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Introduction
Gastrointestinal stromal tumor (GIST) is the most common sarco-

ma (1), often originating in the stomach or the small intestine. GIST 

is a paradigm for targeted molecular therapy, since the majori-

ty of GISTs contain an activating mutation in exon 11 of the KIT 

proto-oncogene, for which there are effective and well-tolerated 

tyrosine kinase inhibitors (2, 3). Imatinib mesylate, which inhibits 

the KIT oncoprotein, improved median survival in patients with 

advanced and metastatic GIST from 1 to 5 years (3), while adju-

vant imatinib improved recurrence-free survival in patients with 

resectable disease (4).

PDGFRA-mutant GIST is the second most common form of 

GIST. Approximately half of PDGFRA-mutant GISTs contain a 

D842V substitution, which is inherently resistant to imatinib ther-

apy (5). The majority of PDGFRA-mutant GISTs develop in the 

stomach (6, 7), while KIT-mutant GISTs can arise in the stomach, 

small intestine, or rectum (8), suggesting an innate and import-

ant biologic difference between these driver mutations. Other 

GIST mutation types also associate with predictable clinicopath-

ologic features. For example, KIT exon 9–mutant GISTs nearly 

always develop in the small intestine (9); neurofibromin 1–mutant 

(NF1-mutant) GISTs are more commonly found in the duode-

nojejunal flexure (10); and succinate dehydrogenase– deficient 

(SDH-deficient) GISTs are indolent, multifocal, and among the 

few GISTs — along with those driven by kinase fusions — that 

metastasize via the lymphatic system (11, 12). The underlying bio-

logic mechanisms linking mutation type and clinicopathologic 

features are not well understood.

Although PDGFRA D842V (D842V)-mutant GISTs do not 

respond to imatinib, natural history shows that recurrence-free 

survival is more favorable in patients with any PDGFRA muta-

tion when compared with a KIT mutation (4). This finding, along 

with the predictable behavior of GIST mutation types, had us 

hypothesize that the mutational driver may impact other aspects 

of tumor biology, specifically the tumor microenvironment and 

host immune response. Our group has extensively characterized 

the immune infiltrate in Kit-mutant GIST using a genetically 

engineered mouse model and human specimens (13–17), provid-

ing a clear rationale for multiple immunotherapy trials in patients 

with GIST, but the immune response to PDGFRA- mutant GIST is 

currently unknown.

In this study, we performed RNA-Seq on 75 surgical spec-

imens from 75 patients with GIST to characterize the immune 

infiltrates of different GIST mutations. Surprisingly, we discov-

ered that PDGFRA-mutant GIST harbors more immune cells 

than KIT-mutant GIST; this may be related to oncogene-specific 

cytokine production or more HLA-diverse neoepitope recogni-

tion, suggesting that patients with PDGFRA-mutant GIST might 

benefit from therapeutic immunomodulation. We trained a ran-

dom forest machine learning algorithm on RNA-Seq data from all 

of our KIT- and PDGFRA-mutant GISTs, as well as on a subset 

of untreated, primary, gastric (UPG) KIT- and PDGFRA-mutant 

GISTs, in order to characterize a PDGFRA-specific immune land-
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PDGFRA-mutant and SDH-deficient GISTs (Supplemental Figure 

1, bottom). Notably, KIT-mutant GISTs appeared to cluster into 3 

distinct groups, which upon closer inspection of clinicopathologic 

features was related to treatment status and tumor location.

Given what our group has discovered regarding the immune 

infiltrate of GIST (13–15, 17), the metabolic characteristics of ima-

tinib-treated GIST (18), and the association of cell cycle activity 

with GIST aggressiveness (19, 20), we used our sequencing data 

to perform single-sample gene set enrichment analyses (ssGSEAs) 

focused on immune, metabolic, and cell cycle pathways (Figure 1). 

Using published gene sets (21), along with assessment of previously 

published metabolic, cell cycle, and immune pathways (22), we iden-

tified 136 gene sets for inclusion in ssGSEA (Supplemental Table 2).

ESTIMATE and CYT scoring, which infer the quantity and 

cytolytic activity of the immune infiltrates, respectively (23, 

24), revealed that KIT-mutant GIST had a range of immune cell 

scape. Finally, we identified the top immune features correlating 

with high PD-1 and PD-L1 expression across all GIST specimens 

to identify potential barriers to and synergistic opportunities for 

successful immune checkpoint blockade in GIST.

Results
Single-sample gene set enrichment analysis identifies immune cell 

pathway enrichment in PDGFRA-mutant GIST. We performed 

RNA-Seq and principal component analysis (PCA) of 75 human 

GIST specimens comprising various mutation types (n = 37 

KIT-mutant, n = 24 PDGFRA-mutant, n = 7 SDH-deficient, n = 4 

multiple drivers, n = 2 WT, and n = 1 NF1-mutant; Supplemental 

Table 1; supplemental material available online with this article; 

https://doi.org/10.1172/JCI124108DS1). The combined PCA of 

all mutational drivers demonstrated clustering by mutational sub-

type (Supplemental Figure 1, top), which was most apparent in 

Figure 1. ssGSEA identifies immune cell pathway enrichment in PDGFRA-mutant GIST. ssGSEA of 75 GIST specimens, organized by mutational driver and 

increasing ESTIMATE score. Unsupervised row clustering grouped gene sets into 3 major categories based on cell cycle pathways, metabolic pathways, and 

immune pathways. Clinicopathologic characteristics of the 75 GIST specimens are shown in the annotation and in Supplemental Table 1.
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(Supplemental Figure 2C), implying that the oncogenic driver 

may also be contributing to differences in immune response. In 

fact, ESTIMATE score, CYT score, and the mRNA expression of 

CD45 were significantly greater in UPG PDGFRA-mutant GISTs 

when compared with UPG KIT-mutant GISTs, and expression of 

CD8 mRNA was also increased (Figure 2B). Furthermore, gene 

set enrichment analyses (GSEAs) showed that the overall immune 

response pathway, adaptive immune response pathway, antigen 

binding pathway, and α/β T cell activation pathway (Figure 2C), 

as well as lymphocyte activation, lymphocyte differentiation, and 

B cell activity pathways (data not shown), were more significant-

ly enriched in UPG PDGFRA-mutant compared with KIT-mutant 

GISTs, suggesting that the difference in immune infiltration and 

activity may be related to the oncogenic driver.

To further validate the observed differences in immune 

cell infiltrate between PDGFRA- and KIT-mutant GISTs, 

we performed IHC staining for CD45 and CD8 on KIT- and  

PDGFRA-mutant GISTs, including additional tumors not included 

in the sequencing cohort (Figure 2D). On gross microscopic exam-

ination, it appeared that PDGFRA-mutant GISTs contained more 

CD45+ and CD8+ cells, with a proportion of immune cells clustered 

around perivascular structures, a finding that we have found to be 

associated with adaptive immunity (our unpublished observa-

tions). Quantification of CD45 and CD8 IHC staining, including 

staining of the most infiltrated and cytolytically active KIT- mutant 

GIST in the KIT-mutant cohort (human GIST 203), showed that 

PDGFRA-mutant GISTs had significantly more CD45+ and CD8+ 

cells per ×20 high-power field (HPF) than KIT-mutant GISTs 

(Figure 2E). Moreover, flow cytometric analysis of KIT- and  

PDGFRA-mutant GIST specimens confirmed that PDGFRA-mu-

tant GISTs harbored significantly more CD45+ immune cells than 

KIT-mutant GISTs (Figure 2E). Together, these findings confirm 

that in PDGFRA-mutant GISTs, immune cells are more numerous 

and have higher cytolytic activity than in KIT-mutant GISTs with 

similar clinicopathologic features.

CIBERSORT and differential gene expression analysis identify 

unique immune signatures in GIST. To discover additional differ-

ences in the immune landscape between UPG PDGFRA- and UPG 

KIT-mutant GISTs, we profiled a previously defined set of 117 rel-

evant immune features (Supplemental Table 5) (28, 29). In addi-

tion to ESTIMATE and CYT scores, this profile included scores 

derived from CIBERSORT, which infers various immune cell fre-

quencies through RNA-Seq deconvolution, as well as 93 relevant 

immune-related genes. UPG PDGFRA-mutant GISTs appeared 

to have higher proportions of intratumoral CD4+ T cell and mac-

rophage expression (Figure 3, middle), while UPG KIT-mutant 

GISTs primarily expressed CD4 and macrophage signatures only 

in the most immune cell–infiltrated tumors. Furthermore, B cell 

and CD8+ T cells signatures were also expressed in GISTs with 

high ESTIMATE and CYT scores, confirming what we and others 

have shown regarding the immune cell prevalence in GIST (14, 27).

Differential gene expression (DGE) analysis revealed that 20 

of 93 (21.5%) immune-related genes were significantly differen-

tially regulated between UPG KIT- and UPG PDGFRA-mutant 

GISTs (bold indicates P < 0.05; Figure 3, bottom). Specifical-

ly, UPG PDGFRA-mutant GISTs expressed significantly more 

CCR5, BTLA, CD96, CD48, TNFRSF9, TNFSF8, CCR4, CXCL11, 

infiltration and cytolytic activity (Figure 1). Meanwhile, SDH- 

deficient, NF1-mutant, D842V-mutant GISTs with a concurrent 

CDKN2A (p16) deletion, and WT GISTs (defined as non-KIT, 

non-PDGFRA, non-RAS-activated, and non-SDH-deficient, as 

previously described; ref. 25) exhibited generally low ESTIMATE 

and CYT scores and a lack of immune cell pathway enrichment.

Conversely, ESTIMATE, CYT, and ssGSEA identified 

increased immune cell infiltration, greater immune cell activi-

ty, and a significant enrichment of immune-related gene sets in 

PDGFRA-mutant GISTs — an unexpected finding that suggested 

that PDGFRA-mutant GISTs were more immunogenic than oth-

er GIST mutations (Figure 1). Cell cycle activity pathways did not 

clearly correlate with immune cell infiltration across all GIST driv-

er mutation types, while metabolic activity appeared to inverse-

ly correlate with the quantity of immune infiltrate, specifically in 

KIT exon 11–mutant GISTs. Overall, these data show that while 

tumors driven by a particular GIST mutation can have variable 

immune profiles, PDGFRA-mutant GIST contains the strongest 

gene expression–based immune signature when compared with 

other GIST mutations.

PDGFRA-mutant GIST is more immunologically active than 

KIT-mutant GIST. In order to validate our ssGSEA finding that 

PDGFRA-mutant GIST was highly enriched in immune cell quan-

tity and cytolytic activity, we first compared the clinicopatholog-

ic characteristics of all KIT- and PDGFRA-mutant GISTs (Sup-

plemental Table 3; n = 61). Though not associated with immune 

cell infiltration in GIST, tumor size, mitotic rate, and tumor loca-

tion are predictive of GIST aggressiveness and recurrence-free 

survival after surgical resection (26). PDGFRA-mutant GISTs 

were more commonly found in stomach when compared with 

KIT-mutant GISTs, and there were significantly more males in 

our PDGFRA-mutant GIST cohort. There was also a trend toward 

decreased mitotic activity in PDGFRA-mutant when compared 

with KIT-mutant GISTs (Supplemental Table 3). ESTIMATE and 

CYT scores, however, did not correlate with mitotic rate across all 

KIT- and PDGFRA-mutant GISTs (Supplemental Figure 2A). CYT 

score and the overall number of CD45 mRNA transcripts were 

significantly higher in PDGFRA-mutant when compared with 

KIT-mutant GISTs (Figure 2A), while there was also a trend toward 

increased ESTIMATE score and CD8 mRNA expression, suggest-

ing that PDGFRA-mutant GISTs may exhibit greater immune cell 

infiltration and activation than KIT-mutant GISTs.

Since we observed significant differences in tumor location 

between KIT- and PDGFRA-mutant GISTs, and metastatic lesions 

and treatment status have also been shown to alter the immune 

infiltrate in GIST (14, 27), we then compared only UPG PDGFRA- 

and KIT-mutant GISTs to minimize confounders and maximize 

the potential to observe important biologic differences that may 

be related to the oncogenic driver (Supplemental Table 4; n = 22). 

UPG PDGFRA- and KIT-mutant GISTs with a low mitotic rate 

exhibited significantly higher ESTIMATE scores when compared 

with UPG GISTs with a high mitotic rate (Supplemental Figure 

2B), suggesting that immune cell infiltration may be partly related 

to GIST aggressiveness when controlling for tumor location and 

treatment status. However, when controlling for the mutational 

driver in addition to tumor location and treatment status, mitot-

ic rate did not inversely correlate with immune cell infiltration 
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these findings suggest that CXCL14 expression may contribute to 

the observed differences in immune infiltration between PDG-

FRA- and KIT-mutant GISTs (31, 32).

PDGFRA mutation produces multiple HLA-diverse, strong bind-

ing neoepitopes. Given the association of neoantigen presentation 

with inflamed tumor/immune microenvironments in other malig-

nancies, we hypothesized that PDGFRA-mutant GISTs may pro-

duce more potent neoepitopes when compared with KIT-mutant 

GISTs. To explore this, we first mapped out the 8-, 9-, and 10-mer 

neoepitopes produced by all driver mutations in our cohort, gen-

erating neoepitopes with the mutation placed at each amino acid 

position in the mutant peptide. Then, we tested the binding affini-

ty of each neoepitope to the matched, patient-specific HLA type in 

which that mutation was found.

First, we wanted to determine whether total neoepitope bur-

den and the number of high-affinity neoepitopes produced by 

each GIST specimen correlated with immune infiltration or cyto-

lytic activity in GIST, since neoepitope burden has been shown to 

correlate with increased response to immunotherapy in a variety 

of cancers (33, 34). However, total neoepitope burden and the 

number of high-affinity (<500 nM binding) or very high-affini-

ty (<50 nM binding) neoepitopes did not correlate with immune 

infiltration or cytolytic activity across all mutations in the GIST 

cohort (Figure 5A) or across KIT- and PDGFRA-mutant GISTs spe-

cifically (data not shown).

We observed that the majority of patients with an oncogenic 

mutation in PDGFRA or KIT produced at least one high-affinity 

neoepitope (<500 nM binding), regardless of mutation subtype 

(Figure 5B). We also found that the D842V mutation produced 

34 unique, high-affinity neoepitope:HLA-specific binding com-

binations across the predicted HLA types in our cohort of 16 

D842V-mutant patients (Figure 5B), while KIT exon 11 and oth-

er PDGFRA mutations on average produced only 2–3 per muta-

tion (Supplemental Table 6). The D842V mutation generated 6 

different neoepitopes that bound to 12 different HLA types in 

14 patients in our cohort (Supplemental Table 7), one of which 

is the most common HLA type in the United States and present 

in 95.7% of White individuals (HLA*A02:01) (35, 36), suggesting 

that this mutation could produce an immune response in a wide 

variety of patients, whereas KIT exon 11 neoepitopes bound to 

less-prevalent HLA types.

Since the number of patients with D842V mutations (n = 16) 

exceeded the number of patients with any individual KIT muta-

tion (n = 1–4, Supplemental Table 7), and this may obscure our 

HLA observations, we explored mutation-specific neoepitope 

binding diversity more broadly against all HLA types validated 

by NetMHCPan3.0 (Figure 5C). Again, nearly all PDGFRA and 

KIT GIST mutations produced at least one high-affinity neoepi-

tope capable of binding to many different HLA types. D842V 

neoepitopes bound with very high affinity (<50 nM binding) to 

HLA*A02:01 and many other prevalent HLA types. Interesting-

ly, 50% (4 of 8) of all PDGFRA mutations produced at least one 

very high-affinity neoepitope (<50 nM binding) to HLA*A02:01, 

compared with only 14% of KIT mutations (2 of 14). Thus, while 

all KIT- and PDGFRA-mutant GISTs appear to produce high- 

affinity neoepitopes, PDGFRA-mutant GISTs appear to produce 

more high-affinity neoepitopes to more common HLA types. 

CXCR4, KDR, IL6R, TNFRSF8, TNFSF14, TIGIT, TNFRSF17, 

HLA-DQA2, CXCL14, and CXCL12. Meanwhile, KIT-mutant 

GISTs expressed significantly more TNFSF18 and MICA. Togeth-

er, these data suggest that PDGFRA- and KIT-mutant GISTs elicit 

a different quality of immune infiltrate, which may ultimately pro-

vide driver-specific strategies for immunotherapy.

PDGFRA- and KIT-mutant GISTs have distinct signaling and 

cytokine signatures. To determine whether intracellular signaling 

or cytokine differences could be contributing to the observed dif-

ferences in immune infiltration between UPG PDGFRA-mutant 

and UPG KIT-mutant GISTs, we utilized GSEA to detect differenc-

es in these pathways. On GSEA, we first observed enrichment of a 

known PDGFRA-mutant GIST signaling pathway gene set from a 

prior report analyzing 3 PDGFRA-mutant GISTs (Figure 4A, top) 

(30). Compared with UPG KIT-mutant GISTs, UPG PDGFRA- 

mutant GISTs also demonstrated significant transcriptional acti-

vation of the PI3K signaling pathway (Figure 4A, bottom), which 

may have been driven by expression changes in PDGFRA, RELN, 

KDR, or ERK, 4 genes that have been found to be significantly dif-

ferentially expressed between PDGFRA- and KIT-mutant GISTs 

not only in our cohort but also previously (30). Furthermore, many 

cytokine and chemokine pathways were significantly upregulated 

in UPG PDGFRA-mutant GISTs (Figure 4B), which we found to be 

related to increased expression of CXCL14, CCL7, CCL19, VEG-

FA, and KITLG (Figure 4C).

The differences observed in CXCL14 expression were partic-

ularly intriguing. First, CXCL14 mRNA was expressed at signifi-

cantly higher levels in nearly all UPG PDGFRA-mutant GISTs. 

Quantitative real-time PCR (qRT-PCR) of bulk human PDG-

FRA- and KIT-mutant tumors also revealed that PDGFRA-mutant 

GISTs produced approximately 10 times more CXCL14 mRNA 

than KIT-mutant tumors, and 21 times more CXCL14 mRNA than 

the KIT-mutant GIST-T1 (Figure 4D, left) and GIST-882 cell lines 

(data not shown). Finally, CXCL14 has been shown to contribute 

to NK+, CD4+, CD8+, and regulatory T cell chemotaxis and tumor 

regression in other tumor models (31, 32). UPG PDGFRA-mutant 

GISTs expressed CXCL14 mRNA at levels higher than those shown 

to lead to immune-mediated tumor regression in HPV+ head, neck, 

and cervical cancers, while KIT-mutant tumors expressed CXCL14 

mRNA at levels below this threshold (Figure 4D, right). Together, 

Figure 2. PDGFRA-mutant GIST is more immunologically active com-

pared with KIT-mutant GIST. (A) ESTIMATE and CYT scores (left) and 

CD45 and CD8 normalized counts (right) of all KIT- and PDGFRA-mutant 

GISTs (n = 61; Supplemental Table 3). (B). ESTIMATE and CYT scores 

(left) and CD45 and CD8 normalized counts (right) of UPG KIT- and 

PDGFRA-mutant GISTs (n = 22; Supplemental Table 4). (C) GSEA showing 

multiple immune pathways enriched in UPG PDGFRA-mutant compared 

with UPG KIT-mutant GISTs. NES, normalized enrichment score. (D) ×10 

magnification CD45 and CD8 IHC staining in KIT- and PDGFRA-mutant 

GISTs. Red text indicates specimen was included in RNA-Seq cohort, 

while samples represented in black text were not included. Representa-

tive samples of n = 6 per group are shown. (E) CD45 (top) and CD8 (mid-

dle) quantification of IHC staining. n = 6 per group. The number of CD45+ 

and CD8+ cells per HPF was calculated by examining 5 HPFs per tumor 

and plotting the average per tumor. Bottom: CD45 expression by flow 

cytometry (for specimens in which flow cytometry data were available). 

*P < 0.05, t test. Bars indicate median.
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Given that GIST is often driven by a single oncogenic mutation, 

and GIST harbors a rich immune infiltrate, this raises the possi-

bility that oncogenic GIST mutations produce neoepitopes that 

may classify as what has recently been provocatively described 

as high-quality neoepitopes (37).

Machine learning identifies immune gene signatures for GIST. 

Through bioinformatics prediction and biologic validation meth-

ods, it appears that in PDGFRA-mutant GIST, immune cells are 

more numerous and have higher cytolytic activity than in KIT- 

mutant GISTs, and both subsets contain a unique immune pro-

Figure 3. CIBERSORT and DGE analysis identify unique immune signatures in GIST. CIBERSORT (middle) and immune gene expression (bottom) of UPG 

KIT- and UPG PDGFRA-mutant GISTs, organized by mutational driver and increasing ESTIMATE score (n = 22). Unsupervised row-normalized clustering of 

genes shows grouping of genes into distinct groups, suggestive of oncogene-driven immune profiles. Genes shown in blue were significantly enriched in 

UPG PDGFRA- compared with UPG KIT-mutant, while genes in green were significantly enriched in UPG KIT- compared with UPG PDGFRA-mutant samples. 

Enrichment was considered as an adjusted P < 0.1 as calculated by DESeq2 for R, while boldface for gene names indicates a significant difference, with an 

adjusted P < 0.05. Clinicopathologic characteristics of the UPG GIST specimens are shown in the annotation and in Supplemental Table 4.
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file. This makes characterizing a global immune infiltrate in GIST 

challenging and suggests that specific immunotherapy approach-

es may ultimately need to be targeted to the specific oncogenic 

mutation in GIST. We therefore sought to define the most import-

ant immune features differentiating PDGFRA- and KIT-mutant 

GISTs through machine learning, which is an unbiased approach 

not dependent on previously defined gene set analysis, allowing 

for novel and impartial observations. We specifically used all KIT- 

Figure 4. PDGFRA- and KIT-mutant GISTs have distinct signaling and cytokine signatures. GSEA showing enrichment of (A) PDGFRA signaling, PI3K 

signaling, and (B) cytokine signaling pathways in UPG PDGFRA- compared with UPG KIT-mutant GISTs (n = 22). (C) Distribution of cytokines between UPG 

KIT- and UPG PDGFRA-mutant GISTs, by RNA-Seq. Adjusted P < 0.05 as calculated by DESeq2. All data points are shown; boxes define the interquartile 

range, with whiskers extending to lowest and highest data points. (D) Left: Relative CXCL14 mRNA expression by qRT-PCR in KIT- (n = 7) and PDGFRA- 

mutant (n = 7) GISTs from the RNA-Seq cohort, compared with the GIST-T1 cell line (expression set at 1; data not shown). Right: CXCL14 mRNA expression 

relative to GAPDH × 106 in UPG KIT- and PDGFRA-mutant GISTs. Horizontal dotted line represents CXCL14 mRNA expression needed to induce tumor 

regression (31). *P < 0.05, t test. Bars indicate the median.
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Figure 5. PDGFRA mutation produces multiple HLA-diverse, strong binding neoepitopes. (A) Pearson’s correlation of ESTIMATE (top) and CYT (bottom) 

scores with total neoepitope burden (left), number of high-affinity neoepitopes (middle), and number of very high-affinity neoepitopes (right) among all 

GIST samples (n = 75). (B) Left: Percentage of patients with the indicated mutation whose mutation produced a predicted high-affinity neoepitope. Right: 

Number of potential neoepitope:HLA binding events produced by mutation type, averaged over the number of mutations per group. (C) Heatmap of the 

binding affinities of KIT and PDGFRA mutation–specific neoepitopes to all validated NetMHCPan 3.0 HLA types. Clinicopathologic characteristics of the 

GIST specimens are shown in Supplemental Table 3. Additional details regarding mutations, neoepitopes, and HLA types used to create this heatmap are 

shown in Supplemental Tables 6 and 7.
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PD-1 upregulation (sensitivity: 90%, specificity: 87.1%, Figure 

7A), along with PDCD1LG2, BTLA, CD40, CXCL14, and MICB, 

suggesting that these pathways may represent synergistic oppor-

tunities for PD-1 immunomodulation in GIST (Figure 7B). Using 

only these 6 features, our model was able to correctly predict high 

PD-1 expression in 92.9% of the testing cohort and 66.7% of the 

external CINSARC GIST cohort (Figure 7C).

PD-L1 mRNA expression correlated with PD-L1 protein 

expression in our cohort (Supplemental Figure 5; see complete 

unedited gel in the supplemental material). When training our 

PD-L1 random forest model, expression of key antigen-present-

ing machinery, including B2M, HLA.DRA, and TAP2, and the 

immune-responsive cytokines CXCL10 and LTA were predictive 

of increased PD-L1 expression across all GISTs (sensitivity: 76.7%, 

specificity: 87.1%, Figure 7D), suggesting a relationship between 

immune checkpoint ligand upregulation and immune recogni-

tion (Figure 7E). Applying the model of these antigen-presenting 

machinery features and immune cytokines, along with PD-L2, 

which was also identified as a feature predictive of high PD-L1 

expression, our model correctly identified high PD-L1 expression 

with 85.7% accuracy in the testing cohort and 91.7% in the CIN-

SARC GIST cohort (Figure 7F).

Discussion
The dramatic success of immune checkpoint blockade in a variety 

of notoriously difficult-to-treat cancers has nearly standardized 

immunomodulation as an approach for cancer treatment (40–42). 

However, subsequent research has advanced our understanding 

of how cancer type– and tumor cell–specific characteristics, such 

as genomic mutational burden, can predict response to immuno-

therapy (33, 34). It has also recently been shown that the state of the 

immune microenvironment can prevent response to immunother-

apy if not appropriately addressed (43). In fact, it has become clear 

that the complex relationship between cancer cell–intrinsic factors 

and the subtleties of the cancer type–specific immune microenvi-

ronment may make a generalized strategy of immune checkpoint 

blockade ineffective (44). Therefore, it has become increasingly evi-

dent that cancer-specific immunotherapeutic strategies are needed.

In this study, we performed RNA-Seq on 75 human GIST spec-

imens from 75 patients to characterize the immune landscape of 

different GIST mutational drivers, which we believe is the largest 

cohort of GISTs to be analyzed with next-generation RNA-Seq. 

After observing potential differences in immune infiltration, we 

focused on the 2 prevalent GIST mutational subtypes, namely KIT 

and PDGFRA, and found that PDGFRA-mutant GISTs contain 

more immune cells than KIT-mutant GISTs. This suggests that 

patients with PDGFRA-mutant GIST may ultimately have a great-

er potential to respond to immunotherapy.

Through differential gene expression analysis, we identi-

fied mutation-specific immune landscapes that may be signifi-

cant for directing GIST immunotherapy. First, PDGFRA- mutant 

GISTs showed higher expression of CD96, suggesting that NK 

cells may play a more substantial role in the immune environ-

ment of PDGFRA-mutant compared with KIT-mutant GIST. In 

fact, NK cell infiltrate has been suggested to be a contributor 

to long-term survival in KIT-mutant GIST (45), which may help 

explain why PDGFRA-mutant GIST patients have a better over-

and PDGFRA-mutant GISTs (Supplemental Table 3; n = 61), as 

well as only UPG KIT- and PDGFRA-mutant GISTs (Supplemental 

Table 4; n = 22) to develop 2 random forest models, and assumed 

that these immune differences would most likely be related to the 

oncogenic driver.

The combination of salient immune features capable of most 

accurately profiling a PDGFRA- or KIT-mutant GIST were iden-

tified based on each feature’s “importance,” which is calculated 

as part of caret for R’s implementation of randomForest (38). The 

feature importance metric is a measure indicating how useful a 

feature is for separating samples into their distinct classes. The 

features with the highest importance provide the classifier with 

the highest increase in performance.

We included all 117 immune features to initially create the 

model (Supplemental Table 5) and subsequently retrained the 

model using fewer features. We noted that including more fea-

tures in the model increased the model’s performance on the train-

ing set, but decreased the model’s performance on the test set, a 

phenomenon known as overfitting (Supplemental Figure 3A). 

Therefore, to prevent overfitting, we retrained the model using 

only the 6 most important features, which we believe will broaden 

the applicability of our model to future GIST samples. When we 

restricted the model to the 6 most relevant features (Figure 6A), 27 

of 30 KIT-mutant GISTs were correctly classified as KIT-mutant 

in the training set, while 14 of 20 PDGFRA-mutant GISTs were 

correctly assigned as PDGFRA-mutant (sensitivity: 70%, spec-

ificity: 90%). The top immune features included CXCL14, TGF-

BR1, TNFSF9, MICA, TNFRSF25, and CD96 (Figure 6B). Notably, 

the PDGFRA-mutant tumors that were incorrectly classified as 

KIT-mutant by our model had lower ESTIMATE and CYT scores 

than correctly classified PDGFRA-mutant tumors (Supplemen-

tal Figure 4A), while KIT-mutant tumors incorrectly classified as 

PDGFRA-mutant had more variable CXCL14 mRNA expression 

and higher TGFBR1 and CD96 mRNA expression than correctly 

classified KIT-mutant tumors (Supplemental Figure 4B). In our 

separate cohort of testing samples (n = 11), the 6-feature model 

correctly identified KIT- and PDGFRA-mutant GISTs with 91% 

accuracy (Figure 6C). To demonstrate the importance of these 6 

immune features in classifying KIT- and PDGFRA-mutant GISTs, 

we excluded these features and retrained our random forest mod-

el, which reduced classifier performance and model accuracy 

from 91% to 72.7% (Supplemental Figure 3B).

We further validated our model on an external cohort of GISTs 

from the Complexity Index in Sarcomas (CINSARC) study (n = 12; 

ref. 39). Application of our immune profiling model to the CIN-

SARC cohort correctly differentiated KIT- and PDGFRA-mutant 

GISTS with 83.3% accuracy (Figure 6C). Similar results were 

obtained when we created a model using only UPG PDGFRA- 

and KIT-mutant GISTs (Figure 6, D–F), in which CXCL14, IDO, 

TNFSF14, KDR, MICA, and TNFRSF9 were the most important 

features defining the model.

We employed the same machine learning approach to identi-

fy gene expression–based immune features associated with high 

PD-1 and PD-L1 expression across all GISTs (n = 75) in order to dis-

cover novel therapeutic targets and potential barriers to immune 

checkpoint blockade in GIST. Interestingly, our 6-feature mod-

el showed that increased CD27 expression was highly related to 
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fore, may be more receptive to a variety of immuno therapeutic 

approaches, such as targeting TIGIT, BTLA, CD48, or TNFRSF9 

in addition to regulatory T cells and NK cells, and PD-1/PD-L1 

checkpoint blockade.

all prognosis (4). Similarly, PDGFRA-mutant GISTs had higher 

CD4, CCR4, and CCR5 expression (indicative of regulatory T 

cells) and higher expression of the immunomodulators BTLA, 

CD48, TNFRSF9, and TIGIT. PDGFRA-mutant GISTs, there-

Figure 6. Machine learning identifies an immune signature predictive of KIT- and PDGFRA-mutant GIST. (A) Random forest modeling with 5-fold cross-validation 

of KIT- and PDGFRA-mutant GIST specimens (training set created by partitioning 80% of KIT and PDGFRA samples from Supplemental Table 3, n = 50). Confusion 

matrix (right) indicates assessment of model fit to training set. OOB, out-of-bag. (B) Distribution of top 6 features identified by random forest modeling. *Adjusted 

P < 0.05 from DSeq2. (C) Predictive capacity of model on remaining KIT- and PDGFRA-mutant GIST testing set (n = 11) and the CINSARC cohort (n = 12). Accuracy 

(Acc), sensitivity, specificity, and P value[Acc >no information rate (NIR)] of the model are shown, calculated by caret package for R. Bars indicate mean + SEM. (D) 

Random forest modeling with 5-fold cross-validation of UPG KIT- and UPG PDGFRA-mutant GIST specimens (training set created by partitioning 80% of UPG KIT 

and UPG PDGFRA samples from Supplemental Table 4, n = 18). Confusion matrix (right) indicates assessment of model fit to training set. (E) Distribution of top 6 

features identified by random forest modeling. *Adjusted P < 0.05 from DSeq2. (F) Predictive capacity of model on remaining UPG KIT- and UPG PDGFRA-mutant 

GIST testing set (n = 4) and the CINSARC cohort (n = 12). Accuracy, sensitivity, specificity, and P value[Acc >NIR] of the model are shown, calculated by caret package 

for R. For B and E, all data points are shown, with boxes defining the interquartile range and whiskers extending to the lowest and highest data points.
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has been shown to have a lower proliferative index when compared 

with KIT-mutant GIST (46). However, when controlling for muta-

tional driver, the relationship between mitotic rate and immune 

cell infiltration in UPG GISTs loses significance, suggesting that 

oncogenic driver may be more important for dictating the immune 

infiltrate. In fact, comparison of UPG KIT- and PDGFRA-mutant 

Comparison of UPG GISTs of the KIT- and PDGFRA-mutant 

phenotypes revealed that mitotic rate, an indicator of GIST aggres-

siveness, was inversely related to the quantity of the immune 

infiltrate. While this concept has been described in other cancers, 

tumor proliferative index has not yet been shown to affect the 

quantity of the immune infiltrate in GIST. PDGFRA-mutant GIST 

Figure 7. Machine learning identifies an immune signature predictive of PD-1 and PD-L1 expression in GIST. (A) Random forest modeling of PD-1 with 5-fold 

cross-validation of GIST specimens (training set created by partitioning 80% of all GIST samples from Supplemental Table 1, n = 61). Confusion matrix (right) 

indicates assessment of model fit to training set. (B) Distribution of top 6 features identified by random forest modeling. *Adjusted q < 0.1. (C) Predictive 

capacity of model on remaining 14 GISTs (testing set) and external CINSARC GIST cohort (n = 12). Accuracy, sensitivity, specificity, and P value[Acc > NIR] of 

model are shown, calculated by caret package for R. (D) Random forest modeling of PD-L1 with 5 k-folds cross-validation of GIST specimens (training set cre-

ated by partitioning 80% of all GIST samples from Supplemental Table 1, n = 61). Confusion matrix (right) indicates assessment of modeling fit to training set. 

(E) Distribution of top 6 features identified by random forest modeling. *Adjusted q < 0.1. (F) Predictive capacity of model on remaining 14 GISTs (testing set) 

and external CINSARC GIST cohort (n = 12). Accuracy, sensitivity, specificity, and P value[Acc >NIR] of the model are shown, as calculated by caret package for 

R. For B and E, all data points are shown, with boxes defining the interquartile range and whiskers extending to the lowest and highest data points.
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riers to effective immunotherapy. CD27 was found to be an import-

ant feature predictive of high PD-1 expression in our random forest 

model, which correctly identified high PD-1 expression in 93% of 

our testing GIST cohort. Agonistic CD27 antibodies already exist 

and have shown efficacy with anti–PD-1 in other models, suggest-

ing that this may be an effective strategy for GIST (49). Similarly, 

the costimulatory and checkpoint receptors CD40 and BTLA, 

along with the immune checkpoint ligand PDCD1LG2 and the 

MHC class I protein MICB were features predictive of high PD-1 

expression. We have previously shown that CD40 ligation enhanc-

es antitumor immunity in our Kit exon 11 mouse model (17), and 

these other receptors should be considered in future trials.

Notably, applying our PD-1 model to the external CINSARC 

cohort resulted in only 67% accuracy, even though our PD-L1 

model, in which the same methodology was used, was more accu-

rate (92%). One reason may be related to the small sample size of 

the external cohort. However, these models identify high-priority 

targets for further experimental validation.

Finally, expression of key antigen-presenting machinery 

including B2M, PDCD1LG2, HLA-DRA, and TAP was found to be 

highly predictive of PD-L1 expression not only in our cohort (86% 

accuracy) but also in the external CINSARC GIST cohort (92% 

accuracy), suggesting a tumor cell–specific mechanism of linking 

neoepitope presentation with immune suppression. A similar find-

ing has been observed in HIV-infected cells, where MHC class I 

machinery was upregulated concurrently with PD-L1 (50). This is 

an important concept to consider, as efforts to block PD-L1 may 

result in tumor cell changes that also downregulate MHC class I 

antigen presentation, which is essential for the CD8+ T cell–medi-

ated immune response. High PD-L1 expression has also recently 

been shown to independently correlate with a worse prognosis in 

soft tissue sarcomas, which was attributed to an increased degree 

of immune exhaustion, suppression, and negative regulation (51). 

In contrast, efforts to enhance antigen presentation using neoan-

tigen peptide vaccination or GM-CSF–expressing tumor cell vac-

cines may require PD-L1 inhibition.

Ultimately, it is becoming increasingly evident that immu-

notherapy requires a specific approach targeted to not only the 

tumor type but also the tumor-specific immune microenviron-

ment. Through RNA-Seq and 4 trained machine learning mod-

els, we have characterized important and consistent differences 

in the immune landscape of GISTs driven by different oncogenic 

mutations, which we believe may help guide future immunother-

apy trials in GIST.

Methods
Human GIST specimens and clinicopathologic features. Fresh surgical 

specimens were collected immediately upon resection and flash fro-

zen in liquid nitrogen. RNA was extracted using the RNeasy kit (QIA-

GEN) as per the kit-specified protocol. Clinicopathologic features 

were obtained via chart review of patient and pathologic records.

Bioinformatics. Poly(A) selection and next-generation RNA-Seq 

were performed on an Illumina HiSeq 2500 platform by the MSKCC 

Integrated Genomics Operations core facility. A minimum of 40–50 

million 50-bp paired-end reads were obtained for each sample. RNA-

Seq reads were processed using Trimmomatic v0.36 (52) using the 

following parameters recommended for paired-end Illumina sequenc-

GISTs revealed distinct cytokine profiles, which we hypothesize 

may contribute to immune cell chemotaxis. CXCL14 is a relative-

ly recently identified chemokine with a clear role in immune cell 

attraction (31, 32, 47). CXCL14 was found to be significantly upreg-

ulated in PDGFRA-mutant compared with KIT-mutant GISTs, not 

only in our cohort but also in a previously published cohort (30). 

Unfortunately, studying this correlation has proved challenging, 

as there is currently no PDGFRA-mutant GIST mouse model or 

human PDGFRA-mutant GIST cell line in which to explore what 

appears to be a clear biological relationship between PDGFRA 

tyrosine kinase activation and CXCL14 secretion. Thus, the impli-

cation of our finding at this time remains unclear.

It is clear that in cancers with a high number of mutations, 

tumor mutational burden correlates with immunotherapy 

response (33). However, the role of neoepitopes in the immune 

response of cancers with a single oncogenic mutation (i.e., GIST) 

has not been described. To our surprise, nearly every GIST muta-

tion in our cohort produced a neoepitope capable of binding with 

high affinity to patient-specific HLA class I, suggesting that even 

cancers with one mutation can generate a neoepitope recogniz-

able by the immune system. We discovered that the D842V muta-

tion produced 6 different high-affinity neoepitopes, which bound 

to 12 different HLA types of patients in this cohort alone, one of 

which is the most common HLA type in the United States and in 

White individuals (35, 36). While we have not shown that these 

neoepitopes produced an immune response in these patients, it 

is intriguing that GISTs with a larger immune infiltrate appear to 

have a mutation that generates peptides with broad HLA binding 

specificity, suggesting that this mutation may be of higher quality 

(37). Moreover, the HLA-specific binding affinities of neoepitopes 

generated by mutation-specific GIST subtypes reported in this 

study may provide a road map for patient selection in future neo-

antigen vaccination trials.

We employed machine learning in order to identify key dif-

ferences and to profile the expression of immune-related genes 

between PDGFRA- and KIT-mutant GISTs. Generating a gene 

expression–based immune profile that accurately predicted the 

KIT- or PDGFRA-mutant genotype not only supports our hypoth-

esis that the genotype may impact the immune infiltrate, but also 

introduces another method by which profiling the immune land-

scapes of KIT- and PDGFRA-mutant tumors can lead to more 

personalized cancer immunotherapy. Not surprisingly, CXCL14 

appeared to be a top feature of PDGFRA-mutant GIST, again sug-

gesting that CXCL14 expression is oncogene specific and may be 

responsible for the observed differences in immune infiltration 

and activity. TGFBR1, TNFSF9, MICA, TNFRSF25, CD96, IDO, 

TNFSF14, KDR, and TNFRSF9 all contributed to the predictive 

capacity of the immune profiling models, which resulted in >90% 

diagnostic accuracy in our testing set and in 83% of the CINSARC 

validation set. We have previously shown the importance of IDO 

in dictating the immune phenotype of GIST (13). The role of NK 

cells and the additional immune modulatory receptors identified 

in this study should continue to be explored.

Since immunotherapy has not yet shown efficacy in advanced 

and metastatic GIST (48), we sought to explore the immune pro-

files of PD-1–high and PD-L1–high GISTs across our entire GIST 

cohort to identify both therapeutic opportunities and potential bar-
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was trained on 80% of the training data, and training accuracy, sensi-

tivity, and specificity were calculated; the remaining 20% of the train-

ing data were then used to calculate testing accuracy, sensitivity, and 

specificity. Finally, our trained machine learning model was applied to 

the 20% testing set and to the external validation CINSARC cohort (n = 12;  

ref. 39) in order to assess model accuracy on a naive sample set.

Given the total sample size of our cohort and to prevent overfit-

ting of our model, random forest modeling with 5-fold cross-valida-

tion was re-performed on the training set using only the top 6 identi-

fied features, and the model was then applied to the naive testing set 

and CINSARC external data set to assess for model accuracy. Feature 

importance is a variable calculated by the caret package, with a higher 

number indicating that the feature is more important for model accu-

racy (38). The confusion matrices shown in Figures 6 and 7 reflect the 

model, with the highest accuracy after 5-fold cross-validation and 

optimization by caret. The P value used by caret is calculated using an 

exact binomial test in which a 1-sided test is performed to determine 

whether the model accuracy rate is better than the “no information 

rate,” which represents the proportion of data within the majority 

class. For generation of PD-1– and PD-L1–specific immune features, 

the same approach was used, with groups split into high and low 

expression based on median PD-1 (median: 14.1) or PD-L1 (median: 

209.5) normalized read counts in the training set.

qRT-PCR. Total RNA was extracted from snap-frozen human 

tumors, reverse transcribed, and amplified with PCR TaqMan probe 

for CXCL14 (Hs01557413_m1). qRT-PCR was performed using a ViiA 

7 real-time PCR system (Applied Biosystems). Data were calculated 

by the 2-ΔΔCt method as described in the manufacturer’s protocol and 

were expressed as fold increase over the GIST-T1 or GIST-882 cell 

line control (63, 64).

Flow cytometry. Flow cytometric analysis was immediately per-

formed at the time of specimen collection on freshly obtained human 

GIST specimens after tumor dissociation as previously described 

(15). Cells were analyzed on a BD FACSAria or LSRFortessa (BD Bio-

sciences). A human-specific antibody for CD45 (2D1) was obtained 

from BD Biosciences.

Western blot analysis. Protein from flash-frozen GIST tissue or 

cell lines was analyzed as described previously (18). Antibodies used 

against GAPDH (clone D16H11) and PD-L1 (clone E1L3N) were pur-

chased from Cell Signaling Technology.

Histology. Freshly collected tumors were fixed in 4% parafor-

maldehyde, embedded in paraffin, and cut into 5-μm sections. CD45 

(PD7/26 + 2B11) and CD8 (SP57) staining was performed by the MSK-

CC Molecular Cytology Core. Slides were scanned with MIRAX SCAN 

(Zeiss) and photographed with Pannoramic Viewer (3DHISTECH 

Ltd.). For quantification of CD45 and CD8 staining, cell counting 

was performed manually in a blinded fashion at ×20 magnification 

(HPF). The number of CD45+ and CD8+ cells per HPF was calculated 

by examining 5 HPFs per tumor and plotting the average per tumor.

Statistics. Some data and graphs were created using Prism 7.0 (Fig-

ure 2, A, B, and E; Figure 4, C and D; Figure 5, A and B; Figure 6, B and E; 

Figure 7, B and E; GraphPad Software). Statistical tests were performed 

as described in the figure legends, and when possible, adjusted P values 

calculated by DESeq2 were used to assess for significance, with a thresh-

old of adjusted P < 0.05. For Figure 7, B and E, an FDR approach was tak-

en using the Benjamini, Krieger, and Yekutieli 2-stage step-up method, 

with a q value threshold of <0.1 in order to assess for significance.

ing: PE - phred33, ILLUMINACLIP: TruSeq3-PE.fa:2:30:10, LEAD-

ING: 3, TRAILING: 3, SLIDINGWINDOW: 4:15, and MINLEN: 36. 

Sequencing reads were then aligned to the human genome (version 

hg38_r88), and gene-level counts were calculated using STAR version 

2.6.0a (53). Read counts were then normalized, and DGE analyses 

were performed on indicated groups using the R software package 

DESeq2 (54, 55). GSEA was performed using the java GSEA software 

package (version 3.0) and Molecular Signatures Database (MSigDB) 

version 6.2 (Broad Institute) (56, 57).

The activity of cytotoxic T cells within each sample was estimat-

ed utilizing the CYT score, which was calculated from the geometric 

mean of the normalized read counts for perforin (PRF1) and granzyme 

A (GZMA) as previously described (23). The immune cell compart-

ment of these samples was further quantified from the normalized 

read counts using the R package ESTIMATE (23). The ESTIMATE 

algorithm is composed of a nonimmune “stromal score” parameter 

and an “immune score” parameter. In this work, we refer to ESTI-

MATE score as the immune score subcomponent of the ESTIMATE 

algorithm, which infers the degree of immune cell infiltration within 

tumor tissue based on expression data of 141 immune-related genes 

previously shown to correlate with the presence of leukocytes (24). 

The absolute quantities of individual immune cell subtypes was 

inferred from the normalized read counts by using the CIBERSORT 

program (29), which employs an externally validated leukocyte gene 

signature matrix (LM22) of 547 genes designed to distinguish 22 cell 

phenotypes including 7 T cell types, B cells, macrophages, monocytes, 

and NK cells (29). Heatmaps of gene expression data with correspond-

ing clinicopathologic characteristics were created with the R package 

ComplexHeatmap (58). ssGSEAs were performed using the R soft-

ware package GSVA (59).

Neoepitopes and HLA prediction. Patient HLA haplotypes were 

inferred using the program seq2HLA (60). For neoepitope identifi-

cation, the amino acid sequences of patient-specific mutations were 

mapped to combinations of 8-, 9-, and 10-mer peptides, with the 

mutation evaluated at each amino acid position. Each patient-specif-

ic peptide was then tested with the respective patient-specific HLA 

type using NetMHCPan 3.0 to identify potential high-affinity neo-

epitopes (61, 62). Neoepitope burden was defined as any epitope with 

a predicted binding affinity within the top 2% when compared with 

400 random natural peptides, as recommended by NetMHCPan 3.0. 

High-affinity neoepitopes were further filtered using a binding affin-

ity threshold of 500 nM, while very high-affinity neoepitopes were 

defined as having <150 nM binding affinity. Finally, to explore muta-

tion-specific neoepitope binding diversity, we tested mutation-spe-

cific neoepitopes more broadly against all validated NetMHCPan 3.0 

HLA types and visualized them using heatmap.2 in R.

Machine learning. Random forest modeling with 5-fold cross-val-

idation was performed on the training set using the software package 

caret for R to identify top predictors (38). One hundred and seven-

teen features, comprising normalized read counts of various immune 

genes, and bioinformatically inferred CIBERSORT scores were used 

to train the model (Supplemental Table 5). For characterization of 

PDGFRA-specific immune features, KIT- and PDGFRA-mutant GIST 

samples were first partitioned randomly into training (80% of sam-

ples) and testing sets (20% of samples). The training data set was 

used to train a random forest machine learning classifier using 5-fold 

cross-validation. During each of the 5 folds, a random forest model 
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