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It has been observed in [4] that theHilbert schemeof real cohomologically stable curves of fixed genus andde-

gree in P
3, not intersecting a fixed real line, carries a natural pseudo-hyperkähler structure. This observation

was made in a much more general context of curves in twistor spaces of arbitrary hyperkähler 4-manifolds

and relies on the isomorphism P
3\P1 ≃ OP1 (1)

⊕2. If, however, we want to describe the differential gemetry

of all (real and stable) projective space curves with a fixed genus and degree, then having to remove a line

from P
3 is clearly unsatisfactory,

In the present article we describe such a natural differential-geometric structure on an open subset of the

Hilbert scheme of real curves of degree d and genus g in P
3. Rather than a hypercomplex structure, which is

a decomposition of the tangent bundle TCM as E ⊗ C
2 for some quaternionic vector bundle E (plus integra-

bility conditions), the natural geometry of the real Hilbert scheme is what we call a quaternionic 4-Kronecker

structure, i.e. a bundle map α : E⊗C
4 → TCM for some quaternionic vector bundle (again plus integrability

conditions). It turns out that these structures have a rich geometry, which is closely related to hypercomplex

and quaternionic geometry. We also discuss the complex analogue of these structures, which is the geometry

on an open subset of the full Hilbert scheme, i.e. not just real curves.

We also consider Hilbert schemes of curves in P
n for n ≥ 4. It turns out, however, that we can expect

open subsets with nontrivial geometry only for a very restricted range of d and g. Nevertheless, such values

do exist, e.g. g = 0 and any d ≥ n.

The article is organised as follows. In the next section we introduce abstract Kronecker structures on

complex and real manifolds, their integrability and twistor spaces. In the second section we discuss their

differential geometry and their relationwith quaternionic and hypercomplex geometry. The following section

is given to describing the natural integrable Kronecker structure on the Hilbert schemes of projective curves.

In the final section we show that our point of view leads to new insights even for lines in P
3.

1 Kronecker module structures on manifolds

An r-Kronecker module is a linear map α : V0 ⊗ C
r → V1, where V0 and V1 are finite-dimensional complex

vector spaces. In other words α is a representation of a quiver with 2 vertices v0, v1 and r arrows from v0 to

v1. A Kronecker module is called quaternionic if r = 2s is even, V0 is equipped with a quaternionic structure

σ0 (i.e. dimV0 is also even), V1 has a real structure τ, and α satisfies α(σ0(v)⊗ σ(z)) = τ ◦ α(v ⊗ z), where σ
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denotes the standard quaternionic structure on C
2s:

σ(z0, z1, . . . , z2s−1) = (−z̄1, z̄0, −z̄3, z̄2, . . . , −z̄2s−1, z̄2s−2). (1.1)

Definition 1.1. LetM be complexmanifold. An r-Kronecker structure of rank k onM consists of a vector bundle

E of rank k and a bundle map α : E ⊗ C
r → TM such that, for each m ∈ M, αm is a Kronecker module and

αm|E⊗z is injective for any z ∈ C
r\{0}.

Definition 1.2. LetM be realmanifold. A quaternionic r-Kronecker structure of rank k onM consists of a quater-

nionic vector bundle E of rank k and a bundle map α : E ⊗ C
r → TCM such that, for each m ∈ M, αm is a

quaternionic Kronecker module and αm|E⊗z is injective for any z ∈ C
r\{0}.

Remark 1.3. If M is real-analytic manifold with a real analytic quaternionic Kronecker structure, then we

obtain a Kronecker structure on a complex thickening MC of M by complexifying transition functions and

the homomorphism α. Conversely, if a complex manifoldM is equipped with an antiholomorphic involution

τ and the Kronecker structure on M is compatible with τ, then the fixed-point set Mτ of τ has an induced

quaternionic Kronecker structure.

Remark 1.4. Consider the case of a quaternionic 2-Kronecker structurewith k = 1
2 dimM.Whenever αm is sur-

jective, it induces an isomorphism TmM ≃ E⊗C
2 compatible with the quaternionic structure. Thus the sub-

manifold ofM, consisting of points where αm is surjective, is an almost hypercomplex manifold. Even in this

simplest case, new interesting examples arise by dropping the assumption that TmM ≃ E ⊗ C
2 everywhere.

Thus we show in Example 1.17 that RP4 has a natural 2-Kronecker structure, smoothly extending the flat hy-

percomplex structure ofR4. For more results on the geometry of 2-Kronecker structures with k = 1
2 dimM see

[6].

Remark 1.5. Quaternionic 2-Kronecker structures of arbitrary rank can be viewed as a particular case of al-

most ρ-quaternionic structures considered in [12]. They include (if k > 1
2 dimM) the generalised hypercomplex

structures of [3].

Remark 1.6. If α is an isomorphism (in particular kr = dimM), then such a Kronecker structure is an almost

Grassmann structure considered in [1].

Remark 1.7. In addition to quaternionic Kronecker structures, one can also consider split quaternionic Kro-

necker structures, where the involution σ is replaced by σ(z0, z1, . . . , z2s−1) = (z̄1, z̄0, . . . , z̄2s−1, z̄2s−2). Even

more generally, we can put the minus sign in front of some z̄2i−1, but not all.

Observe that, for any line v ∈ P
r−1, the restriction of α to E ⊗ v defines a rank k subbundle TvM of TM.

Definition 1.8. An r-Kronecker structure on a (complex or smooth) manifoldM is called integrable if the sub-

bundle TvM is involutive for each v ∈ P
r−1 (i.e.

[
TvM, TvM

]
⊂ TvM).

Remark 1.9. Let r′ < r. For any r′-dimensional subspace W of Cr we can restrict α to E ⊗ W and obtain an

r′-Kronecker structure of the same rank. These structures are parametrised by Grr′ (C
r).

Remark 1.10. We can relax the assumption that α is injective on each E ⊗ z as follows. Let r′ < r. Then α :

E ⊗ C
r → TM is called a weak (r, r′)-Kronecker structure, if for anyW ∈ Grr′ (C

r), the set

MW = {m ∈ M; αm|E⊗z is injective for each z ∈ W}

is open and dense inM and
⋃
MW = M. In particular eachMW has a genuine r′-Kronecker structure.We shall

say that such aweakKronecker structure is integrable if all these r′-Kronecker structures are integrable. There

is an analogous definition of weak quaternionic Kronecker structures.

1.1 Twistor spaces

Let M be a complex manifold equipped with an integrable r-Kronecker structure of rank k. We have an inte-

grable holomorphic distribution D of rank k on M × Pr−1, given by D|M×[v] = α(E ⊗ v).



Differential geometry of Hilbert schemes | 337

Definition 1.11. An integrable Kronecker structure is called regular if the foliation determined by D is simple,

i.e. the space of its leaves is a manifold. This manifold (of dimension dimM + r − k − 1) is then called the

twistor space of (M, E, α).

The twistor space is equipped with a natural holomorphic submersion π : Z → P
r−1, and any elementm ∈ M

defines a section of π. If we start with a real-analytic integrable quaternionic Kronecker structure on a real-

analytic manifold M, then we can proceed as in Remark 1.3 and obtain a Kronecker structure on a complex

thickening MC of M. If this complexified Kronecker structure is regular, then we obtain the twistor space

Z = Z(MC) of MC which is equipped, in addition, with a real structure τ covering the real structure σ on

P
2s−1. This twistor space obviously depends on the choice of complex thickening. In many cases there exists

a minimal twistor space Z, i.e. the inverse limit of twistor spaces Z(U) over the directed poset consisting of

open neighbourhoods of M in some complexification MC such that the above foliation is simple on U. The

question whether this inverse limit exists and whether it is a complex manifold, is an interesting topological

problem which we shall not investigate here. In the natural examples which interest us, the twistor space is

given, so that we obtain M as the manifold of real sections.

Let π : Z → P
r−1 be the twistor space of a regular integrable Kronecker structure and denote by m̂ the

section of π corresponding to a point m ∈ M. The definition of Z implies that the normal bundle N of m̂ in Z

is given by the following exact sequence of sheaves on P
r−1:

0→ Em ⊗ O(−1)
αm−→ TmM ⊗ O −→ N → 0. (1.2)

It follows that H1(m̂, Nm̂/Z) = 0 and H0(m̂, Nm̂/Z) ≃ TmM and so M can be recovered as a (component of)

Kodaira moduli space of embedded P
r−1-s in Z.

Remark 1.12. (1.2) shows that the normal bundles of sections of the twistor projection are Steiner bundles (cf.

[7, 11]).

Remark 1.13. As observed in Remark 1.9, any subspace W of Cr induces an (integrable) dimW-Kronecker

structure on M. Its twistor space is easily seen to be π−1
(
P(W)

)
⊂ Z. On the other hand suppose that M is

equipped with an integrable weak (r, r′)-Kronecker structure as defined in Remark 1.10. Suppose also that

all induced r′-Kronecker structures are regular, i.e. for eachW ∈ Grr′ (C
r) we obtain a corresponding twistor

space ZW of the corresponding MW . It is easy to see that these ZW combine to give again complex manifold

Z with a holomorphic submersion π : Z → P
r−1 such that ZW = π−1(P(W)). It is no longer true, however, that

all (or even any) points of M correspond to sections of π.

Let us now prove the converse of the above construction.

Theorem 1.14. Let Z be a complex manifold with a surjective holomorphic submersion π : Z → P
r−1. Then, for

each k ∈ N, the family of sections of π, the normal bundle N of which admits a resolution of the form

0→ O(−1)⊕k → O
⊕n → N → 0, (1.3)

is a smooth manifold of dimension n with a natural regular integrable r-Kronecker structure of rank k.

Proof. The resolution (1.3) implies that h1(N) = 0 and h0(N) = n. Thus the sections with such a resolution

belong to a smooth Kodaira moduli space of dimension n. Moreover, the property of having a resolution of

this form is open [7, Corollary 3.3], so that we do obtain a complex manifold M of dimension n of sections

with resolution (1.3). We have a double fibration

M
τ
←− M × Pr−1

η
−→ Z, (1.4)

where η(x, v) = tx(v), tx : P
r−1 → Z being the section corresponding to x ∈ M. Furthermore, the existence of

resolution (1.3) implies that N is globally generated and that the kernel of the natural surjective map H0(N)⊗

O→ N is of the form V0⊗O(−1) for a vector space V0 of dimension k. Tensoring (1.3) withO(−r+1) and taking

the long exact on cohomology shows that V0 is canonically isomorphic to Hr−2(N(−r+1)). On the other hand,
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the normal bundle of each section is isomorphic to the restriction of the vertical tangent bundle TπZ = Ker dπ

to the section. Therefore the higher direct image sheaf τr−2* η*TπZ(−r +1) is a rank k complex vector bundle E

on X, and we have a canonical short exact sequence at each m ∈ M

0→ Em ⊗ O(−1)
A
−→ TmM ⊗ O −→ N → 0.

Weobtain a canonically definedbundlemap α : E⊗Cr → TM by setting α|Em⊗z = A|[z]. It follows immediately

that α|Em⊗z is injective for every z.

Thus we obtain a canonical r-Kronecker structure of rank k on M and it remains to show that it is inte-

grable. Let v ∈ P
r−1. The bundle TvM = α(E ⊗ v) is the kernel of the evaluation map TM → Nv. This is the

same as the kernel of the map dη in (1.4) restricted to v ∈ P
r−1 and therefore integrable.

Remark 1.15. If r = 2s and Z isequipped with a real structure τ : Z → Z covering the real structure (1.1) on

P
2s−1, then the space of real sections with resolution as in the theorem carries a quaternionic 2s-Kronecker

structure (here k must be even). This follows immediately from the above proof, since OP2s−1 and OP2s−1 (−1)

have, respectively, canonical real and quaternionic structures. Thus (1.3) implies that, over Mτ, E has an

induced quaternionic structure, so that α is a quaternionic Kronecker module.

Remark 1.16. It follows from the proof that the constructions of the above theorem and of the twistor space

of a regular integrable Kronecker structure are indeed converse to each other, with the caveat that if we start

with Z as above, construct (M, E, α) and then its twistor space Z(M), then Z does not have to coincide with

Z(M). All we can say in general is that there exists a local biholomorphism ρ : Z(M) → Z, which makes the

following diagram commute:
M × Pr ✲ Z(M)

Z

ρ

❄
✲

Example 1.17. Let Z beP3 blownup in a real line l. This blow-up canbe viewedasmaking all planes containing

l disjoint and so we have a natural projection π : Z → P
1 ≃ l* = {L ∈ (P3)*; l ⊂ P(L)}. We also have a real

structure τ on Z obtained from the real structures of P3 and of P1. The exceptional divisor is E ≃ P(Nl/P3 ) ≃

l×P1 is τ-invariant and its normal bundle is isomorphic toO(1, −1). Z\E is just P3\l, which, together with the

projection π, is the twistor space of the flat R4. Thus any section of π, which is contained in Z\E has normal

bundle O(1)⊕O(1). On the other hand any real section s of π which meets E in a point xmust also meet it in

τ(x) ≠ x. This means that its projection s̄ in P
3 meets l in two distinct points and, since the degree of s̄ is 1,

s̄ = l. Thus any real sectionmeeting E is entirely contained in E. As a line on E ≃ P
1×P1, it has bidegree (1, 1),

so its normal bundle in E is O(2). Combining with NE/Z ≃ O(1, −1), we conclude that the normal bundle of

such a section in Z is O(2)⊕ O. In both cases the normal bundle N of a section has a resolution of the form

0→ O(−1)⊕ O(−1)→ O
⊕4 → N → 0,

so the real sections form a 4-dimensional manifold M4 with a quaternionic 2-Kronecker structure. As ob-

served above, real sections not meeting E form R
4, while the remaining sections are real curves of degree

(1, 1) on P
1 × P1, so these form RP3. It follows that M4 ≃ R

4 ∪RP3 ≃ RP4.

In order to identify the Kronecker structure we describe sections explicitly. Choose l to be {[z0, z1, 0, 0] ∈

P
3}. We can then identify Z with

{
([z0, z1, z2, z3], [x0, x1] ∈ P

3 × P1; z2x0 + z3x1 = 0
}
,

and π is the projection onto the second factor. It follows that sections of π are of the form

[x0, x1] 7→
(
[a0x0 + a1x1, b0x0 + b1x1, −cx1, cx0], [x0, x1]

)
,

and hence the space X4 of sections is

{
[a0, a1, b0, b1, c] ∈ P

4 ; c = 0 =⇒ a0b1 − a1b0 ≠ 0
}
.
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The real curves satisfy, in addition, b0 = −ā1, b1 = ā0, c ∈ R, so that the manifold of real sections is indeed

RP4. The fibre of the bundle E at a section x ∈ X consists of sections of N(−1) and the map α is the natural

multiplication H0(N(−1)) ⊗ H0(OP1 (1)) → H0(N). Thus the image of each H0(N(−1)) ⊗ L, L ∈ H0(OP1 (1)),

in H0(N) consists of infinitesimal deformations of x which vanish at the intersection points of x with P(L). It

follows that E is the restriction ofOP4 (1)⊕OP4 (1) to X and the map α : E⊗C
2 → TP4 is the restriction of the

Euler sequence projection

0→ OP4 → OP4 (1)
⊕5 → TP4 → 0

to (
OX(1)⊕ OX(1)

)
⊗ C

2 ≃ OX(1)
⊕4 = OX(1)

⊕4 ⊕ 0 ⊂ OP4 (1)
⊕5.

2 Differential geometry of integrable Kronecker structures

2.1 Ward transform

Let α : E ⊗ C
r → TM be a regular integrable Kronecker structure on a complex manifold M, and let Z be the

corresponding twistor space.

Consider the double fibration (1.4) and write Y = M × Pr−1. We interested in the sheaf Ω*
η of η-vertical forms

on Y, i.e. the exterior algebra of Ω1(Y)/η*Ω1(Z). It is a locally free sheaf and the corresponding vector bundle

T*Y/η*T*Z is dual to TY/ Ker dη. The construction of the twistor space, given in the previous section, shows

that TY/ Ker dη restricted to {m} × P
r−1 is isomorphic to Em ⊗ O(−1) and, consequently, the direct image

sheaf τ*Ω
1
η is isomorphic to (E ⊗ C

r)*. Recall (e.g. from [2]) that there is a first order differential operator

dη : Ω
0(Y)→ Ω1

η obtained by composing the exterior derivative with the projection onto Ω1
η. We can identify

the push-forward of dη as follows:

Lemma 2.1. The operator τ
*
dη : Ω

0M → (E ⊗ C
r)* is equal to α* ◦ d.

Proof. Ω1
η fits into an exact sequence:

0→ η*T*πZ → τ*Ω1M → Ω1
η → 0. (2.1)

Its restriction to {m} × Pr−1 is the dual of the sequence (1.2), i.e.

0→ N* −→ T*mM ⊗ O
α*
−→ E*m ⊗ O(1)→ 0.

Taking the push-forward proves the statement.

We now want to discuss the Ward transform for M. Let F be an M-uniform holomorphic vector bundle on

Z, i.e. h0(η(τ−1(m), F) is independent of m. We then obtain a holomorphic vector bundle F̂ = τ*η
*F on M.

There exists a relative flat connection∇η on η*F and its pushforward toM is a first-order differential operator

D : F̂ → τ*Ω
1
η(F) = τ*(Ω

1
η ⊗ η*F). Tensoring (2.1) with F and restricting to {m} × Pr−1 gives

0→ N* ⊗ η*F −→ T*mM ⊗ η*F
α*
−→ E*m ⊗ η*F(1)→ 0. (2.2)

Thus τ*Ω
1
η(F) ≃ E* ⊗ F̂(1), and the operator D : F̂ → E* ⊗ F̂(1) satisfies the following “Leibniz rule":

D(fs) = σ(df ⊗ s) + fDs,

where σ : T*M ⊗ F̂ → E* ⊗ F̂(1) is a bundle homomorphism given by the composition

T*M ⊗ F̂ −→ E* ⊗ (Cr)* ⊗ F̂ −→ E* ⊗ F̂(1),

where the first map is α* ⊗ 1 and the second map is the multiplication of sections H0(O(1))⊗ F̂ → F̂(1).
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Remark 2.2. σ is nothing else but the principal symbol of the operator D. If we write α = (α1, . . . , αr), where

each αi : E → TX, and similarly write the multiplication map as (β1, . . . , βr), where each βi : F̂ → F̂(1) (and

where we used the same basis of Cr), then σ = α*1 ⊗ β1 + · · · + α
*
r ⊗ βr.

Obviously if we start with a quaternionic Kronecker structure on a real manifold M and F is equipped with

a compatible real structure, then we obtain such an operator on the corresponding real vector bundle over

M. We also recall that the flatness of the relative connection∇η means that holomorphic sections of F yield

solutions of Ds = 0.

2.2 Quaternionic Kronecker structures with k = 1

2
dimM

Integrable quaternionic Kronecker structures with rank equal to 1
2 dimM are closely related to hypercomplex

geometry. Since the map α is equivariant with respect to the quaternionic structures on E and C
r and the

complex conjugation on TCM, it follows that TvM = Tσ(v)M for any v ∈ P
r−1. Therefore each v ∈ P

r−1 defines

an integrable complex structure Iv on an open subset Mv of M where Tvm ∩ T
σ(v)
m = 0 by setting T0,1m M = Tvm,

T1,0m M = Tσ(v)m (Mv may be empty). Observe also that a choice of v determines σ(v), which in turn determines

a σ-invariant 2-dimensional subspace W of Cr. Restricting α to E ⊗W establishes an isomorphism TCMv ≃

E ⊗ C
2 and shows that Mv is a hypercomplex manifold. Moreover Mv = Mv′ for any v

′ ⊂ W. Thus we have

a family of hypercomplex structures, parametrised by real lines in P
r−1, i.e. by HPs−1 (r = 2s), but each of

them defined only on an open subsetMq, q ∈ HPs−1. Of course what is defined on all ofM is the quaternionic

2-Kronecker structure determine byW (cf. Remark 1.9).

We can define the followingmanifold parametrising points ofM and the hypercomplex structures at each

point:

M̃ = {(m, q) ∈ M ×HPs−1; m ∈ Mq}. (2.3)

It turns out that there is a natural quaternionic structure on M̃, the restriction of which to each Mq is the

corresponding hypercomplex structure. Consider namely the twistor space π : Z → P
r−1 of (M, E, α) and a

real section m̂ of π corresponding to m ∈ M. Let l ≃ P
1 be a line lying on m̂. The normal bundle of such a P1

fits into the exact sequence

0→ Nl/m̂ → Nl/Z → Nm̂/Z

∣∣
l
→ 0. (2.4)

SinceNl/m̂ ≃ O(1)r−2 and the restriction of the sequence (1.2) shows that Nm̂/Z

∣∣
l
splits as the direct sumof line

bundles with nonnegative degrees, we conclude that H1(l, Nl/Z) = 0 and dimH0(l, Nl/Z)) = dimM + 2r − 4. It

follows that the parameter space of τ-invariant projective lines lying on some m̂ isM ×HPs−1. The points of M̃

correspond precisely to those lines l for which Nm̂/Z

∣∣
l
≃ O(1)k. It follows then that Nl/Z ≃ O(1)k+r−2 so that M̃

coincides with the parameter space of τ-invariant projective lines in Z with normal bundle splitting as a sum

of O(1). Therefore M̃ has a natural quaternionic structure such that each Mq is a quaternionic submanifold

and the restrictionof the quaternionic structure of M̃ to eachMq is the correspondinghypercomplex structure.

3 Kronecker structures on Hilbert schemes of curves in Pn

3.1 4-Kronecker structures on Hilbert schemes of curves in P
3

We consider the Hilbert schemeHilbd,g of closed subschemes ofP3 with Hilbert polynomial h(m) = dm−g+1

and its open subscheme Md,g consisting of all C ∈ Hilbd,g staisfying the following two conditions:

1) h1(C,NC/P3 (−1)) = 0,

2) C has no planar components, i.e. the sheaf map OC(−1)
·t
−→ OC is injective for any t ∈ H0(OP3 (1)).

Let us make some observations. First of all, condition 2) together with the Hilbert polynomial implies that

C ∩ H is a 0-dimensional scheme of length d for any hyperplane H ⊂ P
3. Choose now a line P1 in P

3 disjoint

from C. Then the projection C → P
1 is finite-to-one and all its fibres have the same length. Thus C is (locally)
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Cohen-Macaulay. The first condition implies that h1(C,NC/P3 ) = 0 and therefore Md,g is smooth, since the

codimension of C is 2 [9, Cor. 8.5]. Its tangent space at each C is identified with H0(C,NC/P3 ).

Remark 3.1. There are no curves satisfying 2) with (d, g) = (1, 0) or (d, g) = (2, 0). For all other values of

(d, g), condition 2) is satisfied by all smooth nonplanar space curves of degree d and genus g. On the other

hand, condition 1) is satisfied by a general smooth curve if d − 3 ≥ 3g+1
4 [10, Thm. II.3.4]. Thus, at least in this

range Md,g is nonempty (hence of dimension 4d).

We shall now show that Md,g (if nonempty) has a natural regular integrable 4-Kronecker structure of rank

2d, which restricts to a quaternionic 4-Kronecker structure on its σ invariant part Mσ
d,g, where σ is the anti-

holomorphic involution (1.1) on P
3.

Remark 3.2. Mσ
d,g can be empty, e.g. for g = 0 and d even. In this case one can consider instead curves in-

variant under the other involution defined in Remark 1.7. The submanifold of such curves will have a split

quaternionic 4-Kronecker structure.

It follows from condition 1) and from the fact that the normal sheafNC/P3 of a Cohen-Macaulay curve in P
3 is

torsion-free [5, Cor. 3.2] that, for each t ∈ H0(OP3 (1)), we have a short exact sequence

0→ NC/P3 (−1)
·t
−→ NC/P3 −→ NC/P3

∣∣
C∩H
→ 0, (3.1)

where H = P(Ker t). Since the ideal of C ∩ H in H is JC ⊗ OH , it follows that NC∩H/H ≃ NC/P3
∣∣
C∩H

. Thus

h0(C ∩ H, NC/P3
∣∣
C∩H

) = h0(C ∩ H,NC∩H/H), but the latter is equal to 2d since it is the dimension of the

tangent space at C ∩ H to the Hilbert scheme of d points in H, which is smooth. Thus we conclude from

(3.1) that h0(NC/P3 (−1)) = 2d. We define a rank 2d holomorphic vector bundle E on Md,g by setting EC =

H0(C,NC/P3 (−1)). Taking the long exact sequence of (3.1) defines a bundle map

α : E ⊗ H0(OP3 (1))→ TMd,g ,

which is injective on each E ⊗ v, i.e. α is a 4-Kronecker structure. If C is σ-invariant, then its normal sheaf

has a natural real structure and, consequently,NC/P3 (−1) has a natural quaternionic structure. It follows that

E|Mσ
d,g

is a quaternionic vector bundle and α|Mσ
d,g

is a quaternionic 4-Kronecker structure.

The subbundle TvMd,g = α(E ⊗ v) of TMd,g is just the kernel of the evaluation map H0(C,NC/P3 ) →

H0(C ∩ H,NC∩H/P3 ) and hence involutive: the leaf of the distribution TvMd,g consists of deformations of C

leaving C ∩ H fixed. Therefore our Kronecker structure on Md,g is integrable. To show that it is regular, we

shall construct a complex manifold Zd from which Md,g arises as in Theorem 1.14.

3.2 Twistor space

Let Q ≃ P(T*P3) be the incidence variety of hyperplanes in P
3:

Q = {(p, L) ∈ P
3 × (P3)

*
; p ∈ L},

where we view elements of (P3)
*
as planes in P

3. For each integer d ≥ 1 we define a variety Zd as the rel-

ative Hilbert scheme of d points with respect to the projection Q → (P3)
*
. Thus Zd consists of all planar

0-dimensional schemes of length d in P
3. It is a smooth projective manifold of dimension 2d + 3 equipped

with a natural fibration π : Zd → (P3)
*
with fibres isomorphic to (P2)

[d]
.

The real structure σ on P
3 induces a real structure on (P3)

*
which in turn induces real structures on Q

and on Zd. We denote the real structure on Zd by τ.

Any element C of Md,g defines a section of the projection π : Zd → (P3)
*
, which we denote by Ĉ. We

denote the normal sheaf of C in P
3 byN and the normal bundle of Ĉ ≃ P

3 in Zd by N̂. Since N̂ is isomorphic

to the vertical bundle TπZd restricted to C, the fibre of N̂ at each D ∈ Zd is canonically isomorphic toH0(D,N)

(cf. [5, Lemma 4.1]). The sequence (3.1) implies that the evaluation map H0(C,N)⊗OP3 → N̂ is surjective and

its kernel is H0(C,N(−1))⊗OP3 (−1). Thus the normal bundle of each section Ĉ, C ∈ Md,g, has a resolution of
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form (1.3), and so all assumptions of Theorem 1.14 are satisfied.We recoverMd,g with its4-Kronecker structure

from Zd as an open submanifold of the parameter space of embedded P
3-s in Zd with Steiner normal bundle.

The τ-invariant sections correspond to points of Mσ
d,g.

Remark 3.3. If we replace condition 2) in the definition of Md,g with “C is pure-dimensional and Cohen-

Macaulay", then we obtain a weak (4, 2)-Kronecker structure (as defined in Remark 1.10) on the manifold

of all such C. In particular, for any hyperplane H ⊂ P
3, we obtain a 2-Kronecker structure on the open subset

of such C which do not have a component contained in H. The twistor space of this weak Kronecker structure

(as defined in Remark 1.13) is still Zd.

Let C ∈ Md,g and let N̂ be the normal bundle of the corresponding Ĉ ≃ P
3 ⊂ Zd. We want to describe the

generic splitting type of N̂. The restriction of N̂ to any line l ∈ (P3)
*
also has the resolution of the form (1.3).

Suppose that N̂|l has a direct summand of the formO(k)with k > 1, and consequently there exists a section of

N̂|l vanishing at k distinct points. Thismeans that there is a corresponding section s ofN on Cwhich vanishes

at the intersections D1, . . . , Dk of Cwith k distinct planes in l. Thus s is a section ofN[−D1−· · ·−Dk]. If C does

not intersect the line l* =
⋂
{L; L ∈ l}, then the divisors D1, . . . , Dk are disjoint, and, consequently, such an

s corresponds to a section ofN(−k). Thus we can describe the generic splitting type of N̂ as:

Proposition 3.4. Let C ∈ Md,g and let l ⊂ (P3)
*
be a line such that C ∩

⋂
{L; L ∈ l} = ∅. Then

N̂|l ≃ O
r0 ⊕

⊕

i∈N

O(i)ri ,

where ri = dimH0(C,N(−i)) − (i + 1)
∑

j>i rj.

In particular, ifH0(C,N(−2)) = 0, then the generic splitting type of N̂ isO(1)2d. On the other hand if C ∈ M4,1,

then its normal bundle is OC(2)⊕ OC(2), and so the generic splitting type of N̂ is O(2)⊕2 ⊕ O(1)⊕4 ⊕ O
⊕2.

3.3 Rational curves

We can be more explicit about this Kronecker structure in the case g = 0. For any d ≥ 3 we consider non-

planar immersed rational curves C of degree d. Here “immersed" is used in the differential-geometric sense,

i.e. C is given as the image of a degree d rational map

ϕ : P1 → P
3, (3.2)

the differential of which is everywhere injective. Such a curve is l.c.i. and, owing to results of Ghione and

Sacchiero [8], its normal bundle splits as O(d + a) ⊕ O(d + b) where a, b ≥ 2 and a + b = 2d − 2.

In particular we have H1(C, NC/P3 (−1)) = 0, so such curves belong to Md,0. We denote by Ratd the sub-

set of Md,0 consisting of such curves. As a manifold Ratd = Pd/GL(2,C), where Pd is an open subset of

quadruples of homogeneous polynomials of degree d in two variables. For such a quadruple ϕ(x0, x1) =(
ϕ0(x0, x1), ϕ1(x0, x1), ϕ2(x0, x1), ϕ3(x0, x1)

)
denote by Dϕ its Jacobian matrix

(
∂ϕi/∂xj

)
. Then, as in [8,

Lemma 1.1], we have an exact sequence of sheaves on P
1:

0→ O(1)⊕2 Dϕ
−→ O(d)⊕4 −→ N → 0, (3.3)

where N = ϕ*NC/P3 . We denote by µ the projection from TPd onto T Ratd, i.e. the map induced on global

sections by (3.3). From the defintion of a Kronecker structure, themap α sends E⊗ t to sections of N vanishing

on H = P(Ker t). If t =
∑3

i=0 tizi, then C ∩ H is the image under ϕ of the zero set Λt of
∑3

i=0 tiϕi(x0, x1).

Suppose for the moment that Λt consists of d distinct points λ1, . . . , λq. Let s ∈ α(E ⊗ t) and write s = µ(q)

where q = (q0, q1, q2, q3) is a quadruple of degree d polynomials. Since s vanishes on Λt, q must be in the

image of Dϕ at points of Λt. Choose an arbitrary Si in the image of Dϕ at each λi, i = 1, . . . , d. There exist d

vectors (ui , vi) ∈ C
2 such that Si = Dϕ(ui , vi)(λi). Let p1(x0, x1) and p2(x0, x1) be degree d − 1 homogenous
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polynomials with p1(λi) = ui, p2(λi) = vi, i = 1, . . . , d, and set

q′ = (q′1, q
′
2, q

′
3, q

′
4) = Dϕ(p1, p2) mod

3∑

i=0

tiϕi .

Then q′(λi) = Si. Any other quadruple q of polynomials of degree d with the same values at the λi differs

from q′ by u
∑3

i=0 tiϕi, where u ∈ C
4. Moreover, observe from (3.3), that µ vanishes on the image of linear

polynomials. Therefore we may assume that x21 divides both p1 and p2 (i.e. p1 and p2 have zero constant

and linear terms when written in the affine coordinate x1/x0). This gives the following description of E and

α: E is the trivial bundle with fibre C2d which we write as E′ ⊕ C
4, where E′ is the vector space of pairs of

homogeneous polynomials p1(x0, x1), p2(x0, x1) of degree d − 1 divisible by x21, and the map α is given by

(apriori only for t such that Λt consists of distinct points, but the formula obviously extends to all t):

α
(
((p1, p2)⊕ u)⊗ t

)
= µ

((
Dϕ(p1, p2) mod

3∑

i=0

tiϕi

)
+ u

3∑

i=0

tiϕi

)
.

Remark 3.5. As shown in §2.2, the quaternionic Kronecker structure onM
σ
d,g induces a hypercomplex struc-

ture on the submanifold (Mσ
d,g)W for each σ-invariant subspace W of C4, i.e. for each real line l in P

3. It is

easy to see that (Mσ
d,g)W consists of real curves avoiding the line l. This is the hypercomplex structure intro-

duced in [4], and so it is actually pseudo-hyperkähler. As observed in Remark 3.2, Mσ
d,g may be empty, but

there always is a complexified hypercomplex structure (i.e. an integrable action of Mat2(C) on the tangent

bundle) on the submanifold of all curves in Md,g such that the restriction of α to E ⊗ W is an isomorphism

(this submanifold may, however, be empty for everyW, e.g. on M4,1).

The main result of [5] is that for g = 0 this hypercomplex structure is always flat.

3.4 Curves in P
n, n ≥ 4

LetHilbd,g,n denote theHilbert scheme of closed subschemes ofPn withHilbert polynomial h(m) = dm−g+1.

We can try and define Md,g,n analogously to the case n = 3. However, the condition h1(C,NC/Pn (−1)) = 0

imposes now strong restrictions on d and g. Indeed, we can easily compute the degree of NC/Pn (−1) for a

smooth (or just l.c.i) curve from the normal sequence and obtain degNC/Pn (−1) = 2d + 2g − 2, and then,

from the Riemann-Roch theorem, χ(NC/Pn (−1)) = 2d − (n − 3)(g − 1). Therefore, if h1(C,NC/Pn (−1)) = 0, then

2d ≥ (n − 3)(g − 1). A further restriction is that we cannot include now all Cohen-Macaulay curves, since

for n ≥ 4 the condition h1(C,NC/P4 ) = 0 is not sufficient for the smoothness of Md,g,n. We have to restrict

ourselves to l.c.i. curves. With these modifications, however, we do obtain an (n + 1)-Kronecker structure on

Md,g,n:

Proposition 3.6. Assume that2d ≥ (n−3)(g−1)anddefineMd,g,n as the open subschemeofHilbd,g,n consisting

of all C ∈ Hilbd,g,n which are l.c.i. and satisfy conditions 1) and 2) of the definition ofMd,g. IfMd,g,n is nonempty,

then it is a smooth manifold of dimension (n + 1)d − (n − 3)(g − 1) equipped with a natural regular integrable

(n + 1)-Kronecker structure of rank 2d − (n − 3)(g − 1).

Proof. The dimension of Md,g,n is computed from χ(NC/Pn ) in the same way as for χ(NC/Pn (−1)) above. Now

all arguments and constructions of the preceding subsection go through, except that we need to define the

twistor space Zd,n as consisting of l.c.i. 0-dimensional subschemes lying on hyperplanes in P
n (this guaran-

tees that Zd,n is smooth).

Remark 3.7. Kronecker structures of small rank k are, in a sense, degenerate (as an extreme case consider

k = 0). “Nondegeneracy" should probaly mean that the map α is generically surjective. This implies that

kr ≥ dimM, which in our case translates into the following inequality on g and d:

(n + 1)d ≥ n(n − 3)(g − 1).
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There do exist values of (d, g, n) in this range for which Md,g,n is nonempty. For example, a nondegenerate

immersed rational curve always satisfies h1(C,NC/Pn (−1)) = 0, so thatMd,0,n with d ≥ n is a complexmanifold

of dimension dn + d + n − 3 equipped with a natural regular integrable (n + 1)-Kronecker structure of rank

2d + n − 3.

4 The weak Kronecker structure on S4

As pointed out in Remark 3.3, Hilb1,0, i.e. the manifold of lines in P
3, has a weak (4, 2)-Kronecker structure,

the twistor space of which is Z1 ≃ P(T*P3). Of course Hilb1,0 = Gr2(C
4). The bundle E on Gr2(C

4) coincides

with the tautological bundle S and the homomorphism α is given by

α(s ⊗ z) = s ⊗ (z + S) ∈ S ⊗
(
C
4/S
)
≃ T Gr2(C

4).

Thus α = 0 at points (H, z) ∈ Gr2(C
4) ×C4 such that z ∈ H.

We nowwant to discuss the induced quaternionic Kronecker structure on real lines, i.e. onGr2(C
4)σ = S4.

Recall (Remark 1.10)) that anyW ∈ Gr1(H
2) ≃ S4 defines a 2-Kronecker structure on the corresponding MW .

In the present case MW = S4\{W} and the corresponding 2-Kronecker structure is simply the flat hypercom-

plex structure on R
4 ≃ S4\{W}. In particular the manifold M̃, defined in (2.3) as parametrising points and

hypercomplex structures, is just (S4 × S4)\∆. As observed in §2.2, M̃ carries a natural quaternionic structure,

which we now proceed to identify (recall that the product of two non-flat quaternionic manifolds is usually

no longer quaternionic, so this is not any sort of product quaternionic structure). In order to this we need to

consider real lines in Z1 with normal bundle O(1)⊕4. We shall in fact consider all real lines in Z1, which will

provide a natural compactification of M̃.

Recall that Z1 = P(T*P3), which we identify with a quadric hypersurface in P
3 × P3:

Q = {([x], [y]) ∈ P
3 × P3 ;

3∑

i=0

xiyi = 0}.

We consider lines in P
3 × P3 which are contained in Q, i.e.

P
1 ∋ ζ 7→

(
[a + bζ ], [c + dζ ]

)
, a · c = b · d = a · d + b · c = 0. (4.1)

The normal bundle of such a line l fits into the exact sequence

0→ Nl/Q → Nl/P3×P3 → NQ/P3×P3
∣∣
l
→ 0. (4.2)

The normal bundle of Q in P
3 × P3 is O(1, 1) and hence NQ/P3×P3

∣∣
l
≃ O(2). On the other hand, l is a curve of

bidegree (1, 1) on l1 × l2 ∈ P
3 × P3, where l1 = {[a + bζ ]; ζ ∈ P

1}, l2 = {[c + dζ ]; ζ ∈ P
1}. Thus Nl/l1×l2 ≃ O(2)

and, since Nl1×l2/P3×P3 ≃ O(1, 0)⊕2⊕O(0, 1)⊕2, it follows that Nl/P3×P3 ≃ O(2)⊕O(1)⊕4. Hence (4.2) becomes

0→ Nl/Q → O(2)⊕ O(1)⊕4 → O(2)→ 0,

and so Nl/Q is either O(1)⊕4 or O(2)⊕ O⊕ O(1)⊕2 with the latter occuring precisely when l1 × l2 ⊂ Q, i.e.

Nl/Q ≃

{
O(2)⊕ O⊕ O(1)⊕2 if a · d = b · c = 0,

O(1)⊕4 otherwise.
(4.3)

4.1 Real curves

If we equip Q with the antiholomorphic involution

([x], [y]) 7→ ([−ȳ], [x̄]),
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then Q becomes the twistor space of the quaternionic manifold Gr2(C
4). The corresponding family of real

lines is given by

P
1 ∋ ζ 7→

(
[x − ζ ȳ], [y + ζ x̄]

)
∈ Q, where |x|2 = |y|2 = 1,

3∑

i=0

xiyi = 0,

modulo the action of U(2) on P
1, i.e. (

x

y

)
7→ A

(
x

y

)
.

Observe that (4.3) implies that the normal bundle of such a curve is always O(1)4.

The real structure induced on Q from P
3 is a different one, namely:

τ([x], [y]) = ([σ(x)], [σ(y)]), (4.4)

where σ(z0, z1, z2, z3) = (−z̄1, z̄0, −z̄3, z̄2). The corresponding family of real sections is given by

P
1 ∋ ζ 7→

(
[x + ζσ(x)], [y + ζσ(y)]

)
∈ Q, where x · y = 0, x · σ(y) + σ(x) · y = 0,

modulo the action induced by the action of GL(1,H) ⊂ GL(2,C) on P
1. According to (4.3), the normal bundle

of such a curve splits as O(1)4, unless, in addition, x · σ(y) − σ(x) · y = 0.

We denote by X the manifold of all τ-invariant lines in Q, by Xo the open submanifold of lines with Nl/Q ≃

O(1)4 and write X∞ = X\Xo. The double fibration P
3 ← Q → P

3 induces a double fibration S4 ← X → S4. We

have

Proposition 4.1. (i) X is the real (non-oriented) blow-up of S4 × S4 in the antidiagonal {(x, −x)} and X∞ is

the exceptional divisor of the blow-up, i.e. X∞ ≃ P
(
T*S4

)
.

(ii) With respect to either of the projections X → S4, X is an RP4 bundle over S4. More precisely, X = P(T*S4 ⊕

OS4 ), where OS4 is the trivial line bundle S
4 ×R.

Proof. If we write q0 = x0 + x1j, q1 = x2 + x3 j, p0 = y0 − jy1, p1 = y2 − jy3 (all of them elements of H), then

the above conditions on x, y can be written simply as

ImH(q0p0 + q1p1) = 0, (4.5)

and the action of GL(1,H) ≃ H
* is given by

(q0, q1, p0, p1) 7→ (uq0, uq1, p0u
−1, p1u

−1), u ∈ H
*. (4.6)

The condition on a curve to have the normal bundle isomorphic to O(2)⊕O⊕O(1)2 is x · σ(y) − σ(x) · y = 0,

which means that the real part of q0p0 + q1p1 vanishes as well. Thus

X = {
(
(q0, q1), (p0, p1)

)
∈ H

2\{0} ×H2\{0}; q0p0 + q1p1 ∈ R}/GL(1,H) ×R*,

where GL(1,H) acts as above and and R
* acts by diagonal multiplication. Similarly

X∞ = {
(
(q0, q1), (p0, p1)

)
∈ H

2\{0} ×H2\{0}; q0p0 + q1p1 = 0}/GL(1,H) ×R*.

The double fibration S4 ← X → S4 is given by (q0, q1, p0, p1) 7→ (q−11 q0, p1p
−1
0 ) ∈ HP1 ×HP1. Observe that

X∞ maps to the antidiagonal. Moreover, the quotient of {
(
(q0, q1), (p0, p1)

)
∈ H

2\{0}×H2; q0p0+q1p1 = 0}

by GL(1,H) is T*HP1 and, hence, X∞ ≃ P
(
T*HP1

)
. Consider, on the other hand, the fibre F over a point

away from the antidiagonal in HP1 × HP1. If (q0, q1, p0, p1) represents a point of F, then q0p0 + q1p1 =

q1(q
−1
1 q0 + p1p

−1
0 )p0 is real and nonzero. If (q̃0, q̃1, p̃0, p̃1) represents another point of F, then

q̃1(q̃
−1
1 q̃0 + p̃1p̃

−1
0 )p̃0 = q̃1(q

−1
1 q0 + p1p

−1
0 )p̃0
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is again real and nonzero, and hence, q̃1q
−1
1 = rp̃−10 p0 for a nonzero real number r. It follows that

(q0, q1, p0, p1) and (q̃0, q̃1, p̃0, p̃1) belong to the same orbit of GL(1,H) ×R*, so that F is a point. This proves

(i).

We now prove (ii) for the projection onto the second S4, i.e. ([q0, q1], [p0, p1]) 7→ p1p
−1
0 . For each

[p0, p1] ∈ S4 the equation (4.5) is a triple of linearly independent linear equations in R
8 and so it de-

fines a rank 5 subbundle E of the trivial bundle S4 × R
8. We define a rank 4 subbundle E′ of E by setting

Re(q0p0+q1p1) = 0. Thus E′ is a subbundle of trivial bundle S4 ×R8 defined by the equation q0p0+q1p1 = 0,

i.e. E′ ≃ T*S4. The quotient bundle E/E′ is then a real line bundle, hence trivial. Finally, since any extension

of smooth vector bundles splits, E ≃ T*S4 ⊕ OS4 .

4.2 The quaternionic structure

As shown in §2.2, X\X∞ ≃ S4×S4\{(x, −x)}has anatural quaternionic structure,whichweproceed to identify.

ConsiderH2⊕H2 ≃ C
4⊕C4 with complex (for the complex structure i) coordinates x0, . . . , x3, y0 . . . , y3

and a flat pseudo-hyperkähler metric of signature (8, 8):

g = Re (dx1dȳ0 − dx0dȳ1 + dx3dȳ2 − dx2dȳ3) . (4.7)

The equations x · y = 0, x · σ(y) + σ(x) · y = 0 are the moment maps equations for the S1-action given by:

(x0, . . . , x3, y0, . . . , y3) 7→
(
eiθx0, e

−iθx1, e
iθx2, e

−iθx3, e
−iθy0, e

iθy1, e
−iθy2, e

iθy3
)
.

Observe that that the length of the vector field X generated by this action is equal to x · σ(y), so that the

H-subspaceHX = 〈X, IX, JX, KX〉 of the tangent space is nondegenerate (with respect to g) precisely on

U = {
(
(q0, q1), (p0, p1)

)
∈ H

2 ×H2; Re(q0p0 + q1p1) = ̸ 0}.

Observe also that theH*-action given by (4.6) generates at each point of U a quaternionic subspace of signa-

ture opposite to HX (i.e. (0, 4) if the latter is (4, 0) and vice versa). It follows that the quaternionic structure

on Xo ≃ (S4 × S4)\{(x, −x)} is actually a pseudo-quaternion-Kähler metric of signature (4, 4) obtained as a

quaternion-Kähler quotient by S1 of the following pseudo-quaternion-Kähler manifold

{
(
(q0, q1), (p0, p1)

)
∈ H

2 ×H2; Re(q0p0 + q1p1) = ̸ 0}/H
*,

whereH* acts as in (4.6).
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