958), 721-734. MR 22 \#3015.
4. S. S. Chern, On a generalization of Kähler geometry, Algebraic Geometry and Topology (A Sympos. in Honor of S. Lefschetz), Princeton Univ. Press, Princeton, N. J., 1957, pp. 103-121. MR 19, 314.
5. S. I. Goldberg, A generalization of Kähler geometry, J. Differential Geometry 6 (1972), 343-355.
6. S. I. Goldberg and K. Yano, On normal globally framed f-manifolds, Tôhoku Math. J. 22 (1970), 362-370.
7. A. Morimoto, On normal almost contact structures with a regularity, Tôhoku Math. J. (2) 16 (1964), 90-104. MR 29 \#549.
8. B. O'Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459-469. MR 34 \#751.
9. R. S. Palais, A global formulation of the Lie theory of transformation groups, Mem. Amer. Math. Soc. No. 22 (1957). MR 22 \#12162.
10. A. G. Walker, The fibring of Riemannian manifolds, Proc. London Math. Soc. (3) 3 (1953), 1-19. MR 15, 159.

DEPARTMENT OF MATHEMATICS, MICHIGAN STATE UNIVERSITY, EAST LANSING, MICHIGAN 48823

