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The present article deals with a formulation of the so called (vacuum) Palatini gravity

as a general variational principle. In order to accomplish this goal, some geometrical

tools related to the geometry of the bundle of connections of the frame bundle LM are

used. A generalization of Lagrange-Poincaré reduction scheme to these types of vari-

ational problems allows us to relate it with the Einstein-Hilbert variational problem.

Relations with some other variational problems for gravity found in the literature are

discussed. C© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4862855]

I. INTRODUCTION

In dealing with quantization and symmetry aspects of physical theories, it is important to have

at our disposal a variational formulation; this is true even from the mathematical viewpoint, where

methods for existence of solutions of PDEs are based in a variational version of these equations.12, 13

In a pioneering work, Griffiths22 (based on ideas of Cartan7) extends the notion of variational problem

by allowing the family of curves to be varied to live in the set of integral curves of a differentially

closed ideal I in the exterior algebra of F, an example of the so called exterior differential systems

(for definitions and standard results, we refer to Ref. 3.). These ideas (usually referred to as Griffiths

formalism) were further developed in Refs. 6 and 24; an application of this formalism to the geometric

control of quantum systems can be found in Ref. 33. Gotay in Ref. 21 uses this generalized notion

of variational problem as a mean to deal with the problem of properly define Cartan forms for field

theories.

The purpose of the following article is to find a particular formulation of the so called “Palatini

gravity” (in fact, metric-affine gravity, see Ref. 23 and below) as a variational problem in the

generalized sense described above. The precise meaning of such thing is established in Definition

18, which can be found in Appendix B 2; in short, it means to find a bundle F → M on the spacetime

M, a form λ ∈ �n(F) (here n is the dimension of M) and a set of restrictions for the admissible

sections of the bundle F, encoded as an exterior differential system (EDS from now on.) Concretely,

we will obtain the vacuum Einstein equations as extremals of the functional

σ �→

∫

M

σ ∗λ,

where σ is a section of the bundle F and integral for an EDS I, i.e., σ ∗α = 0 for every α ∈ I.

This last requirement imposes some restrictions on the allowed variations, because they must be

tangent to the “submanifold” of integral sections for I; in this regard, it is similar to vakonomics

mechanics as defined in Ref. 8. They are different from other kind of constraints in the fact that

induce restrictions not only in the shape of the extremals, but also on the allowed variations. The

usual variational problems considered in classical field theory are a particular instance of the kind

of variational problems we have in mind; in fact, in this case the restrictions are those forcing

the degrees of freedom along the fibers of the map J1E → E to be nothing but the derivatives

of the degrees of freedom associated to the fibers of the bundle E → M (see Appendix B 2 b, where

the variational problems for first order field theories are found to be particular examples of this

a)E-mail: santiago.capriotti@uns.edu.ar
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definition.) These kind of variational problems, whose total bundle is a jet space and whose set of

restrictions coincides with the contact structure of the jet bundle, will be called classical variational

problems, to properly distinguish them from the version of variational problems we will work here.

Thus the concept of variational problem adopted in this work includes not only the usual field theory,

but instances in which the relation between fields are of different nature: In fact, our description

of Palatini gravity will use this additional freedom in order to properly encode the requirements of

metricity and lack of torsion (the actual definition can be found in Eq. (4) below.) From now on,

whenever the term “variational problem” is used, it will refer to the mathematical problem singled

out in Definition 18, requiring in an implicit way the existence of an associated variational triple.

Usually, the variational problems considered in GR are classical (albeit singular), and the

following features can be singled out:

(1) The underlying bundle is never explicitly mentioned (see below).

(2) It is customary to provide just a local version for the Lagrangian form, with no hint about its

globalization.

(3) The implicit assumption is that the underlying bundle is the jet space of some other bundle, so

the restriction ideal I is the contact ideal of the jet space.

Although these facts does not prevent people to work successfully with classical variational

problems in general, our point of view is that some advantages could be extracted from this com-

plementary formulation; the reduction theory developed below could serve as an indication in this

sense (see Sec. III.) Another advantage of the approach taken in this work is that our description is

not restricted to four-dimensional spacetimes.

Let us see these features in some examples borrowed from the literature; in order to set com-

mon grounds, let us describe some formulations for gravity we encountered, with emphasis in the

geometrical structures lying below them:

• Einstein-Hilbert formulation. In this case, we have a particular kind of classical variational

problem (see for example Ref. 41) where the components gμν of the local expression of a

metric are the degrees of freedom of the theory, the underlying bundle would be J2� (here �

→ M indicates the quotient bundle � := LM/SO(1, n − 1), the bundle of metrics with the

given signature28), and the Lagrangian form is given by the scalar curvature associated to the

Levi-Civita connection times the canonical volume.

• Einstein-Hilbert formulation with vielbeins. There exists another kind of classical variational

problem, described in Ref. 36 where the degrees of freedom are given by the components of

a tetrad field eα
I . The underlying bundle could be set as J2LM → M, where LM → M is the

bundle of frames on M and the Lagrangian form can be written by using the (local) curvature

2-form of the canonical connection (uniquely determined from the first structure equation,39

after assuming that it takes values in the Lie algebra so(1, 3) of the Lorentz group) and a pair

of elements of the dual coframe. These local forms allow us to define a global form once we

realize that this Lagrangian form is invariant by the action of the Lorentz group SO(1, 3); this

action comes from the lift of the canonical action of GL(4) on LM.

• Einstein-Palatini formulation (or metric-affine formulation). This formulation can be find

in the ground breaking work of Arnowitt, Deser, and Misner;1 the degrees of freedom are

the components of a metric g and the components of an affine connection, so the underlying

bundle could be set to J1(� × MC(LM)), where C(LM) → M is the bundle of connections on

M. The Lagrangian form is the product of the trace (respect to the metric g) of the Ricci tensor

associated to the connection, times the invariant volume of g.

• Einstein-Palatini formulation with vielbeins. A variational problem for the Einstein-Palatini

gravity within the vierbein formalism appears in Ref. 14; its degrees of freedom are the

components of a local basis for the tangent bundle to the spacetime M, plus an affine connection

on M; the underlying bundle appears to be in this case J1(LM × MC(LM)).

This variational problem is also described in Ref. 36. A discussion of the geometry behind this

example could be found in Ref. 37; it is equivalent to the operation done in the previous type of

variational problem, where the bundle � → M is changed by the bundle LM → M everywhere.
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Dadhich and Pons15 compares their version of Einstein-Palatini gravity with another description

in terms of vielbeins (i.e., a basis on the tangent bundle of M, where M has arbitrary dimension);

these objects can be seen as local sections of the bundle LM → M, and the local Lagrangian

form is the trace of the curvature associated to the connection respect to the frame (times an

invariant volume on M.) The only way to globalize such form is to restrict the structure group

of LM to the Lorentz group, which is equivalent to admit a section of the quotient bundle

� = LM/SO(1, n − 1); they explicitly assumed this reduction of the structure bundle.

Hehl and Kerlick26 use the same degree of freedom as in Ref. 15; the main differences between

these references lie in the family of tensors used in order to parametrize the arbitrary connection.

Now, we must be cautious about the names we used above for the diverse variational problems,

because there is no agreement in the literature about them; for example, sometimes Palatini gravity

is gravity with vielbeins (as in Ref. 5, where skew symmetry of the connection forms is assumed,

meaning that some kind of relation is allowed between the metric and the connections.) In the

present article, we will adopt a mixed approach in our choice of nomenclature when referring to

variational problems related to General Relativity: In general, we will use the term “Palatini gravity”

to refer to those variational problems where vielbeins are employed as degrees of freedom, but

the denominations used in the previous list will be adopted in those cases where a most detailed

language would be necessary (this remark will become specially true in the discussions we will

carry out throughout Sec. II.) On the other side, it must be stressed that the geometrical structures

mentioned in the previous descriptions are not present in the original works, and are suggested here

as an appropriate geometrical setting for every variational problem, suitable for comparisons with

our own variational problems. Nevertheless, it is interesting to note a couple of facts:

• In every case, where a vielbein or tetrad is used as a degree of freedom, the structure group

of the relevant bundles (which is also called internal group) must be reduced to the Lorentz

group. This will be discussed in Subsection II A; in short, this fact could be tied to the passive

transformation property assumed for the local connections forms, inherited from classical

differential geometry.

• The underlying bundle is always a jet bundle, and moreover, it is assumed that the variations

keep invariant the contact structures of these jet spaces, and this fact is given in local coordinates

as the well-known mantra “variation commutes with partial derivative.”

We have enough background to discuss the variational problem we will propose in the present

work: We want to find variational problems analogous to gravity with vielbeins, both in the Einstein-

Palatini and Einstein-Hilbert cases, but along the lines of Definition 18, which requires the search of

a bundle whose sections corresponds to degrees of freedom of vacuum gravity, and whose dynamics

could be determined from a global Lagrangian form λPG together the restrictions coming from an

ideal IPG in the exterior algebra of the bundle. If LM → M is the bundle of frames on M, the

bundle we are looking for is J1LM → M (an explanation of this choice will be provided below, see

Subsection II C), and the equations of motion result from the search of sections σ which are integral

for the differentially closed ideal IPG ⊂ �•
(
J 1L M

)
and extremals of the functional

σ �→

∫

M

σ ∗λPG,

where LM → M is the frame bundle (with structure group GL(n)), the n-form λPG will be a global

form on J1LM, and the restrictions imposed by the ideal IPG are weaker to those imposed by the

contact structure of J1LM. In a nutshell, it is because the holonomic sections of J1LM are associated

to flat connections, a too strong condition to be imposed on a gravitational field; thus, in the proposed

variational problem, “variation will not commute with derivations.” Because of the decomposition

J 1L M = L M ×M C (L M) ,

this variational problem is a kind of metric-affine theory, because its degrees of freedom are vielbein

and connections, with the metric being reconstructed from the vielbein via the usual formula

gμν := ηi j e
i
μe j

ν ,
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here η ∈ gl (n) is a fixed operator with signature (n − 1, 1, 0). The main differences with the

approaches described above are the restrictions IPG (is not a contact structure!), the structure group,

which is GL(n) in our case, and the globalization of the Lagrangian form is achieved without reducing

the internal group. It is interesting that this variational problem will be versatile enough to be related

with other types of variational problems for gravity, as the GL(4)-invariant gravity,19 which is similar

to the GL(4)-gravity of Komar.29

A crucial feature of our variational problem is that the underlying bundle is a principal bundle

with structure group GL(n); thus the variational problem inherits a canonical action by the general

linear group. Nevertheless, neither the Lagrangian form nor the ideal IPG are invariant for the

canonical GL(n)-action, but they are invariant by this action when restricted to the Lorentz group

SO(1, n − 1) ⊂ GL(n) determined by the matrix η. This fact raises the question about if it is possible

to reduce the variational problem for this action; it led us to consider a reduction scheme analogous

to the well-known Euler-Poincaré11 and Lagrange-Poincaré31 reduction schemes for field theories. A

proposal for a generalized reduction scheme is described, and it is applied to our variational problem

in order to relate it with a variational problem equivalent to Einstein-Hilbert.

The structure of the article is as follows: In Sec. II a brief discussion of a classical variational

problem for Palatini gravity is given, and after introducing the necessary geometrical tools, a

variational problem in the Griffiths sense is defined. Afterwards the dynamical problem settled by

these data is discussed: The Euler-Lagrange equations are obtained, and a treatment of the metric

underlying a solution of these equations is performed. As a bonus, the language developed in this

section allows a discussion of the relation between our variational problem and other types of

variational problems found in the literature. Section III is devoted to found a proper generalization

for reduction of variational problems in the Griffiths sense. In order to reach this goal, it is necessary

to discuss a notion of reduction for EDS found in the literature; once the desired generalization is

formulated, it should be checked that it reduces to the Euler-Poincaré reduction for field theories

when dealing with classical variational problems. Finally, this reduction scheme is used to quotient

out the extra degrees of freedom introduced when working with gravity with vielbeins.

II. GRAVITY WITH VIELBEINS

A. The geometry in the classical approach to gravity with vielbeins

It is perhaps necessary to review the geometrical contents of the usual representation of gravity

with vielbeins. It is based in the local description of a connection on a manifold M by means of the

so called moving frames.39 In this setting, M is supplied with a collection {ei, U}, where {U} is an

open covering of M and {ei} is a basis of vector fields for TU; the index i thus runs from 1 to n,

the dimension of the manifold M. A connection in these grounds is a collection
{
ω

j

i

}
⊂ �1 (U ) of

1-forms on every U of the covering, such that the following compatibility condition is met: Whenever

U ∩ U �= ∅, the two collections
(

ek, ω
i
j

)
and

(
ēk, ω̄

i
j

)
define a map M : U ∩ U → GL (n) (the so

called transition functions) such that

ēk = M l
kel ,

and the local connection 1-forms must be related by

ω̄i
j = N i

kdMk
j + N i

kω
k
l M l

j ,

where N = M− 1. The set
{
ω

j

i

}
of 1-forms can be considered as the components of a local gl (n)-

valued 1-form ωU, and they provide the local description for the covariant operator according to the

formula

∇ei := ω
j

i e j .

It must be stressed that the introduction of the local basis {ei} made in the previous description is

totally incidental. Nevertheless, this situation changes when we try to introduce an action for these

degrees of freedom by means of the local formula. There exists a slight abuse of notation in this
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formula, namely the integrand is only defined in U, although the integral runs all over M:

S [e, ω] :=

∫

M

ǫi jklη
i pθ k ∧ θ l ∧

(
dω j

p + ω j
q ∧ ωq

p

)
, (1)

where {θ k} is the dual basis to {ej}; on an overlap U ∩ U this action will be uniquely determined if

and only if ηi j M i
k M

j

l = ηkl , i.e., when M has values in the Lorentz group. But this would restricts

the local basis to be a local orthonormal basis for a metric g, which is recovered from the formula

g = ηijθ
i ⊗ θ j. In order to avoid this hasty conclusion, it is necessary to have at our disposal a

language where the different kind of transformations underlying this model would be apparent; our

viewpoint is to work in the realm of fibre bundles, in particular, by using the bundles LM → M and

C(LM) → M in the descriptions of gravity we want to work with. From this perspective, we could

replace the forms in Eq. (1) by its global counterparts living on J1LM; as arise from the local

expressions, see Appendix B 3 d, the apparent lack of invariance of the integrand in this equation

could be explained from the fact that when it is defined in terms of local forms, it is actually the local

n-form on M obtained from this global n-form on J1LM by pullbacking along a local section. The

bundle LM is a principal bundle with structure group GL(n), and thus there exists a canonical action

of this group on the bundles we work with; we will use this action in order to employ a generalized

idea of reduction as a way of quotient out additional degrees of freedom introduced in the theory by

the frames. In terms of the so called active and passive transformations (in the sense indicated by

Ref. 42, p. 406), we are proposing a change of the passive transformations regarding the objects ei and

ωi
j , although at the same time preserving the active transformations of the gravity with vielbeins; it is

our understanding that the change of passive transformation is an operation analogous to the change

of bundle from the mathematician’s viewpoint, and the preservation of the active transformations

could be achieved by working only with bundles associated to LM.

B. Canonical forms on J1LM

It is necessary to introduce some canonical objects living in the exterior algebra of J1LM,

because these objects would be used in the search of the Lagrangian form and the right restrictions

for our variational problem. The discussion carried out in Appendix B 3 allows us to define a 1-form

ω, which is a canonical gl (n)-valued pseudotensorial 1-form of type (GL (n) , ad) defined on J1LM.

As we know, on LM there exists another canonical form, namely, the tautological form θ̄ ;28 thus the

projection τ 10: J1LM → LM can be used in order to define a new canonical form on J1LM, that is,

θ := τ ∗
10θ̄ ∈ �1

(
J 1L M, R

n
)
.

Let us recall that under the identification J1LM ≃ p∗LM, the canonical right action translates into

(ρ, u) · h = (ρ, u · h) .

Using this fact, we can see that the form θ has the following remarkable properties.

Proposition 1. The form θ is a tensorial 1-form of type (GL (n) , R
n). Moreover, for every

connection Ŵ on LM, we have that

σ̃ ∗
Ŵθ = θ̄ .

Proof. The second assumption follows easily from the definition of σ̃Ŵ . Now let h be an element

of GL(n); every element Z ∈ T(ρ, u)J
1LM can be written as Z = (V, X ), where τ 1(ρ) = τ (u) and

moreover

Tρτ1 (V ) = Tuτ (X ) .
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Thus we have that
(
R∗

hθ
)∣∣

(ρ,u)
(Z ) = θ |(ρ,u·h)

(
T(ρ,u) Rh (V, X )

)

= θ |(ρ,u·h) ((V, Tu Rh X ))

= θ̄
∣∣
u·h

(Tu Rh X )

= h−1 ·
(
θ̄
∣∣
u

(X )
)

= h−1 ·
(
θ |(ρ,u) (V, X )

)

and θ is pseudotensorial of type (GL (n) , R
n). Finally, to show that θ is tensorial, we need to prove

that θ (Z) = 0 if Z is a vertical vector in J1LM → J1LM/GL(n). But

V(ρ,u)

(
J 1L M

)
=
{
(V, 0) ∈ Tρ

(
J 1L M/GL (n)

)
× Tu P : Tρτ1 (V ) = 0

}
,

and so, in particular, θ (Z) = 0 for every Z ∈ V J 1L M . �

Then if T ∈ �2
(
J 1L M, R

n
)

is the exterior covariant differential of θ obtained using the

connection ω, we will have that

T = dθ + ω
∧
· θ.

Let Ŵ be a connection on LM; by pulling back this expression along σ̃Ŵ , we have that

σ̃ ∗
ŴT = dθ̄ + ωŴ

∧
· θ̄ ,

which is in turn equal to the torsion TŴ of the connection Ŵ. Thus T can be called universal torsion.

C. Degrees of freedom and restriction EDS for gravity with vielbeins

A tetrad or, more generally, a vielbein, is a local isomorphism

e : T M → M × R
n

or equivalently, a basis for the tangent bundle to M on an open set U ⊂ M. The rationale behind

these objects is simply to replace the basis of the tangent bundle induced by the coordinates by a

more general basis, perhaps determined by geometrical insights related to the formulation of the

problem at hands, in order to simplify some equations living in a tensor bundle. In fact, our approach

to gravity is based in the replacing of the metric by an (by definition) orthonormal local frame; a

change in the metric is thus performed by a change in the vielbein. Nevertheless, it is necessary to

point out an essential difference between our approach and some of the descriptions of the gravity

with vielbeins that can be found in the literature (see for example Ref. 5), where it is assumed the

tangent bundle TM to be isomorphic to M × R
n (the “fake tangent bundle” viewpoint): We keep the

local character of the frame bundle, using it only as a tool that permits us to describe a connection

on M, without additional topological assumptions on this manifold, namely, without considering it

as a parallelizable manifold.

From the mathematical viewpoint, a vielbein is nothing but a local section of the frame bundle

LM; a connection on M, on the other side, can be considered as a section of the bundle of connections

C(LM). We will take then as fields the sections of the bundle p1: J1LM → M. It could be motivated

by the fact that we have to describe a metric through a local basis (namely, a section of LM) and an

independent connection, which is a section of C(LM); the degrees of freedom will be sections of the

product bundle

L M ×M C (L M) → M,

which is isomorphic to J1LM as a bundle on C(LM) (see Proposition 28.) Nevertheless, it will be

necessary to impose some restrictions on these connections, because it must be related to the metric

implicitly described by the vielbein (we are using here the notation developed at Subsection II E,

see below):
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• Metricity: If the connection provides us with a covariant derivative, it will be desirable the

preservation of the implicit metric, and a local section s: M → J1LM will fulfill this requirement

if and only if

s∗
(
ηikω

j

k + η jkωi
k

)
= 0,

where ω ∈ �1
(
J 1L M, gl (n)

)
is the canonical connection form on J1LM and η is a Lorentzian

fixed metric on R
n (n = dim M , of course.)

• Zero torsion: Additionally it will be required that

s∗T = 0

for T ∈ �1
(
J 1L M, R

n
)

the canonical form corresponding to the torsion.

Similar conditions can be found in the literature, see for example Ref. 17. They differ, however,

in a fundamental fact with our restrictions: While the conditions found in the literature (as far as we

know) are of local character, ours are global. It is tied with the spaces where they live: In the former

case they are forms on the spacetime, whereas in the latter the conditions are forms on the jet space

of LM. The choice of the notation made here could led to confusion, because of the similarities with

the notation used elsewhere to indicate local forms; it is important to point out these differences, in

order to avoid misunderstandings.

These restrictions will be adopted to be the restriction EDS for Einstein-Hilbert gravity with

vielbeins. Thus, although the underlying bundle for this variational problem is a jet space, the

restriction EDS will be different from the contact structure; it is not totally unexpected, because the

contact structure imposes on a local section the requirement

s∗ω = 0,

forcing the connection to be flat, a too strong condition for a vacuum gravitational field.

D. The Lagrangian form of gravity with vielbeins

Let us make use of the geometrical constructions detailed in Appendix B 3 and

Subsection II B in order to find a useful description of the Lagrangian form for gravity with vielbeins

(in both cases, Einstein-Hilbert and Einstein-Palatini); the notation is described there. In order to

formulate a Lagrangian on J1LM, we recall that there exists on this space a R
n-valued 1-form θ ,

namely, the pullback along τ 10 of the canonical form θ̄ on LM, and, additionally, the gl (n)-valued

2-form �, just constructed as the curvature 2-form associated to the canonical connection on J1LM

induced by the contact structure. For every k = 1, · · · , n we can define the
∧k

(Rn)-valued k-form

θ (k) (X1, · · · , Xk) := θ (X1) ∧ · · · ∧ θ (Xk) , X1, · · · , Xk ∈ X
(
J 1L M

)

and it allows us to define the
∧2

(Rn)-valued n − 2-form � via

�̃ := ∗
(
θ (n−2)

)
,

where ∗ :
∧n−i

(Rn) →
∧i

(Rn) is the Hodge star operator induced on the exterior algebra of R
n

by η. Therefore, we can use the antisymmetrization operator

A :

2∧(
R

n
)

→ R
n ⊗

(
R

n
)∗

= (gl (n))∗ : u ∧ v �→
1

2
[v ⊗ η (u, ·) − u ⊗ η (v, ·)]

in order to define a (gl (n))∗-valued n − 2-form, namely,

� := A
(
�̃
)
,

the Palatini Lagrangian (we will use this name by the Lagrangian, because it serves in both

cases, Einstein-Hilbert and Einstein-Palatini, reserving the name Einstein Lagrangian to name the

Lagrangian written in terms of metric and connection coefficients) is

λPG :=
〈
� ∧, �

〉
, (2)
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where
〈
· ∧, ·
〉

: �k
(
J 1L M, (gl (n))∗

)
⊗ �l

(
J 1L M, gl (n)

)
→ �k+l

(
J 1L M

)
indicates the extension

of the contraction between elements of a vector space and its dual to the wedge product of gl (n) and

(gl (n))∗-valued forms.

Note 2. The extension of operations from g and R
n to g- and R

n-valued forms is detailed in

p. 100 of KÃ´lar et al.27 In particular, the product structure on the R
n-valued forms that yields to

the form θ (n − 2) can be considered as an specialization of a more general structure found on vector

valued forms.

E. The Lagrangian form in terms of a basis on R
n

We can introduce a basis on R
n ; this allows us to write out the Lagrangian in terms of components

of the canonical forms, giving some expressions that will be useful in handling with the variations.

Namely, if {e1, · · · , en} is the canonical basis on R
n , we can write θ := θ iei for some collection

{θ i} of 1-forms, and from here it can be concluded that

A
(
θ (2)
)

= θ i ∧ θ jη (ei , ·) e j .

As for the operator ∗, we obtain the formula

∗
(
θ i ∧ θ j

)
= ηikη jlθkl,

where is was introduced the set of n − p-forms

θi1···i p
:=

1

(n − p)!
ǫi1···i p i p+1···in

θ i p+1 ∧ · · · ∧ θ in

= X i p
� · · ·�X i1

�σ0,

these forms are useful when dealing with the so called Sparling forms, see Ref. 16. Therefore, for

taking {e1, · · · , en} as the dual basis of {e1, · · · , en},

� := ηikη jlθklη (ei , ·) e j

= η jlθkle
k ⊗ e j ,

and the Palatini Lagrangian can be written as

λPG = ηkpθkl ∧ �l
p. (3)

It must be stressed at this point that λPG is a global form, despite the fact that the bilinear form η

is involved in its definition: This is an straightforward consequence of Eq. (2), but it can be seen

directly from this expression, by taking into account that �
j

k are the components (in the basis of

R
n making η = (ηij), cf. the basis adopted above) of the curvature of the canonical connection on

the GL(n)-principal bundle J1LM → C(LM), and θ k are the components of the R
n-valued canonical

form θ in the same basis (see Subsection II B.)

F. The structure equations

There are some equations that we need to take into account in this work. First we have the

structure equations

dωi
j + ωi

k ∧ ωk
j = �i

j

dθ i + ωi
k ∧ θ k = T i ,

then its differential consequences, namely, the Bianchi identities

d�i
j = �i

k ∧ ωk
j − ωi

k ∧ �k
j

dT k = �k
l ∧ θ l − ωk

l ∧ T l ,
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and some additional related identities

dθli = ωk
l ∧ θki − ωk

i ∧ θkl − ωs
s ∧ θli + T k ∧ θlik

d�pq = �
p

k ∧ ωkq − ω
p

k ∧ �kq

dωlp = −ωl
s ∧ ωsp + �lp

dθi pq = ωk
i ∧ θkpq + ωk

p ∧ θkqi + ωk
q ∧ θkip − ωs

s ∧ θi pq + T k ∧ θi pqk,

where it were introduced the handy notations ωi j := η j pωi
p,�

i j := η j p�i
p.

G. Dynamics of Einstein-Hilbert gravity with vielbeins

After this rather lengthy warm-up, we are ready to describe now the gravity with vielbeins as

a variational problem in the sense adopted in this work: as the bundle of the variational triple for

this theory, we will take the bundle J1LM → M; the Lagrangian form on this space will be λPG,

defined in Eq. (2). Finally, the EDS restricting properly the sections of J1LM is the one generated by

metricity and torsionless conditions, namely,

IPG =
〈
πpω, T

〉
diff

, (4)

here πp : gl (n) → p is the projection onto the second summand in the Cartan decomposition gl (n) =
so (1, n − 1) ⊕ p induced by η; in the basis introduced above, this projection reads

(
πpω

)i j
:= ηikω

j

k + η jkωi
k,

which is nothing but the metricity condition mentioned before. The variational problem we are

proposing for (vacuum) GR with vielbeins is the variational problem associated to the triple

(
J 1L M → M, λPG, IPG

)
,

a quick comparison with some classical variational problems found in literature (cf. those mentioned

in the Introduction) tell us that it has fewer degrees of freedom than other alternatives.

Finally, it is necessary to point out that considerations of variational problems on the frame

bundle, although from a slightly different point of view, can be found in the literature.4

1. Considerations about admissible variations

Given the existence of a restriction EDS, the variations to be considered in order to find out the

equations of motion of gravity with vielbeins cannot be arbitrary; rather they must be restricted in

some way. Let us recall that a variation of a section s: M → E of a bundle E → M is a section of

the pullback bundle s∗ (V E), perhaps with compact support, and that the relevant variations for a

variational problem are the infinitesimal symmetries of the restriction EDS. We could introduce the

following definition in order to work here with these objects.

Definition 3 (Admissible variations). An admissible variation of the integral section s for an

EDS I is a variation δs with an extension δ̂s ∈ X (E) which is an infinitesimal symmetry of I, that

is, such that

s∗
(
Lδ̂sI

)
= 0.

An admissible variation for an EDS I produces a path in the set of integral sections of this EDS. In

terms of adapted coordinates (see Appendix B 3 d)
(

xμ, eν
k , eσ

kρ

)
on J1LM, any variation reads

xμ �→
(
0, δeν

k , δeσ
kρ

)
,

it means in particular that the canonical forms θ and ω can be varied independently. This freedom

will be use in order to simplify the calculations below.
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2. The variations of the connection

On the same open set Uα and using the previous identifications, we can consider that variations

of the connection as gl (n)-valued 1-forms δωij. Therefore

δωλPG = θik ∧
[
d
(
δωik

)
+ ηpqδω

pi ∧ ωkq + ηpqω
pi ∧ δωkq

]

= (−1)n+1 dθik ∧ δωik + θik ∧
(
−ηpqω

kq ∧ δωpi + ηpqω
pi ∧ δωkq

)

= (−1)n+1
(
ηi pω

lp ∧ θlk − ηkpω
lp ∧ θli + T l ∧ θikl

)
∧ δωik+

+ θik ∧
(
−ηpqω

kq ∧ δωpi + ηpqω
pi ∧ δωkq

)

=
[
(−1)n+1

(
ηi pω

lp ∧ θlk − ηkpω
lp ∧ θli + T l ∧ θikl

)
− ηiqθkl ∧ ωlq + ηpkθli ∧ ωpl

]
∧ δωik

=
[
−ηi pθlk ∧ ωlp + ηkpθli ∧ ωlp + (−1)n+1 T l ∧ θikl − ηiqθkl ∧ ωlq + ηpkθli ∧ ωpl

]
∧ δωik

=
[
ηkpθli ∧

(
ωlp + ωpl

)
+ (−1)n+1 T l ∧ θikl

]
∧ δωik . (5)

Therefore, the variations of the Lagrangian λPG annihilates, independently of the form of the

variations δω, and so its does not contribute to the equations of motion.

3. Considerations about the variations of the frame

It is time to see what the variations of the frame produce on the n − 2-forms θ ij defined
previously. We will consider here variations with its support on a chart Uα . Now,

Lδsθi j = (−1)i+ j+1

[
δθ1 ∧ · · · ∧ θ̂ i ∧ · · · ∧ θ̂ j ∧ · · · ∧ θn + · · · + θ1 ∧ · · · ∧ θ̂ i ∧ · · · ∧ θ̂ j ∧ · · · ∧ δθn

]
.

Therefore

Lδsθi j = δθ k ∧ θki j . (6)

So by performing the variations of the frame, we obtain

δξ1
λPG = δθm ∧ θmki ∧

(
dωki + ηlmωli ∧ ωkm

)
,

namely,

θ jki ∧
(
dωki + ηlmωli ∧ ωkm

)
= 0. (7)

As an additional formula useful in dealing with the variations of the frame, we can calculate the

differential of the forms θ ij, expressing them in terms of the connection and the associated torsion.

Namely, by using the definition

dθ i = −ωi
k ∧ θ k + T i ,

we will obtain that

dθi j = ωk
i ∧ θk j − ωk

j ∧ θki − ωk
k ∧ θi j + T k ∧ θi jk,

where, as above

θi jk := Xk�X j�X i�σ0.

As shown in Ref. 40, the equations of motion (7) are equivalent to the annihilation of the Einstein

tensor.
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H. Discussion: The global form for Einstein equations and the underlying metric

According to the previous calculations, the equations of motion for the gravity with vielbeins

can be described as the EDS generated by the forms

⎧
⎪⎨
⎪⎩

dθ i + ωi
k ∧ θ k,

θi pq ∧ �pq ,

ηi pω
j
p + η j pωi

p.

(8)

It is interesting to note that these expressions are global; we can think on them as a global form for

vacuum Einstein equation. Additionally the jet space J1LM has a GL(n)-action, obtained by lifting

the corresponding action of GL(n) to the frame bundle; in terms of the adapted coordinates, it reads

g ·
(
xμ, eν

k , eσ
kρ

)
=
(
xμ, gl

keν
l , gl

keσ
lρ

)
.

This action is involved in the proof of the next proposition, giving sense to our choice of the relevant

fields for describing gravity.

Proposition 4. Let s, s̄ : U → J 1L M be a pair of solutions for the problem posed by (8) on

the connected open set U⊂M. Then there exists an smooth map g: U → SO(1, n − 1) such that

s̄ = g · s.

Proof. If s : U → J1LM is a local solution for these equations and k : U → SO(1, n − 1) is an

smooth map, we will have that s′ := k · s verifies

s ′∗
(
dθ i + ωi

k ∧ θ k
)

= 0 = s ′∗
(
θi pq ∧ �pq

)

and

s ′∗
(
ηi pω j

p + η j pωi
p

)
= 0, (9)

so it remains to show that every change of basis can be reduced to a change of basis in the Lorentz

group. Now for s, s̄ there exists h: U → GL(n) such that s̄ = g · s; by using a Cartan decomposition

of GL(n) respect to the form η we can factorize GL(n) = P · SO(1, n − 1) where P is the set

of η-symmetric matrices, and if h = p · k in this factorization, we see from Eq. (9) (with the

replacement s ′ → s̄) that the η-symmetric factor p must verify

Adp−1ω + p−1dp ∈ so(1, n − 1)

for ω ∈ so(1, n − 1) (for recalling that s verifies an equation analogous to Eq. (9)). But there exists

a: U → SO(1, n − 1) such that p = aca− 1, where c: U → P is a diagonal matrix; therefore, the

previous requirement on p translates into

Adc−1 ω̃ + c−1dc ∈ so(1, n − 1)

with ω̃ ∈ so(1, n − 1). But the first summand in this expression has zero entries in the diagonal, and

the second is a diagonal matrix, so it can be split as the pair of conditions

Adc−1 ω̃ ∈ so(1, n − 1), c−1dc = 0

for ω̃ ∈ so(1, n − 1); this means that c must be locally constant, and the first forces c = Id. �

Therefore, the local solutions determine a unique metric h according to the formula

h := ηkle
k
μel

νdxμ ⊗ dxν .

The first and third forms in the above EDS are enough to determine uniquely the connection, or

more precisely the functions e
μ

kν of a solution, from the frame functions e
μ

k . This result follows at

once by using Proposition 17; as we will see below, these functions determines a connection on M
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that is the Levi-Civita connection for h. Therefore, the second set of forms are the true equations of

motion for the metric.

Note 5 (GL(4)-invariant gravity). This setting provides us with enough tools in order to describe

some other approaches to “gravity with moving frames.” For example, we can set a variational

problem for the so called GL(4)-invariant gravity:18, 19 In brief, in this theory the fields are a soldering

form θ ∈ Iso (T M, T M), a metric κ and a connection Ŵ on M. Using the previous identifications,

we can consider these fields as sections of the bundles (LM × MLM)/GL(n) (where GL(n) is acting

diagonally), � and C(LM), respectively. By using that the metric κ is induced locally by a section e

of LM, and that such section induces a local section

ẽ : (L M ×M L M) /GL (n) → L M ×M L M

via

[ f1, f2]GL(n) �→ (e (x) , g · f2) iff x := p ( f1) and e (x) = g · f1,

the bundle LM × MLM can be used instead of the first two bundles mentioned above; it amounts to

describe the morphism θ by the way it is acting on a particular basis of TM, namely, the basis used

in the description of the metric κ . The underlying bundle of the variational problem describing this

kind of gravity theory will be C(LM) × MLM × MLM = J1LM × MLM, which can be considered

as a submanifold of J1LM × MJ1LM via the inclusion

ı : C (L M) ×M L M ×M L M →֒ J 1L M ×M J 1L M : (Ŵ, e, f ) �→ (Ŵ, e; Ŵ, f ) .

By denoting pA, A = 1, 2 the projections onto the first and second factor in J1LM × MJ1LM, the

restriction EDS is generated as follows:

IF P :=
〈
ı∗ p∗

1

(
ηikω

j

k + η jkωi
k

)
, ı∗ p∗

2 T
〉
diff

,

these restrictions are nothing but Eqs. (2.1) and (2.2) in Ref. 18. Finally, the Lagrangian considered

by these authors is the pullback along p2 of the Palatini Lagrangian defined above λPG, namely,

λF P := p∗
2λPG .

Thus the variational problem for this version of gravity is the triple

(C (L M) ×M L M ×M L M, λF P , IF P ) .

I. Differential consequences of the vacuum Einstein equations

As an additional result that could be useful, we will use the structure equations and its differential

consequences in order to find a set of algebraic generators for the EDS

IE :=
〈
ηkpθli ∧

(
ωlp + ωpl

)
+ (−1)n+1 T l ∧ θikl ,�

pq ∧ θi pq

〉
diff

=
〈
ωlp + ωpl , T l,�pq ∧ θi pq

〉
diff

.

The differential of the first set of generators ωlp + ωpl yields to

d
(
ωlp + ωpl

)
= −ηst

(
ωlt ∧ ωsp + ωps ∧ ωtl

)
+
(
�lp + �pl

)

= −ηst

[(
ωlt + ωtl

)
∧ ωsp − ωtl ∧

(
ωsp + ωps

)]
+
(
�lp + �pl

)
,

so the antisymmetry property for the curvature

Alp := �lp + �pl = 0

is a differential consequence of the original Einstein equations. From the second Bianchi identity

dT k = �k
l ∧ θ l − ωk

l ∧ T l ,
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another generator for the EDS IE is Bk := �k
l ∧ θ l . Finally, from the last set of generators, we

obtain the differential consequences

d
(
�pq ∧ θi pq

)
= ηkl�

pk ∧
(
ωlq + ωql

)
∧ θi pq +

(
ωk

i − δk
i ω

s
s

)
∧ �pq ∧ θkpq + �pq ∧ T k ∧ θi pqk,

therefore, there are no new algebraic generators from here. In conclusion,

IE =
〈
ωlp + ωpl ,�lp + �pl , dθ l + ωl

k ∧ θ k,�k
l ∧ θ l,�pq ∧ θi pq

〉
alg

is a presentation for IE in terms of algebraic generators, which is an EDS for this version of gravity

with vielbeins.

J. An variational problem for Einstein-Palatini gravity with vielbeins

The expression (5) for the variation of the connection taken as independent of the variation of

the frame can be used to set a variational principle for GR in the sense adopted here, which loosely

corresponds to Einstein-Palatini gravity with vielbeins. In this case, we can take as restriction EDS

I ′
PG := 〈tr (ω)〉diff

in order to take away the projective transformations that the adopted Lagrangian form λPG has. This

restriction is analogous to the restriction considered in Eq. (3.7) as appears in Ref. 15; their true

nature is very different, as explained above, although it serves in this case to the same purpose: To

force Euler-Lagrange equations to be vacuum Einstein equations.

The annihilation of the variations (5) with respect to the connection yields to a set of Euler-

Lagrange equations, namely, from
[
ηkpθli ∧

(
ωlp + ωpl

)
+ (−1)n+1 T l ∧ θikl

]
∧ δωik = 0,

we obtain the equation of motion

ηkpθli ∧
(
ωlp + ωpl

)
+ (−1)n+1 T l ∧ θikl = 0. (10)

From the skew symmetry of θ ijk, it follows that

ηkpθli ∧
(
ωlp + ωpl

)
+ ηi pθlk ∧

(
ωlp + ωpl

)
= 0.

The way to solve this system is very interesting, and uses Proposition 17.

Lemma 6. Let x�→mkl be a set of 1-forms on M such that ηijm
ij = 0. If these forms solve the

system
{

m pk ∧
(
ηpqθkl ± ηplθkq

)
= 0

m pk ∓ mkp = 0,

then

mi j = 0.

Proof. Let us define the set of local n − 1-forms

θi := X i�σ0,

where, as above, {X1, · · · , Xn} is the frame dual to {θ1, · · · , θn}, and σ 0 = θ1∧· · · ∧θn. Then we

have the identity

θm ∧ θkl = −
(
δm

k θl − δm
l θk

)
.

Thus

m pk ∧ ηpqθkl = ηpqm pk
r θ r ∧ θkl

= −ηpqm pk
r

(
δr

kθl − δr
l θk

)
,
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therefore

0 = m pk ∧
(
ηpqθkl ± ηplθkq

)
=

= −m pk
r

[
ηpq

(
δr

kθl − δr
l θk

)
± ηpl

(
δr

kθq − δr
qθk

)]

= ηpq

(
−m pr

r θl + m
pk

l θk

)
± ηpl

(
−m pr

r θq + m pk
q θk

)
.

By multiplying both sides of this identity by θ l and adding up, we see that

0 = θ l ∧
[
ηpq

(
−m pr

r θl + m
pk

l θk

)
± ηpl

(
−m pr

r θq + m pk
q θk

)]

= ηpq

(
−nm pr

r + m pr
r

)
σ0 ± ηpq

(
−m pr

r

)
σ0 ± ηpkm pk

q σ0,

where it was used that

θ k ∧ θl = δk
l σ0.

Then ηpq (n − 1 ± 1) m
pr
r = ηpkm

pk
q = 0, and m

pr
r = 0. Then we will have that

(
ηpqm

pk

l ± ηplm
pk
q

)
θk = 0

and from here we can conclude that the system above can be written as
{

ηpqm
pk

l ± ηplm
pk
q = 0

m
pk

i ∓ m
kp

i = 0.

Therefore, the set of unknowns Ni jk := ηiqη j pm
pq

k solves the system
{

Nkql ± Nklq = 0

Nkpi ∓ Npki = 0.

Using proposition 17, we see that

Ni jk = 0

is the unique solution for this system. �

By using the previous Lemma, it follows that for a section to be an extremal section (under our

choice Tr ω = 0), it will be necessary that

ωpl + ωlp = 0,

and, as a bonus, T = 0. Thus the generators of the EDS IPG are obtained as equations of motion.

III. REDUCTION FOR A VARIATIONAL PROBLEM

An important observation concerning the variational problem
(
J 1 L M → M, λPG, IPG

)

is that both λPG and IPG are SO(1, n − 1)-invariant. It will be interesting to find a procedure in order

to quotient out the degrees of freedom associated to the orbits of this symmetry group, namely, if we

can apply a kind of reduction procedure, as in Refs. 30 and 31. The problem with this approach is

that in this reference the authors deal with reduction of the so called classical variational problem,

namely, with variational problems of the form
(
J 1 P → M,Lω, Icon

)
,

where P → M is a principal bundle, L ∈ C∞
(
J 1 P

)
, ω is a volume form on M and Icon is the

contact structure on J1P. Therefore, we must devise a reduction scheme general enough to include

variational problems whose restriction EDS are different from the contact EDS of a jet space.
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A. Reduction of an EDS

In order to set the reduction procedure for a variational problem, it is crucial to know how to

reduce the restriction EDS. So let M be a manifold, G a Lie group acting on M in such a way that the

space of orbits M := M/G is a manifold; we will denote by pG : M → M the canonical projection.

Let us consider I an EDS on M such that

g · I ⊂ I ∀g ∈ G.

The following definition can be found in Ref. 2.

Definition 7 (Reduced EDS). The reduced EDS associated to the action of G on (M, I) is the

set of forms

I :=
{
α ∈ �•

(
M
)

: p∗
Gα ∈ I

}
.

Let τ : P → M be a G-principal bundle. This definition can be applied in order to reduce the

contact structure on J1P: It will give us an interpretation of the canonical 2-form �2 on C(P) as

generator of the EDS on the bundle of connection obtained by reduction of the contact structure of

J1P, as the following example shows.

Example 8 (Reduction of the contact structure on J1P). Let us analyze this in more detail; the

result we are looking for is local, so there is no real loss in assuming that P = M × G, and this

means that J 1 P = P ×M (T ∗M ⊗ g), by using the following correspondence: If s: M → P is a

section, then

j1
x s =

(
x, s (x) , (Tx s) (·) (s (x))−1

)

for all x ∈ M. It means that C (P) = T ∗M ⊗ g, and the canonical projection q: J1P → C(P) is simply

q (x, g, ξ ) = (x, ξ ) .

In these terms, the 2-form �2 reads

�2|(x,ξ ) = dξ −
1

2

[
ξ ∧, ξ

]
.

The contact structure is generated by the 1-forms

θ |(x,g,ξ ) := dg · g−1 − ξ,

the G-action on P is h · (x, g) = (x, gh), that lifts to h · (x, g, ξ ) = (x, gh, ξ ). Therefore, a set of

algebraic generators for I is in this case

G := {θ, dθ} =
{
dg · g−1 − ξ, (1/2)

[
ξ ∧, ξ

]
− dξ

}
.

Bearing in mind future applications, the second degree generator dθ has been written in a convenient

form. Thus we have that J 1 P/G = T ∗M ⊗ g with projection given by

pG (x, g, ξ ) = (x, ξ ) .

The quotient EDS Ī is graded, as I does and p∗
G is a zero degree morphism; if α is a 1-form in Ī,

we will have that

p∗
Gα = f · θ

for some f ∈ C∞(J1P), and then if (0, ζ , 0) ∈ T(x, g, ξ )J
1P, it results that

0 =
(

p∗
Gα
)

(0, ζ, 0) = f (x, g, ξ ) ζ.

So p∗
Gα = 0 and it means that α = 0, from the fact that pG is a surjective map. If

β ∈ Ī ∩ �p
(
J 1 P/G

)
, p > 1, we will have that

p∗
Gβ = μ ∧ θ + ν ∧

(
(1/2)

[
ξ ∧, ξ

]
− dξ

)
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for some μ ∈ �p − 1(J1P/G) and ν ∈ �p − 2(J1P/G); by performing the replacement

dg · g−1 = ξ + θ,

we can assume that neither μ nor ν have dependence in the g-variable. Therefore, by contracting

this identity with an infinitesimal generator for the G-action, we obtain that

0 = (0, ζ, 0)�
(

p∗
Gβ
)

= (−1)p+1 ζμ

and so μ = 0; from here, we can conclude that

Ī =

〈
1

2

[
ξ ∧, ξ

]
− dξ

〉

alg

,

meaning that the reduced EDS is generated by �2.

The previous example gives some insight in the subtleties concerning the reduction of an EDS:

The original contact structure is locally generated by 1-forms, but the reduced EDS is generated by

a collection of 2-forms. Nevertheless, there exists a result allowing us to find a set of generators for

a reduced EDS, under mild conditions, namely, by requiring the generators to be pullback of some

forms along a projection. It is convenient to note that it was not fulfilled in the previous example,

because dg · g−1 − ξ is not the pullback along pG of any form on M × g.

Proposition 9. Let p: M → N be a fibration and I :=
〈
α1, · · · , αp

〉
di f f

a differential ideal such

that αi ∈ �ki (M) for some integers ki. Let us suppose that on N there exists a set of forms {β1, · · · ,

βp} such that

αi = p∗βi f or i = 1, · · · , p.

Then I =
〈
β1, · · · , βp

〉
diff

.

Proof. The inclusion
〈
β1, · · · , βp

〉
diff

⊂ I follows from the definition of reduced EDS. On the

other side, if ω ∈ I, there exists γ 1, · · · , γ p such that

p∗ω = γ1 ∧ p∗β1 + · · · + γp ∧ p∗βp.

Thus it is enough to prove that it implies γ i = p∗σ i for all i = 1, · · · , p. �

We are now ready to introduce a generalization of the usual scheme of reduction suitable for

our version of (generalized) variational problems; as far as we know, it is an original contribution

made in the present work.

Definition 10 (Reduction of a variational problem). Let (�,λ, I) be a variational problem on

the bundle p: � → M. Let us suppose that a Lie group G acts on � such that

(1) the action is free and proper,

(2) its orbits are vertical, i.e., p(g · u) = p(u) for all u ∈ � and g ∈ G,

(3) there exists λ̄ ∈ �n
(
M̄
)

such that p∗
G λ̄ = λ, where pG : � → � := �/G is the canonical

projection, and

(4) it is a symmetry group for the EDS I.

The reduced variational problem for (�,λ, I) is the variational problem
(
�,λ, I

)
, where I is

the reduced EDS for I.

Example 11 (Euler-Poincaré reduction). The Euler-Poincaré reduction9, 11 can be seen as an

instance of this reduction scheme. In the setting of Example 8, we see that the reduced variational

problem associated to
(
J 1 P, Lω, Icon

)
, where L ∈ C∞(J1P)G and ω is an invariant volume, is

nothing but
(
C (P) , Lω, 〈�2〉diff

)
. The relationship with Euler-Poincaré reduction can be revealed

by means of the following consideration: The restrictions on the possible variations of the fields of
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the reduced field theory are exactly those defining the allowed variations (see Definition 3), namely,

the infinitesimal variations for the restriction EDS. If σ : U⊂M → C(P): x�→(x, ξ (x)) is a local

section of the bundle of connections, integral for 〈�2〉diff, then a vertical vector field (0, �) will be

an infinitesimal symmetry of σ iff

σ ∗ (d� − [�, ξ ]) = 0.

Let ad(P) := (P × g) /G be the adjoint bundle associated to P. By using the fact that C(P) is an

affine bundle modelled on T ∗M ⊗ ad(P), we can identify any variation � of its sections as an

ad(P)-valued 1-form on M. In these terms, the requirement of admissibility for variations reads

dσ� = 0, where dσ is the covariant exterior differential associated to the connection σ ; by using

that σ is flat, then (at least locally) there exists a section η : U ⊂ M → ad(P) for the adjoint bundle

such that

� = dση.

For H an arbitrary connection, we see from here that

� = dH+σ−Hη = dHη + [σ − H, η] ,

the usual requirement for variations in Euler-Poincaré reduction (compare with Prop. 3.1 in Ref. 11).

B. Reduced gravity with vielbeins

We are ready to perform the reduction of the variational problem
(
J 1L M, λPG, IPG

)
by the

Lorentz subgroup H := SO(1, n − 1). The H-action is readily seen to be free and proper, and its

orbits are vertical, so it remains to verify that λPG is H-horizontal and IPG is H-invariant.

In order to properly show this invariance, we need to introduce a nice description for the quotient

bundle

τ : J 1L M/H → M[
j1
x s
]

H
�→ x .

Now let us remember that the bundle J1LM → J1LM/GL(n) is isomorphic to the pullback bundle

p∗J1LM, where p: J1LM/GL(n) → M is the projection induced by τ 1: J1LM → M; from this

perspective, every element j1
x s of J1LM can be written as a pair

j1
x s =

([
j1
x s
]

GL(n)
, s (x)

)
,

and the GL(n)-action is simply
([

j1
x s
]

GL(n)
, s (x)

)
· g =

([
j1
x s
]

GL(n)
, s (x) · g

)
.

Then we have the following representation for the quotient J1LM/H.

Lemma 12. Let [τ ]: � → M be the bundle of metrics on M. Then J1LM/H is isomorphic to the

pullback bundle p∗� = C(LM) × M�.

The local version for these results is very illuminating of the geometrical meaning of the sections

of these bundles.

Proposition 13. Let
(

xμ, eν
k , eσ

jμ

)
be the set of jet coordinates introduced below on J1LM. Then

there exists a set of coordinates
(
xμ, gμν, Ŵσ

ργ

)
on p∗� such that

g̃μν := gμν ◦ pH = ηkle
μ

k eν
l , Ŵ̃σ

ργ := Ŵσ
ργ ◦ pH = −eσ

kγ ek
ρ .

In terms of these functions

λPG = ǫμ1···μn−2γ κ

√
− det g̃g̃κφ

dxμ1 ∧ · · · ∧ dxμn−2 ∧
(

dŴ̃
γ

ρφ ∧ dxρ + Ŵ̃σ
δφŴ̃

γ

βσ dxβ ∧ dxδ
)

(11)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

200.49.224.88 On: Mon, 10 Mar 2014 14:37:46



012902-18 S. Capriotti J. Math. Phys. 55, 012902 (2014)

and

ηikω
j

k + η jkωi
k = ei

μe j
ν

(
d g̃μν +

(
g̃μσ Ŵ̃ν

γ σ + g̃νσ Ŵ̃μ
γσ

)
dxγ
)
, (12)

T i = ei
σ Ŵ̃σ

μν dxμ ∧ dxν, (13)

Tr (ω) = gμν dgμν + Ŵσ
σρ dxρ . (14)

In particular, the Lagrangian form λPG is horizontal for the H-projection, and the EDS IPG is

H-invariant.

By combining these equations and Proposition 9, we deduce the following corollary.

Corollary 14. The reduced Lagrangian λPG is given by

λPG = ǫμ1···μn−2γ κ

√
− det ggκφ

dxμ1 ∧ · · · ∧ dxμn−2 ∧
(

dŴ
γ

ρφ ∧ dxρ + Ŵσ
δφŴ

γ

βσ dxβ ∧ dxδ
)

,

and the reduced EDS I PG can be generated as

I PG =
〈
dgμν +

(
gμσŴν

γ σ + gνσŴμ
γσ

)
dxγ , Ŵσ

μν − Ŵσ
νμ

〉
diff

.

Note 15 (Levi-Civita EDS). By recalling that J1LM/H is the product bundle C(LM) × M�, the

reduced EDS I PG can be interpreted geometrically: For every metric g: M → � on M, the unique

connection Ŵ: M → C(LM) such that Ŵ × g: M → C(LM) × M� is an integral section for I PG is

the Levi-Civita connection for g. Thus we can call this EDS the Levi-Civita EDS.

C. Discussion: Einstein gravity as a reduced variational problem for Palatini gravity

The reduced variational problem of the variational problem describing Einstein-Hilbert gravity

with vielbeins can be considered as equivalent to the Einstein-Hilbert (i.e., without vielbeins!)

variational problem. In fact, we can consider the following diagram

C (LM) ×M J1Σ

J1Σ C (LM) ×M Σ

M

Πp2

induced by J1� → �; let us define

J :=
〈
p∗

2I
�
con,�

∗I PG

〉
diff

,

where I�
con is the contact structure on J1�. Then the next result follows.

Lemma 16. There exists a manifold L ⊂ C(LM) × MJ1� minimal with respect to the property

that every integral manifold of J must be included in it. The map p2|L: L → J1� is a bundle

isomorphism such that p∗
2I

�
con = J |L .

Then the � − projectable extremals of

(
L , �∗λPG

∣∣
L
, J |L

)

are in one-to-one correspondence with the extremals of the reduced Palatini variational problem on

C(LM) × M� via �, and with the extremals of the classical variational problem
(
J 1�, λE H , I�

con

)
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through p2|L; the Einstein-Hilbert Lagrangian λEH is determined by the equation

p∗
2λE H = �∗λPG

∣∣
L
.

It induces the equivalence we were looking for.

It remains to consider reduction of the variational problem
(
J 1 L M, λPG, I ′

PG

)
considered in

Subsection II J, corresponding to the Einstein-Palatini gravity with vielbeins; because the form Tr (ω)

is invariant by the action of the Lorentz group (in fact, it is invariant by the full general linear group

GL(n)), the reduction must be done by using the same group. By means of Eq. (14), it can be

concluded that the reduced variational problem is
(
C (L M) ×M �, λPG, gμνdgμν + Ŵσ

σρdxρ
)
; it is

a kind of Einstein-Palatini formulation for gravity, although different from Ref. 1.

IV. CONCLUSIONS

In this work, a geometrical formulation for Palatini gravity was provided, by using a broader

notion for the term variational problem. In order to perform this task, it was necessary to use some

constructions associated to the jet space of the frame bundle. This picture would give us some

insights on the geometrical character of vacuum GR, complementary to those found in the literature.

In order to relate this formulation with the usual Einstein-Hilbert variational problem, a generalized

reduction scheme was set.
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APPENDIX A: NOTATIONS

The internal metric of the tetrads will have the signature ( − + · · · + ). We will assume further

the conventions of Ref. 34 in playing with forms. If α is a k − form:

X� (α ∧ β) = (X�α) ∧ β + (−1)k α ∧ (X�β)

d (α ∧ β) = dα ∧ β + (−1)k α ∧ dβ

(dα) (X0, · · · , Xk) =

k∑

i=0

(−1)i X i ·
(
α
(
X0, · · · , X̂ i , · · · , Xk

))
+

+
∑

0≤i< j≤k

(−1)i+ j α
([

X i , X j

]
, X0, · · · , X̂ i , · · · , X̂ j , · · · , Xk

)
.

The indices μ, ν, · · · and i, j, k, · · · will run from 1 to n; as usual, the first set will be used in the

enumeration of local coordinates on spacetime, while the latin indices will label the components in

the (tensorial algebra of the) local model R
n . In particular, we are using the following convention

relating group product in GL(n) and indices

(g · h)
j

i = gk
i h

j

k

for all g, h ∈ GL(n). Following standard usage, we will use the acronym EDS when referring to

exterior differential systems.
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APPENDIX B: SOME GEOMETRICAL RESULTS

1. An important algebraic result

We would like to state here the following algebraic proposition.

Proposition 17. Let {cijk} be a set of real numbers such that

{
ci jk ∓ c j ik = bi jk

ci jk ± cik j = ai jk

for some given set of real numbers {aijk} and {bijk} such that bijk∓bjik = 0 and aijk ± aikj = 0. Then

ci jk =
1

2

(
ai jk + a jki − aki j + bi jk + bki j − b jki

)

is the unique solution for this linear system.

Proof. From first equation we see that

±c j ik = ci jk − bi jk .

The trick now is to form the following combination

ai jk + a jki − aki j = ci jk ± cik j + c jki ± c j ik −
(
cki j ± ck ji

)

= 2ci jk − bi jk − bki j + b jki ,

where in the permutation of indices was used the remaining condition. �

2. Variational problems and field theory

Our initial data will be a variational triple, that is, a triple (� → M, λ, I) composed of a fibre

bundle � on the spacetime M, a n-form λ on it (where n = dimM) and an EDS I ⊂ �• (�). The

bundle consists of the degrees of freedom associated to the fields and its (generalized) velocities, the

n-form λ will be used to define the dynamics, and I will induce some relations between the degrees

of freedom (e.g., it will force to some variables to be the derivatives of another variables).

a. Variational problems

We are in position to formulate a notion of variational problems. Although we are primarily

interested in applications of these notions to physics, they can be used in tackling geometrical

problems, see Ref. 24.

Definition 18. The variational problem associated to a variational triple (�,λ, I) consists into

the problem of finding the sections σ : M → � which are integrals for the EDS I and extremals for

the functional

S [σ ] :=

∫

M

σ ∗λ.

Note 19. We will suppose that the necessary conditions for the existence of the several integrals

that could appear throughout the work are met, for example, M would be compact.

Definition 20 (Infinitesimal symmetries of an EDS). Let I ⊂ �• (�) be an EDS. A (perhaps

local) vector field X is an infinitesimal symmetry of I if and only if

LXI ⊂ I.
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The set of infinitesimal symmetries of I will be indicated by Symm (I).

Definition 21 (Euler-Lagrange EDS). Let (�,λ, I) be a variational problem. The Euler-

Lagrange EDS is the EDS generated by the set of forms
{
α ∈ �• (�) : α − X�dλ ≡ 0 mod d�n−1 (�) for all X ∈ Symm (I) ∩ XV (�)

}
.

b. Classical field theory as a variational problem

It is necessary perhaps to indicates the way in which the usual (first order) classical field theory

fits in this scheme: The corresponding variational problem is simply
(
J 1 E,Ldx1 ∧ · · · ∧ dxn, Icon

)
,

where E → M is a bundle on M (whose nature is associated to the field to be described by the theory),

L is the Lagrangian density of the theory and

Icon :=
〈
du A − u A

k dxk
〉
diff

is the contact structure of the jet space. This variational problem is usually called in the literature

the classical variational problem.21, 22 Then we have the following result.

Lemma 22. The underlying PDE for the Euler-Lagrange EDS associated to the classical varia-

tional problem contains the Euler-Lagrange equations.

Proof. Let us work in local coordinates. For X :=
(
0, δu A, δu A

k

)
∈ Symm (Icon) ∩ XV (�), we

have that

dδu A − δua
k dxk = 0,

then

X�dλ =

(
∂L

∂u A
δu A +

∂L

∂u A
k

δu A
k

)
dx1 ∧ · · · ∧ dxn .

Let σ A ∈ �n − 1(J1E) be defined as

σA :=

(
∂L

∂u A
k

∂

∂xk

)
�dx1 ∧ · · · ∧ dxn,

therefore

X�dλ =
∂L

∂u A
δu Adx1 ∧ · · · ∧ dxn + σA ∧ δu A

k dxk

=
∂L

∂u A
δu Adx1 ∧ · · · ∧ dxn + σA ∧ dδu A

≡

[
(−1)n+1 dσA +

∂L

∂u A
dx1 ∧ · · · ∧ dxn

]
δu A mod d�n−1

(
J 1 E

)
,

and so

αA := (−1)n+1 dσA +
∂L

∂u A
dx1 ∧ · · · ∧ dxn

are generators for the Euler-Lagrange EDS. Any integral section for this EDS will obey the Euler-

Lagrange equations associated to L. �

3. Some tools from differential geometry: The geometry of J1P

It is time to introduce the basic language we will use to describe gravitation in this work; it

will be necessary to point out here some useful tools borrowed from differential geometry in the

handling of the multiple questions raised while working with connections.

In the present section, we will describe briefly differential geometry from moving frame view-

point, as in Refs. 28 and 39. Whenever possible, we will make contact with the more usual description
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in terms of principal bundles; this framework is of outmost importance in the description of Palatini

gravity in the present work. So we will need some facts concerning the jet bundle of a principal

bundle. This is a natural choice in this context, because the first structure equation on LM allow us

to consider a connection as a kind of velocity associated to the degree of freedom provided by a

frame. From this point of view, we need a set of forms on J1LM encoding the structure equations;

it results from the work of Garcı́a20 and Castrillón et al.10 that there exists a gl (n)-valued 2-form

on J1LM such that its pullback along a connection (in an appropriate sense, see below for details)

is the curvature of this connection. Additionally, it can be defined a R
n-valued 2-form giving rise

to the torsion of the connection via the same pullback procedure. These forms are the fundamental

ingredients in the construction of the equivalent of Palatini Lagrangian in this context.

Appendices B 3 a, B 3 b, B 3 c has been formulated by making heavy use of Ref. 10; it can be

considered as a natural continuation of the last example in Ref. 32 to this context.

a. Geometric preliminaries

Let τ : P → M be a G-principal bundle on M; then we have the diagram

TP/G TM

M M

τP

M

Tτ

τM

(B1)

where it was defined

τ P
M ([v]G) := τ (τP (v)) .

Definition 23. The bundle of connections C(P) is the bundle on M given by

C (P) :=
{
λ : Tm M → (T P/G)|m such that T τ ◦ λ = idTm M.

}
.

The main tool to work with this bundle is the following lemma; it relies essentially in the fact

that the G-orbits are vertical, and the action is free.

Lemma 24. There exists a bundle isomorphism between C(P) and J1P/G.

The bundle isomorphism between C(P) and J1P/G is proved in Ref. 10 using the fact that there

exists a G-principal bundle structure q: J1P → C(P) through the right G-action determined by the

lift of the G-action on P. If we consider the 1-jet space as the set

J 1 P =
⋃

p∈P

{
ρ : Tτ (p) M → Tp P such that Tpτ ◦ ρ = idTτ (p) M

}
,

then q(ρ) := pG◦ρ, where pG: TP → TP/G is the canonical projection for the quotient; it is convenient

at this point to remember that the 1-jet bundle J1P comes with the maps fitting in the diagram

J1P P

M

τ10

τ1 τ

This identification allows us to use the map τ 1: J1P → M as the fibre bundle map of C(P) on M. On

the other side, every element [ρ]G ∈ C(P) can be thought as a “connection form at m := τ 1([ρ]G),”

as the following proposition shows.

Proposition 25. Every element [ρ]G defines a unique family of projections Ŵp : Tp P → Vp P

for p ∈ τ − 1(m).
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Proof. In fact, for p ∈ τ − 1(m), we can define the projection map

Ŵp := Tτ10(ρ) Rg ◦ Ŵτ10(ρ) ◦ Tp Rg−1,

if and only if p = τ 10(ρ)g and

Ŵτ10(ρ) := idTτ10(ρ) P − ρ ◦ Tτ10(ρ)τ.

Namely, we select an element ρ ∈ [ρ]G and define on p0 := τ 10(ρ) ∈ P a projection Ŵp0
: Tp0

P →
Vp0

P onto the vertical fibre; then we extend this projection to any point of τ − 1(m) by using the

right G-action. Because of the form we choose to do this extension, it results that this definition is

independent of the choice made of the representative ρ ∈ [ρ]G. �

b. The universal form on J1P

We can use Proposition 25 in order to construct a g-valued 1-form on J1P; it is necessary first

to recall that we have a vector bundle isomorphism

P × g → V P : (p, ξ ) �→
�d

dt

∣∣∣∣∣
t=0

[
p · (exp tξ )

]
.

Then the canonical connection ω ∈ �1
(
J 1 P, g

)
is defined through

ω|ρ (Y ) := [ρ]G

(
Tρτ10 (Y )

)
,

where [ρ]G ∈ C(P) has been considered in this formula as the family of projections Ŵτ10(ρ) of the

previous proposition, and we freely use the identification Vτ10(ρ) P ≃ g.

Lemma 26. The 1-form ω generates the contact structure on P.

Proof. Let s: M → P be a local section of P; then we have that

τ10 ◦ j1s = s,

where

j1s : M → J 1 P : m �→ [v ∈ Tm M �→ (Tms) (v)]

is the 1-jet of s. So if v ∈ Tm M and Y = Tm

(
j1s
)

(v), we will have that

T j1
m sτ10 (Y ) = Tms (v) ,

therefore

ω| j1
m s (Y ) =

[
j1
ms
]

G
(Tms (v))

= Tms (v) − j1
ms ◦ Ts(m)τ (Tms (v))

= Tms (v) − j1
ms (v)

= 0.

It means that ω is in the algebraic closure of the contact forms. �

Thus we have the following result.10

Proposition 27. The bundle pG: J1P → J1P/G = C(P) is a G-principal bundle, and ω defines a

connection on it.

We can form now the pullback bundle

τ∗
1

( (P )) (P )

C (P ) M

p1

p2

τ1
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where ad(P) := (P × g) /G, taking g as a G-space through the adjoint action. Then there exists a g-

valued 2-form � of the adjoint type on J1P, namely, the curvature form associated to the connection

ω; it defines a 2-form on C(P) with values in τ ∗
1 (ad(P)) via

�2|[ρ]G

(
Tρτ1 (X ) , Tρτ1 (Y )

)
:=
[
ρ, �|ρ (X, Y )

]
G

for X, Y ∈ TρJ1P.

c. The form ω as a universal connection

We will prove here that the form ω can be considered as a “universal form,” namely, that every

connection on P can be built as a pullback of it along a suitable map.

Proposition 28. The G-principal bundle pG: J1P → J1P/G is isomorphic to p∗P.

Proof. The bundle p∗P is defined through the diagram

p∗P P

J1P/G M

p1

p2

τ

p

where p1, p2 are the projections onto the factors of the cartesian product (p∗P ⊂ J1P/G × P), and

p
([

j1
x s
]

G

)
:= x .

The bundle isomorphism is defined by

j1
x s ∈ J 1 P �→

([
j1
x s
]

G
, s (x)

)
∈ J 1 P/G × P,

whose range is in p∗P, because

p
([

j1
x s
]

G

)
= x = τ (s (x)) .

In order to show that it is a diffeomorphism, it is enough to show an inverse map, namely,

([
j1
x s
]

G
, u
)

∈ p∗ P �→ j1
x s̃,

where s̃ : Ux ⊂ M → P is a local section for P defined in a neighborhood Ux of x such that s̃ (x) = u

and

[
j1
x s̃
]

G
=
[

j1
x s
]

G
.

It is clear that such a section exists, by defining s̃ (y) = s (y) · g0 for y ∈ Ux and g0 ∈ G such that

u = s(x) · g0. Moreover, it is a well-defined map, and this can be seen as follows: If t̃ is another

local section verifying that t̃ (x) = u, then there exists γ : Ux → G such that

t̃ (y) = s (y) · γ (y)

for all y ∈ Ux, and in particular γ (x) = g0; so

j1
x t̃ : v ∈ Tx M → Tx s̃ (v) = Tx s (v) · g0 +

[(
Lg0∗

)−1
Txγ (v)

]P

u
∈ Tu P, (B2)

where ξ P
u ∈ Vu P indicates the infinitesimal generator for the G-action on P associated to the element

ξ ∈ g. Therefore, from the condition
[

j1
x t̃
]

G
=
[

j1
x s
]

G
, we obtain that

Tx t̃ (v) = Tx s (v) · g1
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for some g1 ∈ G, and thus must be g1 = g0, because Tx s (v) · g1 ∈ Ts(x)·g1
and Tx t̃ (v) ∈ Tu P =

Ts(x)·g0
P . Therefore

[(
Lg0∗

)−1
Txγ (v)

]P

u
= 0

and using Eq. (B2), j1
x t̃ = j1

x s · g0 = j1
x s̃. �

According to Proposition 25, every section of p: C(P) → M defines a connection on P and

conversely, every connection gives rise to a section of the bundle C(P); by using Proposition 28, we

can state the following result.

Proposition 29. Every connection Ŵ determines a section of the affine bundle τ 10: J1P → P.

Proof. We will denote by σŴ : M → C (P) the section associated by Proposition 25 to the

connection Ŵ; thus we define the map

σ̃Ŵ (u) : P → C (P) × P : u �→ (σŴ (τ (u)) , u) .

But it is immediate to show that its range is in p∗P, because of the identity

p (σŴ (u)) = τ (u) .

It is additionally a section of τ 10: J1P → P, because under the bundle identification J1P ≃ p∗P the

map τ 10 reduces to

τ10

([
j1
x s
]

G
, u
)

= u,

and the proposition follows. �

We are ready to formulate the universal property of ω.

Proposition 30. For every connection Ŵ on P we have that σ̃ ∗
Ŵω = ωŴ , where ωŴ ∈ �1 (P, g) is

the connection form associated to Ŵ.

Proof. For X ∈ TuP, x = τ (u) we have that

(
σ̃ ∗

Ŵω
)∣∣

u
(X ) = ω|σ̃Ŵ (u) (σ̃Ŵ∗ (X ))

= ω|σ̃Ŵ (u) ((TxσŴ) (Tuτ (X )) , X ) .

Now we have that the definition of ω involves the projection T j1
x sτ10 : T j1

x s J 1 P → Tu P , namely,

ω| j1
x s (Z ) =

[
j1
x s
]

G

(
T j1

x sτ10 (Z )
)

for every Z ∈ T j1
x s J 1 P; under the identification J1P ≃ p∗P, we have that τ 10 is the projection onto

the second factor, so

ω|σ̃Ŵ(u) ((TxσŴ) (Tuτ (X )) , X ) = [σ̃Ŵ (u)]G (X ) = σŴ (u) (X ) = ωŴ|u (X ) .

Then σ̃ ∗
Ŵω = ωŴ , as we want to show. �

d. Local expressions

It is time to describe locally these constructions, in order to find expressions in the coordinates

usually found in the literature; we will use the Refs. 25, 28, and 35 in this task.

Let U ⊂ M be a coordinate neighborhood and p: LM → M the canonical projection of the frame

bundle; on p− 1(U) can be defined the coordinate functions

u ∈ p−1 (U ) �→
(
xμ (u) , eν

k (u)
)
,
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where xμ ≡ xμ◦p and

u =

{
e
μ

1

∂

∂xμ

∣∣∣∣
p(u)

, · · · , eμ
n

∂

∂xμ

∣∣∣∣
p(u)

}
.

If Ū ⊂ M is another coordinate neighborhood such that U ∩ Ū �= ∅ and u ∈ U ∩ Ū , then

u =

{
ē
μ

1

∂

∂ x̄μ

∣∣∣∣
p(u)

, · · · , ēμ
n

∂

∂ x̄μ

∣∣∣∣
p(u)

}
,

and the coordinates change on p−1 (U ) ∩ p−1
(
Ū
)

⊂ L M can be given as

x̄μ = x̄μ
(
x1, · · · , xn

)

ē
μ

k =
∂ x̄μ

∂xν
eν

k .

On the jet space J1E of any bundle E → M, the change of adapted coordinates given by the rule(
xμ, u A

)
�→
(
x̄ν (x) , ūB (x, u)

)
on E, transform the induced coordinates on J1E accordingly to38

ū A
μ =

(
∂ ū A

∂uB
uB

ν +
∂ ū A

∂xν

)
∂xν

∂ x̄μ
.

By supposing that the induced coordinates on J1LM are in the present case
(
xμ, e

μ

k , e
μ

kν

)
and(

x̄μ, ē
μ

k , ē
μ

kν

)
, we will have that

ē
μ

kν =

(
∂ x̄μ

∂xσ
eσ

kρ +
∂2 x̄μ

∂xρ∂xσ
eσ

k

)
∂xρ

∂ x̄ν
.

Take note on the fact that the functions

Ŵσ
μν := −eσ

kνek
μ,

where the quantities ek
μ are uniquely determined by the conditions

ek
μeν

k = δν
μ,

transform accordingly to

Ŵ̄μ
ργ = −

∂ x̄μ

∂xν

∂xσ

∂ x̄α
eα

kσ ēk
ρ −

∂2 x̄μ

∂xρ∂xα

∂xα

∂ x̄γ
.

But by using the previous definition, we can find the way in which ek
μ and ēk

μ are related, namely,

ēk
μ =

∂xγ

∂ x̄μ
ek
γ

and therefore

Ŵ̄
μ

δν =
∂ x̄μ

∂xσ

∂xρ

∂ x̄ν

∂xγ

∂ x̄δ
Ŵσ

γρ −
∂2 x̄μ

∂xρ∂xγ

∂xρ

∂ x̄ν

∂xγ

∂ x̄δ
,

which is the transformation rule for the Christoffel symbols, if the following identity

∂2 x̄σ

∂xρ∂xγ

∂xρ

∂ x̄μ

∂xγ

∂ x̄ν
= −

∂2xρ

∂ x̄μ∂ x̄ν

∂ x̄σ

∂xρ

is used. So we are ready to calculate local expressions for the previously introduced canonical forms.

First we have that

θ k = ek
μdxμ

determines the components of the tautological form on J1LM, and the canonical connection form

will result

ωk
l = ek

μ

(
de

μ

l − e
μ

lσ dxσ
)
.
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It is immediate to show that

θ̄ k = θ k,

and moreover

ω̄k
l = ēk

μ

(
dē

μ

l − ē
μ

lνdx̄ν
)

=
∂xγ

∂ x̄μ
ek
γ

[
d

(
∂ x̄μ

∂xγ
e
γ

l

)
−

(
∂ x̄μ

∂xσ
eσ

lρ +
∂2 x̄μ

∂xρ∂xσ
eσ

l

)
∂xρ

∂ x̄ν
dx̄ν

]

=
∂xγ

∂ x̄μ
ek
γ

(
∂ x̄μ

∂xγ
de

γ

l −
∂ x̄μ

∂xσ
eσ

lρdxρ

)

= ek
γ

(
de

γ

l − e
γ

lρdxρ
)

= ωk
l .

The associated curvature form can be calculated according to the formula

�k
l := dωk

l + ωk
p ∧ ω

p

l

= d
[
ek
γ

(
de

γ

l − e
γ

lρdxρ
)]

+ ek
γ

(
deγ

p − eγ
pσ dxσ

)
∧
[
ep
σ

(
deσ

l − eσ
lρdxρ

)]

= dek
γ ∧
(

de
γ

l − e
γ

lρdxρ
)

− ek
γ de

γ

lρ ∧ dxρ+

+ ek
γ ep

σ

[
deγ

p ∧ deσ
l +

(
e
γ

pβdeσ
l ∧ dxβ − eσ

lβdeγ
p ∧ dxβ

)
+ e

γ

pβeσ
lδdxβ ∧ dxδ

]

= −e
γ

lρdek
γ ∧ dxρ − ek

γ de
γ

lρ ∧ dxρ+

+ ek
γ ep

σ

[(
e
γ

pβdeσ
l ∧ dxβ − eσ

lβdeγ
p ∧ dxβ

)
+ e

γ

pβeσ
lδdxβ ∧ dxδ

]
,

where in the passage from the third to the fourth line, it was used the identity

dek
γ ∧ de

γ

l + ek
γ ep

σ deγ
p ∧ deσ

l = 0.

Because of the identity

ek
γ deγ

p = −eγ
pdek

γ ,

we can reduce further the expression for �k
l

�k
l = ek

γ

[
−de

γ

lρ ∧ dxρ + ep
σ

(
e
γ

pβdeσ
l ∧ dxβ + e

γ

pβeσ
lδdxβ ∧ dxδ

)]
.

Take note that

el
μ�k

l = ek
γ

(
dŴγ

μρ ∧ dxρ + Ŵ
γ

σβŴσ
μδdxβ ∧ dxδ

)
, (B3)

so that if we fix a connection Ŵ through its Christoffel symbols
(
Ŵμ

νσ

)
in the canonical basis {∂/∂xμ},

then we will have that e
γ

k = δ
γ

k and this formula reduces to

�μ
ν := eν

k el
μ�k

l = dŴμ
νρ ∧ dxρ + Ŵ

μ

σβŴσ
νδdxβ ∧ dxδ

providing us with the usual formula for the curvature in terms of the local coordinates.

Next we can provide a local expression for the map σ̃Ŵ : L M → J 1L M . First, we realize that

a connection Ŵ is locally described by a map

Ŵ : xμ �→
(
xμ, Ŵσ

μν (x)
)
,

in these terms, the map σ̃Ŵ is given by

σ̃Ŵ :
(
xμ, ek

ν

)
�→
(
xμ, ek

ν,−e
μ

k Ŵσ
μν (x)

)
.
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It is convenient to stress about an abuse of language committed here: We are indicating with the

same symbol σ̃Ŵ either the map itself and its local version. Nevertheless, we obtain the following

local expression for the connection form associated to Ŵ, namely,

(
σ̃ ∗

Ŵω
)k

l
= ek

μ

(
de

μ

l + eσ
l Ŵμ

σρ (x) dxρ
)
.

In our approach this equation is equivalent to the so called tetrad postulate, which relates the

components of the same connection in the two representations provided by the theory developed

here: As a section Ŵ of the bundle of connections, and as an equivariant map σ̃Ŵ : L M → J 1 L M

such that the following diagram commutes

LM J1LM

M C (LM)

σ̃Γ

τ pGL(n)

Γ

According to the previous discussion, the pullback of these forms along the section s : xμ �→(
xμ, eν

k (x)
)

provides us with the expression for the connection forms associated to the underlying

moving frame

ek (x) := eν
k (x)

∂

∂xk
,

in fact, given another such section s̄ : xμ �→
(
xμ, ēν

k (x)
)
, there exists a map g : xμ �→

(
gk

l (x)
)

∈
GL (n) relating them, namely,

ē
μ

k (x) = gl
k (x) e

μ

l (x)

and so

s̄∗
(
σ̃ ∗

Ŵω
)k

l
= hk

pg
q

l s∗
(
σ̃ ∗

Ŵω
)p

q
+ hk

pdg
p

l .

It allows us to answer the concerns raised in the Introduction: The Palatini Lagrangian is a global

form on J1LM, but this is false for its pullback along a local section. Namely, its global description

needs the inclusion of information about the 1-jet of the vielbein involved in the local representation

of the connection.
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31 M. C. López and T. S. Ratiu, “Reduction in principal bundles: Covariant Lagrange-Poincaré equations,” Commun. Math.
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