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Abstract. These are lecture notes on the rigidity of submanifolds of projective
space “resembling” compact Hermitian symmetric spaces in their homogeneous embed-
dings. The results of [16, 20, 29, 18, 19, 10, 31] are surveyed, along with their classical
predecessors. The notes include an introduction to moving frames in projective geome-
try, an exposition of the Hwang-Yamaguchi ridgidity theorem and a new variant of the
Hwang-Yamaguchi theorem.

1. Overview.

• Introduction to the local differential geometry of submanifolds of
projective space.

• Introduction to moving frames for projective geometry.
• How much must a submanifold X ⊂ PN resemble a given subman-

ifold Z ⊂ PM infinitesimally before we can conclude X ' Z?
• To what order must a line field on a submanifold X ⊂ PN have

contact with X before we can conclude the lines are contained in
X?

• Applications to algebraic geometry.
• A new variant of the Hwang-Yamaguchi rigidity theorem.
• An exposition of the Hwang-Yamaguchi rigidity theorem in the

language of moving frames.

Representation theory and algebraic geometry are natural tools for
studying submanifolds of projective space. Recently there has also been
progress the other way, using projective differential geometry to prove re-
sults in algebraic geometry and representation theory. These talks will
focus on the basics of submanifolds of projective space, and give a few
applications to algebraic geometry. For further applications to algebraic
geometry the reader is invited to consult chapter 3 of [11] and the refer-
ences therein.

Due to constraints of time and space, applications to representation
theory will not be given here, but the interested reader can consult [23] for
an overview. Entertaining applications include new proofs of the classifi-
cation of compact Hermitian symmetric spaces, and of complex simple Lie
algebras, based on the geometry of rational homogeneous varieties (instead
of root systems), see [22]. The applications are not limited to classical
representation theory. There are applications to Deligne’s conjectured cat-
egorical generalization of the exceptional series [25], to Vogel’s proposed
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Universal Lie algebra [27], and to the study of the intermediate Lie algebra
e7 1

2

[26].

Notations, conventions. I mostly work over the complex numbers
in the complex analytic category, although most of the results are valid in
the C∞ category and over other fields, even characteristic p, as long as the
usual precautions are taken. When working over R, some results become
more complicated as there are more possible normal forms. I use notations
and the ordering of roots as in [2] and label maximal parabolic subgroups
accordingly, e.g., Pk refers to the maximal parabolic obtained by omitting
the spaces corresponding to the simple root αk. 〈v1, ..., vk〉 denotes the
linear span of the vectors v1, ..., vk. If X ⊂ PV is a subset, X̂ ⊂ V denotes
the corresponding cone in V \0, the inverse image of X under the projection
V \0 → PV . and X ⊂ PV denotes the Zariski closure of X , the zero set
of all the homogeneous polynomials vanishing on X . When we write Xn,
we mean dim (X) = n. We often use Id to denote the identity matrix or
identity map. Repeated indicies are to be summed over.

Acknowledgements. These notes are based on lectures given at
Seoul National University in June 2006, the IMA workshop Symmetries
and overdetermined systems of partial differential equations, July 2006 and
at CIMAT (Guanajuato) August 2006. It is a pleasure to thank Professors
Han, Eastwood and Hernandez for inviting me to give these respective lec-
ture series. I would also like to thank Professor Yamaguchi for carefully
explaining his results with Hwang to me at the workshop and Professor
Robles for reading a draft of this article and providing corrections and
suggestions for improvement.

2. Submanifolds of projective space.

2.1. Projective geometry. Let V be a vector space and let PV de-
note the associated projective space. We think of PV as the quotient of
GL(V ), the general linear group of invertible endomorphisms of V , by the
subgroup P1 preserving a line. For example if we take the line

〈











1
0
...
0











〉

then

P1 =











∗ ∗ . . . ∗
0 ∗ . . . ∗
... ∗ . . . ∗
0 ∗ . . . ∗










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where, if dim V = N + 1 the blocking is (1, N)× (1, N), so P1 is the group
of invertible matrices with zeros in the lower left hand block.

In the spirit of Klein, we consider two submanifolds M1, M2 ⊂ PV to
be equivalent if there exists some g ∈ GL(V ) such that g.M1 = M2 and
define the corresponding notion of local equivalence.

Just as in the geometry of submanifolds of Euclidean space, we will
look for differential invariants that will enable us to determine if a neigh-
borhood (germ) of a point of M1 is equivalent to a neighborhood (germ) of
a point of M2. These invariants will be obtained by taking derivatives at
a point in a geometrically meaningful way. Recall that second derivatives
furnish a complete set of differential invariants for surfaces in Euclidean
three space- the vector-bundle valued Euclidean first and second funda-
mental forms, and two surfaces are locally equivalent iff there exists a local
diffeomorphism f : M1 → M2 preserving the first and second fundamental
forms.

The group of admissible motions in projective space is larger than the
corresponding Euclidean group so we expect to have to take more deriva-
tives to determine equivalence in the projective case than the Euclidean.
For example, it was long known that for hypersurfaces Xn ⊂ Pn+1 that one
needs at least three derivatives, and Jensen and Musso [12] showed that for
most hypersurfaces, when n > 1, three derivatives are sufficient. For curves
in the plane, by a classical result of Monge, one needs six derivatives!

In order to take derivatives in a way that will facilitate extracting
geometric information from them, we will use the moving frame. Before
developing the moving frame in §3, we discuss a few coarse invariants with-
out machinery and state several rigidity results.

2.2. Asymptotic directions. Fix x ∈ Xn ⊂ PV . After taking one
derivative, we have the tangent space TxX ⊂ TxPV , which is the set of
tangent directions to lines in PV having contact with X at x to order at
least one. Since we are discussing directions, it is better to consider PTxX ⊂
PTxPV . Inside PTxX is C2,X,x ⊂ PTxX , the set of tangent directions
to lines having contact at least two with X at x, these are called the
asymptotic directions in Euclidean geometry, and we continue to use the
same terminology in the projective setting. Continuing, we define Ck,X,x

for all k, and finally, C∞,X,x, which, in the analytic category, equals CX,x,
the lines on (the completion of) X through x. When X is understood we
sometimes write Ck,x for Ck,X,x.

What does C2,X,x, or more generally Ck,X,x tell us about the geometry
of X?

That is, what can we learn of the macroscopic geometry of X from the
microscopic geometry at a point? To increase the chances of getting mean-
ingful information, from now on, when we are in the analytic or algebraic
category, we will work at a general point. Loosely speaking, after taking k
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derivatives there will be both discrete and continuous invariants. A general
point is one where all the discrete invariants are locally constant.

(To be more precise, if one is in the analytic category, one should really
speak of k-general points (those that are general to order k), to insure there
is just a finite number of discrete invariants. In everything that follows we
will be taking just a finite number of derivatives and we should say we
are working at a k-general point where k is larger than the number of
derivatives we are taking.)

When we are in the C∞ category, we will work in open subsets and
require whatever property we are studying at a point holds at all points in
the open subset.

For example, if Xn is a hypersurface, then C2,X,x is a degree two
hypersurface in PTxX (we will prove this below), and thus its only invariant
is its rank r. In particular, if X is a smooth algebraic variety and x ∈
Xgeneral the rank is n (see e.g., [6, 11]) and thus we do not get much
information. (In contrast, if r < n, then the Gauss map of X is degenerate
and X is (locally) ruled by Pn−r’s.)

More generally, if Xn ⊂ Pn+a, then C2,X,x is the intersection of at
most min (a,

(

n+1
2

)

) quadric hypersurfaces, and one generally expects that
equality holds. In particular, if the codimension is sufficiently large we ex-
pect C2,x to be empty and otherwise it should have codimension a. When
this fails to happen, there are often interesting consequences for the macro-
scopic geometry of X .

2.3. The Segre variety and Griffiths-Harris conjecture. Let
A, B be vector spaces and let V = A⊗B. Let

X = P(rank one tensors) ⊂ PV.

Recall that every rank one matrix (i.e., rank one tensor expressed in terms
of bases) is the matrix product of a column vector with a row vector,
and that this representation is unique up to a choice of scale, so when we
projectivize (and thus introduce another choice of scale) we obtain

X ' PA × PB.

X is called the Segre variety and is often written X = Seg(PA × PB) ⊂
P(A⊗B).

We calculate C2,x for the Segre. We first must calculate TxX ⊂ TxPV .
We identify TxPV with V mod x̂ and locate TxX as a subspace of V mod x̂.

Let x = [a0 ⊗ b0] ∈ Seg(PA × PB). A curve x(t) in X with x(0) = x
is given by curves a(t) ⊂ A, b(t) ⊂ B, with a(0) = a0, b(0) = b0 by taking
x(t) = [a(t)⊗ b(t)].

d

dt
|t=0at ⊗ bt = a′

0 ⊗ b0 + a0 ⊗ b′0
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and thus

TxX = (A/a0)⊗ b0 ⊕a0 ⊗B/b0 mod a0 ⊗ b0.

Write A′ = (A/a0)⊗ b0, B′ = a0 ⊗ (B/b0) so

TxX ' A′ ⊕B′.

We now take second derivatives modulo the tangent space to see which
tangent directions have lines osculating to order two (these will be the
derivatives that are zero modulo the tangent space).

d2

(dt)2
|t=0at ⊗ bt = a′′

0 ⊗ b0 + a′

0 ⊗ b′0 + a0 ⊗ b′′0 mod x̂ (2.1)

≡ a′

0 ⊗ b′0 mod T̂xX. (2.2)

Thus we get zero iff either a′
0 = 0 or b′0 = 0, i.e.,

C2,X,x = PA′ t PB′ ⊂ P(A′ ⊕B′)

i.e., C2,X,x is the disjoint union of two linear spaces, of dimensions dim A−
2, dim B − 2. Note that dim C2,x is much larger than expected.

For example, consider the case Seg(P2×P2) ⊂ P8. Here C2,x is defined
by four quadratic polynomials on P3 = P(TxX), so one would have expected
C2,x to be empty. This rather extreme pathology led Griffiths and Harris
to conjecture:

Conjecture 2.1 (Griffiths-Harris, 1979 [6]). Let Y 4 ⊂ P8 be a vari-
ety not contained in a hyperplane and let y ∈ Ygeneral. If C2,Y,y = P

1tP
1 ⊂

P3 = P(TyY ), then Y is isomorphic to Seg(P2 × P2).
(The original statement of the conjecture was in terms of the projective

second fundamental form defined below.) Twenty years later, in [16] I
showed the conjecture was true, and moreover in [16, 20] I showed:

Theorem 2.1. Let Xn = G/P ⊂ PV be a rank two compact Her-
mitian symmetric space (CHSS) in its minimal homogeneous embedding,
other than a quadric hypersurface. Let Y n ⊂ PV be a variety not con-
tained in a hyperplane and let y ∈ Ygeneral. If C2,Y,y ' C2,X,x then Y is
projectively isomorphic to X.

An analogous result is true in the C∞ category, namely
Theorem 2.2. Let Xn = G/P ⊂ PV be a rank two compact Her-

mitian symmetric space (CHSS) in its minimal homogeneous embedding,
other than a quadric hypersurface. Let Y n ⊂ PW be a smooth submanifold
not contained in a hyperplane. If C2,Y,y ' C2,X,x for all y ∈ Y , then Y is
projectively isomorphic to an open subset of X.

The situation of the quadric hypersurface is explained below (Fubini’s
theorem) - to characterize it, one must have C3,Y,y = C3,Q,x.

The rank two CHSS are Seg(PA × PB), the Grassmanians of two-
planes G(2, V ), the quadric hypersurfaces, the complexified Cayley plane
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OP2 = E6/P6, and the spinor variety D5/P5 (essentially the isotropic 5-
planes through the origin in C10 equipped with a quadratic form - the set
of such planes is disconnected and the spinor variety is one (of the two)
isormorphic components. The minimal homogenous embedding is also in
a smaller linear space than the Plucker embedding of the Grassmannian.)
The only rank one CHSS is projective space Pn. The rank two CHSS and
projective space are examples of rational homogeneous varieties.

2.4. Homogeneous varieties. Let G ⊂ GL(V ) be a reductive group
acting irreducibly on a vector space V . Then there exists a unique closed
orbit X = G/P ⊂ PV , which is called a rational homogeneous variety.
(Equivalently, X may be characterized as the orbit of a highest weight line,
or as the minimal orbit.)

Note that if X = G/P ⊂ PV is homogenous, TxX inherits additional
structure beyond that of a vector space. Namely, consider x = [Id] as the
class of the identity element for the projection G → G/P . Then P acts
on TxX and, as a P -module TxX ' g/p. For example, in the case of the
Segre, TxX was the direct sum of two vector spaces.

A homogeneous variety X = G/P is a compact Hermitian symmetric
space, or CHSS for short, if P acts irreducibly on TxX . The rank of a
CHSS is the number of its last nonzero fundamental form in its minimal
homogeneous embedding. (This definition agress with the standard one.)
Fundamental forms are defined in §3.4.

Exercise 2.1. The Grassmannian of k-planes through the origin in
V , which we denote G(k, V ), is homogenous for GL(V ) (we have already
seen the special case G(1, V ) = PV ).

Determine the group Pk ⊂ GL(V ) that stabilizes a point. Show that
TEG(k, V ) ' E∗ ⊗V/E in two different ways - by an argument as in the
Segre case above and by determining the structure of g/p.

While all homogeneous varieties have many special properties, the rank
at most two CHSS (other than the quadric hypersurface) are distinguished
by the following property:

Proposition 2.1. [21] Theorem 2.1 is sharp in the sense that no other
homogeneous variety is completely determined by its asymptotic directions
at a general point other than a linearly embedded projective space.

Nevertheless, there are significant generalizations of Theorem 2.1 due
to Hwang-Yamaguchi and Robles discussed below in §3.5. To state these
results we will need definitions of the fundamental forms and Fubini cubic
forms, which are given in the next section.

However, with an additional hypothesis - namely that the unknown
variety has the correct codimension, we obtain the following result (which
appears here for the first time):

Theorem 2.3. Let Xn ⊂ CPn+a be a complex submanifold not con-
tained in a hyperplane. Let x ∈ X be a general point. Let Zn ⊂ Pn+a be
an irreducible compact Hermitian symmetric space in its minimal homo-
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geneous embedding, other than a quadric hypersurface. If C2,X,x = C2,Z,z

then X = Z.
Remark 2.1. The Segre variety has C2,x = Cx = PA′ t PB′ ⊂

P(A′ ⊕B′) = PTxX. To see this, note that a matrix has rank one iff
all its 2 × 2 minors are zero, and these minors provide defining equations
for the Segre. In general, if a variety is defined by equations of degree
at most d, then any line having contact to order d at any point must be
contained in the variety. In fact, by an unpublished result of Kostant, all
homogeneously embedded rational homogeneous varieties G/P are cut out
by quadratic equations so C2,G/P,x = CG/P,x.

3. Moving frames and differential invariants. For more details
regarding this section, see chapter 3 of [11].

Once and for all fix index ranges 1 ≤ α, β, γ ≤ n, n+1 ≤ µ, ν ≤ n+a,
0 ≤ A, B, C ≤ n + a = N .

3.1. The Maurer-Cartan form of GL(V ). Let dim V = N + 1,
denote an element f ∈ GL(V ) by f = (e0, ..., eN) where we may think of
the eA as column vectors providing a basis of V . (Once a reference basis
of V is fixed, GL(V ) is isomorphic to the space of all bases of V .) Each eA

is a V -valued function on GL(V ), eA : GL(V ) → V . For any differentiable
map between manifolds we can compute the induced differential

deA|f : TfGL(V ) → TeA
V

but now since V is a vector space, we may identify TeA
V ' V and consider

deA : TfGL(V ) → V

i.e., deA is a V -valued one-form on GL(V ). As such, we may express it as

deA = e0ω
0
A + e1ω

1
A + · · · + eNωN

A

where ωA
B ∈ Ω1(GL(V )) are ordinary one-forms (This is because e0, ..., eN

is a basis of V so any V -valued one form is a linear combination of these
with scalar valued one forms as coefficients.) Collect the forms ωA

B into a
matrix Ω = (ωA

B). Write df = (de0, ..., deN ), so df = fΩ or

Ω = f−1df

Ω is called the Maurer-Cartan form for GL(V ). Note that ωA
B measures

the infinitesimal motion of eB towards eA.
Amazing fact: we can compute the exterior derivative of Ω algebraically!
We have dΩ = d(f−1) ∧ df so we need to calculate d(f−1). Here is where
an extremely useful fact comes in:

The derivative of a constant function is zero.
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We calculate 0 = d(Id) = d(f−1f) = d(f−1)f + f−1df , and thus
dΩ = −f−1dff−1 ∧ df but we can move the scalar valued-matrix f−1

across the wedge product to conclude

dΩ = −Ω ∧ Ω

which is called the Maurer-Cartan equation. The notation is such that
(Ω ∧ Ω)A

B = ωA
C ∧ ωC

B .

3.2. Moving frames for X ⊂ PV . Now let Xn ⊂ P
n+a = PV be

a submanifold. We are ready to take derivatives. Were we working in
coordinates, to take derivatives at x ∈ X , we might want to choose coor-
dinates such that x is the origin. We will make the analoguous adaptation
using moving frames, but the advantage of moving frames is that all points
will be as if they were the origin of a coordinate system. To do this, let
π : F0

X := GL(V )|X → X be the restriction of π : GL(V ) → PV .
Similarly, we might want to choose local coordinates (x1, ..., xn+a)

about x = (0, ..., 0) such that TxX is spanned by ∂
∂x1 , , ..., ∂

∂xn . Again,
using moving frames the effect will be as if we had chosen such coordinates
about each point simultaneously. To do this, let π : F1 → X denote the
sub-bundle of F0

X preserving the flag

x̂ ⊂ T̂xX ⊂ V.

Recall x̂ ⊂ V denotes the line corresponding to x and T̂xX denotes the
affine tangent space TvX̂ ⊂ V , where [v] = x. Let (e0, ..., en+a) be a basis
of V with dual basis (e0, ..., en+a) adapted such that e0 ∈ x̂ and {e0, eα}
span T̂xX . Write T = TxX and N = NxX = TxPV/TxX .

Remark 3.1. (Aside for the experts) I am slightly abusing notation in
this section by identifying T̂xX/x̂ with TxX := (T̂xX/x̂)⊗ x̂∗ and similarly
for NxX.

The fiber of π : F1 → X over a point is isomorphic to the group

G1 =







g =





g0
0 g0

β g0
ν

0 gα
β gα

ν

0 0 gµ
ν





∣

∣

∣ g ∈ GL(V )







.

While F1 is not in general a Lie group, since F1 ⊂ GL(V ), we may
pull back the Maurer-Cartan from on GL(V ) to F1. Write the pullback of
the Maurer-Cartan form to F1 as

ω =





ω0
0 ω0

β ω0
ν

ωα
0 ωα

β ωα
ν

ωµ
0 ωµ

β ωµ
ν



 .

The definition of F1 implies that ωµ
0 = 0 because

de0 = ω0
0e0 + · · · + ωn

0 en + ωn+1
0 en+1 + · · · + ωn+a

0 en+1
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but we have required that e0 only move towards e1, ..., en to first order.
Similarly, because dim X = n, the adaptation implies that the forms ωα

0

are all linearly independent.
At this point you should know what to do - seeing something equal to

zero, we differentiate it. Thanks to the Maurer-Cartan equation, we may
calculate the derivative algebraically. We obtain

0 = d(ωµ
0 ) = −ωµ

α ∧ ωα
0 ∀µ.

Since the one-forms ωα
0 are all linearly independent, it is clear that the ωµ

α

must be linear combinations of the ωβ
0 , and in fact the Cartan lemma (see

e.g., [11], p 314) implies that the dependence is symmetric. More precisely
(exercise!) there exist functions

qµ
αβ : F1 → C

with ωµ
α = qµ

αβωβ
0 and moreover qµ

αβ = qµ
βα. One way to understand the

equation ωµ
α = qµ

αβωβ
0 is that the infinitesimal motion of the embedded tan-

gent space (the infinitesimal motion of the eα’s in the direction of the eµ’s)
is determined by the motion of e0 towards the eα’s and the coeffiencients
qµ
αβ encode this dependence.

Now π : F1 → X was defined geometrically (i.e., without making any
arbitrary choices) so any function on F1 invariant under the action of G1

descends to be a well defined function on X , and will be a differential
invariant. Our functions qµ

αβ are not invariant under the action of G1,
but we can form a tensor from them that is invariant, which will lead to
a vector-bundle valued differential invariant for X (the same phenomenon
happens in the Euclidean geometry of submanifolds).

Consider

ĨIf = F2,f := ωα
0 ωµ

α ⊗ (eµ mod T̂xX) = qµ
αβωα

0 ωβ
0 ⊗ (eµ mod T̂xX)

ĨI ∈ Γ(F1, π∗(S2T ∗X ⊗NX)) is constant on the fiber and induces a tensor
II ∈ Γ(X, S2T ∗X ⊗NX). called the projective second fundamental form.

Thinking of IIx : N∗
xX → S2T ∗

xX , we may now properly define the
asymptotic directions by

C2,x := P(Zeros(IIx(N∗

xX)) ⊂ PTxX.

3.3. Higher order differential invariants: the Fubini forms.

We continue differentiating constant functions:

0 = d(ωµ
α − qµ

αβωβ
0 )

yields functions rµ
αβγ : F1 → C, symmetric in their lower indices, that in-

duce a tensor F3 ∈ Γ(F1, π∗(S3T ∗X ⊗NX)) called the Fubini cubic form.
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Unlike the second fundamental form, it does not descend to be a tensor
over X because it varies in the fiber. We discuss this variation in §6. Such
tensors provide relative differential invariants and by sucessive differentia-
tions, one obtains a series of invariants Fk ∈ Γ (F1, π∗(SkT ∗⊗N)). For
example,

F3 = rµ
αβγωα

0 ωβ
0 ωγ

0 ⊗ eµ

F4 = rµ
αβγδω

α
0 ωβ

0 ωγ
0 ωδ

0 ⊗ eµ

where the functions rµ
αβγ , rµ

αβγδ are given by

rµ
αβγωγ

0 = −dqµ
αβ − qµ

αβω0
0 − qν

αβωµ
ν + qµ

αδω
δ
β + qµ

βδω
δ
α (3.1)

rµ
αβγδω

δ
0 = −drµ

αβγ − 2rµ
αβγω0

0 − rν
αβγωµ

ν
(3.2)

+ Sαβγ(rµ
αβεω

ε
γ + qµ

αβω0
γ − qµ

αεq
ν
βγωε

ν).

We define Ck,x := Zeros(F2,f , ..., Fk,f ) ⊂ PTxX , which is independent
of our choice of f ∈ π−1(x).

If one chooses local affine coordinates (x1, ..., xn+a) such that x =
(0, ..., 0) and TxX = 〈 ∂

∂xα 〉, and writes X as a graph

xµ = qµ
αβxαxβ − rµ

αβγxαxβxγ + rµ
αβγδx

αxβxγxδ + · · ·

then there exists a local section of F1 such that

F2|x = qµ
αβdxαdxβ ⊗

∂

∂xµ

F3|x = rµ
αβγdxαdxβdxγ ⊗

∂

∂xµ

F4|x = rµ
αβγδdxαdxβdxγdxδ ⊗

∂

∂xµ

and similarly for higher orders.
(3.1) is a system of a

(

n+1
2

)

equations with one-forms as coefficients for

the a
(

n+2
3

)

coefficients of F3 and is overdetermined if we assume dqµ
αβ =

0, as we do in the rigidity problems. One can calculate directly in the
Segre Seg(Pm × Pr), m, r > 1 case that the only possible solutions are
normalizable to zero by a fiber motion as described in (6.4). The situation
is the same for F4, F5 in this case.

In general, once Fk , ..., F2k−1 are normalized to zero at a general point,
it is automatic that all higher Fj are zero, see [15]. Thus one has the entire
Taylor series and has completely identified the variety. This was the method
of proof used in [16], as the rank two CHSS have all Fk normalizable to
zero when k > 2.

Another perspective, for those familiar with G-structures, is that one
obtains rigidity by reducing F1 to a smaller bundle which is isomorphic to
G, where the homogeneous model is G/P .
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Yet another perspective, for those familiar with exterior differential
systems, is that after three prolongations, the EDS defined by I = {ωµ

0 , ωµ
α−

qµ
αβωβ

0 } on GL(V ) becomes involutive, in fact Frobenius.

3.4. The higher fundamental forms. A component of F3 does de-
scend to a well defined tensor on X . Namely, considering F3 : N∗ → S3T ∗,
if we restrict F3|ker F2

, we obtain a tensor F3 = III ∈ S3T ∗⊗N3 where
N3 = TxPV/{TxX + II(S2TxX)}. One continues in this manner to get a
series of tensors Fk called the fundamental forms.

Geometrically, II measures how X is leaving its embedded tangent
space at x to first order, III measures how X is leaving its second osculating
space at x to first order while F3 mod III measures how X is moving away
from its embedded tangent space to second order.

3.5. More rigidity theorems. Now that we have defined fundamen-
tal forms, we may state:

Theorem 3.1 (Hwang-Yamaguchi). [10] Let Xn ⊂ CPn+a be a
complex submanifold. Let x ∈ X be a general point. Let Z be an ir-
reducible rank r compact Hermitian symmetric space in its natural em-
bedding, other than a quadric hypersurface. If there exists linear maps
f : TxX → TzZ, gk : Nk,xX → Nk,zZ such that the induced maps
SkT ∗

xX ⊗NxX → SkT ∗
z Z ⊗NzZ take Fk,X,x to Fk,Z,z for 2 ≤ k ≤ r, then

X = Z.
In [22] we calculated the differential invariants of the adjoint varieties,

the closed orbits in the projectivization of the adjoint representation of a
simple Lie algebra. (These are the homogeneous complex contact manifolds
in their natural homogeneous embedding.) The adjoint varieties have III =
0, but, in all cases but v2(P

2n−1) = Cn/P1 ⊂ P(cn) = P(S2C2n) which we
exclude from discussion in the remainder of this paragraph, the invariants
F3, F4 are not normalizable to zero, even though C3,x = C4,x = C2,x = Cx.
In a normalized frame Cx is contained in a hyperplane H and F4 is the
equation of the tangential variety of Cx in H , where the tangential variety
τ(X) ⊂ PV of an algebraic manifold X ⊂ PV is the union of the points
on the embedded tangent lines (P1’s) to the manifold. In this case the
tangential variety is a hypersurface in H , except for g = an = sln+1 which
is discussed below. Moreover, F3 consists of the defining equations for the
singular locus of τ(Cx). In [22] we speculated that the varieties Xad, with
the exception of v2(P

2n−1) (which is rigid to order three, see [16]) would
be rigid to order four, but not three, due to the nonvanishing of F4. Thus
the following result came as a suprise to us:

Theorem 3.2 (Robles, [31]). Let X2(m−2) ⊂ CPm2
−2 be a complex

submanifold. Let x ∈ X be a general point. Let Z ⊂ Pslm be the ad-
joint variety. If there exist linear maps f : TxX → TzZ, g : NxX → NzZ
such that the induced maps SkT ∗

x X ⊗NxX → SkT ∗
z Z ⊗NzZ take Fk,X,x

to Fk,Z,z for k = 2, 3, then X = Z.

Again, the corresponding result holds in the C∞ category.



12 J.M. LANDSBERG

The adjoint variety of slm = sl(W ) has the geometric interpretation
of the variety of flags of lines inside hyperplanes inside W , or equivalently
as the traceless, rank one matrices. It has C2,z the union of two disjoint
linear spaces in a hyperplane in PTzZ. The quartic F4 is the square of a
quadratic equation (whose zero set contains the two linear spaces), and the
cubics in F3 are the derivatives of this quartic, see [22], §6.

3.6. The prolongation property and proof of Theorem 2.3.

The precise restrictions II places on the Fk in general is not known at
this time. However, there is a strong restriction II places on the higher
fundamental forms that dates back to Cartan. We recall a definition from
exterior differential systems:

Let U, W be vector spaces. Given a linear subspace A ⊂ SkU∗ ⊗W ,
define the j-th prolongation of A to be A(j) := (A⊗SjU∗)∩(Sk+jU∗ ⊗W ).
Thinking of A as a collection of W -valued homogeneous polynomials on
U , the j-th prolongation of A is the set of all homogeneous W -valued
polynomials of degree k+j on U with the property that all their j-th order
partial derivatives lie in A.

Proposition 3.1 (Cartan [3] p 377). Let Xn ⊂ Pn+a, and let x ∈ X
be a general point. Then Fk,x(N∗

k ) ⊆ F2,x(N∗
2 )(k−2). (Here W is taken to

be the trivial vector space C and U = TxX.)
Proposition 3.2. [21] Let X = G/P ⊂ PV be a CHSS in its minimal

homogeneous embedding. Then Fk,x(N∗

k ) = F2,x(N∗
2 )(k−2). Moreover, the

only nonzero components of the Fk are the fundamental forms.
The only homogeneous varieties having the property that the only

nonzero components of the Fk are the fundamental forms are the CHSS.
Proof. [Proof of Theorem 2.3] The strict prolongation property for

CHSS in their minimal homogenous embedding implies that any variety
with the same second fundamental form at a general point as a CHSS in
its minimal homogeneous embedding can have codimension at most that of
the corresponding CHSS, and equality holds iff all the other fundamental
forms are the prolongations of the second.

4. Bertini type theorems and applications. The results discussed
so far dealt with homogeneous varieties. We now broaden our study to
various pathologies of the Ck,x.

Let T be a vector space. The classical Bertini theorem implies that
for a linear subspace A ⊂ S2T ∗, if q ∈ A is such that rank (q) ≥ rank (q′)
for all q′ ∈ A, then u ∈ qsing := {v ∈ T | q(v, w) = 0 ∀w ∈ T} implies
u ∈ Zeros (A) := {v ∈ T | Q(v, v) = 0 ∀Q ∈ A}.

Theorem 4.1 (Mobile Bertini). Let Xn ⊂ PV be a complex manifold
and let x ∈ X be a general point. Let q ∈ II(N ∗

xX) be a generic quadric.
Then qsing is tangent to a linear space on X.

For generalizations and variations, see [20].
The result holds in the C∞ category if one replaces a general point by

all points and that the linear space is contained in X as long as X continues
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(e.g., it is contained in X if X is complete).

Proof. Assume v = e1 ∈ qsing and q = qn+1
αβ ωα

0 ωβ
0 . Our hypotheses

imply qn+1
1β = 0 for all β. Formula (3.1) reduces to

rn+1
11β ωβ

0 = −qµ
11ω

n+1
µ .

If q is generic we are working on a reduction of F1 where the ωµ
ν are inde-

pendent of each other and independent of the semi-basic forms (although
the ωα

β will no longer be independent of the ωα
0 , ωµ

ν ); thus the coefficients
on both sides of the equality are zero, proving both the classical Bertini
theorem and v ∈ rsing where r is a generic cubic in F3(N

∗). Then using
the formula for F4 one obtains v ∈ Zeros(F3) and v ∈ ssing where s is a
generic element of F4(N

∗). One then concludes by induction.
Remark 4.1. The mobile Bertini theorem essentially dates back to B.

Segre [35], and was rediscovered in various forms in [6, 4]. Its primarary
use is in the study of varieties Xn ⊂ PV with defective dual varieties
X∗ ⊂ PV ∗, where the dual variety of a smooth variety is the set of tangent
hyperplanes to X, which is usually a hypersurface. The point is that a
generic quadric in II(N∗

x,X) (with x ∈ Xgeneral) is singular of rank r iff
codim X∗ = n − r + 1.

Example 1. Taking X = Seg(PA × PB) and keeping the notations
of above, let Y have the same second fundamental form of X at a general
point y ∈ Y so we inherit an identification TyY ' A′ ⊕B′. If dimB =
b > a = dim A, then mobile Bertini implies that PB′ is actually tangent
to a linear space on Y , because the maximum rank of a quadric is a − 1.
So at any point [b] ∈ PB′ there is even a generic quadric singular at [b].
(Of course the directions of PA′ are also tangent to lines on Y because the
Segre is rigid.)

While in [16] I did not calculate the rigidity of Seg(P1 × Pn) ⊂
P(C2 ⊗Cn+1), the rigidity follows from the same calculations, however one
must take additional derivatives to get the appropriate vanishing of the Fu-
bini forms. However there is also an elementary proof of rigidity in this
case using the mobile Bertini theorem [20]. Given a variety Y n+1 ⊂ PN

such that at a general point y ∈ Y , C2,y contains a Pn−1, by 4.1 the result-
ing n-plane field on TY is integrable and thus Y is ruled by Pn’s. Such a
variety arises necessarily from a curve in the Grassmannian G(n+1, N+1)
(as the union of the points on the Pn’s in the curve). But in order to also
have the P0 factor in C2,y, such a curve must be a line and thus Y must be
the Segre.

The mobile Bertini theorem describes consequences of C2,x being
pathological. Here are some results when Ck,x is pathological for k > 2.

Theorem 4.2 (Darboux). Let X2 ⊂ P2+a be an analytic submanifold
and let x ∈ Xgeneral. If there exists a line l having contact to order three
with X at x, then l ⊂ X. In other words, for surfaces in projective space,

C3,x = Cx ∀x ∈ Xgeneral.
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The C∞ analogue holds replacing general points by all points and lines by
line segments contained in X .

There are several generalizations of this result in [18, 19]. Here is one
of them:

Theorem 4.3. [19] Let Xn ⊂ Pn+1 be an analytic submanifold and let
x ∈ Xgeneral. If Σ ⊆ Ck,x is an irreducible component with dimΣ > n − k,
then Σ ⊂ Cx.

The C∞ analog holds with the by now obvious modifications.
The proof is similar to that of the mobile Bertini theorem.
Exercise 4.1. One of my favorite problems to put on an undergrad-

uate differential geometry exam is: Prove that a surface in Euclidean three
space that has more than two lines passing through each point is a plane
(i.e., has an infinite number of lines passing through). In [30], Mezzetti and
Portelli showed that a 3-fold having more than six lines passing through a
general point must have an infinite number. Show that an n-fold having
more than n! lines passing through a general point must have an infinite
number passing through each point. (See [19] if you need help.)

The rigidity of the quadric hypersurface is a classical result:

Theorem 4.4 (Fubini). Let Xn ⊂ Pn+1 be an analytic submanifold or
algebraic variety and let x ∈ Xgeneral. Say C3,x = C2,x. Let r = rank C2,x.
Then

• If r > 1, then X is a quadric hypersurface of rank r.
• If r = 1, then X has a one-dimensional Gauss image. In particu-

lar, it is ruled by P
n−1’s.

In all situations, the dimension of the Gauss image of X is r, see [11],
§3.4.

One way to prove Fubini’s theorem (assuming r > 1) is to first use
mobile Bertini to see that X contains large linear spaces, then to note that
degree is invariant under linear section, so one can reduce to the case of a
surface. But then it is elementary to show that the only analytic surface
that is doubly ruled by lines is the quadric surface.

Another way to prove Fubini’s theorem (assuming r > 1) is to use
moving frames to reduce the frame bundle to O(n + 2).

What can we say in higher codimension? Consider codimension two.
What are the varieties Xn ⊂ Pn+2 such that for general x ∈ X we have
C3,x = C2,x?

Note that there are two principal difficulties in codimension two. First,
in codimension one, having C3,x = C2,x implies that F3 is normalizable to
zero - this is no longer true in codimension greater than one. Second, in
codimension one, there is just one quadratic form in II , so its only invariant
is its rank. In larger codimension there are moduli spaces, although for
pencils at least there are normal forms, convienently given in [9].

For examples, we have inherited from Fubini’s theorem:
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0. Pn ⊂ Pn+2 as a linear subspace
0’. Qn ⊂ Pn+1 ⊂ Pn+2 a quadric
0”. A variety with a one-dimensional Gauss image.

To these it is easy to see the following are also possible:

1. The (local) product of a curve with a variety with a one dimensional
Gauss image.

2. The intersection of two quadric hypersurfaces.
3. A (local) product of a curve with a quadric hypersurface.

There is one more example we have already seen several times in these
lectures:

4. The Segre Seg(P1 × P
2) ⊂ P

5 or a cone over it.
Theorem 4.5 (Codimension two Fubini). [29] Let Xn ⊂ Pn+2 be an

analytic submanifold and let x ∈ Xgeneral. If C3,x = C2,x then X is (an
open subset of) one of 0, 0′, 0′′, 1 − 4 above.

Here if one were to work over R, the corresponding result would be
more complicated as there are more normal forms for pencils of quadrics.

5. Applications to algebraic geometry. One nice aspect of alge-
braic geometry is that spaces parametrizing algebraic varieties tend to also
be algebraic varieties (or at least stacks, which is the algebraic geometer’s
version of an orbifold). For example, let Zn ⊂ Pn+1 be a hypersurface. The
study of the images of holomorphic maps f : P1 → Z, called rational curves
on Z is of interest to algebraic geometers and physicists. One can break this
into a series of problems based on the degree of f(P1) (that is, the number
of points in the intersection f(P1) ∩ H where H = Pn is a general hyper-
plane). When the degree is one, these are just the lines on Z, and already
here there are many open questions. Let F(Z) ⊂ G(P1, Pn+1) = G(2, Cn+2)
denote the variety of lines (i.e. linear P1’s) on Z.

Note that if the lines are distributed evenly on Z and z ∈ Zgeneral, then
dim F(Z) = dim Cz,Z + n− 1. We always have dim F(Z) ≥ dim Cz,Z + n− 1
(exercise!), so the microscopic geometry bounds the macroscopic geometry.

Example 2. Let Z = Pn, then F(Z) = G(2, n + 1). In particular,
dim F(Z) = 2n− 2 and this is the largest possible dimension, and Pn is the
only variety with dim F(Z) = 2n − 2.

Which are the varieties Xn ⊂ PV with dim F(X) = 2n−3? A classical
theorem states that in this case X must be a quadric hypersurface.

Rogora, in [32], classified all Xn ⊂ Pn+a with dim F(X) = 2n − 4,
with the extra hypothesis codim X > 2. The only “new” example is the
Grassmannian G(2, 5). (A classification in codimension one would be quite
difficult.) A corollary of the codimension two Fubini theorem is that Ro-
gora’s theorem in codimension two is nearly proved - nearly and not com-
pletely because one needs to add the extra hypothesis that C2,x has only
one component or that C3,x = C2,x.

If one has extra information about X , one can say more. Say X is a
hypersurface of degree d. Then it is easy to show that dim F(X) ≥ 2n−1−d.
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Conjecture 5.1 (Debarre, de Jong). If Xn ⊂ Pn+1 is smooth and
n > d = deg(X), then dim F(X) = 2n− 1 − d.

Without loss of generality it would be sufficient to prove the conjecture
when n = d (slice by linear sections to reduce the dimension). The con-
jecture is easy to show when n = 2, it was proven by Collino when n = 3,
by Debarre when n = 4, and the proof of the n = 5 case was was the PhD
thesis of R. Beheshti [1]. Beheshti’s thesis had three ingredients, a general
lemma (that F(X) could not be uniruled by rational curves), Theorem 4.3
above, and a case by case argument. As a corollary of the codimension two
Fubini theorem one obtains a new proof of Beheshti’s theorem eliminating
the case by case argument (but there is a different case by case argument
buried in the proof of the codimension two Fubini theorem). More impor-
tantly, the techniques should be useful in either proving the theorem, or
pointing to where one should look for potential counter-examples for n > 5.

6. Moving frames proof of the Hwang-Yamaguchi theorem.

The principle of calculation in [20] was to use mobile Bertini theorems
and the decomposition of the spaces SdT ∗⊗N into irreducible R-modules,
where R ⊂ GL(T ) × GL(N) is the subgroup preserving II ∈ S2T ∗⊗N .
One can isolate where each Fk can “live” as the intersection of two vector
spaces (one of which is SkT ∗⊗N , the other is (g⊥)k−3 defined below).
Then, since R acts on fibers, we can decompose SkT ∗⊗N and (g⊥)k−3

into R-modules and in order for a module to appear, it most be in both
the vector spaces. This combined with mobile Bertini theorems reduces
the calculations to almost nothing.

Hwang and Yamaguchi use representation theory in a more sophisti-
cated way via a theory developed by Se-ashi [34]. What follows is a proof
of their result in the language of moving frames.

Let Z = G/P ⊂ PW be a CHSS in its minimal homogeneous em-
bedding. For the moment we restrict to the case where IIIZ = 0 (i.e.,
rankZ = 2). Let X ⊂ PV be an analytic submanifold, let x ∈ X be a gen-
eral point and assume IIX,x ' IIZ,z . We determine sufficient conditions
that imply X is projectively isomorphic to Z.

We have a filtration of V , V0 = x̂ ⊂ V1 = T̂xX ⊂ V = V2. Write
L = V0, T = V1/V0, N = V/V1. We have an induced grading of gl(V )
where

gl(V )0 = gl(L)⊕ gl(T )⊕ gl(N),

gl(V )−1 = L∗⊗T ⊕T ∗⊗N,

gl(V )1 = L⊗T ∗⊕T ⊗N∗,

gl(V )−2 = L∗⊗N,

gl(V )2 = L⊗N∗.

In what follows we can no longer ignore the twist in defining II , that
is, we have II ∈ S2T ∗⊗N ⊗L.
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Let g−1 ⊂ gl(V )−1 denote the image of

T → L∗ ⊗T + T ∗⊗N

eα 7→ e0 ⊗ eα + qµ
αβeβ ⊗ eµ.

Let g0 ⊂ gl(V )0 denote the subalgebra annhilating II . More precisely

u =





x0
0

xα
β

xµ
ν



 ∈ gl(V )0

is in g0 iff

u.II := (−xµ
ν qν

αβ + xγ
αqµ

γβ + xγ
βqµ

αγ − x0
0q

µ
αβ)eα ◦ eβ ⊗ eµ ⊗ e0 = 0. (6.1)

Let g1 ⊂ gl(V )1 denote the maximal subspace such that [g1, g−1] = g0.
Note that g = g−1 ⊕ g0 ⊕ g1 coincides with the Z-graded semi-simple Lie
algebra giving rise to Z = G/P and that the inclusion g ⊂ gl(V ) coincides
with the embedding g → gl(W ). The grading on g induced from the grading
of gl(V ) agrees with the grading induced by P . In particular, g±2 = 0.

We let g⊥ = gl(V )/g and note that g⊥ is naturally a g-module. Al-
ternatively, one can work with sl(V ) instead of gl(V ) and define g⊥ as the
Killing-orthogonal complement to g0 in sl(V ) (Working with sl(V )-frames
does not effect projective geometry since the actual group of projective
transformations is PGL(V )).

Recall that F3 arises by applying the Cartan lemma to the equations

0 = −ωµ
α ∧ ωα

β − ωµ
ν ∧ ων

β + qµ
αβ(ωα

0 ∧ ω0
0 + ωα

γ ∧ ωγ
0 ) ∀µ, β (6.2)

i.e., the tensor

(−qν
βγωµ

ν + qµ
αγωα

β + qµ
αβωα

γ − qµ
γβω0

0) ∧ ωγ
0 ⊗ eβ ⊗ eµ (6.3)

must vanish. All forms appearing in the term in parenthesis in (6.3) are
gl(V )0-valued. Comparing with (6.1), we see that the g0-valued part will
be zero and (g⊥)0 bijects to the image in parenthesis.

Thus we may think of obtaining the coefficients of F3 at x in two stages,
first we write the (g⊥)0 component of the Maurer-Cartan form of GL(V )
as an arbitrary linear combination of semi-basic forms, i.e., we choose a
map T → (g⊥)0. Once we have chosen such a map, substituting the image
into (6.3) yields a (Λ2T ∗⊗ gl(V )−1)-valued tensor. But by the definition
of g, it is actually (Λ2T ∗⊗ (g⊥)−1)-valued. Then we require moreover that
that this tensor is zero. In other words, pointwise we have a map

∂1,1 : T ∗⊗ (g⊥)0 → Λ2T ∗⊗ (g⊥)−1

and the (at this stage) admissible coefficients of F3 are determined by a
choice of map T → (g⊥)0 which is in the kernel of ∂1,1.
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Now the variation of F3 as one moves in the fiber is given by a map
T → (g⊥)0 induced from the action of (g⊥)1 on (g⊥)0. We may express
it as:

x0
βe0 ⊗ eβ + xα

ν eα ⊗ eν 7→ x0
βωβ

0 e0 ⊗ e0 + (x0
βωα

0

+xα
ν ων

β)⊗ eβ ⊗ eα (6.4)

+xα
ν ωµ

α ⊗ eν ⊗ eµ

where




0 x0
β 0

0 0 xγ
ν

0 0 0





is a general element of gl(V )1. The kernel of this map is g1 so it induces
a linear map with source (g⊥)1. Similarly, the image automatically takes
values in T ∗⊗ (g⊥)0. In summary, (6.4) may be expressed as a map

∂2,0 : (g⊥)1 → T ∗⊗ (g⊥)0.

Let Cp,q := ΛqT ∗⊗ (g⊥)p−1. Considering g⊥ as a T -module (via the
embedding T → g) we have the Lie algebra cohomology groups

Hp,1(T, g⊥) :=
ker∂p,1 : Cp,1 → Cp−1,2

Image∂p+1,0 : Cp+1,0 → Cp,1
.

We summarize the above discussion:
Proposition 6.1. Let X ⊂ PV be an analytic submanifold, let x ∈

Xgeneral and suppose IIX,x ' IIZ,z where Z ⊂ PW is a rank two CHSS
in its minimal homogeneous embedding. The choices of F3,X,x imposed
by (6.2), modulo motions in the fiber, is isomorphic to the Lie algebra
cohomology group H1,1(T, g⊥).

Now if F3 is normalizable and normalized to zero, differentiating again,
we obtain the equation

(qµ
αβω0

γ + qµ
αεq

ν
βγωε

ν) ∧ ωγ
0 ⊗ eµ ⊗ eα ◦ eβ = 0

which determines the possible coefficients of F4.
We conclude any choice of F4 must be in the kernel of the map

∂2,1 : T ∗⊗ (g⊥)1 → Λ2T ∗⊗ (g⊥)0.

The variation of of F4 in the fiber of F1 is given by the image of
the map

x0
νe0 ⊗ eν 7→ x0

νωε
0eε ⊗ eν
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as v ∧w ranges over the decomposable elements of Λ2T . Without indicies,
the variation of F4 is the image of the map

∂3,0 : (g⊥)2 → T ∗⊗ (g⊥)1.

We conclude that if F3 has been normalized to zero, then F4 is nor-
malizable to zero if H2,1(T, g⊥) = 0.

Finally, if F3, F4 are normalized to zero, then the coefficients of F5 are
given by

ker∂3,1 : T ∗⊗ (g⊥)2 → Λ2T ∗⊗ (g⊥)1,

and there is nothing to quotient by in this case because gl(V )3 = 0. In
summary

Proposition 6.2. A sufficient condition for second order rigidity to
hold for a rank two CHSS in its minimal homogeneous embedding Z =
G/P ⊂ PW is that H1,1(T, g⊥) = 0,H2,1(T, g⊥) = 0,H3,1(T, g⊥) = 0.

Assume for simplicity that G is simple and P = Pαi0
is the maximal

parabolic subgroup obtained by deleting all root spaces whose roots have
a negative coefficient on the simple root αi0 . By Kostant’s results [13], the
g0-module H∗,1(T, Γ) for any irreducible g-module Γ of highest weight λ is
the irreducible g0-module with highest weight σαi0

(λ + ρ) − ρ, where σαi0

is the simple reflection in the Weyl group corresponding to αi0 and ρ is half
the sum of the simple roots.

But now as long as G/Pαi0
is not projective space or a quadric hyper-

surface, Hwang and Yamaguchi, following [33], observe that any non-trivial
g-module Γ yields a g0-module in H∗,1 that has a non-positive grading, so
one concludes that the above groups are a priori zero. Thus one only need
show that the trivial representation is not a submodule of g⊥.

Remark 6.1. We note that the condition in Proposition 6.2 is not
necessary for second order rigidity. It holds in all rigid rank two cases but
one, Seg(P1 × Pn), with n > 1, which we saw, in §1, is indeed rigid to
order two. Note that in that case the näıve moving frames approach is sig-
nificantly more difficult as one must prolong several times before obtaining
the vanishing of the normalized F3.

To prove the general case of the Hwang-Yamaguchi theorem, say
the last nonzero fundamental form is the k-th. Then one must show
H1,1, ..., Hk+1,1 are all zero. But again, Kostant’s theory applies to show
all groups Hp,1 are zero for p > 0. Note that in this case, H1,1 governs
the vanishing F3,2, ..., Fk,k−1, where Fk,l denotes the component of Fk in
SkT ∗⊗Nl. In general, H l.1 governs F2+l,2, ..., Fk+l,k−1.
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[2] N. Bourbaki, Groupes et algèbres de Lie, Hermann, Paris, 1968, MR0682756.
[3] E. Cartan, Sur les variétés de courbure constante d’un espace euclidien ou non

euclidien, Bull. Soc. Math France (1919), 47: 125–160, and (1920), 48:
132–208; see also pp. 321–432 in Oeuvres Complètes Part III, Gauthier-Villars,
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