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DIFFERENTIAL GEOMETRY
OF QUATERNIONIC MANIFOLDS

BY S. M. SALAMON (*)

Introduction

This paper consists of an exposition of a theory of quaternionic manifolds which has
been advertised in [SJ; [83] and developed independently by L. Berard Bergery ([BO];
[Bes]). A quaternionic manifold is defined by a G-structure admitting a torsion-free
connection, where G denotes the maximal subgroup GL(n, H)GL(1, H) of
GL(4n, R). This encompasses virtually all definitions that have been given in the past
by various authors. The torsion condition is a natural generalization of the holonomy
restriction that is used to define quaternionic Kahler manifolds, and was considered by
Bonan in [BoJ. Here, in contrast to [S^], we study almost exclusively those properties
of a quaternionic manifold that can be expressed without reference to a particular
Riemannian metric.

Unlike complex manifolds, quaternionic manifolds can be distinguished locally by a
curvature tensor whose vanishing is equivalent to integrability of the
G-structure. Integrable G-structures were investigated in [M]; [Ku], and shown to be
locally equivalent to quaternionic projective space HP"; they therefore constitute a very
restrictive class. Even more special are the locally affine manifolds with an integrable
GL(n, H)-structure discussed in [Eh]; [So]. Our definition, on the other hand, does not
require the existence of any obvious quaternionic coordinates.

In the first three sections we develop the algebra which is needed to understand the
properties of a quaternionic manifold. This consists of some elementary, if somewhat
involved, representation theory, and culminates in an explicit description of curvature
(theorem 3.4). The central results of the paper are theorems 4.1 and 5. 5, which charac-
terize the quaternionic structure by the existence of certain complexes of differential
operators. Our methods involve first of all a decomposition of the exterior algebra of
the de Rham complex, and then the adoption of techniques from conformal geometry.

We single out one special operator, already familiar in Penrose's twistor theory [P],
that can be used to reduce the structure group of a quaternionic manifold to
GL(n, H). These ideas lead to a new collection of examples (theorem 7.2) that do not
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32 S. M. SALAMON

fit into any category previously studied. This is based on the notion of self-dual
connections on bundles over 4-manifolds, and so provides a link with Yang-Mills
theory. For instance, we show that the tangent bundle of both the sphere S4 and
complex projective plane CP2 is a quaternionic manifold.

As a final consequence of the above approach, we see that associated to any quater-
nionic manifold there corresponds a complex manifold, the so-called twistor space
(corollary 7.4). This correspondence accounts for many of the formal similarities
between quaternionic and complex geometry, and its implications will be pursued in a
subsequent paper.

CONTENTS

1. The structure group GL(n, H)GL(1, H).

2. Torsion and the first prolongation.

3. Curvature and integrability.
4. Exterior forms.

5. Invariant differential operators.

6. The structure group GL(n, H).
7. New examples.

1. The structure group GL(n, 1H)GL(1, H)

Pointwise, the definition of a quaternionic manifold will be modelled on the quater-
nionic projective space (HP". Take homogeneous coordinates on HP" with (^o, . . ., q^)

and (qoU, . . ., q^u\ ueH*, defining the same point. On the open set U,. defined by
g^O, there are inhomogeneous coordinates ^».=^^~1, i^r. The n-tuple

dqir = (dq, - q,, dq,) q,
 1, i + r,

of quaternion valued differential forms defines for each xeU,. an isomorphism
S

T^HP" -> H", and so gives rise to a section T|̂  over U^ of the principal frame bundle P
of HP". The section r^er(Us, P) corresponding to a different coordinate patch is
defined by the n-tuple

dqis = (dq,, - q,, dq,,) q^1, i ̂  s.

Thus at each x e U, U U,,

T|,=T|,A<?,

where q is an element of the subgroup GL(1, H) of GL(4n, R) of nonzero quaternions
acting by right multiplication, and A is an element of the centralizer GL(n, H) of
GL(1, H) in GL(4n, [R). Consequently the transition function A.q takes values in the
product

G=GL(n, H)GL(1, H)cGL(4n, R),

and the sections T[^ generate a principal G-subbundle Q of P. The bundle Q constitutes
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QUATERNIONIC MANIFOLDS 33

a reduction of the structure group of P from GL(4n, R) to G, and Q itself is called a
G-structure.

Since A q =(A | q \) (| q | ~1 g), we also have

G=GL(n, H)Sp(l)^GL(n, H)x^Sp(l) ,

where Sp(l) denotes the group of unit quaternions in GL(1, H). Thus G has as 2 : 1
universal covering the group G=GL(n, H) xSp(l). By considering also the subgroup
Sp(n) of GL(n, H) consisting of unitary transformations, we obtain the maximal compact
subgroup Sp(n)Sp(l) of G. For n^2, this is a maximal Lie subgroup of S0(4n) [G],
although Sp(l) Sp(l)=SO(4). As a rank one symmetric space, HP" has linear isotropy
group Sp(n) Sp(l), and Sp(n) Sp(l) is one of the possible holonomy groups of a Rieman-
nian manifold which is not locally symmetric [Be]. A Riemannian manifold whose linear
holonomy lies in Sp(n)Sp(l) is called quaternionic Kdhler in analogy with the complex
case ([G]; [I]; [SJ). On such a manifold, the Levi-Civita connection on the holonomy
bundle extends to a torsion-free connection on the underlying G-structure Q. This leads
to:

DEFINITION 1.1. — A quaternionic manifold is a real 4 n-dimensional manifold M,
n ̂  2, together with a G-structure Q admitting a torsion-free connection.

In other words Q is a G-subbundle of the frame bundle of M, and there exist local
coordinates x^ . . ., x^ on M for which the frame (8/8x^ . . ., 9/9x^) is tangent to Q
at a given point. Equivalently Q is "1-flat", i. e. to the first order it is locally isomorphic
to the standard G-structure R4" x G on R4". We shall investigate the obstruction to the
existence of a torsion-free G-connection in the next section.

On the coordinate patch U^ of HP", the moving frame ri^er(U^, Q) converts the unit
imaginary quaternions f, j , k into almost complex structures I, J, K on U^. Using TI,
instead of r\y produces different I, J, K, but preserves the family
{ a I + b J + c K : a2 + fo2 + c2 = 1}. The same holds for any quaternionic manifold M:

regarding an element r\ eQ as an isomorphism T^M -^ H", set

Z= {rT^R^n : MeImH), \u\ =1, T|eQ},

where R^ denotes right multiplication by u on H". Then Z is a well defined bundle with
fibre S2 over M. For if T|, T|' belong to the same fibre of Q, TI' = T| A q for some A q e G,
^eSp(l), and

r^^oR o T| === R -i
• I ^u ' I Av^ uq'

The last equation shows that Z is none other than the bundle Q x Q S2 associated to the
adjoint action of Sp(l) on the sphere S^Im H ̂ sp(l). Any local section of Q converts
the basis f, 7, k of Im H into local almost complex structures I, J, K on M satisfying
IJ=-JI=K.

In the sequel we shall frequently consider vector bundles associated to the
G-structure Q. Actually it is more convenient to work with the double cover Q in order
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34 S. M. SALAMON

to handle the factors GL(n, H) and Sp(l) independently. Regard Q as an element of
the Cech cohomology group H1 (M, G) with coefficients in the sheaf of germs of smooth
G-valued functions. In the exact sequence

H
1 (M, Z^) -^ H

1 (M, G) -> H
1 (M, G) ̂  H

2 (M, Z^).

e=8(Q) defines a canonical cohomology class, which is the obstruction to Q lifting to a
principal G-bundle Q. Reducing to maximal compact subgroups relates s to the second
Steifel-Whitney class w^ of M ([83]; [MR]).

By restricting to an open subset if necessary, we assume that e == 0, and choose a lifting
Q of Q. Given a representation p: Q -> Aut V, let V denote the associated vector bundle
Q x Q V; it is defined independently of the choice of lifting if p factors through G. For
example, copying notation of [S^], the complexified cotangent bundle of M has the form

(1.1) (T^M^E®^,

where E^C2", H^C2 are basic complex representations of GL(n, H), Sp(l)
respectively. However it may not be possible to define vector bundles E, H
globally. Complex conjugation in (1.1) corresponds to the antilinear involution 7^®^?
where 7'E,7H denote quaternion multiplication on E, H.

2. Torsion and the first prolongation

To understand the torsion of a G-connection, one must consider the first prolongation
Q^ of the Lie algebra 9 of G. Let T denote the representation of G corresponding to
the tangent bundle, so that

gcEndT=T®T*.

Then ^
(1) is defined to be the kernel of the natural skewing mapping

(2.1) 0 : 9®T*-.T®A2T*.

The difference V — V of any two G-connections is essentially a tensor ^ belonging to
9®T* (more precisely ^ is a section of the associated vector bundle with fibre
9®T*). The element 3^ then represents the difference T^—^V') of the torsions, so if
V and V are both without torsion, ^ belongs to kerS=c^

l
\ On the other hand, given

an arbitrary G-connection V which always exists, the projection [r(V)] of its torsion in
the quotient

(2.2) coker S = T®A2 T*/3 (g®T*)

is a tensor Co depending only on the G-structure. It is this tensor that measures the
obstruction to the existence of a torsion-free G-connection.

The calculation of ker3, coker 8 for G=GL(n, H-fl) Sp(l) is contained implicitly in the
work of Ochiai [Oc], along with results for other groups. Because of its importance in
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QUATERNIONIC MANIFOLDS 35

the sequel, we shall carry out this calculation directly using some elementary representa-
tion theory. From (1.1), the cotangent representation is T*=E(g)H (for notational
convenience we work exclusively over C, so that real representations are automatically
complexified). Now Sp (1) ̂  SU (2) leaves invariant a skew form co e A2 H* which induces
an isomorphism H^H*. We shall let {h, K] denote any basis of the complex vector
space H compatible with the SU( 2)-structure; hence K=jh and w(h, R)= 1.

The irreducible complex representations of Sp(l) are precisely the symmetric powers
S^H, k ̂ 0 (homogeneous polynomials of degree k in 2 variables). Their tensor products
behave according to the Clebsch-Gordan formula

min (j, fc)

(2.3) S^H^S'H^ ® S^-^H,
r=0

which follows by taking traces with co. For example

EndH^^H^H^H^HeC,

exhibits S2!! as the adjoint representation of Sp(l).

Modulo real 1-dimensional representations of the respective centres, the algebra of
finite-dimensional representations of GL(n, D-0) is isomorphic to that of the maximal
compact subgroup U(2n) of GL(2n, C). Irreducible complex representations of
GL(n, H) can then be identified with weights

(fli, fl2, . . ., a^\ a,eZ, a^a^. . . ̂ a^,

and standard methods are available to decompose the tensor product of two irreducible
representations [Z]. However for the most part we shall proceed from first principles,
leaving the reader to verify that certain modules are irreducible and to determine their
weights. The basic modules are

E=(l ,0, . . . , 0 ) , E*=(0, . . . , 0 , -1),

and (omitting complexification signs),

gl(n, H)^E*®E^C©5l(n, H).

Any complex irreducible representation of G=GL(n, H) x Sp(l) has the form A^S^H
for some irreducible GL(n, [H])-module A. If A is contained in ((g^E)®^^*) with
p-\-q-{-k even, A®SkH is (the complexification of) a real G-module. We are now in a
position to determine the homomorphism (2.1), for g=gl(n, IH])©5p(l)
^^EOS2!!. We have

g^T^E^EeS^XSEH,

and since A2 H is trivial,

(2.4) T®A2
 T* ̂  E* H®A

2
 (EH) ̂  E* H®(S2 EQA2

 ES
2
 H).

(Tensor products are indicated either in the usual way or simply by juxtaposition.) There
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36 S. M. SALAMON

is a contraction (p : E^S^-^E, so by Schur's lemma E must appear as a summand
in E^S2^ and

(2.5) E^S^^EOC,

where C = ker (p. Similarly,

(2.6) E^A^^ECD,

and C and D are both irreducible. Combining the above gives

LEMMA 2.1:

9®T* ̂  3 EHCCH®DH©ES3 H,

T®A2 T* ̂  2 EH®CH®DH©ES3 H®DS3 H.

Above nEH denotes an isotypic component isomorphic to the direct sum of n copies
of EH. It is now a straightforward, if somewhat tiresome, matter to verify that 8 has
"full rank", that is to say rank 8 is as large as is permitted by Schur's lemma. This will
then imply

PROPOSITION 2.2:

g^^ker^EH,

cokera^DS3^

Proof. — By Schur's lemma it suffices to produce elements of the image ^(g®T*)
which have nonzero components in the summands of TOOA2!^* except DS3^ For the
multiplicity one summands CH, DH, ES3^ this is easy, so we shall check only the
restriction of 8 to the submodule 3 EH.

There is one copy of EH in each of the three terms on the right-hand side of

9®T*^(C©5l(n, H)©5p(l))®EH.

Take any basis {e,}^^ of E and an SU(2)-basis {h, Ji} of H, and let {e
1
} denote the

dual basis of E* so that ^he^—e^e.h (summation) is an invariant in
E*HEH=T®T*. Then

ai=(^/i^^-^fc^)^^eC®EH,

(2.7) ^=(e
i
he^-e

i
fie^h)eih--

l
-^E^(n, H)®EH,

In

^=2e
i
heihe^!i-(e

i
Keih+e

i
heiR)e^heQp(l)(SEH,

are representatives of the element e^ h in each of the three copies of EH.

On the other hand, by (2.4) there are contractions

v|/i : T®A2
 T* -> EH c= E* H®S2

 E,

v|/2 : T®A2
 T* -̂  EH c E* H®A2

 ES
2
 H

(each defined up to a constant). Calculation gives
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QUATERNIONIC MANIFOLDS 37

\Mai=^/i,

v|/i ao^ =^i A- —\|/i aai = (i - 1 ^ fc,

\|/iBa3=-3^,

and

v^aoci=-^/i,

\|/2<9a2=^/i-— vMai=(l+— )^ A,
2n \ 2n/

\|/2^a3= —e^h.

Hence the homomorphism 5 : 3 EH -> 2 EH is represented by the matrix

1 1--L -3\

2n I
-i i+-L -i;

s 2n /

8 maps onto 2 EH, and ker 8 is spanned by the element

(2.8) (^^a^^+o^. •
n

The above calculations remain valid when n=l , although in this case A^^C and
D==0. Consequently coker^=0, and there is no obstruction to the existence of a
torsion-free G-connection. Indeed G=GL(1, H) Sp(l)^IR4 ' xSO(4), so a G-structure
is equivalent to an orientation and a conformal class, and the Levi-Civita connection of
any compatible Riemannian metric preserves the G-structure and has zero torsion.

3. Curvature and integrability

Following Guillemin [Gu], we first review some facts about G-structures for an
arbitrary subgroup G of GL(N, R) with Lie algebra QC:T(X)T*, T^^ The
homomorphism (2.1) is a special case of the Spencer complex

(3.1) . . . ^^(aA^T^g^-^A^-^-^A^T*-. . . .

In this the higher prolongations g^ are defined inductively by

Q
(r)

=ker8 : g^-^^T* -> g^-^^A2^,

where g^^g, g^^T, and 8 denotes antisymmetrization. Equivalently,
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38 S. M. SALAMON

(^(g®^*)^®^1?'6),

and the fact that 8
2
=0 in (3.1) follows by construction. The cohomology at the point

^-^(^T* is denoted by H^g); note that IT' ° (9) = 0 = W-
1 (9) for all r.

A G-structure Q is said to be integrable or flat if it is locally isomorphic to the
standard G-structure R^ x G. This means that in a neighbourhood of each point of the
manifold, there exist coordinates x^ . . ., x^ such that the moving frame
(8/8x^ . . ., 8/8x^) is a section of Q. On the overlap of two such charts, the derivative
of the transition mapping will lie in the subgroup G of GL(N, IR).

One can construct a series of tensors C^, r^O, whose vanishing is a necessary condition
for integrability. More precisely, if Co, . . ., C^_i vanish, then C^ is a well-defined
tensor in H''2 (9) [i. e. C, is a section of Q x c H''2 (9)]. The tensor Co has already been
defined as the projection in H0'^) of the torsion of any G-connection [see (2.2)]. If
Co=0, there exists a torsion-free G-connection V whose curvature R lies in
9®A2T*. The first Bianchi identity implies that <9R=0, and C^ is the corresponding
class [R] in H1' 2(9) which is independent of the choice of V.

The space

E
r^-l

^\

is isomorphic to the graded Lie algebra of vector fields preserving infinitesimally the
standard G-structure ff^xG. The Lie algebra 9 is said to be of finite type k if 9^=0
exactly when r^fe; in this case the group of local automorphisms of the standard
G-structure is finite-dimensional. If 9^=0, then W^^^Q for all r^+1, and it
follows essentially from the Frobenius theorem that the vanishing of Co, C^, . . ., C^ is
actually a sufficient condition for integrability. For more details, we refer the reader
to [Gu]; [SS].

The following theorem was proved explicitly by Kulkarni [Ku], and is a special case
of quite general results of [KN]; [Oc]. Here it is given an elementary proof using only
notation of the last section.

THEOREM 3 . 1 . — The Lie algebra ofGL(n, H) Sp(l) has finite type 2.

Proof. — We must show that the kernel 9^ of

8 : ^^T^-^A2^,

is zero. From proposition 2.2,

(3.2) ^^T* ̂  EH®EH ̂  S2 E©A2 E®(S2 E©A2 E) S2 H.

By Schur's lemma, all we have to do is find elements in each of these 4 irreducible
components which have nonzero images under 8. In the notation of (2. 7), (2. 8), put

p^.=a,®^^(9®T*)®T*,

P=a®^e9(l)®T*.

4
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QUATERNIONIC MANIFOLDS 39

Then p represents the element e^h^e^Kin EH® EH, so has nonzero components in all
4 submodules. The proof is completed by the following facts which can all be verified
readily. The element ^Pi has nonzero components in both the submodules A^S2^
S^ of COOA2^, and 3^3 has nonzero components in both S^S2^ A^ in
^(IXSA2^. •

Let M be a quaternionic manifold with G-structure Q, where from now on G
again denotes the group GL(n, H)Sp(l), n^l In the Spencer cohomology language,
proposition 2.2 says that HO '2(g)=DS3H, and by definition Co==0. The tensor C^
belongs to the cohomology H112^) of the sequence

gd)(g)T* -> g®A2
 T* -^ T®A3

 T*.

In order to decompose these spaces, we first introduce some additional representations
ofGL(n, H).

There must exist modules L, U such that

E^E^E®!.,

E®A2E^A3E©L',

and since no contractions are possible on the left-hand side, L and L' are irreducible. The
existence of a nonzero homomorphism

E®A2 E c, E(x)E(8)E -> S2 E®E.

then implies via Schur's lemma that L^I/. Next

^ ^ f E*®S3E^S2E®U,E*®S3E^S2E®U,

E*®A3E^A2E®V,

with U, V irreducible, and so

(3.4) J
E*®E®S2 E^ S2 E®U®E* L,

E*®E®A2 E^A2 E©V®E* L.

From (2.5), (2.6), both left-hand members in (3.4) contain E®E, so it must be the
case that

(3.5) E^^EQA^W,

for some W. In fact W is irreducible; in terms of weights

L=(2, 1,0, . . . , 0 ) , U=(3,0, . . . , 0 , -1),

W=(2, 1, 0, . . ., 0, -1), V=(l, 1, 1, 0, . . . . 0, -1).

Finally we compute A3 (EH) which is contained in
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40 S. M. SALAMON

(3. 6) EH®A
2
 (EH) ̂  EH®(S

2 E©A2
 ES

2
 H) ̂ (S

3 E©2 L©A3
 E) H®(A3 E®L) S3

 H.

Now A3 (EH) certainly contains A3 ES3 H, and a dimension count reveals that the only
other component is LH. Thus

(3.7) A^EH^A^S'HQLH.

Combining (2. 3), (3.3), (3.4), (3.5), (3.7) yields

LEMMA 3.2:

g®A 2 T*^2S 2 E©2A 2 E©U©W©(2S 2 E©3A 2 E©V©W)S 2 H©A 2 ES 4 H,

T®A3
 T* ^ S2 E©A2 E©W © (S2 E©2 A2 E©V©W) S2 H © (A2 E©V) S4 H.

The components of g®A2^ minus those of ^(g^^T*) all occur in T®A3T* with
the exception of U [see (3.2)]. Picking elements of g®A2^ and using Schur's lemma,
it is once again straightforward to check that 5 : g®A2T*-»>T®A3T* has full
rank. Hence

PROPOSITION 3.3. - H^^g^U.

The curvature R of any torsion-free G-connection now has the form

(3.8) R^i^O+Ru,

where i^-eg^, ^eT*, and R u ^ U (with respect to any frame in Q). In analogy with the
conformal case, Ry is called the Weyl tensor of M (see [Oc]); it can be identified with
Ci. The above does not apply when n= l and M is a 4-manifold with conformal
structure; for in that case H^-^c^L^S4^ corresponding to the fact that in the
presence of an orientation, the Weyl conformal tensor has two irreducible components
[AHS]. One can see that M behaves like a quaternionic manifold provided that part of
R lying in S^H vanishes; in this case M is said to be self-dual. It is well known that
the 4-manifold M is conformally flat iff Weyl vanishes identically. However for n^2,
it is necessary to check that there is no further integrability obstruction C^ in H2 '2^).

THEOREM 3.4. — H2 '2(g)=0, so the G-structure of a quaternionic manifold is integrable

^/RU=O.

Proof. — This is almost identical to that of theorem 3.1. One must show that

8 : g^^A^-^^A^*,

is injective, where the module g^^A2^ is decomposed in (3.6).

Setting

y,=a,®(^A^/^)e(g®T*)®A2T*,

the proof follows from verification of the following statements. The element 9y^ has
nonzero components in both submodules A^S3^ LH of C®A3T*; 9y^ has nonzero
component in S^H in $I(n, (^©A3^; and finally 9y^ has nonzero components in LH,
A^H, LS^ in -^(^A3^. •
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QUATERNIONIC MANIFOLDS 41

In section 1, we saw that the quaternionic manifold HP" possesses a natural integrable
G-structure Q. Elements of the group PGL(n+l, H)=SL(n+l , H)/Z2 °^ projective
transformations act as automorphisms of Q. Denote the isotropy subgroup of
PGL(n+ 1, H) fixing a given point of HP" by Gi, so that there is an exact sequence

(3.9) l-.N-.Gi-.G-^l,

N being the kernel of the linear isotropy representation. Counting dimensions, the Lie
algebra of G^ is isomorphic as a vector space to g®^. Indeed N is isomorphic to the
abelian group (g^, +), and G^ is a semidirect product Gix N. Kulkarni proves in [Ku]
that any local automorphism of Q is the restriction of an element of PGL(n+1, H) (the
essential point is that PGL(n+ 1, H) is not a connected component of a larger group of
automorphisms).

Now suppose that M is some other quaternionic manifold with an integrable
GL(n, H) Sp(l)-structure. From the definition of integrability, there must be an open
covering { U ^ } of M and diffeomorphisms (p^ of U into HP" such that every (pp0^"1 is
a projective transformation. In the language of Kobayashi [Ko], M is then projectively

flat. Using a development argument, as for a conformally flat manifold, yields

COROLLARY 3.5. — A compact simply-connected quaternionic manifold \vith Ry=0 is

diffeomorphic to HP".

4. Exterior forms

In this section we shall study properties of the exterior forms on a quaternionic
manifold M. The space of r-forms

A^^A^E®!!),

may be regarded as a subspace of ((^^(x^®^), and using (2.3), there must exist
representations L[ of GL(n, H) such that

[r/2]

(4.1) A'-T*^ ® L^S'-^H.

This is essentially the Lepage decomposition of [Boj, theorem 4. If one symmetrizes
completely on H, one must antisymmetrize completely on E, so L^ = Ar E for
all r. Consequently for 0^r^2n, A^* contains an irreducible subspace

A^A'E^S'H.

The subalgebras gl(n, H), gl(l, H) are each other's centralizer in gl(4n, IR), and are
said to constitute a reductive dual pair. It follows from the general theory of such
objects that L[ is always irreducible (see for example [H], theorem 8), although we shall
not need to know this. Apart from L^), we have already met 1^=5^ and L^=L; in
general in terms of weights,
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U=(2, . . . , 2 , 1, . . . , 1,0, . . . , 0 ) .

For 0^r^2n, let B
r denote the complementary subspace to Ar in A^*; this is well

defined by the action of Sp(l) and (4.1). Thus

(4.2) A'T^A^B', 0^r^2n,

where as a representation of Sp(l), W is a sum of spaces S^^H, k^l. Note that
B° = 0 = B1. Let p : A'T* -> A' denote the projection.

Setting D =p ° d defines differential operators

(4.3) o^A0-0^1-1^2-0-... ̂ A^O,

where Ar
=Qx Q^ is the associated vector bundle.

So far we have only used the fact that M has a G-structure, where G is the group
GL(n, H)Sp(l), n^2. Using the expression almost quaternionic for such a manifold
(cf. [Boi, Ma]), we have:

THEOREM 4.1. — An almost quaternionic manifold M is quaternionic iff (4.3) is a

complex.

Proof. — Since D2 : A° -^A2 is simply p ° d
2
, this always vanishes.

Accordingly consider D2 : A1 ->A3. If aeF(M, A1) with

rfa=Da+P, Per(M, B
2
),

then
0=pd

2
^=D

2
^+pd^.

Now if / is a function,

pd(f^)=fpd^^p(df®^=fpd^

since ^/®p belongs to EH(g)S2E which has no component in A3. Hence
(!)=pod : B

2
 -> A3 is a homomorphism which vanishes iff D2 : A1 -> A3 does.

If V is any G-connection, thought of as a differential operator T* -> T*(x)T* acting on
the cotangent bundle T* = T* M, its torsion may be defined by

T=d+av: T*-^^*,

where 8 is the antisymmetrization. Hence

(D(|i)=p(T-BV)(P)=pT((3),

where T acts on P as an antiderivation. This realizes 0 as a component of T, but it
must of course be a component independent of the choice of V. Indeed relative to any
frame in the principal G-bundle Q,
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(D^^A^S^^ES3!!

and because the right-hand side cannot contain ES3!-!, 0 must belong to DS3!!. It
follows that <D can be identified with the tensor Co, which therefore vanishes if (4.3) is a
complex.

Conversely if Co == 0, V can be chosen torsion-free. In this case p ° d : B
r
 -> Ar +1 must

vanish for all r ̂ 2 n— 1, and (4.2) is a complex. •

Theorem 4.1 is completely analogous to the corresponding statement involving a
complex manifold and the Dolbeault complex (A01*, 8). The obstruction to y=0 is
the Nijenhuis tensor

N (X, Y) = [IX, IY] -1 [IX, Y] -1 [X, IY] - [X, Y],

where I is the almost complex structure. The vanishing of N means that the exterior
derivative of a (1, l)-form has no (0, 3)-component. We can obtain a similar interpreta-
tion of Co as follows. Let M be almost quaternionic, and consider the bundle Z of
almost complex structures defined in section 1. Fixing xeM, each point I of the fibre
Z^ gives rise to a decomposition

(T^M^A^^Ai011,

so one can speak of the space A]'' ° of (r, 0)-forms relative to I.

PROPOSITION 4.2:

A-= ^Ai0-
l 6 Zl 6 Z

^-'''©AF2'^
l e Z

w= n(A^ l ' l®A^2 '2®...©AI l 'r- l).

Proof. — The sum (which denotes finite linear combinations) and the intersection are
to be interpreted fibrewise. Fix a frame in the fibre Q^ to identify (T^M)0 with the
vector space E(X)H. Choosing IeZ^ reduces the structure group G of Q^ to
GHGL(2n, C)=GL(n, H)U(l) .

The representation H of Sp(l) then decomposes as H=Ch@Cjh for some basis
{h, jh} to give

(4.4) A^°==E(SCh, A^^E^C/TL

Then

Ai^A^E^C^A'EOCy,

and summing over I e Z^ gives the required expression for A^

Next choose a reduction of the structure group G of T^M to Sp(n)Sp(l), which
amounts to introducing a metric which is Hermitian relative to every IeZ^. This makes
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(A^M^A^eA^^A?-1'1®. . .©Ai1^-1),

an orthogonal sum for all I. Therefore an element is orthogonal to Ar iff it belongs to

n (A^l'le...©AIl'r-l),
l6Z^

and the proposition follows. •

Consequently, the vanishing of

Co=(D=porf: B2-^3,

is equivalent to the next assertion. The exterior derivative of a 2-form of type (1, 1)
relative to all leZ has no (0, 3) component relative to any leZ. Observe that if IeZ^,
then —IeZ^, and A^^A,0'^ this explains why Ar is (the complexification of) a real
space.

Let P(H) denote the projective bundle with fibre P(H^)=CP1; it is defined globally
even if H is not. As a corollary of the correspondence l^->Ch arising from (4.4), we
have

(4.5) Z^P(H).

One of the justifications for our definition of a quaternionic manifold is that if Co=0,
the manifold Z has a natural complex structure (see corollary 7.4 or [83],
theorem 2). This fact interprets the assertion in the previous paragraph.

5. Invariant differential operators

Let M be any quaternionic manifold, and as usual let Q denote the principal G-bundle
of distinguished frames, G=GL(n, Q-fl) Sp(l). At each point q of some fibre Q^, consider
the set J^q of horizontal subspaces in T^Q arising from torsion-free connections
on Q. The set of such connections is parametrized at xeM by Q^, so J^^g^. Each
element H e ̂ \ can also be regarded as a 2-frame at x, i. e. the 2-jet of a local diffeomor-

phism from R4" into M. The bundle Qi over M with fibre U { ̂  : q e Qx}
 is then a

G^-subbundle of the second order frame bundle of M (see [Ko]), with G^ as
in (3.9). Indeed Qi consists of those frames which provide first order contact between
the standard G-structure R4" x G and Q. The existence of Qi enables us to introduce
first order invariant differential operators on a quaternionic manifold. Like G, the
conformal group CX^/'^IR4' x S0(n) has Lie algebra of type 2 [n^3; in fact
CO (4) =GL(1, H) Sp(l)], and many of the techniques used by Fegan [F] in dealing with
conformally invariant operators carry over to the quaternionic case. We outline the
relevant facts.

Let V, W be vector bundles on M associated to Q and G-modules V, W. A first
order differential operator from V to W is a homomorphism D : J^ (V) -> W, where
J^(V) is the bundle of 1-jets of sections of V. Thus D defines a mapping of sections
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F(M, V) -^r(M, W), though by abuse of notation one often writes D : V-^W. The
vector bundle Ji (V) fits into a short exact sequence

(5 .1) 0 -^ V®T* -^ Ji (V) -> V -̂  0,

and the symbol of D is the composition

a=Doi: V®T*-^W.

Now Ji(V) is associated to the principal G^-bundle Qi, and W=Qi x ^ W is associated
to Qi by means of the isotropy representation G^ -> G. It therefore makes sense to
demand that a homomorphism D : Ji(V) ->W be G^-equi variant; in this case we say

that D is quaternionic invariant.

The symbol a of a quaternionic invariant operator must arise from a G-homomorphism
V®T* -> W which we also denote by a. Conversely, suppose that V is a torsion-free
connection on the principal bundle Q; it defines a homomorphism Ji(V) -)-V®T* that
splits (5.1). Given any G-homomorphism a : V®T* -> W, one can define a differential
operator D = a ° V with symbol or. The problem is that if V is a different torsion-free
G-connection, D^c^V will not in general equal D. However ^V—V is a section
of the vector bundle with fibre g^ (see section 2). If p : G-^AutV is the homomor-
phism defining V, let dp : 9 -> End V denote the Lie algebra representation. Composing
the inclusion g^cg^T* with dp gives a G-homomorphism

(5.2) P : g^OV-^VOT*,

and for u e J ^ (V), ^(v) belongs to im P (as a subbundle of V(x)T*). Therefore D will be
independent of the choice of V iff im P c= ker <j.

This explains [F], theorem 2.1, proposition 2.2:

PROPOSITION 5.1. — A surjective homomorphism a : V(x)T*->W of G-modules is the

symbol of a quaternionic invariant operator iff im P c= ker a.

As a corollary, all invariant operators on a quaternionic manifold M may be construc-
ted from a fixed torsion-free G-connection V. For given D : V -> W invariant with
surjective symbol a, D — <j ° V is invariant of degree 0, and so arises from a G-homomor-
phism (p : V-^W. However by (2.3), the powers of H occurring in V and W have
different parity, so (p=0 and D=a°V. It is now possible to extend the definition of
invariance to apply to operators D : V -> W when V, W are vector bundles associated to
representations V, W of G and some lifting Q:

DEFINITION 5.2. — A quaternionic invariant first order operator on some open set of
M has the form D=a°V, where a : V(x)T* ->W is a surjective G-homomorphism with
im P c= ker cr.

For the group C0(n), invariant operators can be constructed using conformal
weights. This amounts to tensoring with a suitable real line bundle associated to a
representation of the centre of C0(n), and is a trick which also works in our case. The
centre of G is isomorphic to R*, being generated by scalar multiples ^ 1 of the identity
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in GL(n, [H)c=G. We say that an irreducible G-space V has weight m if U acts as
multiplication by ^m. With this convention, any Sp(l)-module S'H has weight 0, and
both E and the cotangent space T*=E®H have weight —1.

Let d denote the representation of G defined by

(5.3) ri2^®2^^2^*;

hence for any m e R , d
m is (the complexification of) a real 1-dimensional space of

weight m. The next result should be compared with [F], theorem 1.1.

THEOREM 5.3. — Let V, W be irreducible G-modules mth Wc=V®T*. Then for a

unique m e R, there is a quaternionic invariant differential operator D : d"
1
 V -> (T

1
 W.

Proof. — A key ingredient is the fact that each irreducible component of

V®T*^V®E®H occurs with multiplicity one. In view of (2.3), it suffices to show
that the same is true of the components of B®E, where B is any irreducible

GL(n, H)-space. However this follows from a multiplicity formula of Kostant [Kos],
theorem 4. 8. For each m e R, there is thus (up to a constant) a unique homomorphism

C T : ^W®V®T*-^W®W.

Labelling the homomorphism P in (5.2) with a subscript to indicate the representation
involved, we have

Pv; g^V-^V®^,

P.: Q^^^T*.

The nonvanishing of the coefficient of oc^ in (2.8) implies that P^ is an
isomorphism. Extend both Py, P^ to homomorphisms

9( l )®rfw®V -^ d^V®^,

so that they act as the identity on the extra factor ^m, rf^^V respectively. In the
definition of P^m^y, g acts on rf^V as a derivation, so

(i^,^=mp^+Pv.

By Schur's lemma and the above remarks, ao?^ and aopy are proportional, so for
some m, G°(ft^m^v)=0. Now apply proposition 5.1. •

COROLLARY 5 . 4 . — There is an invariant operator

(5.4) D : A^E^ir-^A^E'S^ir, p, ̂ 0,

\vhere E^^E, H/
=d~

m
Hfor some m independent ofp and q.

Proof. — The symbol of D is the natural homomorphism

a: d
m(p

~
q)

A
P
ES

q
H(S)EH->d

m(p
~

q)
^

p+l
ES

q+l
H.

Let m, n be the weights for which
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f D : d^-^d^EH,

1 D : d^H-^d^ES2^

are invariant. Since (5.4) can be built up from (5.5) and the derivation law, the
corollary is valid for E'=d

m
E, H'^H. But the existence of invariant operators

D : A' -^A^
1 in (4.2) shows that m+n=0 . •

Generalizing the notation of section 4, we set A.
pfq

=\
P
E

/
(SS

q
H

/
, so that

A^^A'. This is more consistent with writing the group G as GL(n, IH])GL(1, H)
rather than GL(n, H) Sp(l). Setting A0' -1 in addition allows us to state

THEOREM 5.5. — On a quaternionic manifold there is for each r^—1 an elliptic complex

O-^A^-^A1 '^1^2 '^2-^ . . . -.A2"'^2"-^

(defined only locally if s ̂  0 and r is odd).

Proof. - The operators D are defined by the corollary and have the form a ° V, where
V is a torsion-free G-connection. Thus

where

Now if

D^aoVoaoV^a^V,

a2 : A^^T^T*-^^2'^2.

9 : T*®T* -^ A2 T* c, T*(x)T*,

denotes antisymmetrization, a^a2^, and R = 3 o V 2 is the curvature of V. If
aer(M, A^), using (3. 8),

D2(a)=(72R(a)=c72a(P(^.®a)(x)Q+CT2Ru(a)=a(ap(l;,®a)(x)^)=0.

Here a 2 °Ru=0 because U does not involve S2!-!, and <7p(^®a)=0 by invariance.

We leave the reader to verify that for any nonzero real tangent vector XeTM, the
symbol sequences

_^^p- i ,4- i^^p,^^+i^+i_^

are exact. The restriction r^ — 1 is necessary since Ox : A^'0 ->A
P+lf l is not injective

for p^Z •

The complexes of theorem 5.5 are related, in the context of K-theory, to the virtual

exterior powers A2""'̂ *-!!). They may also be built up from the Dirac operator
defined by any reduction of the structure group to Sp(n) Sp(l); this is explained in [BS],
section 4; [SJ, section 7.
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6. The structure group GL(n, H)

Several authors, including more recently Sommese [So], have studied the particular
case of GL(n, H)-structures, so we consider briefly how these fit into our scheme. A
GL(n, [H)-structure on a manifold M is defined by two anti-commuting almost complex
structures I, J; this defines a whole family

{ a I + f c J + c K : al
+b

^
+c

2
=\, K=IJ} ,

of almost complex structures on M parametrized by the imaginary quaternions. This is
the same thing as an almost quaternionic manifold for which the Sp(l) vector bundle H,

and so Z^P(H), has been trivialized.

Obata has proved that a GL(n, H)-structure admits a torsion-free GL(n, 0-0)-connection
iff both I and J are integrable [O], section 11, corollary 2. This result may be deduced
by applying the techniques of sections 2 and 3 with the Lie algebra g=gl(n, H)©sp(l)
replaced by gl(n, H). With little extra work one obtains

THEOREM 6.1:

gl(n, H)^^,

H^gKn, H^^DS^QES3^

H112^!^, IHO^UeS^.

The first equation tells us that gl(n, H) has type 1, so a torsion-free
GL(n, Hl)-connection is unique if it exists; Bonan [BoJ calls it the Obata connection. The
obstruction to existence consists essentially of two tensors, which in terms of the
underlying almost quaternionic structure are the components ^eDS

3
!! (as in section 4)

and O'eES3!! of the torsion of any GL(n, H)-connection. Let h be a constant section
of the vector bundle H, so that the projective class defines an almost complex structure
a I + f o J + c K with a, b, c constants, in accordance with (4.4). Obata's theorem now
follows from the fact that the Nijenhuis tensor of this almost complex structure is
represented by the component of 0+0' proportional to h

^
=h®h®h in (D®E) S3

!!.

The curvature of the Obata connection also has two components, namely RyeU (as
in section 3) and R/eS^. The latter is also the curvature of the "canonicaF line
bundle d

2n
=A

2n
E* (5.3), and measures the obstruction to an SL(n, H)-reduction. The

GL(n, 0-0)-structure is integrable iff Ru=0=R/; so in this special case M is locally affine
([Eh]; [L]; [So]). Perhaps the most important class of manifolds with a torsion-free
GL(n, H)-connection are Riemannian ones with holonomy lying in Sp(n), the so-called
hyperkdhler manifolds. These may equivalently be defined as quaternionic Kahler mani-
folds with zero Ricci tensor [C]; the Obata connection coincides with the Levi-Civita
connection, R'=0, and Ry equals the Riemann curvature tensor. Following work of
Beauville [B], many examples are now known, and are being studied from the viewpoint of
algebraic and symplectic geometry. A quotient construction for hyperkahler manifolds
involving moment maps has been discovered by Hitchin and Rocek ([HKLR]; [K]).
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Over a quaternionic manifold M, we have seen that it is more natural to work
with the weighted bundle H^A0'1 =(1" .̂ Indeed, corollary 5.4 provides us with an
invariant differential operator

(6.1) D: A0'1-^1'2,

well known in four dimensions. Recall from section 3 that a quaternionic 4-manifold is
really one with a self-dual conformal structure. The vector bundle A0 '1 can then be
interpreted as the negative spin bundle, and (6.1) is called the twistor (or anti-Dirac)

operator [P]. For n=l , it is overdetermined, since local solutions of Ds=0 define
covariant constant sections of a certain second order vector bundle [AHS], section 4, and
form a finite-dimensional complex vector space whose dimension attains its maximum
value of 2n+2 when M=HP".

Provided A0 '1 is globally defined, any nowhere-zero section 5 of it defines an almost
complex structure I=Cs, namely the projectivization in Z=P(A°'1). However, as A0 '1

is a quaternionic line bundle, it is trivialized by the linearly independent sections 5,75, so
J=C(s+j5) and K=C(fs+j5) determine, together with I, a GL(n, H)-structure
on M. This structure is unchanged when 5 is multiplied by any nowhere-zero real scalar,
reductions from G=GL(n, H) Sp(l) to GL(n, H) being parametrized by
G/GL(n, H)^IRP3 .

THEOREM 6 . 2 . — Let M be a quaternionic manifold \vith 8=0, and let s be a nowhere-

vanishing section of A0'1. // Ds=0, the GL(n, H)-structure defined by s admits a

torsion-free connection mth R/==0.

Proof. — The section s can be written in the form <®/i, where I belongs to the real
line bundle d""", and h is a section of H of constant norm. Suppose that Ds=0, and
fix a torsion-free G-connection V on M. Then there is an induced connection V on E,
which we extend to a GL(n, H)-connection on T*=E(x)H by setting
Yh=0=Y(jh). From

(v-y)s=s®l~lYl-vs,

it follows that the tensor ^ = V ' — V has no component in the subbundle ES
3
!! of

EndT®T*. The same is true of the torsion T(VQ =<9^, so using theorem 6.1, the Obata
connection V" exists. The equation 0 = Ds = CT (s® l~

1
 Y ' l ) forces V" I = 0, so the line bundle

d is flat. •

7. New examples

Let M be a quaternionic manifold, and consider a complex vector bundle F over M
together with a connection

VF : F -> F®T*.

The latter may be used to extend the operators of corollary 5.4 into
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Dp: F®AP ' (S^->F®AP+1•<^+1 ,

by setting DF(/®a)=;?(VF/®a)+/®Da, where p denotes the obvious
projection. The proof of theorem 5.5 implies that Dp is proportional to p (Op). where
QF6EndF®A2T* is the curvature of Vp, and here p is the projection to EndF®A2

arising from the decomposition (4.2).

DEFINITION 7.1. — A quaternionic connection on a vector bundle F over a quaternionic
manifold M is one whose curvature satisfies p (Dp) = 0.

Accordingly the curvature 2-forms of a quaternionic connection lie in the
subbundle B

2
. In the special case in which M is a conformal 4-manifold, we may

identify A
2
=\

2
_, B

2
=A

2
+ with the eigenspaces of the * operator, and (4.2) becomes the

celebrated splitting

^2rT*M=^2_Q^2,.

In this case, definition 7.1 reduces to that of a self-dual connection or instanton [AHS],
section 2. For another example, consider quaternionic projective space with the opening
notation of section 1. On the open set U^, B

2 is spanned by the real components of
the quaternion valued 2-forms dq^/\dq^. Using this fact, the construction of [ADHM]
may be generalized to give quaternionic connections on Sp(n)-vector bundles on H P" [83].

Now assume that M is a quaternionic manifold with 8=0. Suppose that F has a
quaternionic connection preserving a GL(m, [H)-structure; by this we mean that F has
fibre W (so the complex rank 2m of F is even) and that Vp commutes with fibre-wise
multiplication by 7. A real rank 4 m vector bundle F can now be defined over M by

F^F®^011.

Complex conjugation on the right-hand side equals j®j\ for example if F is A1'0, then

(7.1) ¥=A
lfo

®A
ofl

=^,

is none other than the cotangent bundle (1.1) of M.

THEOREM 7.2. — // M and F are as above, the total space of F is a quaternionic

manifold.

Proof. — Choose a torsion-free G-connection V on M, and consider the connection
Vp induced by V and Vp on F by means of the derivation law. Let { f,}, 1 ̂ f = 4 m , be
a real basis of the vector bundle F consisting of sections over some open set U of M,
with corresponding coordinate functions V, and connection forms w{. Thus if n : F -> M
denotes the projection, a typical element of TC'^U) has the form V f, (summation), and

^tfi=fW-

The tangent bundle of the total space of F admits a splitting

(7.2) TF=^f©r,

where c^f is the horizontal subbundle relative to F, and i^ is tangent to the fibres. The
former is annihilated by the forms
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(D^^+^cDf,

which may be regarded as a dual basis of { fj}. Since

(7 3) f Jf^*(E*®H),

[ ^^^(F^A0'1)^^®^!!),

we have

TF^Tr^E*®^^)®^*!!.

Comparison with (1.1) shows that the manifold F now has an almost quaternionic
structure, i.e. a reduction of structure group to GL(m+n, H)Sp(l). The
GL(n, H) Sp(l) and GL(m, H) Sp(l) structures of ^f and -T respectively can be "added"
because they share a common Sp(l) action.

Equip the bundles e^f, ̂  with the natural connections arising from (7.3), and give the
manifold F a GL(m+n, H) Sp(l)-connection V by taking the direct sum in (7.2). In
order to compute the torsion T of V at a point of 71 "^(x) for xeM arbitrary, we may
suppose that (D}|^=O, so that Vco^O at all points of n ̂ (x). First observe that for
any 1-form a on M, T(7c*a)='n;*(Ta)==0, since the torsion T of V is zero.

Evaluating on K ~
l
( x ) , we have

T(^)=^=^rfO)^=^(Q^|^

where (Q.p){=dw{—w
k
i A co{ are the curvature 2-forms of Qp- ^e ̂ n now write

(7.4) T=^0p (/;.).

By hypothesis, the composition

F®A°'1 ̂  F®A1 '2 ̂  F®A2' 3,

is zero, but this implies that Qp? an(! so T? has no components involving S3!!. The
result follows from proposition 2.2. •

One can verify that the quaternionic structure of F does not depend upon the choice
of connection V on M made in the above proof. Indeed, a section 5 of F defines a
quaternionic submanifold of F (one whose tangent spaces are invariant by the locally
defined I, J, K) iff 0^5=0.

Unfortunately, the only quaternionic Kahler manifold with positive scalar curvature
that has s=0 is HP" [SJ, theorem 6.2. However the problem that s is often non-zero
can be evaded by insisting that the manifold F of theorem 7.2, rather than F, be globally
defined. For example, the locally defined vector bundle A^^E' over a quaternionic
Kahler manifold has a natural Sp(n)-connection which is quaternionic [S^],
theorem 3.1. In this case F = T* M ̂  TM [see (7.1)]; whence:

COROLLARY 7.3. — The tangent bundle of a quaternionic Kahler manifold is itself a

quaternionic manifold.
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It is curious to see how this result forces one into the domain of Riemannian geometry,
even though definition 1.1 makes no reference to a metric. In addition, one can show
that unless M is Hat, the above structure on TM does not underlie any quaternionic
Kahler metric.

As explained, theorem 7.2 is valid when M is a self-dual 4-manifold, and F an
Sp(m)-bundle with a self-dual connection. In particular, if M is also Einstein, the
positive spin bundle A1 '0 is itself self-dual [AHS], proposition 2.2; thus the tangent
bundle of both S4 and CP2 is a quaternionic manifold.

The set of irreducible self-dual connections on Sp(m)-bundles over S4 have been
classified by Atiyah, Drinfeld, Hitchin and Manin [ADHM]. For m = 1 and c^ (F) = — fe,
this set modulo gauge-equivalence forms a smooth manifold M^ of dimension
8 k — 3. Since gauge-equivalent connections on F give isomorphic quaternionic structures
on F, ^^ "^y be regarded as a moduli space for the latter. Choosing an identification
S4 = H U { oo } and factoring out by only those gauge equivalences fixing the fibre F^ gives
an enlarged moduli space M^ of dimension 8 k. It is probably no coincidence that Ji^

is itself a hyperkahler manifold ([A]; [HKLR]).

Explicit constructions of self-dual connections on bundles over C P2 have been given
by Donaldson in [D]. For our purposes one may consider U(2) vector bundles F' with
Ci (F') = 1 and c^ (F') = —k. If L denotes the hyperplane section bundle over C P2, then
F=F /(X)L -1/2 has an SU (2)-structure, and the 8-dimensional quaternionic manifold F is
well defined.

Finally we apply theorem 7.2 to an arbitrary quaternionic manifold by taking F to be
trivial with fibre H. This allows us to construct a GL(1 +n, lH)-structure and prove:

COROLLARY 7.4. — For any quaternionic manifold M, the total space of the associated

bundle Z is a complex manifold.

Proof. — Working locally, we may assume that M is a quaternionic manifold with
8=0. Let Y = F\M denote the quaternionic manifold consisting of the total space of
F=(H](x)A°'1 minus its zero section. Identify F with the real vector bundle underlying
A0 '1 by associating the real element l®a+7'(x)/aeF to aeA0 '1. This is one of a
possible C P1 worth of identifications, and its choice defines both a tautologous section
5eF(Y, TC*A°' x) and a projection

v : Y-.Z=P(A°'1).

By definition, the twistor operator D on Y acts on sections of the vector bundle
7i* A0'1. The torsion formula (7.4) implies that V induces the same operator on n* A0 '1

as would a torsion-free GL(l+n, H) Sp(l)-connection; in other words, D factors
through V. In the notation of the previous proof, with a real basis {/i, f^ f^ f^} ofF,

D5=aV(5)=aV(^7l*y;)=a(7l*y;•®(ol)=0.

By theorem 6.2, the manifold Y admits a torsion-free GL(1+^, IH])-connection, and in
particular s determines a complex structure on Y. Relative to the latter, there is a
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holomorphic action by the group C* of non-zero scalars defining v, and the quotient Z
acquires a natural complex structure. •

When M is quaternionic Kahler with positive scalar curvature, techniques of [S^],
section 6 show that Y is hyperhahler and Z is Kahler. For M = H P", Y can be identified
with H"'^1 minus the origin, and Z^CP2"'^1. In general Z is known as the tmstor

space of M in analogy with [AHS], theorem 4.1; indeed corollary 7.4 may be proved
directly by applying [AHS], proposition 3.1 to the twistor operator on M. Points of
M correspond to projective lines in Z invariant under the real structure induced by
multiplication by j in A0'1, and each line has normal bundle the sum of an appropriate
number of copies of the (positive) Hopf bundle. To summarize, a quaternionic manifold
can be thought of as a quotient of a complex manifold which is foliated in a special way
byCP^s.

Many properties of M discussed in this paper may be converted into holomorphic
data on Z. For example there is a "twistor transform" relating the elliptic complex of
theorem 5. 5 to the Dolbeault complex on Z tensored by the r-th power of a holomorphic
line bundle. This approach can be used to define additional elliptic complexes for r < — 1
involving second order operators (the basic ideas are contained in [84]; [E]). Finally, to
return full circle to definition 7.1, we remark that any vector bundle F with a quaternionic
connection defined over a quaternionic manifold M pulls back to a holomorphic bundle
over the complex manifold Z in accordance with [AHS], theorem 5.2 and [BO],

theorem 7.2.
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