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Preface

A CR manifold is a C∞ differentiable manifold endowed with a complex subbundle
T1,0(M) of the complexified tangent bundle T (M)⊗C satisfying T1,0(M)∩T1,0(M) =
(0) and the Frobenius (formal) integrability property[

�∞(T1,0(M)) , �
∞(T1,0(M))

] ⊆ �∞(T1,0(M)).

The bundle T1,0(M) is the CR structure of M , and C∞ maps f : M → N of CR
manifolds preserving the CR structures (i.e., f∗T1,0(M) ⊆ T1,0(N )) are CR maps. CR
manifolds and CR maps form a category containing that of complex manifolds and
holomorphic maps. The most interesting examples of CR manifolds appear, however,
as real submanifolds of some complex manifold. For instance, any real hypersurface
M in Cn admits a CR structure, naturally induced by the complex structure of the
ambient space

T1,0(M) = T 1,0(Cn) ∩ [T (M)⊗ C].

Let (z1, . . . , zn) be the natural complex coordinates on Cn . Locally, in a neighborhood
of each point of M , one may produce a frame {Lα : 1 ≤ α ≤ n − 1} of T1,0(M). Geo-
metrically speaking, each Lα is a (complex) vector field tangent to M . From the point
of view of the theory of PDEs, the Lα’s are purely tangential first-order differential
operators

Lα =
n∑

j=1

a j
α(z)

∂

∂z j
, 1 ≤ α ≤ n − 1,

and T1,0(M) may be thought of as a bundle-theoretic recasting of the first-order PDE
system with complex-valued C∞ coefficients

Lαu(z) = 0, 1 ≤ α ≤ n − 1,

called the tangential Cauchy–Riemann equations. These may be equally thought of as
being induced on M by the Cauchy–Riemann equations in Cn . CR functions are solu-
tions u(z) to the tangential Cauchy–Riemann equations, and any holomorphic function
defined on a neighborhood of M will restrict to a CR function on M .
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These introductory remarks lead to two fundamental problems in CR geometry
and analysis. Given an (abstract) CR manifold, is it possible to realize it as a CR
submanifold of Cn (of some complex manifold)? This is known as the embeddability
problem, introduced to mathematical practice by J.J. Kohn [246]. The second problem
is whether a given CR function u : M → C extends to a holomorphic function defined
on some neighborhood of M (the CR extension problem). Both these problems have
local and global aspects, present many intricacies, and involve scientific knowledge
from many mathematical fields. The solution to the local embeddability problem is due
to A. Andreotti and C.D. Hill [13] in the real analytic category. Partial solutions in the
C∞ category are due to L. Boutet de Monvel [77], M. Kuranishi [263], and T. Akahori
[2]. As to the CR extension problem, it is the object of intense investigation, cf. the
monographs by A. Boggess [70] and M.S. Baouendi, P. Ebenfelt, and L.P. Rothschild
[31] for an account of the present scientific achievements in this direction.

It should become clear from this discussion that CR manifolds and their study lie
at the intersection of three main mathematical disciplines: the theory of partial dif-
ferential equations, complex analysis in several variables, and differential geometry.
While the analysis and PDE aspects seem to have captured most of the interest within
the mathematical community, there has been, over the last ten or fifteen years, some
effort to understand the differential-geometric side of the subject as well. It is true that
A. Bejancu’s discovery [55] of CR submanifolds signaled the start of a large num-
ber of investigations in differential geometry, best illustrated by the monographs by
K. Yano and M. Kon [446], A. Bejancu [56], and S. Dragomir and L. Ornea [125]. Here
by a CR submanifold we understand a real submanifold M of a Hermitian manifold
(X, J, g), carrying a distribution H(M) that is J -invariant (i.e., J H(M) = H(M))
and whose g-orthogonal complement is J -anti-invariant (i.e., J H(M)⊥ ⊆ T (M)⊥,
where T (M)⊥ → M is the normal bundle of M in X ). The notion (of a CR sub-
manifold of a Hermitian manifold) unifies concepts such as invariant, anti-invariant,
totally real, semi-invariant, and generic submanifolds. Also, the observation (due to
D.E. Blair and B.Y. Chen [64]) that proper CR submanifolds, in the sense of A. Be-
jancu, are actually CR manifolds shows that these investigations have the same central
object, the CR category, as defined at the beginning of this preface, or by S. Green-
field [187]. The study of CR submanifolds in Hermitian manifolds, in the sense of
A. Bejancu, has led to the discovery of many refined differential-geometric properties
(e.g., K. Yano and M. Kon’s classification of CR submanifolds of a complex projective
space, with semiflat normal connection, parallel f -structure in the normal bundle, and
the covariant derivative of the second fundamental form of constant length [445]) and
will surely develop further within its own borders. It should be remarked nevertheless
that as confined to Riemannian geometry (i.e., to the theory of submanifolds in Rie-
mannian manifolds, cf., e.g., [91]), the above-mentioned study is perhaps insufficiently
related to the (pseudo) convexity properties of submanifolds in complex manifolds, as
understood in analysis in several complex variables. To be more precise, if M is a real
hypersurface in Cn then the first and second fundamental forms of the given immersion
describe the way M is shaped, both intrinsically (Riemannian curvature) and extrin-
sically, yet do not describe a priori the intrinsic properties of M as related to its Levi
form. As an extreme case, M may be Levi flat yet will always exhibit, say, curvature
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properties arising from its first fundamental form. Or to give a nondegenerate example,
the boundary of the Siegel domain �n = {z = (z′, zn) ∈ Cn−1 × C : Im(zn) > ‖z′‖2}
(i.e., the Heisenberg group) admits a contact form θ with a positive definite Levi form
Gθ , and hence gθ = πH Gθ + θ ⊗ θ (the Webster metric) is a Riemannian metric, yet
none of the metrics gλθ , λ ∈ C∞(M), λ > 0, coincides with the metric induced on
M by the flat Kähler metric of Cn .

Central to the present monograph is the discovery, around 1977–78, of a canonical
linear connection ∇ on each nondegenerate CR manifold M of hypersurface type (the
Tanaka–Webster connection) due to independent investigations by N. Tanaka [398]
and S. Webster [422]. ∇ parallelizes both the Levi form and the complex structure
of the Levi, or maximally complex, distribution of M , resembles both the Levi-Civita
connection of a Riemannian manifold, and the Chern connection of a Hermitian man-
ifold, and is a foundational tool for the pseudo-Hermitian geometry of a (nondegener-
ate) CR manifold, which is the main subject of this book. Now the curvature proper-
ties of ∇ are indeed tied to the CR structure: for instance, the Chern curvature tensor
Cβαλσ , a CR invariant of M , is computable in terms of the curvature of ∇ (and its con-
tractions, such as the pseudo-Hermitian Ricci tensor and the pseudo-Hermitian scalar
curvature) and Cβαλσ = 0 if and only if M is locally CR equivalent to the standard
sphere in Cn+1, n > 1 (cf. S.S. Chern and J. Moser [99]). Variants of the Tanaka–
Webster connection are known already in different contexts, e.g., on CR manifolds
of higher CR codimension (R. Mizner [312]) or on contact Riemannian manifolds
(S. Tanno [401]), whose almost CR structure is not integrable, in general.

After a detailed exposition of the basic facts of pseudo-Hermitian geometry of
nondegenerate CR manifolds in Chapter 1, the present monograph introduces the main
geometric object, the Fefferman metric, both a tool and object of investigation of the
first magnitude. It is due to C. Fefferman [138], who first devised it as a (Lorentz)
metric on (∂�) × S1, for a given strictly pseudoconvex domain � ⊂ Cn , in connec-
tion with the boundary behavior of the Bergman kernel of � and the solution to the
Dirichlet problem for the (inhomogeneous) complex Monge–Ampére equation⎧⎪⎨⎪⎩(−1)n+1 det

(
u ∂u/∂zk

∂u/∂z j ∂2u/∂z j∂zk

)
= 1 in �,

u = 0 on ∂�

(the existence, uniqueness, and regularity of the solution are due to S.Y. Cheng and
S.T. Yau [97]). See Chapter 2 of this book. By the mathematical creation of F. Far-
ris [137], and J.M. Lee [271], an intrinsic description of the Fefferman metric (as a
Lorentz metric on

C(M) =
(
�n+1,0(M) \ {0}

)/
R+,

where n is the CR dimension) is available. Also, the work of G. Sparling [377],
C.R. Graham [182], L. Koch [242]–[244], helped clarify a number of geometric facts
(e.g., how the Fefferman metric may be singled out, in terms of curvature properties,
from the set of all Lorentz metrics on C(M) (cf. [182]), or providing a simple proof
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(cf. [242]) to H. Jacobowitz’s theorem (cf. [220]) that nearby points on a strictly pseu-
doconvex CR manifold may be joined by a chain). Other properties are known, e.g.,
that certain Pontryagin forms of the Fefferman metric are obstructions to global CR
equivalence to a sphere (and perhaps to global embeddability); cf. E. Barletta et al.
[38]. The Fefferman metric remains however an insufficiently understood object and
worth of further investigation.

One of the most spectacular results in this book is D. Jerison and J.M. Lee’s so-
lution (cf. [226]–[228] and our Chapter 3) to the CR Yamabe problem, which is the
Yamabe problem for the Fefferman metric. As the Yamabe problem in Riemannian
geometry (find a conformal transformation g̃ = f g, f > 0, such that g̃ is of constant
scalar curvature) the Yamabe problem for the Fefferman metric may be reformulated
as a nonlinear PDE on C(M) whose principal part is the Laplace–Beltrami operator of
the metric; here the wave operator as the metric is Lorentzian, and hence nonelliptic.
However, this equation may be shown (cf. [227]) to project on

bn�bu + ρu = λu p−1,

the CR Yamabe equation, a nonlinear PDE on M , whose principal part is the sub-
Laplacian �b. The book presents the solution to the CR Yamabe problem only when
λ(M) ≤ λ(S2n+1) (cf. Theorem 3.4 in Chapter 4), where λ(M) is the CR analogue to
the Yamabe invariant in Riemannian geometry; i.e.,

λ(M) = inf{
∫

M
{bn‖πH∇u‖2 + ρu2}θ ∧ (dθ)n :

∫
M

|u|pθ ∧ (dθ)n = 1}.

The remaining case was dealt with by N. Gamara and R. Yacoub [164], who completed
the solution to the CR Yamabe problem (see the comments at the end of Section 4.7).
�b is degenerate elliptic and subelliptic of order 1/2 (and hence hypoelliptic). The au-
thors of this book believe that subelliptic PDEs are bound to play within CR geometry
the strong role played by elliptic theory in Riemannian geometry. A similar applica-
tion is to use the Fefferman metric in the study of pseudoharmonic maps; cf. Chapter
4 (these are, locally, J. Jost and C.J. Xu’s subelliptic harmonic maps; cf. [234]).

Another main theme of the book is represented by pseudo-Einsteinian structures
(i.e., contact forms such that the pseudo-Hermitian Ricci tensor of their Tanaka–
Webster connection is proportional to the Levi form) and the problem of local and
global existence of pseudo-Einsteinian structures on CR manifolds. We present the
achievements in the field, together with the Lee conjecture [that each compact strictly
pseudoconvex CR manifold whose CR structure has a vanishing first Chern class
(c1(T1,0(M)) = 0) must possess some global pseudo-Einsteinian structure]. The global
problem turns out to be related to the theory of CR immersions, certain aspects of
which are discussed in Chapter 6. The source mainly used for discussing pseudo-
Einsteinian structures is, of course, the original paper [270]. However, our works [121]
(solving the Lee conjecture on a compact strictly pseudoconvex CR manifold admit-
ting a contact form whose corresponding characteristic direction is regular in the sense
of R. Palais) [37] (demonstrating pseudo-Einsteinian contact forms on (total spaces of)
tangent sphere bundles over real space forms Mn(1)) [68] (taking into account the re-
lationship between the pseudo-Einsteinian condition and pseudo-Hermitian holonomy,
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i.e., the holonomy of the Tanaka–Webster connection), and the work by M.B. Stenzel
[386] (producing pseudo-Einsteinian structures on boundaries of tubes T ∗εX over har-
monic Riemannian manifolds (X, g)), extend the knowledge about pseudo-Einsteinian
structures somewhat beyond the starting point of J.M. Lee [270]. As to the relation-
ship between the global existence problem of pseudo-Einsteinian structures and the
theory of CR, or rather pseudo-Hermitian, immersions (cf. [424] and [120]), let us
mention that the Lee class may be interpreted as an obstruction to the existence of a
pseudo-Hermitian immersion f : M → S2N+1, of a strictly pseudoconvex CR mani-
fold M into an odd-dimensional sphere, such that f has flat normal Tanaka–Webster
connection ∇⊥ (cf. [36] and the corollary to Theorem 6.1 in this book). The Lee class
is a cohomology class γ (M) ∈ H1(M,P) with coefficients in the sheaf P of CR-
pluriharmonic functions on M , as devised by J.M. Lee [270], such that γ (M) = 0 if
and only if M admits a globally defined pseudo-Einsteinian contact form.

We deal with quasiconformal mappings of CR manifolds (a subject developed
mainly by A. Korányi and H. Reimann [254]–[255]) in Chapter 7, with H. Urakawa’s
Yang–Mills connections (cf. [412]) on CR manifolds in Chapter 8, and with spectral
geometry of CR manifolds (cf. A. Greenleaf [186]) in Chapter 9. A previous version
of this text contained material devoted to the interplay between CR geometry and
foliation theory, which in the meanwhile grew into an independent volume. While the
presentation in Chapter 7 owes, as mentioned above, to A. Korányi and H. Reimann
(cf. op. cit.), the observation that the ordinary Beltrami equations in several complex
variables (cf. [419]) induce on tial�n (the boundary of the Siegel domain �n) the
(tangential) Beltrami equations considered by A. Korányi and H. Reimann is new (cf.
[41]). It is interesting to note that given a strictly pseudoconvex domain � ⊂ Cn , any
biholomorphism F of � lifts to a C∞ map

F� : ∂�× S1 → ∂�× S1 , F�(z, γ ) := (F(z), γ − arg(det F ′(z))),

preserving the “extrinsic” Fefferman metric (2.62) up to a conformal factor(
F�
)∗

g = ∣∣det F ′(z)
∣∣2/(n+1)

g ,

(cf. [138], p. 402, or by a simple calculation based on (2.62) in Chapter 2 of this book).
When F is only a symplectomorphism of (�, ω), with ω := −i∂∂ log K (z, z)), ex-
tending smoothly to the boundary, a fundamental result of A. Korányi and H. Reimann,
presented in Chapter 7, is that the boundary values f of such F constitute a contact
transformation. Thus, in general, F is not a holomorphic map, nor are its boundary
values f a CR map, both phenomena manifesting in the presence of a “dilatation”
(dil(F) for F , and μ f for f , themselves related in the limit as z → ∂�, cf. Theo-
rem 7.7 in Chapter 7). Although f ∗Gθ = λ f Gθ fails to hold (since f is not CR),
one may “adjust” the complex structure J on H(∂�) (cf. section 7.1) and get a new
complex structure J f such that f ∗Gθ = λ f G f , where G f (X, Y ) := (dθ)(X, J f Y ),
X, Y ∈ H(M). The problem of computing the Fefferman metric of (M, J f , θ), or
more generally of investigating the relationship (if any) between Fθ and the symplec-
tomorphisms of (�, ω), remains unsolved.

As to Chapter 8, let us mention that while solving the inhomogeneous Yang–Mills
equation
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d∗
D RD = 4ni{dc

Mρ − ρ θ} ⊗ I (0.1)

for a Hermitian connection D ∈ C(E, h), pseudo-Einsteinian structures come once
again into the picture in a surprising way. The canonical line bundle K (M) → M
over a pseudo-Einsteinian manifold M is a quantum bundle (in the sense of [259]):
this is just the condition that the canonical S-connection of K (M) has curvature of
type (1, 1), and one may use Theorem 8.2 to explicitly solve (0.1) (demonstrating
among other things the strength of the purely differential-geometric approach to the
study of the inhomogeneous Yang–Mills equations on CR manifolds).

This book also aims to explain how certain results in classical analysis apply to
CR geometry (part of the needed material is taken from the fundamental paper by
G.B. Folland and E.M. Stein [150]). This task, together with the authors’ choice to
give detailed proofs to a number of geometric facts, is expected to add to the clar-
ity of exposition. It surely added in volume and prevented us from including certain
modern, and still growing, subjects. A notable example is the theory of homogeneous
CR manifolds (cf. H. Azad, A. Huckleberry, and W. Richthofer [26], A. Krüger [262],
R. Lehmann and D. Feldmueller [277], and D.V. Alekseevski and A. Spiro [9]–[10]).
See however our notes at the end of Chapter 5. Another absent protagonist is the theory
of deformation of CR structures (cf. T. Akahori [3]–[6], T. Akahori and K. Miyajima
[7], R.O. Buchweitz and J.J. Millson [78], J.J. Millson [302], and K. Miyajima [306]–
[311]). The same holds for more recent work, such as H. Baum’s (cf. [49]) on spinor
calculus in the presence of the Fefferman metric, and F. Loose’s (cf. [288]) initiating
a study of the CR moment map, perhaps related to that of CR orbifolds (cf. [128]).

We may conclude that such objects as the Tanaka–Webster connection, the Fef-
ferman metric, and pseudo-Einsteinian structures constitute the leitmotif of this book.
More precisely, this book is an attempt to understand certain aspects of the relation-
ship between Lorentzian geometry (on (C(M), Fθ )) and pseudo-Hermitian geometry
(on (M, θ)), a spectacular part of which is the relationship between hyperbolic and
subelliptic PDEs (as demonstrated in Sections 2.5 and 4.4.3 of this monograph). The
authors found a powerful source of techniques and ideas in the scientific creation of
S.M. Webster and J.M. Lee, to whose papers they returned again and again over the
years, and to whom they wish to express their gratitude.

Sorin Dragomir
Giuseppe Tomassini
August 2005
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CR Manifolds

Let � be a smooth domain in Cn+1, i.e., there is an open neighborhood U ⊃ � and
a real-valued function ρ ∈ C2(U ) such that � = {z ∈ U : ρ(z) > 0}, Cn+1 \ � =
{z ∈ U : ρ(z) < 0}, the boundary of � is given by ∂� = {z ∈ U : ρ(z) = 0}, and
Dρ(z) �= 0 for any z ∈ ∂�. Here Dρ is the gradient

Dρ =
(
∂ρ

∂x1
, . . . ,

∂ρ

∂x2n+2

)
and (x1, . . . , x2n+2) are the Cartesian coordinates on R2n+2 � Cn+1.

The Cauchy–Riemann equations in Cn+1 induce on ∂� an overdetermined system
of PDEs with smooth complex-valued coefficients

Lαu(z) ≡
n+1∑
j=1

a j
α(z)

∂u

∂z j
= 0, 1 ≤ α ≤ n (1.1)

(the tangential Cauchy–Riemann equations), z ∈ V , with V ⊆ (∂�) ∩ U open. Here
Lα are linearly independent (at each point of V ) and

n+1∑
j=1

a j
α(z)

∂ρ

∂z j
= 0, 1 ≤ α ≤ n, (1.2)

for any z ∈ V , i.e., Lα are purely tangential first-order differential operators (tangent
vector fields on ∂�). It then follows that[

Lα, Lβ
] = Cγαβ(z)Lγ (1.3)

for some complex-valued smooth functions Cγαβ on V .
At each point z ∈ V the Lα,z’s span a complex n-dimensional subspace T1,0(∂�)z

of the complexified tangent space Tz(∂�) ⊗R C. The bundle T1,0(∂�) → ∂� is the
CR structure of ∂�, and a bundle-theoretic recast of (1.1)–(1.3) consists in observing
that
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T1,0(∂�) = [T (∂�)⊗ C] ∩ T 1,0(Cn+1), (1.4)

where T 1,0(Cn+1) is the holomorphic tangent bundle over Cn+1, and that M = ∂�

satisfies the axioms (1.5)–(1.6) below. A C1 function u : ∂� → C is a CR function if
Z(u) = 0 for any Z ∈ T1,0(∂�). Locally, a CR function is a solution of (1.1).

The pullback (via j : ∂� ⊂ U ) of the complex 1-form i
2 (∂ − ∂)ρ is a pseudo-

Hermitian structure θ on ∂�. When ∂� is nondegenerate θ is a contact form. Every-
thing stated above holds should one replace the boundary ∂� by some (open piece of
a) smooth real hypersurface in Cn+1.

As observed by N. Tanaka [398], and S. Webster [422], when θ is a contact form
M may be described in terms of pseudo-Hermitian geometry (a term coined as a se-
guito of the—fundamental to this book—paper [422]), which complements the (better-
known) contact Riemannian geometry (cf. [62]) and is well suited for capturing the
convexity properties of M (as familiar in the analysis in several complex variables).
M carries a semi-Riemannian metric gθ (Riemannian, if M is strictly pseudoconvex)
coinciding with the Levi form along the maximal complex distribution of M . This
is the Webster metric (cf. Section 1.1.3). Of course, M carries also the Riemannian
metric induced from the (flat Kähler) metric of Cn+1, and the pseudo-Hermitian and
contact Riemannian geometries do interact. However, that the two are quite differ-
ent in character should be emphasized: for instance, none of the Webster metrics
gλθ , for every smooth λ : M → (0,+∞), of the boundary of the Siegel domain
�n+1 = {(z, w) ∈ Cn × C : Im(w) > ‖z‖2} coincides with the metric induced from
Cn+1.

CR manifolds as in (1.3), or in (1.12) below, are embedded. The currently accepted
concept of a CR manifold as a tool for studying the tangential Cauchy–Riemann equa-
tions by geometric methods is, however, more general. The manifold may be abstract,
and not all CR manifolds embed, even locally (cf. Section 1.6). The CR codimension
(cf. Section 1.1) may be > 1, and distinct from the codimension (when M is a CR
submanifold). The Levi form may be vector, rather than scalar, valued (and then there
is no natural notion of strict pseudoconvexity) or degenerate (and then the tools of
pseudo-Hermitian geometry are not available).

According to our purposes in this book, that is, to describe (1.1) by means of
pseudo-Hermitian geometry, we shall assume integrability, nondegeneracy, and CR
codimension 1. The reader should nevertheless be aware of the existence of a large
literature, with similar expectations, and not subject to our hypothesis.1

1 For instance, H. Rossi and M. Vergne [356], deal with CR manifolds � = �(V, N , E) of
the form � = {(x + iy, u) : x, y ∈ Rn, u ∈ E, y − N (u) ∈ V }, where E is a domain in
Cm , N : E → Rn is a smooth function, and V is a submanifold in Rn . These are in general
degenerate (the Levi form has a nontrivial null space); yet this is not relevant to the purpose
of analysis on �. Indeed, it may be shown (by a partial Fourier transform technique) that the
CR functions on � satisfy a Paley–Wiener (type) theorem (cf. [356], p. 306). An application
of their result (to constant-coefficient PDEs on the Heisenberg group) is given by D.E. Blair
et al. [67]. To give one more example, we may quote the long series of papers by C.D. Hill
and M. Nacinovich [202], in which the CR codimension is always > 1, and eventually only
a small amount of pseudoconcavity is prescribed (cf. [203]).
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Chapter 1 is organized as follows. In Section 1.1 we discuss the fundamentals (CR
structures, the Levi form, characteristic directions, etc.) and examples (e.g., CR Lie
groups). Sections 1.2 to 1.5 are devoted to the construction and principal properties
of what appears to be the main geometric tool through this book, the Tanaka–Webster
connection. Ample space is dedicated to curvature properties, details of which appear
nowhere else in the mathematical literature, and to applications (due to S. Webster
[422]) of the Chern–Moser theorem (CR manifolds with a vanishing Chern tensor
are locally CR isomorphic to spheres) to several pseudo-Hermitian space forms. In
Section 1.6 we discuss CR structures as G-structures and hint at some open problems.

1.1 CR manifolds

1.1.1 CR structures

Let M be a real m-dimensional C∞ differentiable manifold. Let n ∈ N be an integer
such that2 1 ≤ n ≤ [m/2]. Let T (M) ⊗ C be the complexified tangent bundle over
M . Elements of T (M)⊗ C are of the form u ⊗ 1 + v⊗ i , where u, v ∈ T (M) are real
tangent vectors (and i = √−1). For simplicity, we drop the tensor products and write
merely u + iv (a complex tangent vector on M). The following definition is central to
this book.

Definition 1.1. Let us consider a complex subbundle T1,0(M) of the complexified tan-
gent bundle T (M)⊗ C, of complex rank n. If

T1,0(M) ∩ T0,1(M) = (0) (1.5)

then T1,0(M) is called an almost CR structure on M . Here T0,1(M) = T1,0(M) and
throughout an overbar denotes complex conjugation. The integers n and k = m − 2n
are respectively the CR dimension and CR codimension of the almost CR structure
and (n, k) is its type. A pair (M, T1,0(M)) consisting of an almost CR structure of
type (n, k) is an almost CR manifold (of type (n, k)). �

It is easy to see that an almost CR manifold of type (n, 0) is an almost complex
manifold (cf., e.g., [241], vol. II, p. 121).

Given a vector bundle E → M we denote by �∞(U, E) the space of all C∞
cross-sections in E defined on the open subset U ⊆ M . We often write �∞(E) for
�∞(M, E) (the space of globally defined smooth sections). Also Ex is the fiber in E
over x ∈ M .

Definition 1.2. An almost CR structure T1,0(M) on M is (formally) integrable if for
any open set U ⊆ M ,[

�∞(U, T1,0(M)), �
∞(U, T1,0(M))

] ⊆ �∞(U, T1,0(M)). (1.6)

2 If a ∈ R then [a] ∈ Z denotes the integer part of a.
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That is, for any two complex vector fields Z ,W (defined on U ⊆ M) belonging to
T1,0(M), their Lie bracket [Z ,W ] belongs to T1,0(M), i.e., [Z ,W ]x ∈ T1,0(M)x for
any x ∈ U . An integrable almost CR structure (of type (n, k)) is referred to as a CR
structure (of type (n, k)), and a pair (M, T1,0(M)) consisting of a C∞ manifold and a
CR structure (of type (n, k)) is a CR manifold (of type (n, k)). �

CR manifolds are the objects of a category whose arrows are smooth maps pre-
serving CR structures. Precisely we have the following definition:

Definition 1.3. Let (M, T1,0(M)) and (N , T1,0(N )) be two CR manifolds (of arbitrary,
but fixed type). A C∞ map f : M → N is a CR map if

(dx f )T1,0(M)x ⊆ T1,0(N ) f (x), (1.7)

for any x ∈ M , where dx f is the (C-linear extension to Tx (M)⊗RC of the) differential
of f at x . �

It is easy to see that the complex manifolds and holomorphic maps form a subcat-
egory of the category of CR manifolds and CR maps.

Let (M, T1,0(M)) be a CR manifold of type (n, k). Its maximal complex, or Levi,
distribution is the real rank 2n subbundle H(M) ⊂ T (M) given by

H(M) = Re{T1,0(M)⊕ T0,1(M)}.
It carries the complex structure Jb : H(M)→ H(M) given by

Jb(V + V ) = i(V − V ),

for any V ∈ T1,0(M). Here i = √−1. The (formal) integrability requirement (1.6) is
equivalent to

[Jb X, Y ] + [X, JbY ] ∈ �∞(U, H(M)), (1.8)

[Jb X, JbY ] − [X, Y ] = Jb{[Jb X, Y ] + [X, JbY ]}, (1.9)

for any X, Y ∈ �∞(U, H(M)); cf. S. Greenfield [187]. This is formally similar to
the notion of integrability of an almost complex structure (cf., e.g., [241], vol. II, p.
124). It should be noted, however, that in contrast to the case of an almost complex
manifold, Jb is not defined on the whole of T (M), and [Jb X, Y ] + [X, JbY ] may not
lie in H(M) (thus requiring the axiom (1.8)). Proving the equivalence of (1.6) and
(1.8)–(1.9) is an easy exercise and therefore left to the reader.

Let f : M → N be a CR mapping. Then (1.7) is equivalent to the prescriptions

(dx f )H(M)x ⊆ H(N ) f (x) (1.10)

and

(dx f ) ◦ Jb,x = J N
b, f (x) ◦ (dx f ), (1.11)

for any x ∈ M . Here J N
b : H(N )→ H(N ) denotes the complex structure in the Levi

distribution H(N ) of N .
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Definition 1.4. f : M → N is a CR isomorphism (or a CR equivalence) if f is a C∞
diffeomorphism and a CR map. �

CR manifolds arise mainly as real submanifolds of complex manifolds. Let V be a
complex manifold, of complex dimension N , and let M ⊂ V be a real m-dimensional
submanifold. Let us set

T1,0(M) = T 1,0(V ) ∩ [T (M)⊗ C] , (1.12)

where T 1,0(V ) is the holomorphic tangent bundle over V , i.e., locally the span of
{∂/∂z j : 1 ≤ j ≤ N }, where (z1, . . . , zN ) are local complex coordinates on V . The
following result is immediate:

Proposition 1.1. If M is a real hypersurface (m = 2N − 1) then T1,0(M) is a CR
structure of type (N − 1, 1).

In general the complex dimension of T1,0(M)x may depend on x ∈ M . Nevertheless,
if

dimC T1,0(M)x = n (= const)

then (M, T1,0(M)) is a CR manifold (of type (n, k)). The reader will meet no difficulty
in checking both statements as a consequence of the properties T 1,0(V ) ∩ T 0,1(V ) =
(0) (where T 0,1(V ) = T 1,0(V )) and Z ,W ∈ T 1,0(V ) �⇒ [Z ,W ] ∈ T 1,0(V ).

Definition 1.5. If k = 2N − m (i.e., the CR codimension of (M, T1,0(M)) and the
codimension of M as a real submanifold of V coincide) then (M, T1,0(M)) is termed
generic. �

1.1.2 The Levi form

Significant portions of the present text will be devoted to the study of CR manifolds
of CR codimension k = 1 (referred to as well as CR manifolds of hypersurface type).
Let M be a connected CR manifold of type (n, 1). Assume M to be orientable. Let

Ex = {ω ∈ T ∗
x (M) : Ker(ω) ⊇ H(M)x },

for any x ∈ M . Then E → M is a real line subbundle of the cotangent bundle
T ∗(M) → M and E � T (M)/H(M) (a vector bundle isomorphism). Since M is
orientable and H(M) is oriented by its complex structure Jb, it follows that E is ori-
entable. Any orientable real line bundle over a connected manifold is trivial, so there
exist globally defined nowhere vanishing sections θ ∈ �∞(E).

Definition 1.6. Any such section θ is referred to as a pseudo-Hermitian structure on
M . Given a pseudo-Hermitian structure θ on M the Levi form Lθ is defined by

Lθ (Z ,W ) = −i(dθ)(Z ,W ), (1.13)

for any Z ,W ∈ T1,0(M). �
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Since E → M is a real line bundle, any two pseudo-Hermitian structures θ, θ̂ ∈
�∞(E) are related by

θ̂ = λ θ, (1.14)

for some nowhere-zero C∞ function λ : M → R. Let us apply the exterior differenti-
ation operator d to (1.14). We get

d θ̂ = dλ ∧ θ + λdθ.

Since Ker(θ) = H(M) (the C-linear extension of) θ vanishes on T1,0(M) and T0,1(M)
as well. Consequently, the Levi form changes according to

L
θ̂

= λLθ (1.15)

under any transformation (1.14) of the pseudo-Hermitian structure. This leads to a
largely exploited analogy between CR and conformal geometry (cf., e.g., J.M. Lee
[270, 271], D. Jerison and J.M. Lee [227, 228], C.R. Graham [182], etc.), a matter we
will treat in detail in the subsequent chapters of this text.

Let (M, T1,0(M)) be an orientable CR manifold of type (n, 1) (of hypersurface
type) and θ a fixed pseudo-Hermitian structure on M . Define the bilinear form Gθ by
setting

Gθ (X, Y ) = (dθ)(X, JbY ), (1.16)

for any X, Y ∈ H(M). Note that Lθ and (the C-bilinear extension to H(M) ⊗ C of)
Gθ coincide on T1,0(M)⊗ T0,1(M). Then

Gθ (Jb X, JbY ) = Gθ (X, Y ), (1.17)

for any X, Y ∈ H(M). Indeed, we may (by (1.8)–(1.9)) perform the following calcu-
lation:

Gθ (Jb X, JbY )− Gθ (X, Y ) = −(dθ)(Jb X, Y )− (dθ)(X, JbY )

= 1

2
{θ([Jb X, Y ])+ θ([X, JbY ])}

= 1

2
θ(Jb{[X, Y ] − [Jb X, JbY ]}) = 0,

since θ ◦ Jb = 0. In particular, Gθ is symmetric.

Definition 1.7. We say that (M, T1,0(M)) is nondegenerate if the Levi form Lθ is non-
degenerate (i.e., if Z ∈ T1,0(M) and Lθ (Z ,W ) = 0 for any W ∈ T1,0(M) then Z = 0)
for some choice of pseudo-Hermitian structure θ on M . If Lθ is positive definite (i.e.,
Lθ (Z , Z) > 0 for any Z ∈ T1,0(M) , Z �= 0) for some θ , then (M, T1,0(M)) is said
to be strictly pseudoconvex. �
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If θ and θ̂ = λθ are two pseudo-Hermitian structures, then as a consequence of (1.15),
Lθ is nondegenerate if and only if L

θ̂
is nondegenerate. Hence nondegeneracy is a CR-

invariant property, i.e., it is invariant under a transformation (1.14). Of course, strict
pseuoconvexity is not a CR-invariant property. Indeed, if Lθ is positive definite then
L−θ is negative definite.

Definition 1.8. Let M be a nondegenerate CR manifold and θ a fixed pseudo-
Hermitian structure on M . The pair (M, θ) is referred to as a pseudo-Hermitian man-
ifold. �
Let f : M → N be a CR map and θ , θN pseudo-Hermitian structures on M and N ,
respectively. Then f ∗θN = λ θ , for some λ ∈ C∞(M).
Definition 1.9. Let M and N be two CR manifolds and θ , θN pseudo-Hermitian struc-
tures on M and N , respectively. We say that a CR map f : M → N is a pseudo-
Hermitian map if f ∗θN = c θ , for some c ∈ R. If c = 1 then f is referred to as an
isopseudo-Hermitian map. �
Let us go back for a moment to the case of CR manifolds of arbitrary type. If
(M, T1,0(M)) is a CR manifold of type (n, k) then its Levi form is defined as follows.
Let x ∈ M and v,w ∈ T1,0(M)x . We set

Lx (v,w) = i πx
[
V,W

]
x ,

where π : T (M) ⊗ C → (T (M) ⊗ C)/(H(M) ⊗ C) is the natural bundle map and
V,W ∈ �∞(T1,0(M)) are arbitrary C∞ extensions of v,w (i.e., Vx = v, Wx =
w). The definition of Lx (v,w) does not depend on the choice of extensions of v,w
because of

πx
[
V,W

]
x = vαwβπx

[
Tα, Tβ

]
x
,

where v = vαTα,x and w = wαTα,x , for some local frame {T1, . . . , Tn} of T1,0(M)
defined on an open neighborhood of x (and Tα = Tα). Then (M, T1,0(M)) is said to
be nondegenerate if L is nondegenerate. However, since for k ≥ 2 the Levi form L
is vector valued, there isn’t any obvious way to generalize the notion of strict pseudo-
convexity (to the arbitrary CR codimension case).

Let us check that the new and old concepts of Levi form coincide (up to an isomor-
phism) when k = 1. Let (M, T1,0(M)) be an oriented CR manifold (of hypersurface
type) and θ a pseudo-Hermitian structure on M . Consider the bundle isomorphism

�θ :
T (M)⊗ C
H(M)⊗ C

→ E

given by

(�θ )x (v + H(M)x ⊗R C) = θx (v) θx ,

for any v ∈ Tx (M)⊗ C, x ∈ M . Then

(�θ )x Lx (v,w) = 2 (Lθ )x (v,w) θx ,

for any v,w ∈ T1,0(M)x . �
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1.1.3 Characteristic directions on nondegenerate CR manifolds

Let (M, T1,0(M)) be a CR manifold and θ a fixed pseudo-Hermitian structure on M .
As a consequence of the formal integrability property,

(dθ)(Z ,W ) = 0, Z ,W ∈ T1,0(M).

Of course, in the preceding identity dθ is thought of as extended by C-linearity (to
T (M)⊗ C). Moreover, we also have (dθ)(Z ,W ) = 0 (by complex conjugation), for
any Z ,W ∈ T1,0(M). If (M, T1,0(M)) is nondegenerate then dθ is nondegenerate on
H(M). Indeed, let us assume that X = Z + Z ∈ H(M) (Z ∈ T1,0(M)) and

(dθ)(X, Y ) = 0, (1.18)

for any Y ∈ H(M). Let X � denote the interior product with X . For instance,
(X� dθ)(Y ) = (dθ)(X, Y ) for any Y ∈ X (M). When X � dθ is extended by C-
linearity, (1.18) continues to hold for any Y ∈ H(M) ⊗ C = T1,0(M) ⊕ T0,1(M);
hence

0 = (dθ)(X,W ) = i Lθ (Z ,W ),

for any W ∈ T1,0(M). It follows that Z = 0. �
Consequently we may establish the following proposition:

Proposition 1.2. There is a unique globally defined nowhere zero tangent vector field
T on M such that

θ(T ) = 1, T � dθ = 0. (1.19)

T is transverse to the Levi distribution H(M).

To prove Proposition 1.2 one uses the following fact of linear algebra (together with
the orientability assumption).

Proposition 1.3. Let V be a real (n + 1)-dimensional linear space and H ⊂ V an
n-dimensional subspace. Let ω be a skew-symmetric bilinear form on V . Assume that
ω is nondegenerate on H. Then there is v0 ∈ V , v0 �= 0, such that ω(v0, v) = 0 for
any v ∈ V .

Proof. Let us set

K = {v ∈ V : ω(v, u) = 0 , ∀ u ∈ H}.
The proof of Proposition 1.3 is organized in two steps, as follows.
Step 1. K is 1-dimensional.
Indeed, given a linear basis {e1, . . . , en+1} of V with {e1, . . . , en} ⊂ H , then for
each v = ∑n+1

j=1 λ j e j ∈ K we have Aλ = 0 where A = [a jk], a jk = ω(e j , ek),

1 ≤ j ≤ n + 1, 1 ≤ k ≤ n, and λ = (λ1, . . . , λn+1)
T . Thus K is the solution
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space to the homogeneous system AX = 0, so that dimR K = n + 1 − rank(A) and
rank(A) = n (by the nondegeneracy of ω on H ). �
Step 2. H ∩ K = (0).
If v ∈ H ∩ K then v ∈ K yields ω(v, u) = 0 for any u ∈ H such that v = 0 (since
v ∈ H and ω is nondegenerate). �

By Steps 1 and 2, V = H ⊕ K . Let (by Step 1) v0 ∈ K , v0 �= 0. This is the
vector we are looking for. Indeed, given any v ∈ V there are w ∈ H and λ ∈ R with
v = w + λv0 such that ω(v0, v) = 0 by the skew-symmetry of ω. �

The tangent vector field T determined by (1.19) is referred to as the characteristic
direction of (M, θ). Next, we may state the following result:

Proposition 1.4. Let (M, T1,0(M)) be a nondegenerate CR manifold, θ a pseudo-
Hermitian structure on M, and T the corresponding characteristic direction. Then

T (M) = H(M)⊕ RT . (1.20)

Indeed, let X ∈ T (M) and set Y = X − θ(X)T . Then θ(Y ) = 0, i.e., Y ∈ Ker(θ) =
H(M). Proposition 1.4 is proved.

Using (1.20) we may extend Gθ to a semi-Riemannian metric gθ on M , which will
play a crucial role in the sequel.

Definition 1.10. Let (M, T1,0(M)) be a nondegenerate CR manifold and θ a pseudo-
Hermitian structure on M . Let gθ be the semi-Riemannian metric given by

gθ (X, Y ) = Gθ (X, Y ), gθ (X, T ) = 0, gθ (T, T ) = 1,

for any X, Y ∈ H(M). This is called the Webster metric of (M, θ). �

Assume that (M, T1,0(M)) is nondegenerate. It is not difficult to check that the
signature (r, s) of Lθ,x doesn’t depend on x ∈ M . Also, (r, s) is a CR-invariant.
Moreover, the signature of the Webster metric gθ is (2r + 1, 2s). If (M, T1,0(M)) is
strictly pseudoconvex and θ is chosen in such a way that Lθ is positive definite, then gθ
is a Riemannian metric on M . Let πH : T (M) → H(M) be the projection associated
with the direct sum decomposition (1.20). If πH Gθ denotes the (0, 2)-tensor field
on M given by (πH Gθ )(X, Y ) = Gθ (πH X, πH Y ), for any X, Y ∈ T (M), then the
Webster metric may be written as

gθ = πH Gθ + θ ⊗ θ.
gθ is not a CR-invariant. To write the transformation law for gθ (under a transformation
θ̂ = λθ of the pseudo-Hermitian structure) is a rather tedious exercise. Of course
G
θ̂

= λGθ and θ̂ ⊗ θ̂ = λ2 θ ⊗ θ ; yet πH transforms as well. We will return to this
matter in Chapter 2.
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1.1.4 CR geometry and contact Riemannian geometry

We start be recalling a few notions of contact Riemannian geometry, following for
instance D.E. Blair [62]. Let M be a (2n +1)-dimensional C∞ manifold. Let (φ, ξ, η)
be a synthetic object, consisting of a (1, 1)-tensor field φ : T (M)→ T (M), a tangent
vector field ξ ∈ X (M), and a differential 1-form η on M . (φ, ξ, η) is an almost contact
structure if

φ2 = −I + η ⊗ ξ, φξ = 0, η(ξ) = 1, η ◦ φ = 0.

An almost contact structure (φ, ξ, η) is said to be normal if

[φ, φ] + 2(dη)⊗ ξ = 0,

where [φ, φ] is the Nijenhuis torsion of φ. A Riemannian metric g on M is said to be
compatible with the almost contact structure (φ, ξ, η) if

g(φX, φY ) = g(X, Y )− η(X)η(Y ),
for any X, Y ∈ T (M). A synthetic object (φ, ξ, η, g) consisting of an almost contact
structure (φ, ξ, η) and a compatible Riemannian metric g is said to be an almost con-
tact metric structure. Given an almost contact metric structure (φ, ξ, η, g) one defines
a 2-form � by setting �(X, Y ) = g(X, φY ). (φ, ξ, η, g) is said to satisfy the contact
condition if � = dη, and if this is the case, (φ, ξ, η, g) is called a contact metric
structure on M . A contact metric structure (φ, ξ, η, g) that is also normal is called a
Sasakian structure (and g is a Sasakian metric).

Let (M, T1,0(M)) be a nondegenerate CR manifold and θ a pseudo-Hermitian
structure on M . Let T be the characteristic direction of (M, θ). Let us extend Jb to
a (1, 1)-tensor field on M by requiring that

JbT = 0. (1.21)

Then (by summarizing properties, old and new)

J 2
b = −I + θ ⊗ T,

JbT = 0, θ ◦ Jb = 0, gθ (X, T ) = θ(X),

gθ (Jb X, JbY ) = gθ (X, Y )− θ(X)θ(Y ),
for any X, Y ∈ T (M). Therefore, if (M, T1,0(M)) is a strictly pseudoconvex CR
manifold and θ is a contact form such that Lθ is positive definite, then (Jb, T, θ, gθ )
is an almost contact metric structure on M . Also

� = −dθ, (1.22)

where � is defined by

�(X, Y ) = gθ (X, JbY ),
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for any X, Y ∈ T (M). That is, if we set φ = Jb, ξ = −T, η = −θ , and g = gθ , then
(φ, ξ, η, g) is a contact metric structure on M , provided that (M, T1,0(M)) is strictly
pseudoconvex. By (1.20) it suffices to check (1.22) on H(M) ⊗ H(M), respectively
on H(M)⊗ RT and RT ⊗ RT . Let X, Y ∈ H(M). Then (by (1.17))

�(X, Y ) = gθ (X, JbY ) = (dθ)(X, J 2
b Y ) = −(dθ)(X, Y ).

Finally (by (1.19))

�(T, X) = 0 = −(dθ)(T, X),

for any X ∈ T (M). Strictly pseudoconvex CR manifolds are therefore contact Rie-
mannian manifolds, in a natural way. However, they might fail to be normal. As we
shall see in the sequel, the almost contact structure (Jb, T, θ) is normal if and only
if the Tanaka–Webster connection of (M, θ) (to be introduced in Section 1.2) has a
vanishing pseudo-Hermitian torsion (τ = 0). The converse, that is, which almost con-
tact manifolds are CR manifolds, was taken up by S. Ianuş [214]. Indeed, an almost
contact manifold (M, (φ, ξ, η)) possesses a natural almost CR structure T1,0(M) de-
fined as the eigenbundle Eigen(J C

b ; i) of J C
b corresponding to the eigenvalue i . Here

Jb is the restriction of φ to H(M) = Ker(η) and J C
b is the C-linear extension of Jb

to H(M) ⊗ C. In general, T1,0(M) may fail to be integrable. By a result of S. Ianuş
(cf. op. cit.), if (φ, ξ, η) is normal then T1,0(M) is a CR structure. The converse is not
true, in general. The question (of characterizing the almost contact manifolds whose
natural almost CR structure is integrable) has been settled by S. Tanno [401], who
built a tensor field Q (in terms of (φ, ξ, η)) such that Q = 0 if and only if T1,0(M)
is integrable. This matter (together with the implication [φ, φ] + 2(dη)⊗ ξ = 0 �⇒
Q = 0) will be examined in the sequel.

1.1.5 The Heisenberg group

Let us set Hn = Cn × R, thought of as endowed with the natural coordinates (z, t) =
(z1, . . . , zn, t). Hn may be organized as a group with the group law

(z, t) · (w, s) = (z + w, t + s + 2Im〈z, w〉),
where 〈z, w〉 = δ jk z jwk . This actually makes Hn into a Lie group, referred to as
the Heisenberg group. A good bibliographical reference is the paper by G.B. Folland
and E.M. Stein [150], pp. 434–437, yet the mathematical literature (dealing with both
geometric and analysis aspects) on the Heisenberg group occupies a huge (and still
growing) volume. Let us consider the complex vector fields on Hn ,

Tj = ∂

∂z j
+ i z j ∂

∂t
, (1.23)

where

∂

∂z j
= 1

2

(
∂

∂x j
− i

∂

∂y j

)
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and z j = x j + iy j , 1 ≤ j ≤ n. Let us define T1,0(Hn)(z,t) as the space spanned by the
Tj,(z,t)’s, i.e.,

T1,0(Hn)(z,t) =
n∑

j=1

CTj,(z,t), (1.24)

for any (z, t) ∈ Hn . Since

[Tj , Tk] = 0, 1 ≤ j, k ≤ n,

it follows that (Hn, T1,0(Hn)) is a CR manifold of type (n, 1) (a CR manifold of hy-
persurface type). Next, let us consider the real 1-form θ0 on Hn defined by

θ0 = dt + i
n∑

j=1

(
z j dz j − z j dz j

)
. (1.25)

Then θ0 is a pseudo-Hermitian structure on (Hn, T1,0(Hn)). By differentiating (1.25)
we obtain

dθ0 = 2i
n∑

j=1

dz j ∧ dz j .

Then, by taking into account (1.13), it follows that

Lθ0(Tj , Tk) = δ jk,

where Tj = Tj , 1 ≤ j ≤ n.
Our choice of θ0 shows that (Hn, T1,0(Hn)) is a strictly pseudoconvex CR mani-

fold. Its Levi distribution H(Hn) is spanned by the (left-invariant) tangent vector fields
{X1, . . . , Xn, Y1, . . . , Yn}, where

X j = ∂

∂x j
+ 2y j ∂

∂t
, Y j = ∂

∂y j
− 2x j ∂

∂t
, 1 ≤ j ≤ n.

The reader may easily check that T = ∂/∂t is the characteristic direction of (Hn, θ0).
For n = 1, T1̄ = ∂/∂ z̄ − i z∂/∂t is the Lewy operator (discovered by H. Lewy

[284], in connection with the boundary behavior of holomorphic functions on �2 =
{(z, w) ∈ C2 : Im(w) > |z|2}). The Lewy operator exhibits interesting unsolvability
features described, for instance, in [232], pp. 235–239. See also L. Ehrenpreis [134],
for two new approaches to the Lewy unsolvability phenomenon (one based on the
existence of peak points in the kernel of T1̄, and the second on a Hartogs-type extension
property), both with ramifications in the area of topological algebra.

Definition 1.11. The map Dδ : Hn → Hn given by Dδ(z, t) = (δz, δ2t), for any
(z, t) ∈ Hn , is called the dilation by the factor δ > 0. �

It is an easy exercise to prove the following result:
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Proposition 1.5. Each dilation is a group homomorphism and a CR isomorphism.

The Euclidean norm of x = (z, t) ∈ Hn is denoted by ‖x‖ (i.e., ‖x‖2 = ‖z‖2 +
t2). The Euclidean norm is not homogeneous with respect to dilations. However, Hn

carries another significant function, the Heisenberg norm, which enjoys the required
homogeneity property.

Definition 1.12. The Heisenberg norm is

|x | = (‖z‖4 + t2)1/4,

for any x ∈ Hn . �

The Heisenberg norm is homogeneous with respect to dilations, i.e.,

|Dδx | = δ|x |, x ∈ Hn .

Let us consider the transformation T δ = D1/δ . Then

(dx T δ)Tj,x = δ−1Tj,T δ(x),

i.e., the Tj are homogeneous of degree −1 with respect to dilations. As to the form θ0
given by (1.25), it satisfies

(D∗
δ θ)x = δ2θ0,Dδx .

The following inequalities hold on the Heisenberg group:

Proposition 1.6.

‖x‖ ≤ |x | ≤ ‖x‖1/2 , (1.26)

for any x ∈ Hn such that |x | ≤ 1.

We shall occasionally need the following:

Proposition 1.7. There is a constant γ ≥ 1 such that

|x + y| ≤ γ (|x | + |y|), (1.27)

|xy| ≤ γ (|x | + |y|), (1.28)

for any x, y ∈ Hn.

Definition 1.13. The inequalities (1.27)–(1.28) are called the triangle inequalities.
�

The proof of (1.27)–(1.28) is elementary. Indeed, by homogeneity we may assume that
|x | + |y| = 1. The set of all (x, y) ∈ Hn × Hn satisfying this equation is compact;
hence we may take γ to be the larger of the maximum values of |x + y| and |xy| on
this set. �
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The Heisenberg group may be identified with the boundary of a domain in Cn+1.
Indeed, let �n+1 be the Siegel domain, i.e.,

�n+1 = {(z, w) ∈ Cn × C : v > ‖z‖2},
where z = (z1, . . . , zn) and w = u + iv (u, v ∈ R). Also ‖z‖2 = ∑n

j=1 |z j |2. Let
then

f : Hn → ∂�n+1, f (z, t) = (z, t + i‖z‖2),

for any (z, t) ∈ Hn . f is a CR isomorphism, where the boundary ∂�n+1 = {(z, w) :
‖z‖2 = v} of the Siegel domain is thought of as a CR manifold (of hypersurface
type) with the CR structure induced from Cn+1. Computing the differential d f (on the
generators Tj , Tj , and T ) is a tedious but useful exercise (left to the reader).

Another useful identification is that of the Heisenberg group and the sphere
S2n+1 ⊂ Cn+1 minus a point. Let � ⊂ CN be a domain with smooth boundary
∂�, i.e., there is an open neighborhood U of the closure � in CN and a C∞ function
ρ : U → R such that � = {x ∈ U : ρ(x) > 0} (and ∂� = {x ∈ U : ρ(x) = 0})
and (Dρ)x �= 0 at any x ∈ ∂�. Let T1,0(∂�) be the induced CR structure on ∂�, as
a real hypersurface in CN . Let θ be the pullback to ∂� of the real 1-form i(∂ − ∂)ρ
on U . Then θ is a pseudo-Hermitian structure on (∂�, T1,0(∂�)). As we just saw,
the boundary of the Siegel domain is a strictly pseudoconvex CR manifold. Also, the
sphere S2n+1 ⊂ C2n+1 is a strictly pseudoconvex manifold, since the boundary of the
unit ball Bn+1 = {z ∈ Cn+1 : |z| < 1}, and the (restriction to S2n+1 \ {e1} of the)
Cayley transform

� : Cn+1 \ {z1 = 1} → Cn+1,

�(z) = i
e1 + z

1 − z1
, z1 �= 1, e1 = (1, 0, . . . , 0),

gives a CR isomorphism S2n+1 \ {e1} � ∂�n+1 (and thus a CR isomorphism S2n+1 \
{e1} � Hn).

1.1.6 Embeddable CR manifolds

Let M ⊂ CN be a real m-dimensional submanifold. If M is a CR manifold (of type
(n, k)) whose CR structure is given by (1.12) with V = CN , then M is referred to as
an embedded (or realized) CR manifold.

Let (M, T1,0(M)) be a CR manifold. If in some neighborhood of each point x ∈
M, (M, T1,0(M)) is CR isomorphic to an embedded CR manifold, then (M, T1,0(M))
is termed locally embeddable. If a global isomorphism with an embedded CR manifold
exists, then (M, T1,0(M)) is called embeddable (or realizable).

Let (M, T1,0(M)) be a CR manifold. We say that (M, T1,0(M)) is real analytic
if M is a real analytic manifold and T1,0(M) is a real analytic subbundle of T (M) ⊗
C, i.e., T1,0(M) is locally generated by real analytic vector fields. By a (classical)
result of A. Andreotti and C.D. Hill [13], any real analytic CR manifold (M, T1,0(M))
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of type (n, k) , k ≥ 1, is locally embeddable. Precisely, for any x ∈ M , there is a
neighborhood U of x in M such that (U, T1,0(M)|U ) is CR isomorphic via a real
analytic CR map to a real analytic generic embedded CR manifold in Cn+k . Here
T1,0(M)|U is the pullback of T1,0(M) by ι : U ⊆ M . A proof of the embeddability
result of A. Andreotti and C.D. Hill (cf. op. cit.) is already available in book form,
cf. A. Boggess [70], pp. 169–172, and will not be reproduced here. A discussion of
characteristic coordinates (the relevant ingredient in the proof) is also available in the
book by D.E. Blair [62], pp. 57–60, in the context of the geometric interpretation of
normal almost contact structures ([62], pp. 61–63). By a result of A. Andreotti and
G.A. Fredricks [15], real analytic CR manifolds are also globally embeddable, i.e.,
globally isomorphic to a generic CR submanifold of some complex manifold. This
generalizes a result by H.B. Shutrick [373], on the existence of complexifications.

The embedding problem (i.e., decide whether a given abstract CR manifold is (lo-
cally) embeddable) was first posed by J.J. Kohn [246], and subsequently solved to a
large extent by M. Kuranishi [263]. By M. Kuranishi’s result, each strictly pseudocon-
vex CR manifold of real dimension 2n + 1 ≥ 9 is locally embeddable in Cn+1. T.
Akahori [2], settled the question in dimension 7. A much simpler proof was given by
S. Webster [429]. The embedding problem is open in dimension 5, while L. Nirenberg
[326], built a counterexample in dimension 3 (as a perturbation of the CR structure
of H1). More generally, by a result of H. Jacobowitz and F. Trèves [224], analytically
small perturbations of 3-dimensional embeddable strictly pseudoconvex CR manifolds
are known to be nonembeddable. M.S. Baouendi, L.P. Rothschild, and F. Treves [30],
showed that the existence of a local transverse CR action implies local embeddability.
As a global version of this result, though confined to the 3-dimensional case, we may
quote a result by L. Lempert [278]: Let M be a 3-dimensional (n = 1) CR manifold
admitting a smooth CR action of R that is transverse. Then M is the boundary of a
strictly pseudoconvex complex surface, i.e., it is embeddable. More recently, by a re-
sult of Z. Balogh and C. Leuenberger [29], if a CR manifold M of hypersurface type
admits a local semi-extendable R-action then M is locally realizable as the boundary
of a complex manifold.

Embeddability is related to solvability of certain PDEs, as shown by the following
example, due to C.D. Hill [200]. Let t = (t1, t2, t3) be the Cartesian coordinates on
R3. The natural coordinates on R5 = R3 × C are denoted by (t, z). Let

L = T1 = 1

2

(
∂

∂t1
+ i

∂

∂t2

)
− i(t1 + i t2)

∂

∂t3

be the Lewy operator on H1 = R3. Given a C∞ function ω : H1 → C we consider
the first-order PDE

Lχ = ω. (1.29)

Definition 1.14. We say that (1.29) is solvable at a point t0 ∈ R3 if there is an open set
U ⊆ R3 such that t0 ∈ U and there is a C∞ function χ : U → C such that Lχ = ω

on U . �



16 1 CR Manifolds

Moreover, let us consider the complex vector fields P, Q ∈ T (H1 × C)⊗ C given by

P = ∂

∂z
, Q = L + ω(t) ∂

∂z
. (1.30)

Clearly {P, Q, P, Q} are linearly independent at each point of H1×C and [P, Q] = 0.
Consequently

T0,1(H1 × C)(t,z) = CP(t,z) + CQ(t,z) , (t, z) ∈ H1 × C,

gives a CR structure on H1 × C. We shall prove the following theorem:

Theorem 1.1. (C.D. Hill [200])
The CR structure (1.30) is locally embeddable at (t0, z0) ∈ H1×C if and only if (1.29)
is solvable at t0.

On the other hand, by a result of H. Lewy [284], there is ω ∈ C∞(R3) such that for
any open set U ⊆ R3 the equation (1.29) has no solution χ ∈ C1(U ). Hence the CR
structure (1.30) is not locally embeddable in general.

Proof of Theorem 1.1. As shown in Section 1.1.5, the map

R3 → C2, t !→ (v1(t), v2(t)),

v1(t) = t1 + i t2 , v2(t) = t3 + i(t2
1 + t2

2 ),

embeds H1 globally into C2. The functions v j : H1 → C form a maximal set of
functionally independent characteristic coordinates (in the sense of A. Andreotti and
C.D. Hill [13]), i.e., Lv j = 0 and dv1 ∧ dv2 �= 0. If we adopt the terminology in
Chapter 6, the map v = (v1, v2) : H1 → C2 is a CR immersion, i.e., an immersion
and a CR map (and it determines a CR isomorphism H1 � ∂�2).

Let us prove first the sufficiency. Assume that (1.29) is solvable at t0, i.e., there is
χ ∈ C∞(U ) with t0 ∈ U ⊆ H1 and Lχ = ω on U . Let us consider the function

v3 : U × C → C, v3(t, z) = z − χ(t).
A calculation shows that

Pv j = 0, Qv j = 0, j ∈ {1, 2, 3}, dv1 ∧ dv2 ∧ dv3 �= 0;
that is,

ϕ : U × C → C3, ϕ(t, z) = (v(t), v3(t, z)), t ∈ U, z ∈ C,

is a CR immersion (of a neighborhood of (t0, z0)).
The proof of necessity is more involved. Let us assume that there is a CR immer-

sion u = (u1, u2, u3) : V → C3 of an open set V ⊆ H1 × C with (t0, z0) ∈ V , that
is, Pu j = 0, Qu j = 0, and du1 ∧ du2 ∧ du3 �= 0 on V . In particular, each u j is
holomorphic with respect to the z-variable. Consequently the Jacobian matrix of u has
the form


