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INTRODUCTION

The matrix Riccati equation has attracted attention recently
because of its occurrence in a number of different situations.  Its
solutions determine solutions of the optimal linear regulator problem
(Kalman [7], Athans and Falb [1]); the existence of solutions on an-
interval is related to disconjugacy of a linear Hamiltonian system on
an interval (Reid [14], Coppel [3]) and Schumitzky [!] has demonstrated
an equivalence between solutions of matrix Riccatl equations and
Fredholm resolvents. Most recently, Fair [1] has written -about
continued - fraction solutions of a Riccati equation in a Banach .

algebra.

In this thesis, only symmetric matrix Riccati equations, of -the

form
RIW] = W' + A(E) + B*(L)W + WB(t) + WC(t)W = 0 , (1)

are considered where A(t), B(t), C(¢t) are continuous #n X.» matrix
functions of ¢ , and A(¢) and C((¢t) are symmetric. Only

symmetric matrix solutions W(Z) are considered.

One property of (1), of which full use has not always been made,
is that it preserves the ordering of solutions. For symmetric matrices
A and B, we say A =B if- A - B is nonnegative definite. A
more general and exact statement about this order-preserving property

is that if Wi(t), W2(t) are symmetric matrix functions differentiable
on an interval [a, b] , and Wl(a) > WQ(a) , R[Wl(t)] >0 and
R[i,(¢)] =0 , then W (b) 2 Wy(b) . Or, if W ) 2 W,@)

W, (¢7]

1A

o, R[WZ(t)] 20, then W (a) z Wy(a) .

These statements are like those proved in the theory of
differential .inequalities for certain vector systems, with a
component-wise vector ordering, and indeed Coppel [3] has shown that
similar methods of proof can be used for symmetric matrix Riccati -

systems as for vector systems (Coppel [Z]).

In Chapter 1, we generalise the usual arguments so that they
apply in a vector space where the ordering is abstractly defined, and

the resulting differential inequalities are seen as consequences of



the axioms of this definition. Some examples of the use of different
orderings are given; in particular the. positive cone can be the set

of vectors with positive coefficients (component-wise ordering), or a
circular cone (a Lorentz-type ordering), or the cone corresponding to
the set of positive-definite matrices. The latter cone is investigated
in the second chapter, where a theorem is derived about inequalities,

which is extensively applied in the last three chapters.

A consequence of this gecmetric type of approach is that the
Riccati equation has a special status in multi-dimensional -systems,
being the only type of symmetric matrix equation which preserves the

ordering of solutions as ¢ increases or decreases.

If the set of solutions of (1) existing on an interval can be-
ordered, it makes sense to speak of a maximal and minimal element of -
such a set. If (C(¢) =2 0 we show that there are two difficulties in

the way of proving the existence of such elements on an interval I :
a) there may be no solutions at all existing on I ;
b) the maximum, or minimum, solution may be infinite-valued.

Solutions of the Riccatl equation (1) correspond to solutions of

the Hamiltonian system
Y' = B(£)Y + C(¢)Z
2" = -A(£)Y - B*¢)Z , Y, Z n X#n matrices, (2)
in the following way: 1f Y(£) 1is a solution of-
Y' o= (B(E)+C(EIW(E))Y

where W(t) is a solution of (1), then <(Y(&), W(E)Y(£)) is a
solution of (2), and if (Y(¢), Z{(t)) is a solution of (2) with
¥Y(t) invertible on some interval, then Z(t)Y_l(t) is a solution of

(1).

In this sense, solutions of (2) corresponding to maximal solutions
(or minimal solutions) of (1) on an interval are called principal
solutions of (2). Reid [14], Hartman [1] and Coppel [3] use a
different definition, and in these, and other developments of
principal solutions, conditions liké controllability are imposed on
the coefficients to ensure that b) does not arise. Difficulty a) is

circumvented by the assumption of disconjugacy.



In Chapter 3, we approach the Riccati equation directly, using
differential inequalities, to show that a maximal element of ‘the set
of solutions existing on I can be found, provided the :.set is non-
empty. The maximal element may be infinite-valued, but most of the
implications for the structure of the set of solutions remain
unchanged. In particular a principal solution for (2) can still be
found; and has most of the properties of principal solutions. under
the more restrictive conditions of previous writers, but may be

singular if the maximal solution is infinite valued.
A linear Hamiltonian system.
y' = B(t)y + C(t)z ,
g' = -A(t)y - B*(t)z , Yy, 2 m X 1 vectors, (3)

with A4, B, ¢ coefficients as for (1) and (2), is disconjugate on an-
interval - I~ if, whenever [a, b1S I , and (y, 3} is a solution of
(3), then y(a) = y(») = 0 only if. y(£) = 0 on [a, D] .

In Chapter 3, we extend this definition slightly so that neithef 
of the two principal solutions generate solutions with zeros; then
we show that this extended disconjugacy definition is necessary and
sufficient for the existence of a solution of (1), and so for the

properties that follow.

These are the two main results of Chapter 3. A necessary
condition for disconjugacy is also proved which incorporates .some,
previous results and gives an upper -limit for the length of interval
with a certain point as end-point on which .(2) can be disconjugate.
Also an example involving Lorentz ordering of a vector space,
introduced in Chapter 1, is pursued to show closely analogous

arguments concerning maximal solutiens.

In Chapter 4 a continued fraction expansion -associated .with-
solutions of a Riccati equation is given. It is shown that the
convergents form good approximations near the point about which the -
expansion is made, but not that the fraction cenverges. However it
is ,shown that the sequence of convergents is an improving sequence of .
bounds -to a solution. Based on this, a sequence of increasingly
critical necessary conditions for disconjugacy (or oscillation

criteria), is given, and also a criterion requiring an assumption of -



positivity about the -sign of.only.one coefficient.

Chapter 5 is concerned with asymptotic behaviour of the Riccati
equation and the associated linear system. We show . that the
arguments used to prove exponential stability for certain solutions
of the uniformly observable and controllable linear regulator problem
can be used to show stability of some specifiable sort.in many other
cases. Deductions are made about the tendency of solutions of the

Riccati equation to aggregate at infinity.



CHAPTER 1
GENERAL DIFFERENTIAL INEQUALITIES

Introduction

The theory of differential inequalities 1s concerned with the

question: if two solutions yl(t), yQ(t) of the nonlinear system

y' =, y) (1)

are in some inequality relationship at a certain point (that is,

yl(b) > yz(b) or yl(b) < yY,(b) etc), is this relationship

preserved.as t increases or decreases? In the case where Yy, f
are scalars, the answer is generally yes, subject to special
definitions where solutions are not uniquely determined by their
initial values. Otherwise, f must fulfil a special condition. In

this case the theory also allows comparison of the solutions of (1)

with solutions of inequalities like g%—: fle, y)

Differential inequalities have normally referred only to.
inequalities defined by the usual partial ordering of a vector space,
where one vector exceeds another if all its respective components are
greater. This chapter shows that the arguments used in that case
apply when the parfial ordering is abstractly defined, using any non-

degenerate positive cone of vectors.

There is one exception; the proof of a theorem involving
assertion of existence of solutions. (Theorems 5 and 6) does not carry
over if solutions are not uniquely determined by fﬁeir,initial

values.

The exposition below broadly parallels that of Coppel [Z,
Chapter 1]. Our Theorems 1 to 3 correspond to basic theorems in that
reference. Other expositions of the usual theory are contained in

Szarski [1], Walter [71], Lakshmikantham and Leela [1].

As examples of applications, there is a proof of a uniqueness
result, and a list of some cases where inequalities involving non-

standard orderings are useful.



Preliminaries and the type X- condition

DEFINITIONS. A cone X in ' is a convex set with the.
properties that if a € X then taq € K iff £ =20 , unless a =0 .
Also 0 € K .

Let- ¢ be a closed cone in 7 with a non-empty interior. The

reason for this latter proviso is indicated in the remark following
Theorem 1. An ordering in. R is defined thus: x>y if. x-y.€C ,

and x >y if x-y ¢ c* » Where ¢* is the interior of ¢ . C is

referred to as the positive cone.
A dual cone (* 1is defined: «.€.0* iff (z, y) =2 0 for all
y in C , where (x, y) 1is the scalar product of 2 and y .
LEMMA- 1. c** = C .

Proof. If « € C , then (%, y) =20 for.all y in C(C* ,

Therefore x € C** so (C** D (.

The converse inclusion is a consequence of the duality theorem
for convex sets, which says that.a closed convex set is equal to the.
intersection of all half-spaces containing it. For a proof, see

Luenberger [7, p. 215, Propositien 1].

The special condition that is needed for all the later results

is given by
DEFINITION. A function f(x) with both its domain S and its
range in Rn ,» is of type. K+{K_} in § if, whenever for two points

x and y in 8§, x2 y and (x, 8) = (y, 8) for some 2. in
C* , then (f(z), 2) = (f(y), 2){(f(x), 2) = (F(y), 2)} .

For brevity, the function f(#, x) and the equation
x' = f(t, ®) will also be said to be of type K, or K_ on some
domain D in R x ' if f(t, x) is respectively of type K, or
K_ for each ¢ in the domain of points (¢, 2) in,6 D . Also for,
brevity, if for each ¢ 1in an interval J , there is a non-empty set

of vectors x : (¢, x) € D , then.we say D contains J .

The most general form of the differential inequalities to ceme



involves the use of one-sided upper and lower derivatives. In the
. general case these derivatives will not correspond to specific vectors,

because pairs or sets of vectors may not have least upper bounds.
However the overall inequalities can be made meaningful, in the

following sense: for a function y(¢) in s s D+y(t);{§} e ,

+ > ;
e € Rnb, means that, D (y(t), z] >} (e, 8) for all vectors 2z in

C* , 3 # 0 , that is

Tim (yw)-y(¢), z) {i} (c, 2) Vs €C*, 2 #0.
u>t
urt

With this usage both 0" anda = have artificlal meanings.
The expressions Dy=ec , D+y 2c¢ , Dy =zec are correspond-

ingly defined in terms of their scalar equivalents,

Basic theorems about inequalities

THEOREM 1. Let f(¢, x) be continuous and of type K in some

domain D. containing an interval [a, b] . Let y(¢), a(t) be
continuous functions on [a, b] whose graphs are in D. and which .
satisfy on. (a, b1 the inequalities
Dy > f(t,y), Dzs=sflt,z), and yla) > z(a) .

Then y(t) > a(t) on [a, b].

The theorem applies particularly when 3(t) is a solution of

z' = f(t, a) . (1)
Proof. By continuity y(t) > 3(¢) on some interval [a, atd]

where d > 0 .

If the inequality y(¢) > 2(£) does not hold throughout [a, b]
there would exist a point ¢, a =e¢ =b , for which y(¢) > z(¢)
on [a, e) , y(e) = z(e) , and (y(c)hz(c), x] = 0 for at least one

vector & in C*¥ , x #0 .

Then



A\

D (y(e), =)

v

(f(c9 y(c))’ x}
(f(cs‘z(c)}s .'I:)

D_(z(c), x) .

. since  f 1is of type k#

v

since (y(e), =} = (a(e), x) it follows that for certain values
of ¢ 1less than and arbitrarily close to ¢ , we have
’[y(t), x) < (z(t), m) contradicting the definition of ¢ . So
y(t) > a(t) on [a, b] .

There are three analogous theorems:

A. If-it is the lower function which satisfies a strict
inequality, that ie Dy = f(t, y) , Dz < f(t, 3) on (a, bl , the

eonclusion that y(t) > a3(t) remains true.
B. If f(¢) is of type X , and y(¥), 2(t) are continuous

funetions satisfying D+y > f(ts y) D+z < f(t, g2) on L[a, b) ,
and y(b) < z(b) , then y(t) < a(¢) on [a, b].

C. Again, in B the strict inequality may apply to =z rather
than y .

Remark. If ¢ has an empty interior, then there are no vectors
in a strict inequality relationship to each other, so Theorem 1 is
vacuously true. But then it is useless for the purpose it serves in.
Theorem 3, where weak inequality‘relations are derived as the limits
of strong inequality relatioms. -

DEFINITION. We define a solution of the differential system

x' = (¢, x) (1)
on an interval I to be a right maximal solution if for every
t, € I any solution wx(#) of (1) such that x(to] < E(to) satisfies
the inequality a«(¢) < x(£) for all ¢ > to in I for which x(¢)

is defined.
THEOREM 2. Let f(¢, x) be continuous and of type. K, in an-

open set D . Then the differential equation (1) has a wunique rightv
maximal - solution passing through any point (to, 50) of D , whieh
18 defined in an interval [fo, t) and tends to the bowndary of < D

as t*t.

Proof. If a right maximal solution exists, it must clearly be



unique. Choose a vector € in ¢* and let wn(t) be any solution

of the initial value problem:

x! flt, ) +e/n ,

m(to]

EO +e/n ,

7 a positive integer.

There is an interval [to, ti] of positive length throughout
which the functions wn(t) are defined and have their graphs in a
prescribed neighbourhood of (to, Eo) for all sufficlently large
n . By Theorem 1, ¢n(t) < ¢m(t) if n.>m . Since the sequence
{wn} is equicontinuous in ¢ and decreasing in 7 it converges
uniformly on the interval [to, tl] as 7 *> ® , and the limit

function Y(¢) 1is a solution of (1) passing through (to, EO) .

If x(¢) is a solution of (1) such that x(t2) = w(tQJ where
to =ty =t ‘then x(tQ] < wn[tQ) for all large »n and hence, by

Theorem 1, x(t) < wn(t) for 't2 <t=st Letting 7n + < , we get

1

x(t) = Y(t) for t2 <t = tl .

By the uniqueness of the right maximal solution there exists a

right maximal solution a(t) through (to, E) which is not continuable

as a right maximal solution. Let % be the right end-point of its
interval of definition. If the graph of @(t) had a limit point

(¢, £) inside D , we would have ﬁ(t) -> E for % > £ [see for
example, Hartman [Z], Chapter II, Theorem 3.1]. But then, by what we
have proved, U(¢) could be continued past % . as a right maximal

solution.

Analogues of Theorem 2: 4n equivalent argument establishes the
existence of a right minimal solution. If f dis.of type. K , then

there exist left maximal and left minimal solutionms.
THEOREM 3. Let f(t, ) be continuous and of type X, in an

open set D . Let x(t) be a right maximal solution of (1) on an

interval [a, bl . If =z2(t) <s continuous on [a, bl , satisfies
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the differential inequality D z = f(t, 8) on (a, b] and
z2(a) <= x(a) , then z2(t) =x(t) for a<t=bh.

Proof. Let ¢ be the greatest value of ¢ such that
z2(s) = x(s) for a =<8 =t and suppose, contrary to the theorem, that
e <b . Choose a vector € > 0 and let ¢n(t) be a solution of the
initial value problem

x flt, ) + €/n

x(e) + em for t = ¢

x
in an interval [e, e+8] . By the proof of Theorem 2, wn(t)

converges to x(t) on this interval as #n + ® , On the other hand,

by Theorem 1, 2z(t) < ¢n(t) for e <t <ec+§ . Letting n > * we

get 2(t) s xz(¢t) for e =t = e+ . This contradicts the definition

of ¢ .

Analogous forms: A, If z(t) is a right minimal solution and
y(t) satisfies Dy = f(¢t, y) on (a, b] and y(a) = x(a) , then
y(t) =2 2(¢t) on [a, b] .

B. If f is of type X , xz(¢) 1is a left maximal solution,
and 2(t) satisfies Dz 2 f(¢, 3) on [a, b) and z(b) <a(b) ,

then &(¢) =< x(t) on f[a, b].
C. If f is of type K , «(t) 1is a left minimal solution
and y(¢) satisfies D+y = f(ts y) on [a, b) and y) = z(b)

then y(¢) = x(¢t) on [a, b].

COROLLARY. A continuous vector funmction az(t) 18 non-inereasing
on an interval [a, b] <iff it satisfies the differential inequality
Da=0 (or Dz=0)on (a, b) .

Proof. The necessity of the condition follows from the definition
of D_ . For if z[t2) - z[tl) € ¢ whenever b = t, 2 tl z a , then
for any « € C* , (z(t2), x) 2 (z(tl), x) so Dn(z(t), x) <=0 and

D+(z(t), x) <0 and by definition Da=0 on [a,b].

The sufficiency of the condition follows from Theorem 3 with
0.

f
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Remarks. The introduction of maximal solutions in Theorems 2
and 3 is necessary to make meaningful statements about the relation-
ship of solutions which are not uniquely determined at a given point.
If solutions of (1) are uniquely determined by their initial values,

then Theorems 1 and 3 assert that if f 1is of type- X, all

+
inequality relations ameng solutions of (1) are preserved as ¢
increases, whereas if f is of type X_ , all relations are

preserved as t decreases. If f 1is both of type K+ and X ,

(again assuming uniqueness) then one can meaningfully talk of solutions
being ordered over a whole interval, and this ordering is just the

ordering of their values at a single point arbitrarily chosen.

This is quite a strong statement, and the following theorem shows
that the respective type K conditions are both necessary and

sufficient for some of the results deduced from them.
All scalar functions are of type K+ and X , but for functions

of mn-vectors, the conditions are quite restrictive. Szarski [1],

for example, shows that a system (1) both of type: K+ and X_ in

the usual vector ordering reduces to a degenerate system of #
separate equations each in one variable. In Chapter 2, we show that
the corresponding restriction to a system with the positive definite-
ness ordering of symmetric matrices reduces to the much more interest-

ing matrix Riccati equation.
Here is the demonstration of the necessity of type X conditions:
THEOREM 4. ©Let f(t, x) be defined in an open set. D of
R x B' . Suppose that, whenever there are two points (t, xo], (¢, yo)
in D for which &«  zy, , then on some non-empty interval [t, ul

there exist in D solutions of

Dy = fle, y), y(#) Y

D& < fle, ), z(t) = x

0
for which x(8) = y(s8) on L[t, ul . Then f(t, x) <s of type K+

on D .
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Proof. Let =« be any two points as above for which there

0° Yo

is a vector 3 in (% : on, z) = (yo, 2) . Then for all & in

[t, ul , (x(s)-y(s),.2) 20, s0 D (a(t)-y(¢), 2) 20 . But
D, (=(#), 2) = (£(t, (), )

(£t y(©)), 2)

v

D+[y(t), z)

S50 -

Lf(ta xo)s 3)

Since ¢, 2 and 1 %ys Y, are arbitrary, subject to z, = Yo » then

v

Lf(ts yo)s z) .

f 1is of type K, in D .

COROLLARY 1. If t <s replaced by -t 1in the statement, with
consequent modifications of the ineQuaZities, then f(t, x) <s of

type K in D.

COROLLARY 2. With the etronger hypothesis that whenever
(¢, xo) and (¢, yo) €D, and %42 Y, then on some interval

(a, b) containing t there exist solutions wz(u) and y(u) of (1)
such that x(t) = Ty y(t) = Yo and z(u) =2 yu) in (a, b) , the

result is that f(t, x) 18 both of type K+ and K in D.

Existence of solutions

With the usual vector ordering of i , the existence of two
solutions y(t), z(t) of the inequalities Dy = f(t, y) ,
Dzzf(t, g) on (a, b] , with y(a) z z(a) , ensures that whenever
y(a) 2@ =z z(a) , there is a solution of (1) with x(a) = x existing
and constrained to lie between y(t) and =2(£) on [a, P] .

[Coppel [1], p. 30.1]

In the case where solutions of (1) are uniquely determined, the
proof of the corresponding propositiop in our situation is a -consequence
of Theorem 2 - a solution is continuable until it approaches the
boundary'of-its domain of definition. This is set out in Theorem 6
below. But if solutions are not unique, then the more subtle proof

given by Coppel for the proposition set out above does not carry over
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directly. However an analogous'approéch can be made to work provided

the inequalities are strict inequalities, as in Theorem 5 below.
THEOREM 5. <ILet f(t, x) be a continuoue funetion defined on a

domain D in R x B' which includes an interval. [a, b] . Let
y(t), a(t) be continuous functions for which Dy > f(t, y) ,
Dz< f(t,8), a<t=b, a(a)<yla) and if

K(t) = {u: y(t) = u = a(t)} , then (¢, (&)Y D .

Then for any Ty yla) > x. > ala) , the initial value problem

0

z' = f(t, x) (1)
x(a)

%y

has a solution x(t) which ie defined and satisfies the inequalitiss
3(t) < z(t) < y(t) om [a, b]. '

Proof. For each t , X(t) , being the intersection of two
closed cones, is closed. Let S = {(t, u) : a<t=<b, u € X(£)} .

Then S 1is closed, since X(*t) 1s continuous.

By Theorem 1, y(¢) > a(¢) on [a, »] , and any solution (%)

of (1) with a(a) = Lo lies in the interior of & wherever it

exists. By Theorem 2, the right maximal solution &(t) passing

through (a, xo) either exists on [a, b] or tends to the boundary

of D as t*c¢ , where ¢ € (a, b] , and then exists on [a, e) .
But then &8(t) ¢ § on [a, ¢) , soc as t + ¢ , any limit points of
8(t) 1lie in &S , a compact subset of D , and so cannot be on the

boundary of D .
So  8(t) exists and y(t) > e(t) > a(t) , on [a, b] .

Theorem 5 can be much improved if f(£, y) is sufficiently
smooth on D to ensure uniqueness; that is if, for example, the
one-sided Lipschitz condition of the following Theorem 7 applies on
D . In this case the strong inequalities can be replaced by weak
inequalities:

THEOREM 6., Suppose the solution of the initial value problem
y' = flt, y) B y(to) =Yy (to, yo) € D i8 wnique whenever it

exigte in D when t = t, Jfor all initial values (to, yo] in D,
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and suppose y(t), z(t) are continuous functions, and are solutions
of the differential inequalities Dy = f(t, y) , Dz =z f(¢, 2)
respectively, where (t, y(£)), (t, 2(2)) ¢ D .

Suppose that for some point a , z(a) <y(a) , and =z, ts any

0
veetor for which 3z(a) = xy < yla) . Then the initial value problem

' = fle, x) ,

x{a) = x

0

has a solution x(t) which is defined and satisfies the inequalities
2(t) = x(t) = y(t) in D.

Proof. From Theorem 2, (%) exists in some interval [a, ¢)
and tends to the boundary of D as ¢ *+ e . But if (y(e), e),
{(2(c), ¢) are in D then u : y(e) = u = z(e) is a compact set
contained in an open set; it is therefore distant d from the

boundary of the open set, for scme positive scalar d .

But by Theorem 3, y(¢) = x(¢) = 2(¢t) in [a, e¢) , that is,
x(t) € K(t) if K(¢) 1is the function defined in Theorem 5. But

K(t) 1is continuocus, so

S = U (z, t)
téla,c) x€X(t)
is a compact set, and so contains lim (x(¢), t) . Therefore
t>e

1im 2(¢) € K(e) , and is not on the boundary of D . So (%)
t>e :

exists everywhere in D .

Application to establishing one-sided uniqueness theorem

As.an application of Theorem 3, a demonstration is given of the

use of a one-sided Lipschitz condition, suggested by W.A. Coppel.
THEOREM 7. Let f(¢, x), g(¥, x) De continuous functions
from R % 7 to R » Where the domain of f 18 an open set D 1in

R x R, and the domain of . g tincludes all points (t, x-y) , where
(¢, ), (t, y) €D .

Suppose g ti& of type K on ite domain, and
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e, z) - f(t, y) =g, xz-y) VY(t, ), (t, y) €D .

Let yl(t), yz(t) be solutions of
yy z £t v)) s
yé = f(ta 92) ®

respectively, with (to, yl(to}) and (to, yQ(tO)) €D . Then
yQ(t) -'yl(t) <w(t) if t = tO s where w(t) <s a right maximal

solution Of w' = g(ta Zt)) 3 w(to) = yz(to) - yl(tOJ

Proof. Let y(%) = y,(¥) - y,(¢) . Then

y' (&)

IA

f(ts y2) - f(t’ yl)
glt, y) .

1A

Therefore y(t) = w(t) for t =t by Theorem 3.

O b}
COROLLARY. If f is of type K, and w = 0 a solution of

w' = glt, w) for t= to ~ there is at most one solution to the

right of t, of the initial value problem y' = f(t, y), y(to] =Yy -

For 1f there are two, yl(t) and yz(t) » then by the theorem just

proved y () - y,(t) =0 and y () -y, (¥) 20 if t2t,.
Suppose g(t, x) = ax for some constant o > 0 . Then g(t, x)

is of type K+ everywhere, and x = 0 1is a solution of

x' = g(¢£, ®) . This special case corresponds to the Lipschitz
condition as normally defined. If f(¢, a) - f(¢t, y) = a(x-y) for
all (¢, x), (£, ¥) in some domain D then if (td’ xo) € D there

is at most one solution y(¢) of (1) with’ y(to) =2y if ¢ > to .

Examples of various cones and orderings
1) ¢ =¢C*= {{xi} p &, 20, 2 =1, ..., n} in 4

This generates the usual partial ordering on a vector space, and



specialises to the differential inequalities previously dealt with.
(Coppel [2], Szarski [1], Walter [1].)

2) ¢={(x, Yy, 2) :x=20,2=0, 23 = y2}—.

This generates a partial order equivalent to that of the 2 X 2
symmetric matrices ordered by the positive definiteness relation.
Then C* = {(x, y, 2) : €20, 2 20, bra = y2} and C* 1is
generated by the set of vectors QrQ, 2xy , y2) .

EXAMPLE 3. Here the cone ( 1is the circular Lorentz cone: a

vector X € C if: x z 0 and xi = xg t .. xZ . Put another .way,
C is the set of all vectors (o, @) where 020, a is a
(n-1)-vector, and |a] <o . Then ( is self-dual. For if (a, a),

(B, b) are two vectors in ( , then
(o, a).(B, b) = aB + a.b = aB - |al|b] =0 .

Conversely, if (B, b) is any vector in C* , then
B = (B, b).(1, 0) =2 0 since (1, 0) €C . and (|b|, -b) € ¢ , so
Blb| - b.b =0 ; that is, B = |b| (even if |b] =0 ) so
(B, b) € ¢ . Therefore C* =¢( .

Let a, b be arbitrary n-vectors, 0 any scalar, and Si the

column vectors of an anti symmetric #n X#n matrix S . Let { }

denote the Lorentz type -scalar product, that is,

{a, b} = albl - a2b2 - . - anbn .

and let Tf(X) be the n-vector valued function whose components are
fi(x) = ai{x, X} - 2xi{a, X} + {Si’ x} tota, + bi . ()
If two vectors X, ¥ in  ( have the property that X.¥y =0 ,

then X must be a multiple of (1, £) and y of (1, -£) where

£ is a unit (n-1)-vector.

With this observation it is easy to verify that f(X) is both
of ‘type K+ and K with respect to C .

So solutions of the equation

X' = f(£, x) , (5)
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where the coefficients a, b, &, S are continuous functions of ¢ ,
have the property that any ordering of solutions at a point with

respect to the Lorentz cone is preserved as * changes, while the

respective solutions continue to exsit. .

In the four-dimensional space-time of relativity theory, if two
points, or "events" X and Yy are ordered- (X =.y) with respect to
¢ , then X 1is "attainable" from ¥y , or ¥ 1is "observable" from
X . Any useful transformation of space-time will need to preserve

these relationships at all points under consideration.

The usual Lorentz transformations can be derived from special

cases of (5), with a(¢) = b(¢) = a(¢) = 0 , and using a simpler

version of S(&) .

Example 3 is of particular interest because it is closely
related to the symmetric matrix ordering to be developed in the
following chapters. In fact if »n = 3 , and the orientation of the
co-ordinate axes is changéd, the 2 X 2 matrix drdering is obtained.

More is said about this example in the appendix to Chapter 3.

Notes

There have been many publications redently dealing with
differential inequalities, both in finite-dimensional and more general
vector spaces. Szarski [1], Walter [7], Lakshmikantham and Leela [1],
Coppel [Z] give expositions which, for the componentwise vector order-

ing, go much further than is necessary for our purposes,

Some authors (Mlak [7], Cohen and Lees [7], Edmunds [7]) have
extended some results about differential inequalities to Hilbert or
Banach spaces. In Mlak's paper, the ordering used is again component-
wise, and in the other papers the results are obtained by comparison

with a finite-dimensional system of the usual type.

Our type X condition is more often referred to as monotonicity
or quasimonotonicity, the latter name being introduced by Walter.
For componentwise ordering, it was mentioned by Muller (1926), and .
used by Kamke (1932). Geometrically, its significance is that if
u(t), v(t) are solutions of y' = f(t, y) , x(t) = u(t) - v(¢) ,

and (%) comes to the edge of the positive cone, then the derivative
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of x(¢f) 1is not in a direction leading out of the cone, that is, it
is either parallel to the surface or towards the interior. This is
true of our definition for more genefal cones, and the consequence is
that () must remain within the cone, if its initial value is in
the cone. It is likely that this result could be extended to convex
sets generally, not just cones; Dbut then to express the corresponding

type K condition analytically is very difficult.

Coppel [3] has obtained results equivalent to our Theorems 1-3
and 6 for symmetric solutions of the matrix Riccati equation. In
this more simple case, direct methods are also available, and
implicitly or explicitly, the preservation of ordering of solutions
of the Riccati equation has been known and used for some time. Indeed,
the property is closely related to Sturm-Liouville comparison theory

for Hamiltonian systems.

Yorke [7] investigates whether solutions of a differential
equation can be constrained to lie within certain sets; our approach
deals with differences of solutions, but some of the ideas are

similarp,
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CHAPTER 2
MATRIX EQUATIONS AND A PROPERTY UNIQUE TO THE RICCATI EQUATION

Introduction

This chapter gives details of the application of the general
inequalities of Chapter 1 to symmetric matrix systems of differential
equations and specifically to the matrix Ricecati equation. Writing
a system of differential equations in a matrix form, symmetric or
otherwise, adds nothing new except convenience and an awareness of
the possibilities of various manipulations that may not have been
otherwise evident. The real difference is in the choice of ordering
 system; it is convenient to use the positive definiteness-ordering
of symmetric matrices, Qhere A sz Tif E*(A—B)E > 0  for all vectors

£ .

The first task is to verify that this ordering does fulfil the
requirements of Chapter 1, so the results of that chapter can be
applied. It is then shown that the matrix Riccati equation is both

of type K+ and X . In this case any order relation that may

exist between two solutions at some point is preserved as this point
moves in either direction, so that it is meéningful to speak of one
solution being greater than another without specifying a point. Put
another way, the solutions existing on an interval are ordered
according to their values at any point on the interval. Extensive

use of this property is made later.

Finally, it is proved that with respect to this latter property
the matrix Riccati equation is unique among matrix systems. This
rather surprising result is analogous to the result for vector
systems ordered by the usual partial ordering, that a function f(X)

both of type X,  and X  must be of the form
(fi(xl), f2@x2) ces f%(mh)) which leads to a trivial system (Szarski

C1h.

The matrix ordering

The set of »n X n symmetric matrices form a wector space Mh
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of dimension #n(n+l) . In this space, we define the scalar product

of two elements A4 = {aij} s, B = {bij} to be

n

n
(4, BY = )} J a..b.. = Tr(4B) .
i=1 g=1 ¥

The set of non-negative definite symmetric matrices forms a
closed cone (¢ in M& .

LEMMA, ¢ <e self-dual, that is, C = C* ,

Proof. a) If A €C, B €C then for some matrix T = {tij} s
B = T*T , Then

(4, B)

Tr(AB)
Tr(AT*T)
Tr(TAT*) = 0

This is true for arbitrary 4 and B so B € C* and C c C* .
b) Let A be any matrix in C* . Let X = {ximj} € C for any

n-tuplet {xi} s SO

' g g A, 2.2,

(4, X) =
izl g=1 W *J
= 2¥x = 0
where « = {xi} . Therefore, 4 € C and C*c C . Therefore,

C =Cc* .,

In this section we will exclude the trivial case where # =1

and always assume #»n = 2 .

In the case of the present cone ( , and also in most other
applications of the theory of Chapter 1, the type KX condition can
be simplified with the aid of special knowledge about when it is
possible to have vectors &« in ¢ and & in C* for which

(x, &) = 0.
The type K condition needed for the theorems of Section I is:

DEFINITION I. A symmetric matrix funetion F(X) of the

symmetric matrix variable X , defined on a domain D 18 of type
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K+{K_} on D if, whenever W, €D, W, €D, W -W, 20 and for

2
some matriz A €C , (W -Wy, &) =0, then (F(w])-F(w,), 4) z 0
{= 0} .

The simpler version is:

DEFINITION II. 1If F(X) <is the function of Definition I, it is
of type K, {k } 1if, whenever W €D, W, €D, W -W, 20 and

for some veetor & ¢ 4 s WiE = WéE , then
gx(F(w)-F(w,))E 2 0 {= o} . (1)

If F(X) is of type K+ according to I, then it is also

according to II, since the matrix {£.£.} is in C .
1°J

If F(X) 4is of type K+ according to II, and there are matrices

W €D, Wye€D, AeC: (W-W) €C and (W-W,, 4) =0 then

there is a matrix T : A= T* , where T = {tij} and

n n n

iZl ,721 kzl W) sstustny = vy > 4) = 0

]
o
.

n.
Let tk = {tki} » then kzl ti(Wi—Wé)tk =

Since W) =z W, , for each k o, ti(Wl-Wé)tk =0 , 80
(Wl—WQ) t, = 0 . Therefore t;{* (F(Wl] —F(Wz]}tk > 0 and summing over

ko, (F(w)-r(W,), 4) = 0.

So both definitions of type XK_ (and X_ ) are equivalent.

Therefore the theorems of Section I can be applied using either

definition.
The matrix Riccati operator R[W] is defined by
R[W] = W' + A(£) + B(£)W + WB*(t) + WC(£)W (2)

where W, A(t), B(t), C(t) are n X »n matrices, continuous functions

of ¢t in an interval I , and A(¢), C(t) are symmetric on. I..
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Then the Riccati equation is
R[W} = 0 . (3)
Applying Definition II above, it is clear that (3) is both of

type K+ and K_ everywhere. TFor if

F(t, W) = A(t) + B(t)W + WB*(t) + WC(EIW ,

and Wli = WQE =n , then

g (e, W )E = EM(LIE + E*B(EIN + N*BH(E)E + n*C(t)n

EiF(t, Wy)E .

The follohing theorem conveniently summarises Theorems 3 and 6

of Chapter 1 in this matrix context:
THEOREM 1. LIet Wys W, be any n X n. symmetric matrices for.

which W,z W, . Let Wi(t), Wb(t) be solutions of the inequalities

sgn(t—tO)R[b&] =0, sgn(t—to)R[Wé < 0 respectively existing on
some interval [a, bl containing. to s with Wi(to) = Wi R

Wz(to] =W, . Then W (t)z Wy(t) on [a, b]. 4ndif W(t) is a
solution of (3) with W, =z W(to) =W, , then W(t) exists on  La, b]

and Wi(t) = W(t) = Wé(t) .

In particular, if R[W] = R[W,] =0 on [a, b1, and

Wl(t) z W,(¢) at some point ¢t then W,(t) 2 W,(£) on Lla, b].

0 2

Uniqueness of the Riccati equation

Theorem 1 is a strong result, and applies only to the Riccati

equation (if # = 2 ). The converse result is:
THEOREM 2. If F(t, Y) 18 an M%-valued funetion defined and
eontinuous in Y for each t on some domain D in R X Mn R

n =2, and i1f it 18 true that whenever W, , W, are two matrices,

2

0 Wl] and (to, Wé) arevin D, and

W, = W, , there are two gsolutions Wi(t), Wé(t) of "W' = F(t, W)

to a point for whieh (¢t

1
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with Wy (gy) = W . W,(t5) = W,

then it follows that Y' - F(t, ¥Y) <8 of the

for which Wl(t) > WQ(t) in some

netghbourhood of ty >

form RLY] for some coefficient matrices defined for t imn D .

The proof of this theorem occupies the rest of the chapter. It

will be assumed that D includes all Mh for each t . This aveids

having to make frequent provisos about the domain in an already
complicated proof; it is not an important restriction because the

proof is local in character.

The hypothesis of the theorem is just what is needed to apply
Corollary 2 of Theorem 4, Chapter 1, which ensures that F(¢, ¥) is
both of type K; and X  for each ¢ . This said, no further

interaction between ¢ and Y occurs, so mention of ¢ will be

suppressed.

So if W) z W, and W, = W, then E*F(W )E = E*F(W)E . If

Wy and W, are any two symmetric matrices, with WiE = W2£ s there

is another symmetric matrix Wé for which WéE = Wli . Wé > Wl s

W, =z W, . Then
grF(w)e = e*F(Wy)e = e*r(w,)E .

Therefore, &*F(W)E is a function of & and W& only. So for some
function g on R2n >
EXF(W)E = g(§, n) where n = Wg . (4)

Then equation (4) is restrictive enough to ensure that, except

in the trivial case where H' = R' » W' - F(t, W) has the form

R[W] of the Riccati equation, for some appropriate set of coefficients,

and g(&, n)  is a quadratic form in & and n .

Since this is not readily apparent at first sight, and since the
reason for it is not much illuminated by the rather complex proof,
the following lemma is given to show a simple proof when g 1is

assumed smooth when its domain has been extended to all of RQn .

LEMMA. If g(xz, y) 178 a function defined and ¢? in some
netghbourhood of (0, 0) then g(x, y) = x*Ax + x*By + y*B*x + y*Cy
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for some coefficients A, B, C 1f (4) holds.

Proof. For any scalar % ,

24 F (W)ac

gltx, ty)

t2g(m> y) .

So g(0, 0) =0, and g(-x, -y) = g(x, y) . Then
2g(x, y) = -];;)-[g(tx, ty )+g(-tx, -ty)-2g(0, 0)]
t

+ 2[z*Ax+x*By+y *Brxty*Cy] as t +>0

where

32 | 32 3° .
Ay =Wg(o, 0) , By = Wg(o, 0) , C= Wg(o, 0) .
Therefore, g(x, y) = x*Ax + x*By + y*B*x + y*Cy . QED

The next, and longest, step in the proof of Theorem 2, is to
show that each coefficient of F(W) is quadratic in some of the

coefficients of W .
Let e, be the unit vector whose Z-th component is 1 . Then

F., (W) = efF(We,; = gle h@i) + So F..(W) is a function only of

7 1°
the coefficients h%j s 4 =1, ..., n . And
¥ = . . * 3 . - ) - . .
2F; (W) (e;eg) F(W) (eﬁeg) Fppy (D) = Fii(i)

g[ei+ej, Wei+Wej) - g(ei, Wei) - g(ej, Wej)

So ij(W) is a function of W., and ka only, k=1...7n.

The problem is now artificially restricted to a 2 X 2 problem,

as follows. For arbitrary <, J , < #J , let Wi = Wii .

Wy=Ws s Wy= W

coefficients of W remain fixed. Let

, and assume during what follows that all other.

Suppressing constant coefficients, and letting o be any constant,

(4) implies
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2
o«F (W, W,) + 200, (W, Wy, Wy) + F (W, Wy) =

= glo, 1, oW+, 5 cw2+w3) . (5).

Neither side of (5) is affected by the change

Wy Wt e,

Wé - W2 - 0E ,

2
W3 - Wa + o€ ,

for any € . Therefore,

2 | 2 2
a Fl(Wi+e, Wé—ae)'+ 2aF2[Wi+e, Wy-ae, Wta e] + FB[Wé—ae, Wotale

2
= oF (W), Wy) + 208, (W, Wy, W) + Fo(W,, W) . (8)

This is the basic equation to be manipulated; it is rewritten

by first replacing o by -0 and € by -£ , then (W s ) by

[Wl+€’ W2—a€, Wé+a2€ , SO

2
a°F, (Wl,Wz-zoae) - 207, (W

1 Wé—Qaa, W

3) + Fo(W,-20e, W,)

- aQFl(Wl+e, Wy-oe) - 20F, [wlﬂ;, W)= W3+oc2€] 4
+ F (W -0E, W3+a2€] (7
Adding (6) and (7):
2—~ —
o [_Fl(Wl, W,-20€) -Fl(wl, W)+ FS(WQ—ros, Wy) - FB(WQ, Wa)

2
+ QG[%FQ[Wi+e, W.-0g, W.+0°€ -FQ(Wi, W,-20e, Wé)—FQ(W s Wys W3{]

272 73
=0 . (8)
Dividing by <« and letting o =+ 0
7, (W,-20e,W,)-F (Wz,W)
lim 5
a0 oe
2
e, wyre, Wy, W)-F, (0, Wy W] o (9)
o9F JF,

Therefore, T (W) exists for all @, € . We abbreviate §ﬁ;' by
2 J
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g 2, J =1, 2, 3 . Then

Fo(wyte, Wy, Wy) = Fy(Wy, Wy, WS) + FeF o, (W, Wy) (10)

l’

So F2 is a linear function of Wi for fixed Wé, WS .

In (8) let > and ¢ = J%— for some constant ¢ . Then
o
dividing by o :

in [l (00 #2087, (7, )]

0e>0
+ 2[F, (W) Wy Wytt)-Fy (W, Wyy WJ] =0 . (11)
8F,
Therefore, wmm— = Fl2[wi’ Wé] exists and
2
tF (i) = 2[F, (W, Wyy Wyrt)-F, (W, W,y W) (12)

that is, F2 is also a linear function of W3 for fixed Wi, W2 .

Rewriting (6), replacing o by -a , (Wi, X Wé) by

[Wl+e, Wy=oe, W3+a2e] , then

2 2 2
o°F, (W, 2, Wy) - 20LF2{W1+2€, Wys Wyt20 a] + FS(WQ, Wyt20 e]

_ 2 2 2
= oF, (Wl+e, Wz—ocs) - 20F, [Wlﬂ:, W,-0E, Wyta e] + F, {WQ—ae, Wyt e]
and adding (6) to this equation,

o?[F, (W +2e, W,)-F, (W, W,)] + F (W, Wyr2o’e) - F (W, ,)

f 2 2
+ 20{21?2 Lwl+e, W,-0e, Wyto e] -FQ(Wlme, Hys Wot20 s] (W s Wy, 3)]

=0 . (13)
F, 1is a lipear function of W, , so Fl(Wi+2€, W2] - Fl[Wi, Wz}

is also linear in. W. , from (13). Suppressing Wé for the time being,

7, (i +3e)-F (W +2e]] - [F) (W +2€)-F, (W +e]]

= [Fl (Wl+2s) -F, (Wl+e)] - [ (W +e)-F, (Wl)] ,
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that is,

Fl(Wi+3€) - 8P, (W +2e) + 3F (W +e) - Fl(Wl] =0 . (14)

Given any three values of Fl , say Fl(l), Fl(O), Fl(—l) , then

(14) can be used to determine values at all integer points, and the

consequent equation,

eF, (W +e) = aF, (W +2¢) + 67 (W) - F (W -2¢) ,

all (m+%) values of Fl (m any integer) and so on, giving values

at any argument of the form j%—, P, q any integers. The latter
2

points are dense in the continuum,; so Fl is determined by (1u4),

given any three of its values. But there is exactly one quadratic

solution of (14) with those three values. So Fl must be quadratic

in Wl .

Similarly F, 1is a quadratic function of W

3 3°

We return now to »n dimensions, and the original notation for

coefficients of F and W . Whenever a vector & has no zero
components, then for any Yy € -4 s

glx, y) = x*F(W)x

Y.
where W.. = —2-, 2 =1...n ,and W..=0 if 72 # J . Then
iz, g
i3
glax, y) = x.x.F. . (W)
=1 J=1 v
In this sum, in the cases when %7 = j, Fij is a quadratic function
s N : 2
of W.. = — and independent of all other variables, so .F..(W)
1Tz, i1t

is a homogeneous quadratic form in Tps Y

And if 72 # g , Fij is a function of w& h%j only, and is

i’

Y, Y.
linear in each taken independently. So again xiijij{-33 —QJ is a
i 7
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homogeneous quadratic form in T xj, Y yj

So g(x, y) 1is a homogeneous quadratic function in x and y ,
unless some coefficient of % 1is zero. But. g(x, y) 1is also
continuous, (except when & = 0 ) so is a homogeneous quadratic
form everywhere. Although it is not defined by (4) when x = 0 , the
domain of definition can be extended to include such points. So

_ A Bj|x
e et o8

where 4, B, ¢ are 7n X n matrices, A = A* , ( = C* ., Therefore

glx, Wx) = x*dx + x*BWe + x*WB*x + x*WCWx

x*F(W)x .

So F(W) =.A + BW + WB* + WCW .

To get this result, a fixed value of ¢ was used. The
coefficients A4, B, { will generally be functions of ¢ .  They need
not be continuous, but the order-preserving property, as stated, will
impose some limitations on their behaviour. If F(t, W) 1is assumed
continuous in ¢ , then A(t), B(t), C(f) are continuous also. This
can be shown by considering special W values (for example,

A(t) = F(t, 0) ).

Notes for Chapter 2-

For Theorem 1, derived by a similar method whose application is
there restricted to matrix Riccati equations, see Coppel [3]. Some
of the conclusions are used, more or less explicitly, in many other

papers; see, for example, Reid [9] and [75].

Reid's paper [15] also contains a general non-linear matrix
equation which has order-preserving properties. It involves, however,
a monotone function of a matrix variable, which is rather a strong
requirenent. The order-preserving properties are restricted to non-

negative solutions..
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CHAPTER 3

MAXIMAL SOLUTIONS OF THE MATRIX RICCATI EQUATION AND DISCONJUGACY
Introduction

In this chapter two basic systems of differential equations are

considered. The matrix Riccati equation is defined
RIW] = W' + A(t) + WB(E) + B*(£)W + WC(EI)W = .0 (1)
and the corresponding Hamiltonian system 1is

yl

B(t)Y + C(¢)Z ,

Zl

]

~A(£)Y .- B*(£)Z . | (2)

In each case the coefficient 7 X n matrices A(¢), B(t), C(%)
are defined and continuous in an interval I , A(£) and C(¥) are
symmetric in I -, and, unless otherwise indicated C(£) 20 is

assumed.on I .

A matrix function W(t) will be called a solution of (1) only
if it is symmetric. A solution (Y(¢), Z(¢)) of (2) will be a pair
of n X»n matrices, differentiable on I and satisfying (2), with:

the following properties:

a) Isotropy: Y*(t)Z(#) Z2*(t)Y(t) on I.

b) Non-degeneracy: If. Y(£)§ = Z(t)§ = 0 , then £ = 0 , where

t 1is any point on. I .
There is an associated vector system

y' = B(t)y + C(t)z ,

1]

a' = -A(t)y - B*(t)z , (2a)

where Yy, 2 are n-dimensional vectors. A solution Cy(t), a()
of (2a) is always of the form (Y(%t)§, Z(¢)E) for some solution

(Y, Z) of (2), and some constant vector & .

It is easy to verify that the restrictions of symmetry (for (1))
and isotropy and non-degeneracy are met wherever the appropriate

solutions exist, provided the restrictions are met at a single point.
Solutions of (1) and (2) are closely related. If (Y(¢), Z(¢))
is a solution of . (2) with Y(%£) invertible at some point to , then.

W(t) = Z(£)Y 2(t) exists in some neighbourhood of %, and is a
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solution of (1). Conversely if W(t) 1is a solution of (1) on I ,

and Y(¢) is a solution of
Y' = [B(£)+C()W(E)]Y (3)

invertible at some point in I (and so throughout I ), then
(¥Y(£), W(t)Y(¢t)? is a solution of (2) throughout I . Invertibility
of Y(t) ensures non-degeneracy of (Y(¢t), W(£)Y(£)} .

The following basic properties of (2) can be verified by direct

differentiation: if (Yi(t), Zl(t)), (Y2(t), ZQ(t)> are solutions
of (2) (not necessarily isotropic or non-degenerate) on I , then

(1) Z;(t)Yl(t) - Y;(t)Zl(t) = N , a constant matrix on I ; (4)
(i1)  (F3@)zy(B))" = 2302 (B) - THRIAR)Y () . (5)

The main results of this chapter fall into two classes. In
Theorem 1, taking the existence of a solution of (1) on an interval
as the basic condition, called [R] , a "principal" solution of (2)
is established, corresponding to a "maximal" or "minimal" solution of
(1). It does not matter whether the interval in question is compact,
half-open or open, nor whether (1) obeys any controllability or

normality type conditiomns.

Later, culminating in Theorem 4, we relate [R] to disconjugacy,
giving a necessary and sufficient condition. This approach is
interesting because it avoids variational arguments and the necessity
of establishing results firstly for compact intervals, and also because
controllability conditions appear in a secondary role, merely
conferring extra properties on the principal solutions, but not

affecting the fundamental behaviour of the s&stems.

Most of the proofs are given for left-hand or right-hand end-
points only. The symmetry of the results is usually obvious and some-
times assumed for later proofs. By way of summary, dual versions of

the main results are given at the end of the chapter.

Regularity conditions and their interrelations

In connection with (1) and (2), consequences of various of the

following conditions will be of interest:
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LR]: q solution of (1) exists on I , or, equivalently, a solution

(Y(£), 2(=)) of (2) exists, and Y(t) <is invertiile, on I .

(WD] (weak) disconjugacy: if (Y(t), Z(z)) ig a solution of (2)
in I, and [a, 5] 18 any comgpuct interval in I , tnen
Y(a)E = Y(2)5 = 0 only if Y(£); =0 iIn [a, b]

~

(D] (strong) diseomjugacy: if (Y¥(z), Z(£)) <8 a soluticm ¢ (2)
in I, ad {a, 2] is any comzact interval in I , taen
Y(a)g = Y(2)g = 0 only if & = 0.

P(J): If Qt) is a fundamental matrix o the equation
Z' = -B*(z)Z on J , them for a vector & , C(£)Q(E)E =0
on J iff § =0.

M (2): P((b, ¢]) holds jor all e <in some right neighbcurhcod of
b .

M (p): P(le, b)) holds for all e 1in some left neighbourhocd of
b .

[cl: P(J) holds for all sub-intervals J of I .
The following relations hold between the various conditicns.

a) On any interval ([R] = [WD] . On compact intervals
[wp] = [R] . (Theorem 2.) If ([WD] holds on a half-open
subinterval, [R] holds on a half-open sub-interval having
the same open end-point (Theorem 3). For an extended
concept of disconjugacy, and clarification of this position,

see Theorem 4.
) On a half-open interval (a, b] , M+(a) and [R] are

equivalent to the existence of a maximal solution of (1) on
(a, b1 . And on [b, a) , M (a) and [R] are equivalent

to the existence of a minimal solution of (1) on [k, a) .

c) [C] and [R] < [D] for open and compact intervals. For
any interval, [C] and [R]1=1[D] , ([P]=[C] and on any

open or compact subinterval [D] = [R] .

Remarks on maximal and principal solutions

The context (and results) of this chapter have been indicated

without much explanation or motivation. The three levels of
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conditions a), b), and ¢) just indicated, form a hierarchy, being
increasingly restrictive. At level b), a maximal solution is cited
for (1) on (a, b] ;3 if this is denoted W(t) , then if W(2£) . is
any other solution existing on (a, ] , W(Z) = W(t) everywhere.
Conversely if W < W(b) , then a solution W(¢) of (1) with

wib) = W ; exists on (a, b1l (from Lemma 2 below).

If ¥(£) is an invertible solution of ¥' = C(£)W(£)Y , then
(%(t), %(t)?(t)) is a solution of (2) on (a, »] , and is called the

principal solution.

In the literature to. date, principal solutions have been
introduced only with [C] and [WD] , at least, applying [Coppel.
[3], Hartman [Z2], Reid [4], [14]]. Reid's paper [10] is an exception,
but, as is indicated below, isiin a direction different from our

development. A condition equivalent to our b) appears in Reid [75].

However we prefer to.go further than that, and define a.
principal solution at level a), that is, given (eventually) only

[WD] in a neighbourhood of the point in question.

If one solution of (1) with the initial value W(b) = W

I exists

on f(a, bl , so do all solutions with initial values W(b) < Wl .

Furthermore if Wi(t), hb(t) exist on (a, b] , then so does a
solution Wé(t) where Wa(t) E‘Wi(t) . Wg(t) > Wé(t) (this result

is not proved in the text below, since. it is not needed for the
method of development chosen).. So the set of solutions existing on
(a, p] (and, equivalently, their values at % ) form a directed set,
and even in the absence of other conditions, it is reasonable to look
for a maximal element, since a directed set bounded above will indeed

have a maximal element.

Such an element can be characterised in terms of infinite—valuedv’

symmetric matrices.

Infinite-valued matrices are best defined by a transformation .

from symmetric matrices to unitary matrices, used by Lidskii [7] and

Atkinson [1], namely L = (W+iI)(W—iI)_l where W 1is any symmetric

matrix., If for some vector & , We =0 , then Lx = -x . If W is.
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replaced by vt then L is replaced by -L . Unitary matrices with:
unit eigenvalues are not generated by any finite symmetric matrices,
but correspond (one-to-one) with the set of infinite-valued matrices

which we shall intrcduce.

The above transformation does not preserve the‘ordériﬁg of
matrices in a useful way. For us, Iinfinite-valued matrices serve the .
same function as- = in the extension of the real line, to ensure
that all sets (of symmetric matrices) have upper and lower bounds.
They are introduced to make the results below more easily understood;

none of the proofs rely on their properties.

In fact, the extended set could be defined as the set of,
symmetric matrices together with the limits of all ascending and
descending sequences, and the differences of the limits, or alternatively,
as the set of homogeneous quadratic funections from. B* to the

extended real line.

In‘general?_the inverse of an .infinite valued matrix will be
finite and singular; it is.this.device which allows us to avoid
reliance on any formal definition of infinite-valued matrices. For.
corresponding to each (possibly infinite-valued) maximal solutioh is
a quite ordinary solution of . the linear system (2), once again.called
the principal solution and denoted (?(t), Z(t)) . In general 78
is invertible iff the corresponding maximal solution is "finite-

valued", that is, exists at ¢ .

If <§(t), Z(t)) 1is a principal solution at' a , on the

interval (a, b] then it has the following properties:
a) If W(¢) is a solution of (1) existing on (a, b] , then
THE)Z(E) - THEWE)T(E) 20 on (g, b] and +0 as t+>a.

b) Let N = Z*(&)¥(t) - T*(#)Z(#) , where (Y(£), Z(t)) 1is a

solution of (2), and Y(£) 1is invertible on (a, b] . Then
NY—l(t)§(t) >0 on (a, bl ,and -0 a t+a. If N
is invertible, Y_l(t)§(t) -0 as t>a.

c) If W(t)‘ is any solution of (1) existing on (a, ] , and
(Ic(t), Zc(t)> is the solution of (2) with Yc(c) =0,
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Zc(c) = E(c) - W(c)?(c) , ¢ € (a, bl then Yc(t) -+ %(t) .

z,(t) > Z(t) as e+ a .

Our first task will be to show that, given [R] on (a, b1,
there is indeed a solution (?, 7) with prdperties a), b), ¢), and
that no other solution (except those obtained by post-multiplication
with a constant matrix) shares them. Any one of a), b), c¢) would
suffice to define principal solutions; we use c) and note that the
property of being a principal solution at a is a local one, and
once defined, the solution exists throughout I regardless of whether
[R] or any other conditions (even ((£) = 0 ) hold. When we refer
to a principal solution on some interval, we really mean .the solution
associated with one of the endpoinfs; since the principal solution
associated with a closed endpoint is trivial, to call a solution on.a
half-open interval principal will mean that.it is a principal solution
at the open end-point. Of course, this usage is ambiguous for open

intervals, and where doubt exists, the end-point 1s specified.

Remarks on disconjugacy. The nature of the problem faced in
this chapter may be seen more clearly by looking at the scalar version

of (1) mapped onto the unit circle. Let u(t) = @u(t)+i)[w(t)—i)_l s

(t) = (a(8)+iy(e)) (a()~6y(£)) ™" , where w(¢) is a soluticn of (1)
and (y, ) a solution of (2). Then wu(¢) and v(¢) are both

solutions of
2u' = ta(t)(u-1)? - 26() (W2-1) - fe(B)wr1)? , - (1a)

and lie on the unit circle in the complex plane, as do all solutions

of (la), with initial values on the circle.

Under this transformation y(f) = 0 or w(¢) = < transform to
u(t) = 1 . So a solution w(Z) of (1) exists on an interval ‘
provided a solution u(¢) of (la) exists which is not equal.to 1

anywhere.

Solutions of (la) distinct for one value of ¢ are distinct
everywhere, And ea(£) = 0 ensures (by the inequalities of Chapter

2) that if u(to) = 1 , then. u(f) proceeds in an anticlockwise
direction through 1 .

Suppose a solution u(t) of (la) starts at 1 when ¢ =a ,
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travels around the circle, and equals 1 again when % = b . Then
on [a, ] every other solution must pass through 1 , and [R]
cannot hold. So a necessary condition for [R] will forbid this
behaviour on any compact subinterval, and it will be sufficient to
ensure that u(a) = u(b) =1 and u(t) # 1 for some ¢ in

[a, b] , cannot occur. For if it does then u(t) must leave 1
and approach 1 in an anticlockwise fashion, and so must go around

the circle.

However it is possible that u(a) = u(b) = 1 and u(t) = 1 on
[a, b1 . This is not inconsistent with [R] but in fact ensures
that all solutions of (1) exist on [a, ] , regardless of initial

value.

[WD] 1is the condition forbidding the first kind of behaviour.
Behaviour of the second kind is always forbidden in the literature,

either by [C] or a lesser condition like M+(a) (Reid [15]). 1If

this is done, then one shows that [WD] and [C] is sufficient for

[R] +to hold.

It is a purpose of this chapter to show that behaviocur of the
second kind need not be excluded in the conditions for [R] to hold
(Theorem 4).

Solutions of (la) which tend to 1 at either endpoint of an
interval (of any kind) are given special attention, being called
principal in the domain of soluticns of (2), and maximal or minimal

as solutions of (1).

Basic operations on the matrix Riccati equation

Most of the work of this and the remaining chapters makes use of
the fact that the Riccati equation (1) transforms into another Riccati

equation under the following operations:

a) Translation: If T(¢) is a symmetric differentiable #n X n
matrix function, and V(¢) = W(t) + T(¢) , then
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RLW(E)]

A) + (V(&)-T(£))B(#) + BA(E) (V(2)-T(2))
+ (ve)-r(e)) o) (W(e)-0(8)) + W' (%)
RI-T(£)] + V(&) (BE)-C()T(8)) + (BAH(£)-T(£)C())V(E)
' + V(EIC(EIV(E) + V' () .

b) Inversion: If W(¢) 1is invertible on an interval I,

_l(

V(t) = W ~(£) then.

BIH(E)] = 7 H() L=V (£)4V(£AE)V(E)+B(E)V(£)+V(£)B(£)+0(£) IV (%) .
So W(t) is a solution of (1) iff V(t) is a solution of
v'(t) - () - B(2)V(£) - V(£)B*(¢) - V(£)A(£)V(¢) = 0 .

c¢) Congruence: If X(£) is an invertible solution of
K' = M(t)X on I , M(t) some continuous matrix function, and
V(t) = KA (£)W(t)K(t) then

V' (%)
= KA EIW(EIK(E) + K (EINCEIM(EIK(E) + (L)W' (£)K(E)
= K*(t)[M*(t)W(t)+W(t)M(t)—A(t5-B*(t)W(t)—W(t)B(t)—W(t)C(t)W(t)]K(t)

that is,

VI(E) + KAE)AE(E) + KAE)MA(E)-BH(2) 1R L(£)v(E)

¥ T LB IME) -B(E)TK(E) + V(YK HE)CE)R L) W(E) = o .

The congruence transformation is used to eliminate linear terms,
with M(¢) = B(¢) . Inversion is used to deal with solutions which |
become unbounded near a point, and translation either to eliminate
constant terms (if R[-T(¢£)] = 0 ) or to ensure that a certain class
of solutions is positive (or negative) definite on some interval. In
Theorem 1, for .example, all three transformations are used to reduce

the Riccati equation to a very simple form with an explicit solution.

Translation and congruence preserve the ordering of solutions,
and -inversion inverts it, where the solutions are positive definite

(or negative definite) at least.
The transformation from symmetric to unitary matrices

L= (W+iI)(W—iI)_l mentioned earlier, is a combination of translations
and an inversion. It leads to a Riccati equation (with complex

coefficients) and solutions exist everywhere, since there is no
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boundary to the domain of definition. As mentioned earlier, ordering

of solutions is not preserved in a useful form.

Finally, the operations of translation and Inversion can be, and

often are, carried out on solutions of (2) rather than (1). For

example, if (Y, Z)» is a solution of (2), and W(¢t) = Z(t)Y_l(t)

exists, then
(W()+7(t)) = (2)+T() 7)) Y (8)

and  (W(E)+T(£)) L, if it exists, is ¥(£) (Z(E)+T(£)T(£)) ™ . The
point here is that Y(¢) and Z(¢f) may both be singular, and yet an

expression of the form Y(t)(Z(t)+T(t)Y(t))_l may exist (see Lemma-
3)1

Miscellaneous lemmas

LEMMA 1. Let A and B be two symmetric matrices with

>4t s 0. Otherwise if n = Bg

A=B=0. If B>0, then B
for any vector & , there exists a vector T : n = AL , and then

n*(g-g) = 0 .

Proof. The second statement extends and includes the first.
The proofs of both are analogous, but that of the first is easier, so

it is given separately. If 4 = B > 0 , then

Bt o4t = twu-pat = a7 twa-mEt
o 1
Substituting for B )

(@t ta-mB ) (a-mrat
1

S
1
N
[

1

A twepat + a7 twa-pE -t = 0

If A=ZB=0, let Nl’ N, be the‘respective null-spaces of

2

A, B and 7., T, their ocrthogonal complements. Then N EZNl and

2

so TQETl .

So if n = B then n € T, (since if ¢ € v,
®*BE = o*n = 0 ). Therefore n € Tl . But Tl is the range of A4 ,

since the range of 4 1is included in Tl » and
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dim(Tl) =n - dim[Nl) = rank 4 = dim(range of A4) .

Therefore 37 : n = AZ . Now

n*(&-r) = £*B(&-7) = £*B(E-7) + (E-7)*B(E-T)
= 0*(4-B)g + (E-1)*B(E-T)
=20 .

A bound to a solution W(t) of (1) is given by

t

Y(t) = (9‘1(t>)*[w[to) - [ Q*(u)A(u)Q(u)d%]Q_l(t) (6)
t

0
where Q(t) 1is the solution of ' = B(¢)2 with Q(to) = I . This
is proved, together with a consequence, in the following lemma.
LEMMA 2, R[Y()1=z0 on I, so sgn(t-t )W(t)-¥(£)] =0
wherever W(t) exists.

If o(t) 1is a solution of R[e(t)] = 0 existing in some

interval (a, tO:[ ,» Say, and U 18 a symmetric matrix:
W(to) =U= w[to) then the solution U(t) of (1) with U(to) =U

exists in (a, toj s and Y(E) = U(E) < o(E) on (a, tO] .
Proof.

V' ()

-1 * -1
—AE) - (QTT(R)) QAT (VL) - PR (EINTT(E)
-A(t) - BX(E)(t) - ¢(£)B(L) ,

so ER[Y(£)] = Y(EIC(EIW(E) =2 0 on I . And, Y(t) exists everywhere
on I . The remaining statements are simple applications of Theorem 1

of Chapter 2.

LEMMA 3. Let Y, Z be two n *n matrices for which
Z*Y = Y*2 and YE =285 =0 only 1f. £ =0. Then Z - AY <is
invertible for all except at most n values of A , and for A Llarge
or small enough respectively, Y*Z - AY*Y and Y(Z-AY)_l are non-

positive or nonm-negative definite.

Proof. Either det(Z-AY) is an n-th order polynomial in A ,
with at most # zeros, or it is zero for all A . We show
det(2-2Y) ¥ 0 . ’
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Let A(A) = Y*Z - AY*Y , so A(A) is symmetric. Let N be the
null-space of Y , T its orthogonal complement, S the set of unit
vectors in 7 and ¢ the mapping & : & - £*Y*YE . Then ¢ is
continuous, S is a compact set, so g(S) 1is a compact set of real

positive numbers and so has .a least element € > 0
And there exists a number « > 0  for which n*Y*Zn| < an’n
for any vector n ,
Let  be any vector in " , With components N and & in N
and T respectively. Then, since Yf = YE , and Y*Z is symmetric,
CAY*Z0 = EAY*IQ = E*Z*Yr = EAZAYE

And r*Y*Yr = £*Y*YE . Therefore

LH (AT = EX(Y*Z-AY*Y)E
=< £*g(a-Ae)
<0 if £#0 and A > %‘.
So (z-A)L #0 if E#0 and X > <.

If £=0, C €N ,s80 (Z-AY)z =12z #0 if Yz =0

Therefore

(z-AY)L # 0 for any CZ # 0 , if A > %—,

so det(Z-AY) cannot be identically zero for all A .
And A(Mr =0 if ¢ €N , while if ¢ | ¥, T*M(ML <o .
Therefore C*A(A)L <0 for all 7 . That is, (¥Y*Z-AY*Y) and

Y(Z-AY) T = (z2avH) A (z-ar) T

. . o . .
are non-positive definite if A > T Similarly both matrices are

non-negative definite if A is sufficiently small (that is, large

negative).

Existence of principal and maximal solutions

If [R] holds in an interval (a, b] in I (referring to
(1)), and (Y¥(#), Z(t)? is any solution of (2) with Y(#) invertible
in (a, b] , and (Yc(t), Zc(t)) is the solution of (2) with
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Y(e)=0, o) = v#Ye), a<e<b , then

DEFINITION. WWL§WH=im<%wLZJﬂ>is@ﬁwd%be
cra

the principal solution of (2) at a .

A similar definition gives the principal solution at a right
endpoint. The fact that (?(t), Z(£)) does exist in (a, ] and

is a solution of (2) is established in the following theorem.
THEOREM 1. Suppose (1) has a solution W (2)  existing on

(a, b1 . Then (2) has a principal solution (¥(t), Z(t)) in (a, b]
and for any solution W(t) of (1) existing in (a, D],

YH(E)Z(E) = YHEIW(E)T(E) .

If (Y(t), (%)) 18 a solution of (2) for which Y(t) is
invertible, and 1f

B o= ZA(E)Y(E) - T*(8)2(E) ,

then
ny )Py »0 as tra,
If N is invertible, then Y-l(t)?(t) ~0 as t—ra.

Proof. From Lemma 2, if W2 < Wl(b) , there exists a solution

WQ(t) of (1) on (a, »] , with Wé(b) =Wy
If W(t) is a solution of (1) for which W(¢) - Wz(t) exists

and is invertible on some interval, then V(¢) = (W(t)—Wé(t))—l is a
solution of.

V' o= C8) + (B, ()Y + VW, (£)C(£)+B(8)) . (7)

Conversely, if V() is an invertible solution of (7) on some

interval, then V-l(t) + W2(t)v is a solution of (1).
Let YQ(t) be an invertible solution of

v} = (B(£)+C(2)W,(¢))Y, on (a, b] (8)
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and if V(t) is a soluticn of (7), let U(t) = Y;l(t)V(t)Y;_l(t) .

Then
U'(#) = Ygl(t)(C(t)+(B(t)+C(t)W2(t))V(t)+V(t)(B*(t)+Wé(t)C(t)))Xg—l(t)
- 1) (B0, () V()23 ) -
- e (Br(6)4m,(8)C(8)) 137N (8)
= M e . (9)
Therefore
Ule) - U(d) = SQ(d, e)
where
¢ -1 1
8,(d, @) :,I Y NI ()t = 0

d

Now ‘Vl(t) = (Wl(t)—Wé(t))—l exists and is a solution of (7) on

(a, b] , and Vi(t) >0 on (a, ] . Therefore

- vl -1
U (8) = L@V ()13

is a solution of (9) on (a, »] ; and

SQ(d, e) = Ul(c) - Ul(d) < Ul(c) if a<d=se=<b. (10)

Therefore, as d > a , SQCd, e¢) 1is non-decreasing and bounded above.

So Sz(a, e) exists for each ¢ in (a, b] .

Let

(e = ¥,(8)8,(a, £)¥3() . (11)

Then ﬁ(t) is a solution of (7), with ﬁ(t) 20 .
Let V(¢) be any other solution of (7) on (a, ] with
V(¢) 20 . Then U(t) = Y;l(t)V(t)Yg—l(t) is a solution of (9), and

Ue)

Sz(d, e) +U(d) if a<e=d=b.,



y2

So U(e) = SQ(d, e) for all d in (a, ¢l and so

Ule) = Syla, @) . Therefore V(e) 2 Y,(e)5,(a, e)¥3(e) = Vie) .

Now let

) = 1, (0)0() = %(t)y;‘l<t> (12)
and

2(t) = y3‘1<t> AL (1)
Then

¥ (¢) = Yé(t)a(t) + y2<t>8'(t)

= B(t)P(t) + c(t)[ZQ(t)ﬁ(t)+Y§"l(t)]

= B(EYY(E) + C(E)2(E) .
And
~ —l A !
Z'(t) = (yg (t)+22(t)U(t)]

- (W, (B)CIBH()) 13T (8) + zQ(t)y;l(t)C(t)(y;l(t)]*

- (BH ()2, (UE)+AY, ()T ()

- BX#)Z(8) - A)X(E) .
So (?(t), ECt)) is a solution of (2), and if ?(t)i = 0 for some
t , then 2(t)€ = Yg—l(t)E # 0 unless & = 0 . Therefore (%, 7

is non-degenerate, and it is clearly isotropic; and
R = ) >0 as tra. (1)
Let Ws(t) be some other solution of (1) existing on (a, b]
with Wé(b) > Wé(b) .
Then W (8) > W,(£) on (a, bl , and Vy(8) = (Wy(£)-Wy(£)) ™
is a solution of (5) with Vé(t) >0 on (a, ] . Therefore

Vs(t) > V(t) . Let X(%) = V3(t) - V) =0 . Omitting arguments

for the moment,
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A A_lA_ _lA—A_l
V- VV3 V = XV3 V= VV3 X

by symmetry. Therefore

~ ~ _lA _ ~ _lA _lA _l
' V- T/'V3 V = VV3 V+XV3 V]V3 X
_ T dools -1.,-1
= VV3 XV3 V + XV3 VV3 X
=0 .
Therefore
_l A _l
v (V-v(w,-w,) V)25 =z 0,
that is,

) - P (W 8)-w, () F) = 0 .

But Y;l(t)?(t) + 0 as t +a . Therefore

P8 (Hy(£)-H (£))¥(£) >0 as t+a

and
vt (#) +.§*(t)Wé(t) = 24(t)
so
2(£)7(E) - ?*(t)wsct)§(t> >0 and +0 as t+a. (15)
If (Y., Z,) is a solution of (2) for which Ys(t) is invertible,

3* 73
ZS(t)Y;l(t) = Wy(t) , then
(’Z*(t)ys(t)-/f*(t)zs(t))Y;l(t)?(t) >0 dand -+ 0 as ¢ +Aa ,
that is,
NN 20 and 0 as tra. (16)

It remains to show that the solution (ﬁ’ 7) does not depend.on

the choice of solution Wé(t) of (1) used to construct it. Then the.

requirement that Wé(t) >.Wé(t) in the result just established is



4y

not a restriction, since a solution Wé(t) fulfilling this
requirement can always be found.

Suppose two different such choices Wi(t), Wé(t) are made, and

~

A
the resulting matrices V, Y are differentiated from each other in

our notation by suffices. In particular

Yi,d(t) r.(8)s,(d, t) ,

-1 .
Z; g\ = 13 () + 2,(6)5,(d, t) , 1=1,2, a<dsbh.
Then it is simple to verify that (Y. ., Z. ,) 1is a solution of (2).
1,d’> “1,d
So if

n(d) =‘Yf,d(t)22,d(t) - Zi’d(t)YQ,d(t)

then WN(d) is independent of ¢ and €0 = 0 , since Y. d(d) =0
L]
Therefore,

Y*(t)z (t) - Ei(m (£) = lim N(d) =
d-a

Also Y;(t)gl(t) - Z;(t)&l(t) = K independent of ¢ . Therefore

A -1 ~ -1
Zl(t) Y3 (t)Zg(t)Yl(t) + 13 (L)X

1t

W (t)Y () + Y* (t)K

and

=
]

o
1]

A _l ~ ~ ~
Yi(t)(yg (t)+W2(t)Y2(t) - Zi(t)y2(t)

?i(t)Y* (t) - K*y, (t)Y (£) .

"'l A _.l\* __l S —A
But Y2 (t)YQ(t) S2(a, t) = Zz(t)YS (z) so Yl(t) —:Y2(t)K and

~ A ~ _l‘
Zl(t) Wé(t)Yl(t) + Y; ()X

2(t)Y (t)+Y* (t) K

(t)K .

So except for post-multiplicatien by an arbitrary constant matrix-
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(?, 7) is independent of the solution Wé(t) chosen to construct
it.

DEFINITION. We .say a matrixz Y(¢) has property D(a, el on an
interval (a, el of Y(e)e = i only when Y(£)E = 0 for all "t in

(a, e] . Inother words, the null space of Y(t) is a non-expanding

set.

COROLLARY 1. Swppose [R1 holds on (a, b1, (¥(£), Z(£))
is the principal solution of (2) at a , and (¥(¢), 2(%)) is

another (non-degenerate) solution of (2). Let Wé(t) be a solution
of (1) existing on (a, bl and X be aﬁscalar large enough that
Wé(b) > -AT , Z(b) + AY(B) and Z(b) + AY(D) are invertible and
Y EE)I®)) T 20, 1B EGHIM) T2 0. Such A exist,
by Lemma 3.

Then Y(t) has property D(a, e¢] for all e in (a, bl iff

() (zB) )t = Ty Zo) i)t = o . (17)

In this case, Y(t)§ =0 for t € (a, b] <implies

¥(#) (2() A3 (1)) L (2(B) AT (MH)E = o

and

¥(6)E =3(5) (3T (1)) 7 (2()x(5))E (18)
so (24(b) TB)-THBIIBI)E = 0. So () ie invertible in
(a, b] <if
() (2B)+Ar®) ™ > TB EmaIm) Tt = o (19)

or if YH(B)Z(H) - Z*(B)Y(b) is invertible, and

THDIZD) - THDIZBY T IB) =0 . (20)

The point of this last pair of conditions is that no particular

A is used.
Proof. Let W,(£) be the solution of (1) with Wy(b) = -AT
and Y, (¢) the solution of Y o= LB(t)+C(t)W3(t))Y with

Ya(b) =TI , and Zs(t) = Ws(t)Ys(t) . Then Wé(t) exists on (a, bJ
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by Lemma 2, and (Ys(t), Za(t)> 'is a solution of (2).

Let
¥ o= YA$)2(8) - ()X = 2(b) + AX(D)
and
N = Y328 - 23()F(E) = 2(B) + AX(D) .
“Let
U(t) = .f;l(t)y(t)N’l . Oy = HeReiT .
Then
U (8) = -T;H) (B () 1Nt + 1718 (B)Z()+e()2())

R -1
= M)
similarly 0'(¢) = Y;5(#)C(8)737(8) ; and

U(b) = () (ZB)+ar(m)) = 0,

and (k) = 0 also. From Theorem 1, a(t) >0 , and 8(t) + 0 as
t+a. So if U(b) = U(b) , then U(E) = Ub) + U(t) - U(b) = 0 in
(a, b1 . And if U(e)E =0 then U(£)E =0 for all ¢ = e , since

U(t) is a non-decreasing non-negative function.

Conversely, suppose that U(f) is not non-negative in (a, b] .
Then there is a maximum.compact interval [e, ] on which it is non-
negative. At ¢ , there are say, r positive eigenvalues of ue)
and this is true in any small enough neighbourhood of e . So -if
negative eigenvalues of U(t) appear in every left neighbourhood of .
e , the nullspace of U(t). , and hence of Y(¢) , mﬁst diminish. So
(17) is established, sfnce Y(t) has property D(a, el 1iff U(Z).

has it.

1f D(t)E =0, and U(B) = U(B) , then U(£)§ =0 , so
U®)-Ur))E = (UE)-UE))E = 0 3 that is, if £ = Un , then

It

Y = 0 iff (U(B)-UB))E

(B -3 Y = o
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preving (18). So if Y(b) - ?(b)N—lN is invertible and non-negative

Y(£) must be invertible everywhere. And

¥(b) - ¥ iw ﬁ*—l(ﬁ*Y(b)-§*(b)NJ since’ Y(BTL is symmetric

v (24 ()1 () -T* (B)Z(D))

i

So Y(#) 1is invertible if 2*(b)¥(b) - %*(b)Z(b) is invertible and
ub) = U(b) .

But, usinnghe same kind of procedure as in the proof of Lemma 1,

Ub) - U(b)

AT Ew-Trr ) T eI

) N @O ) Y B () T (A () - ()R

=0

if both W¥*¥(b) = 0 , which is true if A is large, and if

(T*)m-T*2()) ¥ (5) 12 (B) = THBIZ(B) - T*B)Z(B)Y I (B)ITB) = 0

proving (20). (19) is the statement that U(d) >Ja(b) .

Digression on extended (infinite-valued) matrices

The result of Corollary 1 is most naturally expressed in terms
of extended (infinite-valued) matrices, with the aid of which the
existence of a maximal solution can be re-asserted. If 4 is a

symmetric linear operator mapping its domain 7 in A' into itself,

it is said to represent an extended matrix on Rn , denoted {4} .
The images under {4} of points not in 7T are not, defined, but could.

be assumed infinite, hence "infinite-valued".

For two such extended matrices we say {4} = {B} if the domain
of {B} includes the domain of {4} and for all vectors & in the
domain of 4 , (§, BE) = (&, AE) , or, alternatively, if the domain
of A 1includes the domain of B and on the domain of B the same

inequality holds.

In particular, any symmetric matrix has an extended matrix
inverse. For if § is a symmetric matrix with null-space N and if
T 1is the orthogonal complement of N , then S maps T bijectively
and linearly onto itself, and N to zero. So {S—l} is the inverse.

mapping from 7T to T .
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Lemma 1 says that if P and § are symmetric matrices, and

P>2g=0, then {g1} 2P t=20.

So in the result of Corollary 1, let V= ?(b)(z(b)+ky(b)]_l .

<
"

(b)Y (Z(h)+Ax(p)) 7 .

Let ﬁ, N Dbe the null-spaces of 7 and V respectively, and

% and 7T the complements of N and N .
Then if n €T , N # 0 , there is a unique vector & in
n =7 . Then (2*(b)+l§*(b))n = Y*(»)E since 7 is symmetric,
or ZA(b)m = FH(B)(E-M) .

>

'By Lemma 1, there exists a vector ¢ €7 : n =V¢ and ¢ is
unique in 7 . And similarly 2Z*(b)n = Y*#(b)(Z-An) . And again by
Lemma 1, n*(&-z) =0 .

Let W be the mapping W : n—+& - An . Then if n € T 5 -
(M, M) = (M, & - A, ) = (i, n) so W is a symmetric linear

mapping of T onto itself; its domain is T .

"~

Let W be the mapping ¥ : n -~ - An , mapping T onto a
subspace of T . ‘Then for all n in 7 . n*((i—kn)—(c—ln)) =0
that is, (n, W) - (n, W) = 0 . Therefore {%} = {W} and {ﬁ} is

maximal.

A real symmetric matrix B is a special case of an extended
matrix, and if {4} is an extended matrix with domain T , and on T

(&, AE) > E*BE , then it can be said that {4} > B .

If in Coroilafy 1, we note that T , the domain of {Wp)} , is
the range of v , which is the range of %(b) , then the sufficient
condition that a solution W(%) bfv(l)rexists on (a, b] is that
{%(b)} > W(b) . So the set of extended matrices {W} for which
{ﬁ(b)} > {W} is in a sense, the closure of the translated cone of

initial values of solutions of (1) existing on (a, b] .

Reid [10] has used a different approach to the problem of
determining the principal soclutions of (2) in the absence.of the
controllability condition [€] . In effect, in our approach whenever
the inverse of a singular matrix is required, we first translate'if,

and deal with a different but still useful image after inversion.
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Lemma .3 ensures that.an appropriate translation can always be found.

Reid, in a somewhat similar situation, used Moore generalised
inverses. In our extended matrix approach we make no use of the
inverse of a singular matrix on its null-space; the Moore inverse,
however, maps the null-space onto zero. This procedure clearly

introduces a major discontinuity; for examplé‘the inverse of the

scalar 0 is 0 , and (O_l+l)_l =1, If in.our approach we had

“sought a value for (O_l+l)_l we would have let Y =0, 2 =1,

so 0=zt , ana (M)t =yt =0

There is a real difference in the results; for example, suppose
in (2), A(%) = B(¢) 2C(¢) =0 on (0, 1] . According to Reid's

results, any solution (X, WK) where W is symmetric and K-
invertible, is a principal solution, and no others. In our approach,
any solution (0, X> , with X invertible, is a principal solution,
and no others. In this example the two sets of principal soluticns
are disjoint, and Reid's set i1s a much larger one, including almost
all sclutions. Ours is unique, except for post-multiplication by an
invertible #n X n matrix, and has the properties indicated in Theorem

1. It corresponds to the maximal '"solution" W = « , of (1).

COROLLARY 2. If [R] holds in (a, b1, and (¥ 2) is the

a’
principal solution at a , then the null space of Y (%) i8 non-
expanding; that is, D(a, ¢l holds if a <e=bh.

Proof. This is a special case of (17) above.

COROLLARY 3. If [a, bl < I, then the principal solution

<§(t), 72(t)) of (2) at a ewists, and %(a) =0, Z(a) 1is
invertible. So Ula) = V(a) = 0 .

Proof. [R] must hold in some non-empty interval [a, el , so a

principal solution does exist.

Let W(t) be any solution of (1) with W(a) = W . Then by

Theorem 1,

lin (PO Z(O)-THOWBT()) = THa)i(a) - TH(aIWE(a) = 0

tra

]
o

for all W . Therefore Y(a)
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~

If E(a) is not invertible, the solution (Y, 7Y is degenerate.
CORCLLARY 4. ([R] = [WD] on any interval.

Proof. Suppose [a, b1<J , J any interval on which [R]
holds, and (Yd, Za> is the solution of (2) with Ya(a) =0,

Za(a) = I . Then (Ya’ Za> is a principal solution at a , and by
Corollary 2, D(a, b] holds, so Ya(b)E = 0 only if Ya(t)E =0 on

(a, b1 . So a solution of (2a) has y(a) = y(b) = 0 only if
y(¢) =0 on [a, ] , so [WD] holds.

COROLLARY 5. If [R] holds on (a, bl , then I(b) is
invertible iff P(a, b] holds. Consequently ?(t) is invertible

everyohere on (a, b1 iff M (a) holds. Then W(t) = Z(£)¥ *(p)
18 a maximal solution of (1) on (a, b] .

Proof. By Corollary 2, if Y(B)E = 0 , then y(£) = Y(£)E = 0
on (a, b1 , =z(t) = Z(t)E 1is a solution of

g' = -B*(t)z - A(t)y(t) = -B*(t)z ,
so P(a, b] fails.

Conversely, if P(a, b] fails to hold, then there is a non-
trivial solution ¢(0; z(t)? of (2a). Let (Yl(t), Zl(t)> be a

solution of (2) with Yl(t) invertible on (a, »]1 and

N = Yi(b)%(b) - Zi(b)?(b) invertible. Then

ri(z(e) = 28 (B)y(e) + & = &,

where El is constant. And ?*(t)z(t) = E , another constant. So

£ = %*(t)(Yi(t))flEl and the right-hand side tends to zero, as & =+ a

by Theorem 1. So € =0 . Therefore Y*(£)z(¢) = 0 and ¥(¢) is

singular everywheré.
That M;(a) = ?(t) invertible on. (a, »] is an obvious

consequence. Then if W(¢) is any solution existing on (a, b] , by

Theorem 1,

FHEOWE)T(E) = THEOWE)T(E) on (a, b]
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or W(t) = W(E) .

Remark. The usual definition of a principal solution
(?(t), g(t)) (Hartman [2], Reid [4], Coppel [1]) requires that
¥(¢) be invertible and that

b -1
(I ?_l(t)C(t)?*_l(t)dtl 0
' C

as ¢ > a . We have naturally used another definition because Y(%)
in our approach need not be invertible. But it is of interest to see

what has become of this property.
Let Wl(t) be a solution of (1) existing on (a, 21, Yl(t)
an invertible solution of Y' = (B(t)+C(t)Wi(t))Y , and

(Yz(t), ZQ(t)) a solution of (2) for which .
N = ZS(t)Yl(t) - Yé(t)Wl(t)Yl(t)
is invertible. Let
-y Ll -
P(t) = NYl‘(t)YQ(t) —ng(t)YQQt) - Y;(t)Wi(t)YQ(t) .
Then

P' (%)

_NY11(t)(B(t)+C(t)Wi(t)]Y2(t) + WY () (BT, (£)+C(£)2, ()

YT ($)CCITE T (8) (X3 (W ($)Y, (£)473(8)2,,(8))

e COLICN S COVENS
If in addition Y,(#) is invertible
P'(8) = WY H(8)T, ()7, M) TE BT T ems
P(t) 1s symmetric, so
PI(8) = PV, (£)C(8)13 T ()P(8)
or
Frw) = -z e .

Let
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b

S.(t) = I YTl(u)C(u)YTl*(u)du i =1, 2
1 7 ‘1 ? ’ )

£ .
Then

P(B) - P(t) = NS (6)N*
and
P = PTHD) 4 5,(8)

Now suppose (12, 22> is a principal solution, with Yz(b)

invertible. Then SQ(t) exists near b , and so do P—l(t), P—l(b) R
and P(b) > 0, P(£t) 20 .

Then if Yz(t) is invertible .for all ¢ in (a, b] , from
Theorem 1, P(¢) >0 as t*a, so 5,(¢) »=. If Y2(t) is not
always invertible, we can still define S2(t) as an extended
matrix, and it is still then true that {SQ(t)} + & , that is, for

any scalar o , there exists o : {Sz(t)}’z of on (a, el .

Remark . M+(a) is the strongest condition that we need for

desirable properties of solutions of (1) on a single interval, If
however we want to consider classes of intervals, conditions [(C]
and [D] can be useful, Also they have been used elsewhere, so we

shall digress a little to consider their implications here,
a) [D]1=1[c].

If =8(t) is a funetion such that 2'(¢) = B(£)a(t) ,
C(t)s(t) =0 on [a, ] , then (0, 2(%)) is a solution of

y' = B(t)y + C(t)a , &' = -A(t)y - BH(t)a ,

with y(a) = y(b) = 0 . Consequently if [D] holds, =a(t) =0 , so
[C] holds.

b) [C1 and [WD1= (D] .

If (y(£), #(t)) is a solution of (20) with y(a) = y(b) =.0,
and [C] and [WD] hold, then y(£) 20 on [a, bl . Then

113

3'(t) = -BX(t)a(t) , C(£)a(e)

Y (E)-B(Ey (L) 0 .
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Therefore 2(¢) =0 on [a, b1, so [D] holdé.
c) D1 on (a, b1 implies [R] on (a, b) .

Proof. ©Let (Y(£), Z(¢)) be the solution of (2) with Y(b) =0 ,
Z(b) = I . Then Y(t) is invertible in (a, b) , otherwise if
Y(z)E = 0 , then Y(w& = Z(uw)E =0 in [t, ], so & =0 .

So W(¥) =.Z(t)Y_l(t) exists in (a, b)
Theorem 4 below strengthens this result.
d) On an open interval [D] = [R] .

Proof. If [D] holds on an open interval (a, b) it holds on
all subintervals (a, el . TFrom the previous result e¢), [R] holds
on (a, ¢) , and a principal solution at a , <§(t), Z(%)) exists

on (a, e¢) . And [DP] = [C]= M;(a) SO %(t) is invertible on
(a, e¢) , by Corollary 5.

Suppose d is the least point in (a, ») for which ¥(d) is

singular.

Then, from Corollary 2, [R] does not hold in (a, d] . But
[R] holds in (a, ¢) if a < e <b . So there is no such point d ,
and so ?(t) is invertible everywhere in (a, b) . So E(t)?_l(t)
exists and is a solution of (1) everywhere in (a, b) » SO [R]

holds.
e) On a compact interval [D] = [R] .

This is the last statement about [D] that was foreshadowed
earlier. It is a special case of the next theorem, which is
important because it relates weak disconjugacy directly with [R] ,
and hence with the existence of a principal solution. The following

lemma is necessary for its proof.

Existence of Invertible Solutions inferred from Disconjugacy

LEMMA 4, Let J = (a, el , or [a, ¢l . If there is a non-
degenerate solution (Y, Z) of (2), where Y(t) has a non-expanding null-
space on J , (so that Y(£)E =0 only if YW)E =0 for u=st)
then [R] holds on J .

Proof. Let
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() be a fundamental matrix of y' = B(t)y R (21)
and
)
e(t) = - f (A (u)(uw)du (22)
t -
D(t) = Qe e (23)
7, (¢) = 2 ()x(8) (21)
z2,(2) = Q*B)Z(E) + o(£)Y (E) . " (25)

Then Zi(t)yl(t) is symmetric and if Yl(t)E = Zl(t)E = 0 then

Y(£)E = Z2(¢)E =0 , 80 & =0, forany ¢ in J , and so for

t = ¢ . Therefore by Lemma 3, there is a number A for which

e . -1
Zl(c) + AYl(c) is invertible.and Yl(c)[Zl(c)+XYl(c)) =Z0 .

Let

Y (£) = ¥ (t) =,Q‘?(t>ztt) ,

2,(8) = 2y() + MY (£) = QX(£)Z(2) + (o)A )0 Tty
8(t) = (£) + AT .

Then (Yé(t), Zc(t)> is a non-degenerate solution of the Hamiltonian

system

Yé(t) —D(t)e(t)Yc(t) + D(t)Zc(t) s (26)

Zé(t) 6*(t)Yé(t) . (27)

The nullspace of Yc(t) is the same as that of Y(¢) ; we

denote it N(%¢) and its dimension d(¢) . Then d(t) is a non-
increasing integer-valued function, which can change at no more than

n points a < e <S¢ <. Se <, h=wn . Let TI(¢t) be the

orthogonal complement of WN(¢) at each point.

Then Z;(C)Yc(c) > 0 , and its nullspace is N(e) . Let
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A(2) = min E*ZX(£)Y () .
E€T(t)
g]=1
Then A(e) > 0 , and A(%) is continuous on (cl, c] , since T(¢)
does not change. Let d be the greatest point in (cl, c] for
which A(d) = 0 , so A(¢t) >0 in (d, ¢l . Then there is some
£ €T(e), |E| =1, for which, z;<d)yc(d)g =0 .

If Zc(d) is not invertible, there is a point » in [d, e)

for which Zc(b) is singular, and Zc(t) is nonsingular in (b, c] .

Then V(£) = Yc(t)Z;l(t) is a solution of

V' o= (VO*(£)-I)D(£)(8(£)V-I) = 0 ' (28)

v

and 0 < V(£) = V(e) on (b, e¢] , since V(e) =2 0 and the nullspace
of V(¢t) does not change on (b, @] . So  V(¢t) can be continued to
b

And Zc(t) is a solution of Zé = —6*(1’:)[D(t)+D(t)é(t)V(t)]Zc
on [b, el , with_ Zc(c) invertible, so Zc(b) is invertible.: So
no such » exists, and Zc(d) is invertible. But Z;(d)Yc(d)E =0,
so Yc(d)E = 0 . Therefore, £ € N(d) = N(e) . But by assumption

£E €T(e) and & # 0 . This is a contradictioh, so there cannot be

any such point d , and so A(¢) > 0 on (cl, q] . Therefore
Yg(t)Zc(t) =20 on (cl, é] S0 Y;(cl)zc(cl) > 0 . The above
argument can be repeated, at most #n times, to show that on
(02, al] R [03, cé] eté, z(t) is invertible. Therefore,
Vé(t) = Ya(t)Z;l(t) > 0 exists and is a non-negative solution of
(28).

Let V(¢t) be a solution of (28) with TV(e) > Vc(c) . Then.

V(t) exists on J , and V(e) = V(¢) > Vc(t) >0 on J . So

wit) = Q*—l(t)[V—l(t)—a(ti]ﬂ-l(t) exists and is differentiable on

J , and can be verified to be a solution of (1).
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THEOREM 2. On a compact interval [a, b1, [WD]1 = [R] .

Proof. Let (YO, ZO) ‘be the solution of (2) with Yo(a) =0,
Zo(a) = T . Then Yo(t) has a non-expanding nullspace on [a, b] ,
if [WD] applies. By Lemma 4, [R] holds on [a, b1 . QED

In Reid [14] an equivalent result is obtained by variational:

means (for example, Chapter VII, Theorem 5.1).

THEOREM 3. If [WD] holds on (a, bl then for some ¢ 1in
(a, b1, [R] holds in (a, el ; and [WD] on [b, a) = [E] on

Le, a) for some e in [b, a) .

Proof. Let (Y., Z.)> be the solution of (2) with Yo(b) =0,

0* 0
Zo(b) = J . Then the nullspace of Yo(t) is non-contracting on

(a, b1 , and so can only change finitely often, not more than =
times. Therefore there is an interval (a, ¢] on which it is
constant, with its minimum dimension. Being constant, it is non-

expanding also, so Lemma 4 applies, and [R] holds on (a, el . QED

The second statement in the theorem can be deduced by a symmetry

argument.

Theorem 3 indicates that a principal solution (%, 7) at a
can be defined in an interval (a, »] say, provided only that [WD]
holds in some right neighbourhood of a . This observation allows

an extension of Theorem.3 (see Theorem 4).

DEFINITION. A4 »ight conjugate point of a point a s defined
as the firvst point b > a at which the nullspace of the
principal solution <?a? 2a ) at a expands. A left conjugate point

is defined equivalently.

This definition, which differs from the usual one, applies also
to end-points of open and half-open intervals, provided [WD] holds

in an appropriate neighbourhood of the endpoiht in questionm.

DEFINITION. Extended weak disconjugacy [EWD] holds for (2) on
an interval J 1if there are two (non-degenerate) solutions

(Yl, Z, Y and (Yz, ZQ> of (2) for which the nullspaces of Yl(t)

and Y2(t) are non-expanding and non-contracting sets respectively

as t inereases on J .
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This form of definition is adopted because it makes no use of
concepts resulting from earlier theorems. However, the following

equivalent version is more informative.

LEMMA 5. [ZWD] holds on J <iff [WD] holds and any open

endpoints of J do not have conjugate points in J .

Proof; If the second statement holds, then the principal
‘solutions associated with each endpoint exist by Theorem 3, and

satisfy the requirements of the definition of [EWD] .

Conversely, if [EWD] holds, then [R] holds on any compact or
half-open subinterval of J . So [WD] holds on any compact sub-

interval, and therefore, from its definition, throughout o .

If J is open at its left endpoint a , then for any ¢ in

J , [R] holds on (a, e¢] , so the nullspace of Ya(t) , where

-<Ya’ Za> is the principal solution of (2) at a , is non-expanding.

So no point ¢ In J 1is conjugate to a . A similar argument

applies at the right end-point, if it is open.

Remark. The definition of conjugate point above, strictly
speaking, generalises only the concept of nearest conjugate point.
This is enough for our needs. The extension of [WD] to [EWD] makes
a real difference even in familiar cases. For example, the system
y' =2, 8' = -y obeys [WD] (that is, is disconjugate) on (0, )
or (0, m] but not.on [0, ﬂj . It obeys [EWD] (and [R] ) on
(0, ™) but not on (0, m] or [0, 7] , since T is a conjugate

point of O .

A conjugate point of an open end-point may not just be the limit.
of the conjugate points. of points in the interval. For example, if
the dimension #n = 1, B(f) = 0 everywhere, A(¢) = C(¢) =0 if

2

l+t2

t=0, A(t) = () =

if ¢ <0 (the discontinuity at. 0 does

not matter), then no point in (-*, ®) has a conjugate point., But
0 1is a conjugate point of -« , [WD] holds on (-, ®) , but
[EWD] and [R] fail on (-«, 0] .

THEOREM 4. On any interval J , [R] < [EWD] .
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Proof. If  [R] holds on ¢ , then by Theorem 1 and its Corollary
2, the two principal solutions at the left and right end points exist .
and have, respectively, non-increasing and nen-decreasing null-spaces
on o .+ So [EWD] holds on J .

Conversely, for compact and half-open iﬁtervals, LEWD] = [R]

from Lemma 4.

The case of an open interval (a, b) is more difficult. Let
(Ya(t), Za(t)), (Yb(t), Zb(t)> be the principal solutions of (2) at

a and b respectively. Then if [EWD] holds, the nullspaces of

Ya(t), Yb(t) are respectively non-expanding and non-contracting as

t increases. Since each nullspace can only change # times, there
is a point ¢ for which no changes in either nullspace occur in

(a, el .

We abbreviate Ya, Za , for Ya(c), Za(c) etc. By Lemmas -2 and

3, and knowing that [R] holds on (a, e¢] and [e, D) , a number

A exists large enough so that all the following are true:

Za + AYa s Za - AYa . Zb + AYE . Zb - AYb are all

invertible;
)-l

-1 -1
Y (zr )" z0, ¥ (207 )7" 0, 1 (7,47,

Yb(zb-AYb)'lS(J, and the solutions Wl(t), Wé(t) of (1) with:

>0,

Wi(c) = AT, Wé(c) = -AI éxist on [e, b) , (a, e]

respectively.

Let . Xi(t) s T = 1, 2 Dbe the solutions of y' o= C(t)Wé(t)Y
with Y.(e) = I . Then Y,(t) exists and is invertible on (e, D)
for ¢ =1 andon (a, el if 7 =2, and if Z,(%) = W (), (%)

then. (Yi(t), Zi(t)) are solutions of (2) for % =1, 2 ..

v (. -1 o -1
Let U, -.yb(zb+xyb) 20, U, = y (2#A2 })7" z 0 . Then
from Corollary 1 to Theorem 1, since Yé(t) obeys D(a, t] for ¢t

in (a, el , Ub 20U =20 .
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Let Ty s 2 =1 ... h be an orthonormal basis for the nullspace

of Uy , and let @ = x.x¥ . Then 0@ = UaQ =0 , and Q2 =q .

1 1

n -1t

=1

If- be =0 , then &

X .

Let S = %(Ua+Ub) and U =8+ rd for some positive constant:

r . Let (Y, Z) be the solution of (2) with Y(e) = U ,
Z(e} =I - A . Then U>0, so Y(e) is invertible. We shall
show that Y(¢) is invertible on (a, b) , proving L[R] .

Suppose for d in [e, b) , Y¥(d)§ =0 , and & # 0 . But

-1 -1
Y32, - YE2(e)Y “(e)Y, = Uy - U U Y,

I - . So

|}

and 0<U=U +@, and (Ub+Q)'lUb

-1
Ub - UbU Ub

IA

Ub - Ub(Ub+Q)_lUb from Lemma 1
<=0

0 . Therefore,

since UbQ
A2, - 2(e)Y e, <0,

so, applying a dual version of (18) in Corollary 1,
(722(e)-287(e))E = 0
that is, (Ub—U]E = 0 . Then from the definition of U ,
UbE = UaE + 2rQ&, Multiplying by § shows Q& =0 , so UbE = Udi .

Then

Ya(c}E UaE =,Yb(c)5 ’

Za(c)E

[I-AUa)E = 2, (e)E .

So (Ya(t)g, Za(t)E) is the same solution of (2a) as

(Yb(t)g, Zb(t)£> and so Ya(d)E =0 . But Ya(t) has a non-
expanding nullspace, so Ya(c)E = UaE = 0 , . Therefore, UE =0 .

But U 1is invertible. So Y(¢) is invertible on [¢, &) . The
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proof for (a, e¢] 1is similar, and a little easier.

Tests for the existence and absence of disconjugacy

Condition [R] for the Riccati equaticn (1) is a sufficient
condition for disconjugacy of (2) on any interval, and by Theorem L
a necessary condition for [EWD] . So tests for the validity of . [R]
will indicate almost all there is to know  about whether (2) is

disconjugate on some interval.

C(t) 1is assumed non-negative. The function Y(¢) of (6)
above can be defined with any initial value at any point, and
R{Y(t)] = 0 . So a necessary and sufficient condition for [R] on
some interval is the existence.of a differentiable function (%)

with R[Q(£)] = 0 on the interval, from Theorem 1 of Chapter 2.

Conversely, suppose on some open interval (a, b) there is a
differentiable function P(t) with R[P(£t)] =0 , P(t) + +*° as
t +a , and P(t) 1is not bounded below in (a, ») . Then [R] can-
not hoeld in [a, b] obvicusly, since at some poiﬁt t mnear a , a
solution W(t) of (1) existing on [a, b) has W(t) < P(t) , and
less obviously, neither can [R] hold in (a, b1 nor [a, b) . So
[WD] certainly does not hold in [a, b] either, by Theorem 2. For
applications a restriction to compact intervals is unimportant, since
if a system is not disconjugate on an interval, then it is not

disconjugate on some compact sub-interval.
The main test of the first kind, sufficient for disconjugacy, is
the comparison test. If a solution Wl(t) of

= i *
B[] = Wy + 4 (8) + BRI, + B (¢) + W C (£, <0

exists on an interval J , and

RQEW] =W + AQ(t) + Bg(t)W + WBQ(t) + WU2(t)W

and

4, BB (4, ()B3(5)

B, ()0 (&)| B, (£)C,(¢)

on ¢J , then
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— -
AQ(t)Bg(t) I

R i ()1 = W) + [17,]

B,(6)0,(0)| |

Al(t)Bi(t) I

1A

W+ (]

Bl(t)Cl(t) W

- e

R, [W ()] =0

on J . So [R] must hold on J .

A specially important case of an everywhere disconjugate system
is one where A(t) =0 . Then R[0] = A(£) =0 , so [R] holds

everywhere.

A number of tests of the second kind are indicated at the end of
the next chapter, which considers a series of solutions of Riccati
inequalities. These solutions are bounds to solutions of the Riccati
equation, and although successive bounds are more complicated, they
are also better approximations. If the bounds converge to a solution,
then the series of tests for non-existence of solutions of R[W] = 0

based on their behaviour is likely to be exhaustive.

Below, the most elementary of this series of tests is given.
Despite its simplicity it seems to include as corollaries most explicit.

tests for oscillation so far produced.

THEOREM 5. If a, b, ¢, d are four points for which _
a<b=e=d, Ct)=z0 on [a,d]l, A(t) =0 on [a, b1, [e, d1 .,
then 1f R[W] = W' + A(t) + WC(£)W = 0 has a solution on [a, d1 1t
18 necessary that for some e > .0 , and so for all e sufficiently

large,
1 b -1 re 1 d -1
(e_ I+ J C(u)du] —J Alu)du +<(e I + f C(u)du] >0 .
a b e (29)

Proof. Suppose W(t) is a solution of R[W] =0 on L[a, d] s

and e is sufficiently large so that:
el > W(a) , -el < W) .

Let
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1 t -1

U(t) = (ef I+ f C(u)dul
a

[a, b1 . Then

RLU(E)]

SUGEXC(EYU(E) + A(E) + UE)C(E)U(E) -
A(t) = 0

fa, 1 . U(t) exists on [a, »] and U(a) = el > W(a) . So

U(t) > w(t) on [a, b1 , by Theorem 1 of Chapter 2, and in.particular,
ub) > wib) .

on

on

Similarly
1 da -1
wit) > [—e I -~ J C(u)du]
t
[e, d] . Let
7
uct) = Ub) - J A(u)du
b

]

[, e] . Then RLU(L)] = U)C(XIU(L) =20 on [b, el ,

Uub) > Wb) so U(t) > W(t) on [b, e] . Therefore,

[ -

1 b -1 e
I + J C(u)dul - J Alu)du = U(e) > W(e)
a )

1 d -1
> [-e’ T - J C(u)du]

- C

COROLLARY. Suppose R[W] = 0 <s defined and has a solution on

la, g), d<g, A®X)=zo01in [e, g), and let

f -1
K(e, d) = lim [eI + f C(u)dul .
g d

Let e' be another positive number, and d' € [e, g) . Then

d’
Kle, d) - K(e', d') = K(e, d)((e’—e)I + [ C(u)du]K(e', ayn ,

d

and therefore both K(e, d) and K(e’, d') have the same nullspace

N.

If x € N, and R[W] = 0 has a solution on [a, g) , then for

some e > 0 ,
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b -1 be]
x*(eI + J C(u)dul x =z x* J Au)dux
a b
since in the application of Theorem 5, d. can be taken arbitrarily

close to g .

In particular 1f N 18 the whole space, so f Clu)du + = qgs
d

e b -1
f*g, then I Alu)du = [eI +‘J C(u)du] for e sufficiently
b a

small and positive.

This is a result due to Ahlbrandt [2].

Alternatively suppose »r eigenvalues of f' Clu)du + » as
d

!
f*g ,s0 dim(¥) = r , and s eigenvalues of J Alu)du +~ » as
d

[«]

f=>g9 , and r+s >n . Then clearly «¥ [ A(u)du x cannot be bounded

b

as ¢ increases for all & in N , so R[W] = 0 cannot have a

solution on [a, g) . This is a result due essentially to Tomastik

Lrl.

b d
Remark. If, in (29), { C(u)du and f C(u)du are invertible,
a e

then e can be assumed arbitrarily large, and so omitted., Also the
requirement that C(£) =2 0 on [a, b] and [e, d] can be

considerably relaxed, since it is used here only to ensure the

N ¢ -1
existence of te I+ J C(u)du] on [a, b] .
a .

Example of the application of Theorem 5. Consider the
Hamiltonian system
y' =a , 2''= -y, (30)

and the corresponding Riccatl equation

2
w'+ 1+w =0, (31)
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for t>0. Let a=0, b=1, e¢=3. Then

d

-1
Se (31) has no solution on. [a, d] if (I C(u)du] -1 <0, that

3
is, if d =14 .

So if (y, 28) 1is the sclution of (30) with @(o) = 0 , the next

zero of g(t) occurs before t.= 4 ,

Remark on applications of Theorem 5, To use the theorem to
establish the absence of disconjugacy on some interval, or more
usually, to put an upper bound to the distance of the next conjugate
point, at least three points b, ¢, d have to be chosen successfully.
The criterion for the choice is to ensure a rapid rate of descent of
the upper bound function U(f) for ¢ > a . From an arbitrary point
h , U(£) can be defined in two ways (if both A(£) = 0 and
C(t) 20 for ¢ >h ) as follows:

t

ut) = UCh) - J A(u)du
h

or

t -1
u(t) = U(h)(I + f C(u)duU(h)l .
h

1

In the first approach U'(h) = -A(h) , and in the second

u'(h)

~U(R)C(RU(R)

So if U(h) 1is close to zero, the first method of continuation
will probably be more successful, and if U(k) is bounded well away

from zero, the second will be preferred.

In the above example the choice of continuation is optimal.

Summary

All the results obtained so far have been for intervals open at
the left-hand end. Results for intervals open at the right-hand end.

can be obtained either by analogous proofs, or deduced by mapping ¢
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onto -t and solutions W(¢t) of (1) onto -W(-t) . However, to
clarify what is happening, and also to conveniently summarise the
rather scattered results of this chapter, we re-express the

principal results below for right-hand open intervals.

LEMMA- 2. I_f Wl(t) i8 a solution of RIW] = 0 existing in
~ some interval [a, b) , and W, = Wl(a) , then the solutiom W2(t)
of (1) with WQ(a) = W, extsts on [a, b) and Wz(t) > Wl(t) on
La, b) . |

THEOREM 1. Suppose (1) has a solution Wl(t) existing on

[a, b) . Then (2) has a prineipal solution (¥(%), Z(¢)) in [a, b)
and for any solution W(t) of (1) existing in [a, b) ,
THE)Z(E) - THEW(E)T(E) <0 .

If (Y(t), Z(t)) <8 a solution of (2) for which Y(t) 1is

invertible, and N = TH(£)2(t) - 2*(E)Y(E) , then NY “(£)T(t) + 0

as t b .

COROLLARY 1. et [R] hold on [a, b) and (Y, Z) be a
solution of (2). Then Y(t) has a non-contracting nullspace Liff,
for all X large enough,

-1 ~, ~ A -1
y(a)(z(a)_)\y(a)) < Y(a)(Z(a)—AY(a)) =0 .

Then for t € [a, b) , Y(t)& = 0 <Implies
G (@)Y (@)-F* (@) 2@))E = 0 and ¥(t)(Z(a@)-AF (@) " (2(a)-A(@))E = 0 .

So Y(t) <s invertible in (a, bl <if-

¥(a) (2(a)-27(@) L < (@) (2(a)-A%(a)) 7T = o

or 1f Y*(a)2(a) - Z*(a)¥(a) is invertible and

¥*(@)Z(a) - $*(@)z(a)r Ha)¥(a) < 0 .

COROLLARY 2. [R] on [a, b) implies that the nullspace of

¥(t) is a non-contracting set as t <increases on [a, b) .

COROLLARY 3. If Ula, ] € I , the prineipal solution (?, 7
of (2) at- b exists, and ¥() = 0.

COROLLARY 4. [R]1= [WD] on any interval.
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COROLLARY 5. If [R] holds on [a, b) , I(a) is invertible
tff Pla, b) holds. Then .a minimal solution . W(t) exists iff [R]
and M_(b) hold.

THEQREM 2. On a compaet interval (WD] = [R].

THEQOREM 3. If [WD] holds on [a, b) there is a sub-interval
e, b) on which [R] holds.

LEMMA 4. Let J = [a, ¢l or [a, ¢) . If there is a non-
degenerate soZution‘"(Y, Z) of (2) where Y(t) has a non-contracting
nullspace on J , then [R] holds on J .

THEOREM 4. On any interval [R] < [EWD] .

THEOREM 5  is unchanged.

Appendix

In Chapter 1, it was shown that differential inequalities can be
seen as general consequences of the properties of cones in vector
spaces. In Chapter 2, we showed that, taking this geometric approach,
the Riccatl equation had a unique status with respect to symmetric
matrix ordering. And in Chapter 3, we have used speéial properties
of the Riccatl equation to demonstrate the existence of maximal and

minimal solutions on intervals.

From a geometrical point of view, 1t would be surprising if
spaces of dimension #m(n+l) , that is, the spaces of symmetric matrices,
had some special property or significance. The arguments in Chapter

3 ought to have analogues in spaces of any finite -dimension.

The Lorentz ordering of Example 3, Chapter 1 was shown to imply

that a function
flz) = ale, o} - 2z2{a, 2} + oz + {5, «} + D (A1)
is of type K+ and X_ , where a, b are n-vectors, O a scalar

and S an #n X n skew symmetric matrix, { } the Lorentz product,

and {S, x} denotes the vector with components {Si’ x} -, where si;
are the columns of S .

It is of interest that, just as the Riccati equation is unique

among matrix equations in being of type K+ and K_, so (Al) is
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unique in being of type K+ and K. in Lorentz ordering, if n = 3 ..

The proof uses essentially the same special case as does Theorem 2 of
Chapter 2, namely the case when. n = 3 , and extends to higher

dimensions in much the same way.

Theorem 1 of this chapter shows that given one solution of the .
Riccati equation, all solutions can be generated in terms of solutions
of a linear equation involving the known solution, and furthermore
when generated in this way, one solution, which can be explicitly

nominated, is maximal, For equations of the type-

x' = f(¢, x)
= a(t)x, x} - 2x{a(t), o} + a(t)x + {S(t), x} + b(t) (A2)

derived from (Al) with all coefficients continuous, a similar argument

to that of Theorem 1 applies, as outlined below:

Let y(£) be a solution of (A2) existing on an interval, and sc

transform (A2) by translation:

(z-y)' = al(z-y), (@-y)} - 2(z-y){a, z-y}
+ 2a{x-y, y} - 2(x-y)a, y} - 2yla, x-y}t + alz-y) + {5, z-y} (A3)
= fy(x—y)_ (A4)
where the argument \t has been suppressed? and fé has the same
form as f , but with no constant term, Denoting the coefficients of
f,a, Sl, o and putting u =x - y , we have

Y

U .

u' = alu, ul - 2u{a, ul + {Sl, ul + o

Now

Fu, ut!

{u, u'}

~{u, aHu, u} + al{y, u} since {u, {Sl, ul} = 0 (A5)

and ({u, u}’l)’ = 2 ({u, a}—ul){u, u}™* . Therefore

(ulu, u}™2)!

{u, u}_l[u'+2({u, a}—ul)u)

a + {Sl, u{u, u}—l} + ulu{u, ) (A6)

Let v = u{u, u}_l‘, and Y(t) be a fundamental matrix of the
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linear equation

g' = {8,(8), 2} + alt)z . | (A7)
Then
¢ -1
v(t) = v(to) + Y(¢) J Y “(w)a(uw)du . (A8)
t
0

And for each u , w(¢) = Y(t)Y—l(u)a(u) is a solution of (A7)
which is a special case of the type (A2) with w(u) = a(u) , and
2(t) = 0 is a solution of (A7), So if a(u) € ¢ , then w(t) € C

by comparison with the solution &z(t) 2 0 , and if alu) € c* .
w(t) € C* , where C° is the interior of C . Then (%) is

increasing if a(u) € ¢t for all u , and the solution we would like

to fulfil the role of principal solution on (e, b] say is.

A~ t _l

v(t) = Y(¢) I Y “(w)a(u)du . The proof that the indefinite integral
: e

exists is like that of Theorem 1l; that is, there are solutions v(%)
of (A6) with v(¢) =20 on (e, b] , and v(£) is non-increasing,

b
(if a(t) € C ) so Y(b) J Y-l(u)a(u)du svkb) as t >re , and so
. ,

b -1
Y(b) J Y (u)a(u)du exists.,
e ‘

In this development, the vector & = u{u, u}_l plays the role of

an inverse, and then e&{e, 8}-1 = u . It can be verified that this.
"inversion" inverts ordering in ( . So solutions of the first order
equation (A6) correspond by simple transformations to solutions of

(A2); in particular a(t) corresponds to a maximal solution on

(a, b1 : () = y(t) + 9(t){v(t), %(t)}_l . Verification that the
solution is indeed maximal on (a, ] can be achieved by essentially

the same method as in Theorem 1.

Notes

The concept of conjugate points for systems originated in the

Jacobl necessary condition in.the calculus of variations (Morse [Z],
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Bliss [1], Radon [1]). - The controllability [C] condition comes from.

the normality condition of the calculus of variations. .

In the scalar case, the significance of Riccati equations has
long been recpgnised-(BSCher [7], [Z1). Principal solutions for
systems are dealt with in Reid [4], [9], [14], Hartman [1], [2],
and Coppel [3]. Reid and Coppel make extensive use of Riccati equations;
Hartman used the reduced form that. appears in our Theorem 1, All.
these writers assume a condition equivalent to our [(C] when defining
principal solutions although Reid [15] defines, and proves the
existence of, a distinguished solution (that is, maximal or minimal) of

(1) under conditions like our M; and M , and under ancther

condition of intermediate strength, which still gives an invertible

principal solution.

The essential difference between our approach and previous
approaches is that we concentrate first on the Riccati equation, for
which the existence of a maximal or minimal solution, at least in
some transformed domain, arises naturally without the need for any
controllability or normality conditions, provided that there is at
least one solution on the interval. Having regarded [R] as the .

primary condition, we then relate [R] to disconjugacy.

For the transformation to unitary matrices or method of polar
co-ordinates, which completely avoids problems of existence of
solutions, see Atkinson [7], or Lidskii [1], or Coppel [1]. In our

context, if (¥, Z) is a solution of (2), and

L(t) = (z(e)+ix()) (z(e)-1x(2))
then L(¢) is a unitary matrix, existing everywhere, and

2L' + —2(L-1)A(E)(L-I) + (L+I)B(t)(L-I) + (L-I)B*(t)(L+I)
+ T(Z+I)C(E)(L+I) = 0 .

As mentioned earlier, in this approach, order relations between
solutions are difficult to express; in fact, the simplest way is to
transform back into a symmetric matrix domain; the nett result being

equivalent to our translations and inversions.

A clear exposition of the properties of the matrix Riccati

equation, including the unsymmetric equation, is given in Barmett's



recent book [!, Chapter 5], which alsc contains a useful chapter on

generalized inverses. The paper of Levin [1] is also useful.

70
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CHAPTER 4
CONTINUED FRACTION EXPANSIONS OF SOLUTIONS OF THE RICCATI EQUATION

Introduction and summary
In this chapter we consider a solution of the Ricecati equation
RIW] = W' - A(£) + WC(E)W = 0 , (1)
with W(t,) = 5, .
A(t) and C(t) are symmetric continuous 7 X n matrix functions,’

and are usually each considered to be either positive or negative

‘definite, and defined for all ¢'.

If a sequence Zn(t) is defined recursively by

St o
Zl(t) = SO'+ f TAtw)du
B
0
-1 ' ;l t : '
Zn(t) = Zn;l(t) ""Zl (t) [t Zl(u) e Zn—l<u)Bn(u)Zn—l(u)""
O .
' -1 -1
. Zl(u)duzl (t) v Zn_l(t)
whére

A(t) if »n 1is odd,
Bn(t) =

c(t) if »n is even,

then we define a continued fraction associated with W(#) by

-1y-1y-1
-1 -1 -1
[Zl (t)+[22 (t)+[Z3 (£) + ...I I ] .
By this is meant, in effect, a sequence of convergents Tl(t) = Zl(t) .

-1y -1
] etc.

-1 L -1 -1
T,(t) = [Zl (t)+22(t)] » Ta(2) = (Zl (t)+[Z2 (t)+23(t)]

Each convergent Tn(t) satisfies a Riccati equation

R{Tn(t)} = (—1)nKn(t) , where Kh(t) , whose nature and existence is

established in Theorem 1, has a sign depending on Bn— (¢) , that is

1
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alternatively on the sign of A(f) and C(¢) , if these are of fixed
sign on [to, t] .

There is a digression in Lemma 4 to show that matrix continued
fractions share with their scalar counterparts the property that
their convergents can be expressed as the ratio of two linearly
independent solutions of a second order linear recurrence relations.
Otherwise Lemmas 2-6 are concerned with determining local behaviour

near to of the convergents Tn(t) in relation to each other and to

the solution W(¢) of (1). This is done firstly so the Riccati
inequalities of Theorem 1l can be applied to show that the sequences
{T2n(t)} and {T2n+l(t)} form a sequence of bounds to W(¢) ,

(Theorem 2); whether the bounds are upper or lower depends on the
sign of A(%) and (C(¢) respectively, but in any case they improve
as n increases (Theorem 4). The second reason for looking at local

behaviour is that it shows that {Tn(t)} is a sequence of rapidly

improving approximants to W(¢) ; in fact
Wg) - I () = 0(|t—t0|2n—l] , (Theorem 3).

From the inverse equation V' = C(¢) - VA(£)V another continued
fraction can be derived. This is important because in this way
bounds to the maximal (or minimal) solution of the previous chapter
can be obtained. If those bounds fail to exist on an interval, then-
so does the principal®* solution they approximate (Theorem 5).
Therefore a pair of conjugate points exists on the interval, and the
associated Hamiltonian system is not disconjugate. Many existing

oscillation criteria are derivable as applications of this principle.

Unfortunately any proof that the continued fractions we derive
in fact converge to a solution of (1) presents formidable difficulties,
although it is easy enough in many applications. Often the -continued

fraction converges almost everywhere; for example

* In this and the following chapter, the maximal and minimal solutions
of (1) on an interval are often referred to as principal solutions
of (1) at the appropriate endpoint.
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5ot
5

converges for all ¢ (real or complex) except ¢ = g—t nt .

The continued fraction expansion is important for disconjugacy
theory because it offers a series of necessary conditions for
disconjugacy expressed in terms of the coefficient functions. If the
continued fraction does converge to the desired solution, then
satisfaction of the series of necessary conditions is a sufficient

condition,

Because so many terms and symbols are introduced, an index of .

definitions is appended to this chapter.

The ‘basic equation satisfied by the convergents
DEFINITIONS. Let {Vﬁ(t)}, {ch(t)} and {An(t)} be sequences
of symmetric continuous matrix functions defined, for t # ty > by

the relations

Colt) = C(2) , Ay(E) = AE) , TV (£) = 8,

0
tO
where SO 18 a symmetric matrix, and
C (%) = VEEA (V. NE) , no=1, 2 (2)
n no o n=l n ? > T -
An(t) = V%(t)cn_l(t)Vh(t) s nm=1, 2, (3)
t
Vﬁ+l(t) = ft An(u)du s nm=1l,2, ... (W)
0

The sequences can be assumed to terminate where any definition

fails due to Vh(t) failing to be invertible. However we shall

usually assume A(f) and C((£) to each be of definite sign every-

where, and so, provided Vl(t) is invertible on some interval

including to then all the other terms of all the sequences will
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exist and be either positive definite or negative definite on the

interval.

Whenever in what follows we assert that a matrix function, whose

definition involves Vh(t) for some n , exists, it will be under-
stood that for 2 = 1 ... n=1 , Vi(t) exists and is invertible.

The simplest way to see why there should be a continued fraction
solution of (1) is as follows. Let {Sn(t)} be another sequence of
differentiable symmetric matrix functions, with So(t) *the solution

S(¢) of (1) with S(¢,) = 5, , and

- -1 , .
8,(t) = V()5 ~, (£)V (2) -V (¢) .

. . ] - _
Then Sn(t) satisfies Sn(t) = An(t) Sn(t)Cn(t)Sn(t) . And near

tg s Vy(£) > 8 v,(¢) = O(It—tol) , and if 9, is invertible,

0 0°

Az(t) 0(|t-t0|2] , etc. An(t) becomes small as #» increases, and

so does Sn(t) , at least near to .
By putting Sh(t) = 0 for some n , and solving the = eqﬁations
defining Sn(t) to recover the approximated value of So(t) s We

generate a sequence {Tn(t)} :

Tl(t) =@,
- -1
T, (8) = v, (8) (V ()47, () 77 (8)
. -1 -1
T,(¢) = Vl(t)[Vl(t)+V2(t)[Vz(t)+V3(t)) A I AR

etc. The somewhat neater formulation of the {Tn(t)} given in the
introduction will be arrived at later.

The next set of sequences are introduced for the rather extensive

manipulations required to show that.the {Tn(t)} are solutions of a.

Riccati inequality (and equation) as in (9) below. Later (Lemma 7)

we will be able to produce a neater and more natural version of (9).
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DEFINITIONS. Let {Xh r(t)} be a double sequence of symmetric

matrices defined for »r =n , by

X, (&) = 0,
= —l <l <
X, o (8) = Vn_r(t)(Xn,r(t)+Vn_r(t)) V.o t), 0=r=n. (5
Then Xﬁ,n(t) = Tn(t) .
Let
E (t) =v.()(x &)+ (1)) = ¥ (&) ) (8)
N, o r N =P r ‘ nMm-r+l r

and let M%,r(t) = M% r—l(t)Hn,r(t) ) M%’O(t) =71, 80

-

Mn,r(t) = Hn,l(t) cee Hﬁ,r(t) . (7)

Let

K, (8 = (DM, ()4, (208 (8,

Y =0, couy 7, %%mi@)=0. (8)

Again we assume that- {Xn’r(u)}s {Hn r(u)}, {M%’P(u)} and

{Kﬁ r(u)} cease to be defined beyond any 7 where their definition
H]
involves. the inverse of. a singular matrix.

All sequences are certainly well-defined for all »n if A(¢)
and C(¢) are both positive definite (or both negative definite) on

[to, t] , and SO non-negative (or, respectively, non-positive),
; > i > >
since . then Vf(t) 0 if ¢ to , and Xn,r(t) 0 for
= > i
r=l, ..u,m, t>t,, and Xn,r(t) + Vﬁ-r(t) is always
invertible.

THEOREM 1. If the sequences {Xn,r(t)}’ {Hn S8 {Mn (8}

b 2

and {Kn r(t)} are well-defined, then

2

R{Tn} = —Kn’n(t) s t#T (9)

O L]
Proof. We omit the suffix =» , and the argument ¢ , for the

time being. Now



B o=v {x +v) =1
n n¥n-n n
and
o -1 -1
Hr - Vr(anl-(r+l)+Vr) - Vr (Hr+lvr+l+vr)
So
Bl Vo = (z-8,)7, . (10)
And
E-0)a,  (@-1) =g, v via viv mx g
r-1 rr+l r+l r r-1'r r+l r+l r
= & g4
HrHr+lVf+lAer+lHr+lHr
= *
HrHr+1Ar+lHr+lHr '
Then
_g* * = * *
Mr l(I A ) r—l(I‘Hr)Mr-l Mr’ 1 rHr+lA1’+l r+l r'Mr 1
_ _ r+l .
_Mr+l'4r+l r+l_(l) +1 if 0=r<n.
_ g\ mE = o = n+l . _
and M, (1-8 A,  (T-2X)M% =0 = (-1) Koy simce H =1I.
= ' * =
Let r (-1) M}Xn pM} ’ Ln 0. Then for 1l =r=m=n,
! _ J _l. —l 1
Xn—r+l - Vr(Xn-r+Vr) Vr * Vr(Xn—r+Vr] Vr
-1 X! ' -1
v (Xn r+Vr) ( n-» Vr') (Xn r+V1ﬂ) Vr
= H V' + V'H* H V H* - H X' H*
rn-ropy
= -(a,-1)v, (H*-I) + V- HXHA
ran-rr
Therefore,
_1y¥-1 ' = (_1y¥ _ *_T\ p%
(-1) Mr an r+er' 1° = (-1) Mr»l (Hr I)Ar—l (Hr' I)Mr—l
* ! *
t( l) r lAr' er 1 * (-1) Mr'Xn er
since V' = 4 . Therefore, L =X + (1%« l)lﬁ+l + L
r r-1 ? r-1 r-1 r+l r '

Therefore,

76
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"

) = K + Kl - Kﬁ since Kﬁ+l = 0.

But L. = X' since M =TI ,and X. =4,
0 n ‘

= A =
Kl HlAlHl -X Vl VlC'VlVl X
= X CX |,
non
So RX ] =x' -A+XCX =-K
U 7 noon 7
On replacing the omitted suffices, and with T () = (t) s
[z ] = K, (8 (9)

Note that X, n(t) has the same sign as A(¢) if n 1is even,

E]
or -C(t) if n 1is odd, assuming A(f) or C(f) respectively are

sign definite.

Behaviour of convergents and associated functions near. to

DEFINITIONS. Let

-1 -1 , -1 . .
Vl(t)V2 (t) ... Vﬁ_l(t)Vh(t)Vﬁ_l(t) ""Vl(t) if n is odd,
zn(t) = (11)
-1 - -1 -1 . _ .
Vl (t)Vé () ... Vﬁ_l(t)Vh(t) cen Vl.(t) if n 18 even.

Then it is easily verified that

V(8) = 2 (8) o B, (8)2 ()8, L (B) ... 2y (8) . (12)

n-1
Let

A(t) if n s odd,
B (%) = (13)

c(t) if n <s even.
Until further notice Bn(t) is assumed to be either positive or

negative definite for all ¢ and each n .
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Let

+1 if Bn(t) >0,
v = (14)
=1 Zf Bn(t) <0,

Let o(t) = sgn[t~t0) .
Now

_ -1 -1
A (%) = Vﬁ(t)Vﬁ_l(t)An_Q(t)Vh 18IV (2)

and Ao(t) = A(t) , Al(t) = Vl(t)C(t)Vl(t) . So VnAn(t) >0 and

:
o)V, V. (£) = J A(Wdu >0, n=2,3, ... if t#t, .

%y

Therefore, O(t)vnzn(t) >0 also, if t # to .

The sequence {Zn(t)}‘ is introduced partly to give a simpler

expression for the continued fraction associated with a solution of

(1), and partly because its behaviour near to is more amenable to-

investigation.

LEMMA 1. If 4, B ave invertible, and |A™Y||B| <1, then
-1
| (a+B3) 71| < ——lé:IL——-.
1-1a77| ]3]
Proof.

A"t (4+B-B) (4+B)™E

a7t - aleasmy 7t

(A+B) T

Therefore,
laB) 2| = |47 + a7 |8] | wsB) 7Y .
Therefore,

1
|(A+B)—l| < _la]

-4t |8]
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The next lemma is needed to deal with the difficult case arising

when So is singular, but not zero,

LEMMA 2. IfF |t—t0| ig sufficiently small, and if on a range
J including to in ite interior, 0 < ol < A(t) , C(t) =BT,
then

¢ -1
A(u)du] 59% Lt E L

© 88T
- == (t—to)[so + J
o 0 Q

t

Proof. 1If SO >0, t>t, , then

0
- t -1 t -1
LSO + [t A(u)du] < (ft A(u)du]
0 0
- a[t—tO] T oo a[t—toj )

If SO i 0, let A be its maximum negative eigenvalue.  Suppose

(6-¢.) = min{zh, —=3
o/ ~ 20° 8(p-%a)) °
Then So + %a(t—to)I has no eigenvalues between %a[t—to) and
A

%a[t—to) + A , and the latter value = A - Tc S—A <0 . Let

€ = %a(t-to) . Then §) + eI is invertible, and

ur~t
3

(SO+eI]-l <1et, (sr1e) ™t 2 TOe) ™t 2 I.

Further,

t
J Alw)du - eI 2 ka(t-t )T = eI >0 .

%o

So

t

(So + ft’ A(u)du]"l _ L50+EI)‘1(LSO+QI)'1+(J A(u)dufsr]fl]_l'

t t

0 0

t -1
X (J A(u)du-eI] .

%o
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And :

t -1 -1
A(u)du—eI} > 21 (k) M (eer,)
¢

0

v

(s,*el) 1y U

n

(B-%u)'l(t—to)‘lr(l + (B-%a) g&-(t-to)]

v

%(8—%a)'l(t—to)';r.

Therefore,

t -1
‘[S + I A(u)du] I
0

(7

1A

I(SO+€I) —lH (SO+eI) 1y Ut A(u)du-eI} -

0 0

t -1
U Alu)du-I l

X

2 ‘
= [o(e-ty) | 208400 [t-2, | [5a(t-2,) |
_ 8(Bg%a) lt‘tol_l .
o
Therefore,
t -1
,o1~1 88 - < |- -1 88
- [t-t,| ;—2_—I = (So + L A(u)du] =< It‘tol 5 I
0

LEMMA 3. There exist sequences {ocn}, {Bn} of bounds so that

on some compact interval J including ty s

|z, ()| = Bn|t-t0| , n

i
N
.

w

Igzn(t))'l{ < Ghlt-tol_l s M= 2 au. (15)

- N1l o -l
and |2,(®)] =8, (@) = lt-s]7 .

Proof. Let o, B be bounds on A(%), C(t) :
0 <ol = van(t) =< B8Z. . Then.

t
zl(t) =5, % f Alu)du

%o
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is bounded on J .. And ‘Zil(t)‘ < alLt—tOJ“l by Lemma 2, and

]

U -1 t
~(S + f A(w)dw] LS + f A(w)dw]
0 0
tO tO

-1,
Zl (u)Zl(t)

_l t
I+ Zl (u) J Aw)dw .
u

Therefore,

A

-1 '
1+ o |u-to| "ol t-ul

-1
Z, (u)zl(t).

1A

-1
1+ opofu-gg |7 ([t +u-t,|)

|t-t,|
0
Y.t Y, TZ:EET for constants Yo Yy o (18)

Suppose it is true that for m= 2 ... n-1., the inequalities
(15) hold, and 7n > 1 . Let

} -1 -1
En_l(u) = Zn_l(u) eee Zl(u)Zl (£) ... Zn_l(t)E

for an arbitrary vector § .

Then
S| -1 -1 -1
g*z, ()8 = %2, 7, (¢) ... 2,7 ()W (£)Z,7(¢) ... 2~ (£)E .

And

(-1)" .
.V (B (u) ...V _, (wdu

1

1]
S
<t
SQ
I
E—J
~N
&
p e
EQI
[
N
~~
<
p—a

v, (%)

Zl(u) ces Zn—l(u)Bn(u)Zn (u) ... Zl(u)du .

-1

1
S
<t <

Therefore,

t
E2(2)E = [ 52 (0B, (WE, | (W)du s

%o

and



-1 1
g, (] = lzn_l(u)l e lzl(u)zl (t)l e (t)||g|
u-tn-1 |u-t |
= By 1% e Bo% =z, (Y Y Y 122 |]|5|
So,
¢ 2
|E*z()E| < ’sf e )|“du
¢
0
‘ t u-t_n-1 u-t
2,172 0
<18, % o, | “8IE| l[t {Yl % T Yo T
0 0 0
2 2
Y] 2Y,Y Y
2 271 2 |
<18, 5 e o |%8l€1%| -2 oNmmTt =t w1
_ 2
- 8 1212t
And
. -1 -1
£ = Zn_l(t) ces Zl(t)Zl (u) Z _l(u)En_l(u) .
SO
&l = 12, @) - |75 00| }z—l |5, o
|-t | t-t, |-l
= (0, 18,1 e BBy )(Y * Y2 Tz, |] =N LSCO)
and
It_to| ﬁ_to
Yot Yo T T2 Y -toi
if |u—tol < It—tol, for scme Ya >0 Therefore,
-1 l
le, )l =z (o ) o0 807y, | gl .

Therefore,

P

82

du
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¢ 2
oo () j |g, 1 (w)|“du

%o

vnc(t)E*Z(t)E

v

v

o(8)| g%t et |

where
-1 _ -2 0 -2
o = (o 1B,y eer 9By) T ST Yy

But & is arbitrary, so [Z(t)| = 8n|t—to| and

Co-1,
v, 0(£)2(¢) = a |t-t,|7 >0 .
Therefore,

-1 -1
0 <V o(8)2 T(#) = o [t-t | 7T

-1 -1
or |Z277(t)| = anlt—to| .

Just as the convergents of ordinary continued fractions can be
expressed as the ratio of two solutions of a second order linear
recurrence relation, so can the convergents of a matrix continued
fraction. Furthermore, the solutions of the recurrence relations
have a direct role in the approximating Riccati equations (for
example (9)) of which the convergents are solutions. The results
in the following lemma are general facts true for symmetric matrix

continued fractions.
LEMMA 4.
_ -1
Tn(t) = Fn(t)Gn (t) for n=1, (17)

where F_l(t) =TI, Fo(t) =0, G_l(t) =0, GO(t) =1 and

il

-1
F(£) = F (£)35(8) +F_(t),

H

-1 .
G, (8) = G, (£)2 “() + G, _,(£) ; (18)
and

_ n-1 -1
T (8) - T, (8) = (-1)"7(e (8)G* [ (£))7T . (19)
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Proof.
-1y -1 -1
_[,1 -1 {,-1
Tn(t) -(Zl (t)+(z2 () + ... + [Zn-l(t)+zn(t)l ] ..71 .

-1
S ! _[,-1
Suppose Un(t) = Tn () Zl (t) , so Tn(t) —(Zl (t)+Un(t)] .
Then Un(t) is a continued fraction partial approximant also.

Suppose that all approximants of order less than # can be formed by

a second order recurrence relation, as in the hypothesis. Then

-1
v (2) = P, _,(£)Q ~,(t) where

= yz~ L
P(t) =B (). (£) +P (%),
-1
9(8) = Gy (912,11 (#) + @ )(8) for m=1 ... ;-1

P .(t) = @(t) =TI, P(t)=q (¢)=0.
And

-1 _
PO () = U ()

~1 -1
G (), ~(t) - 2,7(¢)

-1 -1
(Gn(t)—Zl (t)Fn(t) En ()

so we can take

Q)
~
Ay
~
i}

-1
Gn(t) —'Zl (t)Fn(t) ,

L
—~
<t
~
H

Fn(t) .
Then

_ -1
6, ()21 (8) + §_(®)

n-3

N

ot

~
¥

F (¢) =4

_ -1
=F,_ (82 () + F () .

2

And
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-1
G, (t) = P, () +2]7()q,_ (£

-1 -1 -1
P (BT HE) + B (£) + 7] (t)[Qn_Q(t)Zn (£)+Q, ()

| -1 -1 -1
(E%_Q(t)+zl (t)Qn_Q(t)}Zn (¢) + B, ,(¢) + zl (£)Q,_5(8)

1

-1
G, (B2 1) + G, (&) .

2

But the formula is easily verified when # = 1 , so by induction it

is true for all = .

Then

-1
F ()G} ,(¢) = F, [ (£)2 ~(£)G}_ (¢) + F,_,(£)G}_, ()

Fo o {G@e)-6x () + F _,(£)G*_ (8) .
It H (£) = F (£)Gr ,(¢) - F . (£)G(E) then

_ _ _ n _ n+l
Hn(t) = -Hn_l(t) = ... = (-1) Ho(t) = (-1) I .

Now
- 4 -1
Gn(t) G;_l(t) = Gn_l(t)Zn (t)Gg_l(t) + Gn_2(t)G;_l(t).

* . . *> * . . )
So Gn(t)Gn_l(t) is symmetric if Gn_l(t)Gn_Q(t) is symmetric. But
Go(t)Gfl(t) = 0 is symmetric, and so Gn(t)Gé—l(t> is symmetric for

all »n . Therefore,

-1 -1
F (2)G (%) - F,_,(£)G ~, (%)

1

f -1 -1 -1
Fn(t)Gﬁ—l(t)°Fn-l(t)Gn—l(t)Gn<t)Gg—l(t)]G;—l(t)Gn ()

-1 . S I
Fn(t)c:;_l(t)-Fn_l(t)Gn_l(t)cn_lw)c;;(t)]Gg_lm(;n ().

n-1 R -1
(-1 (6, (£)6x_, ()7 .
LEMMA 5. OSwppose, as in Lemma 3, for each n there exists a
compact interval J_ , with b, @ interior point, and bounds

% Bn for which
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v Z (¢t)
O<alr=s22 _<pgr, n>1, ted ,
t—to n ,
. \)lzl(t) 8T } (20)
and 0<ulIE t“to = TEE] on J .
O /
Then there also exist intervals Ji n 2 and bounds Y, Sn, hn’ kn
for which
-1 _
0 <y I=vG" ()G &) (t-t) =8I, n=2, (21)

if t EJl,n’ and

2n-3 .
0<hIs vnzl(t)an<T)G;_l(t)zl(t)(t-to) sk I, ted 5 (22)
and
_ -n
6, (&) = O(It—tol ] s
-1 _ n-1
6 =] = 0(|t—to ] ,
_ 1ln
|F, (£)] = 0(|t—to| ] s
-1 - n-1
| (@) = o(lt-t0| ] s
_ l-n
|2, (£)a, (8)] = O(It-tol ] .
So

v, (o (o)1 (1)

0 < k;lZi(t) < (- 2 53 = h;lzi(t) =< oczh;lI
(t'to]
on Jl,n and
v (7 (6)-T  (£))
0 <agi(e) s (-1 HEE B2 T <y 2(8) < ap
(t'to)

for some constants a, s bn .

Proof. Let Ph(t) be a solution of
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- -1
B(£) = B,_ (D)2 1) + B (2)

2

: : -1
with P2(t)Pi(t) symmetric, and Qn(t) = Ph-l(t)Pn(t) . Suppose

on an interval J » @ .(t) exists and is symmetric, and there
1,72-1 n-1
are constants Yn—l’ Gn—l_: 0 < Yn—lI < vn_lQn_l(t)[t-tO) < Gn—lI .

Then @ (£} = 2.M(¢) + @1 (¢) and

-1 2 -1
(6-£,)v,9,(8) 2 B°T = I(t-t )%y, 7
= YnI
on J =t |t-t,| < Yn-1 A and Y = L
l’n . 0 / QBn H l,n - l,n—l n 5 )
And
(k- )v.@ (¢) < o I + I(t-t )%yt
0 nn ~n 0 n-1
=4 I
n
= 1 _ _
on Jl,n » where Sn =0t 23n,' Suppose Fh(t) = Gn(t) . Then

- - -1 -1 . .
P, (£)P}(¢) = le(t) + le(t)Z2 (£)2,7(¢) is symmetric, and on J, ,

L

- -1 = -
Ql(t) = Zl ) , Qz(t) = Zl(t) + 2, t) so

0 < ¥, I = (t-)v,@,(¢) = 8,T

_ ) _ -1,-1 - _
on Jl,2 where Jl,2 =t |t tol < 82 Bl s Y, 82 Bl .

62 =0, t Bl . Q2(t) exists and is symmetric; so Qn(t) exists

and is symmetric and 0 < YnI < (t—to)vnQn(t) = SnI on Jl,n,’ for
all n>2. Then G (£) = 27°(£)Q,(t) ... @ (£) so

IGn(t)l = o(lt-toi””] and IZl(t)Gn(t)l = O[It—toll_n] .  And

2, ()G, (£)G* (£)Z (8) = Qy(t) ... @ (£) ... @, (t) . So

|2, ()6, (£)62_| ()2, (8)] =k, Te-241°7%" om 7y n(®) for some
constants kn = Gg . 62_16n . And
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-1 _ .1 -3
(2,86, ()6}, ()2, (8)) | s k™ |t-t,] .

On Jl,n s vnQn(t)O(t) >0 . So

m-3

0=k Isv2 (86 ()6 ()2 () (t-8) kI (22)

-1 _ =1 -1
on Jl,n . Also Gn (t) = Qn (%) e Q2 (t)Zl(t) . So

-1 -1
Yn T Y2 Bllt-—t

n-1
O(It—t0| ] .

If () = F, (£)F () , then F () = @ (¢) ... (%) , since

-1
|6~ ()]

1A

n-1 .
0| on some interval

F(6) = I and Q,(¢) = z;l(t) , 50

0 < y,T = B;'T = v,0,(8) (¢-t,)

A

a2I = 621

A

on Jl,2 = J2 .

IA

so 0=Y,I=v@Q()tt,)) =8I on J . So

1- - - .
|7 ()] = o(lt-tol "] , anl(t)| = 0(|t—t0|n 1] . Finally, from

(22),

-1,2 3-2n -1 -1,2 -1
0 <k “27(¢) = v (¢-t) (e, (8162 ()7 =k "27(8) = ok °T .

And (Gn(t)G;_l(t))_l = (1" (g, (®)-1_ () . Then
- -1
T (t) =T, () = (_1)”[kan_l(t)ag_2(t)) l—(Gn(t)G;_l(t)) ] , SO

" -1 -1 2,2 2n-3
-1 o) (T, (£)-T, (%)) [kn_l—kn |t-t, | ]zl(t>|t-t0|

v

2 on-3
2 g 27 (£)|t-t, |

if |e-t and

A

n -1 ;-1 21,2 2n-3
-1 o) (T, (8)-7, (%)) (hn_l+hn [t-t,| ]Zl(t)lt—tol

2n-3

1A

2
b 2 (E)|t-t |

. 2 -1 .
if It—to| < [bn—hn—l}hn » which completes the proof.
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The convergents Tn(t) are at present undefined at to . To

make use of Riccati inequalities, it is necessary to be sure that

each function Tn(t) is at least continuous at to . Defining

T
n

[to] = SO for all n =z 1 , we have

LEMMA 6. I%(t) i8 continuous at ty for all n=z1. And

Rz (¢)] =0 at t, if nz2.

0
t
Proof. T.(z) =5, + f A(u)du-, so Tl(to) is continuous at
tO
to If n>1,
n
|z, (&)-1, ()] s [ |7,(8)-1, (&)
=2
T kle-t,)
= k.|t-t
i=2 ¢ 0
for some constants ki . Therefore, Ih(t) nd SO as t =+ to .
T,(¢t)

fl

-1 -1 -1
,(Zl (t)+Z2(t)] = 2, () (1+2,(£)z ()}
-1
2,(2) - 2,(8)2,(8)2, (8) (T+2,(£)2, (£))

-1
2,() - 2,(£)2,()2 (&) + Zl(t)Z2(t)Zl(t)ZQ(t)Zl(t)(I+Z2(t)zl(t)). .

Therefore,

|7,(¢)-2, (£)+2, ()2, (£)2, (£) |

|T2(t)-vl(t)+Vé(t)|"

1A

3 -1
|2,(2)] |zQ(t)|2(1-|zz(t)|Izl(t)l)

2
klt-t,]

IA

for some constant X . Furtheremore

5, * Alty) (e-t,) + [t (aGu)-4(t,)) du

%o

8, + Alty) (t-t5) + o(lt-5,1) >

z,(t) =V, ()
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2, (£)2,(£)2,(£) = V,(t)

t
f Vl(u)C(u)Vl(u)du

%o

5,0(2,)5, (5-8,) + o{le-2,]) -

Therefore,

Tz(t)-So
'-?:35__'" A(to) + soc(tO)SO +0

as t ~» to , that is,

74 (8,) = A[to) - 5,0(¢,)5, -

And
n
|7 (8)-T,(8)] = .Z |7, (8)-7,_, ()]
1=3
3
< k|¢-t,
for some constant kX . Therefore,
T (t)-S T ()-S5
7 0 2 0 2
‘“t-to EANE l__t_to - 11 e) | + xle-t,)

+-0 as t > to .
Therefore, Z;(to) = Té(ﬁo) s N Z 2"3 and

rlz (t,)] = 7. (¢,) - aley) + 7, (¢)c(e )z, (¢,) = 0.

The convergents as bounds to solutions

THEOREM 2. If S(¢) <s the solution of (1) with S(t,) = 5, ,

and T, (t), 5(¢) ewist on [t;, t] , or [t, ¢ ] , then

o(t)v, (-1 (s()-1, (£)) = 0 . (25)

Proof. By Lemma 6, if »n > 1 , Rﬂqn(to)] = 0 . By Theorem 1,

. - Ry .
if ¢>¢t,, R (£)] =-Kk (t) and (-1) Vy1Ky n(8) > 0 if

H

t#£¢ Therefore,

0
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n
(-1) vn_lR[Tn(t)] =0, 1(t5) = 5(¢,),
and by application of Theorem 1 of Chapter 2 on inequalities,
n
o(¢) (-1 (8(8)-T, () = 0 .

Finally,

t

S(t) - Tl(t) = - f Tl(u)C(u)Tl(u)du

%o

so -v,0(8) (8()-7,(£)) z 0 .
The rather cumbersome definitions involved in the expression of
Theorem (1) can be restated in terms of the elements of the solution

of the recurrence relations (14) with a gain in simplicity and

results about the relationships of the approximants {Ih(t)} to

each other.

LEMMA 7. Where K, n(t) 18 defined

n
K, ,(8) = (-1) (z,()6,_ (&)-F, _,(£))B _ (£)(G}_ (#)T, (£)-F* | () (26)
where Bn(t) has been defined in (6) as alternatively A(%) and

clt) .

Proof. By definition (8),

_ n
Kﬁ,n(t) = (-1) M%,n(t)An(t)M:,n(t) .

If n 1is even,

X
~
o+
~r
]

-1 -1 -1
- M, LTV (V7 (8) L VITB, (V) L. V(M (8)

and if »n is odd,

K, () = (T (8) L V(B (D (8) e (2
Let
P 1 (-1)%t
T, (8 = LM @V V() T () .

Now Mh,r(t) = Hﬁ,l(t) .o Hn,r(t) and
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n,r(t)Hn’P+l(t)V¥+l(t) = [I—Hn’r(t))Vr(t) . (10)
So
) = (0 (&)-u ()Y VS (8)
,r+l nar-1 N,r r r+l1
and
(8) = d )+ M (O (V) WD
n r+l 7n,r-1 n,r r-1 r-2 ttTL
But
(-1)F% 1 1 (-1)*t
Z.(t) _l(t)Vf(t)Vf_l(t) cen Vl (t)
so
I (&) =M (V. (E) KDz e
n,r N1 r-1 R | r
and
- -1
n r+l(t) v ,r—l(t) * Jn,r(t)zr ()
So, in the suffix » , J () 1is a solution of the second order

n,rtl

linear difference equation (14).

But Fr(t), Gr(t) are also linearly independent solutions, and

Jﬁ,l(t) = -H ’l(t)Vi(t) = —Tn(t)
= —Tn(t)Go(t) + Fo(t) 3
- , -1
Jn,z(t) = Hﬁ,l(t)Hﬁ,Q(t)VQ(t)Vl (t)

I - Hn,l(t) from (10)

-1
I - Tn(t)Vi ()

Fl(t) - Tn(t)Gl(t) .

Therefore, J (t) = F - (t) - T%(t)G (t) and

r-1

I, (t) (t) - T, (t)G (¢) . But

-1

- n
Kﬁ’n(t) = Jn,n(t)Bn_l(t)J;,n(t)(—l)
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so (26) is established,

The convergents as approximants to solutions

The simplification introduced by Lemma 7 allows an estimate for
the difference between a solution S(¢t) of (1) and its bounds

Tn(t) . The bounds are a good approximation near the point to
about which the expansion is made.

THEOREM 3. Suppose on some compact interval J containing

t that S(t) exists and Gn(t) i8 invertible, so Z%(t) exists.

O 3

Then there exist eonstants a, b for which

(s(e)-1 (%))
7 < bzi(t)

2 n
0 <az (t) = (-1)'v <
1 (t—to) n-1

n-1

on J . Since 1,(t) 4s bounded, S(¢) - T (3) = o(t-,)"" .

Proof.

T (66 (¢) - F__ (%)

-1
GXT (&) (FA(£)G, | (£)-GA(IF, _, (8))

(—1)""102'1(1:)

from Lemma 4. So Kn,n(t) = (—l)nG;fl(t)Bn(t)G;l(t) . From (1) and
(9),
(ste)-7 ()" = &{sE)-1, () c() (8(8)+T, (£))

+ (51 (D)) o) (S()-T (8)) + X () .

2

Let ©6(¢) be a fundamental matrix of ©' = —%C(t)(S(t)+Tn(t))6 .
Then
1l ¢ - 1l
S(£) - T () = (-1)'e* (%) f B4(u)G T (WB, ()G ()8 (w)dud™ (¢) .
-t
0 ‘

But 6(u), G_l(t) and Bn(u) are bounded on J , by YI , say.

Then
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t..
- 2 2n-1
|s)-1, ()] = Y‘[t IGnl(u)| du| = Yl|t—t0| "
0

from Lemma 5, since |G;l(u)| = 0(|u—t0|n_l] . But

S(t) - Tn(t)

S(t) - Tn+2(t) + Tn+2(t) - Tn(t) near to

2n+3
T o(8) = T (£) + O[It—t0| ]

So by Lemma 5,
S(¢)-T, (¢))

(
(_l)n ;
n-1

(t'to}

0 < aZi(t) <

2
Vo1 = bz (%)

since 1%+2(t) - Z%(t) obeys a similar inequality, and

-1, -1
27 (¢) = O(It—tol ] .

Other forms for the‘Riccati equations for the convergents - monotomy
relations

The result of Lemma 7 can be re-expressed in a number of ways,

each with a different use.

Let D, () = (-1)'B,_,(#) , so (-1)", D (¥) >0 . Then

Tn(t) is a solution of each of the following Riccati equations:

B W] = BOD + (W6, ) (8)-F,_ ())D, (8) (G} ) (0)W-F_, ()
=0 3 (29)
Ry LW = BN + (WG, _,(£)-F,_,(£))Z ()D, (812, (8) (G}_,(£IH-FS_,(5))
=0 3 (30)
-1 * -1 f
Ry 41 = ELW] + (Gn (t)] D, (£)G, ()

=0 . ‘ (31)
LEMMA 8. If Gn(t) 18 invertible, so Tn(t) exists, and also
Tn_l(t) » Tn_2(t) exist, then the following Riccati equations and

inequalities hold 1f t # ty ¢
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R, n]:Tn(t)] =0, 1=1 3,
R LT, ] =0, (32)
-1)" VR [, (@] >0, (33)
-1
1"y, k) [r, )] >0 (34)

Proof. R n[:Tn(t)] = 0 was established in the proof for Theorem

3. 4And R, n[Tn(t):] = 0 follows from Lemma 7 and Theorem 1. Now-
>

-1
T, ()6, (&) - F . (t) = (T, _ ()G, _,(£)-F, ,(£))z ~, (%)

+ 7 ()¢ (t) - F _(t) from (18)
n-2 n-3

n-3
T ()G, (8) - F (%) .

-3
SO_Rln nz(t)]—Ran L&} =0
Now
¢ _1(t) = (6,@)-¢,_,(£))z,(¢) ,
F,_ (&) = (6 (£)-C, ()}, (t) ,

from (18). So

T, (£)G, | () - F__ (%)

[£,,(£)6 (6)-T_(£)G,_,(&)-F, (£ )4F, _,(£)]Z, (%)

-7, ()6, ()-F, (£)]7,(¢) .
Therefore, RQ,nETn(t)] =
Now Rl,n[Tn_l(t):] =Rr[r,_ ()] since T, (£)G _,(¢) - F , (¢) =

and

R) per B8]

0

-1 -1
R[r _(£)] + (G;,_l(»t)') D ()G~ (t) .

- -1 -1
so Rl,n[Tn-l(t):l - _(G;;_l(t)) Dn—l<t)Gn-1(t) . Therefore,
(~l)nvan,n[Tn-1(t) >0 . Likewise

R, n[Tn 1(t)] = R[T ('13)]

= R (8]

lnl[
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n-1
Therefore -1 R g t ‘ > 0
» (=D V-1 2. n—2( ) )

Lemma 8 is the device by which it can be shown that the sequences

{Zh(t)} of convergents have monotonocity properties, as in the
following theorem.

THEOREM 4, 17 Zl(t) 18 invertible, and S(t) exists,

between t, and t., then Zh(t), T, ,(t) and Iﬁ_z(t) exist also
and
o(t)v (-1 Hr (8)-1 () > 0 (35)
n n n-1 ?
n
c(t)vnﬁl(—l) (Tn(t)-Tn_2(t)) >0 . (36)

Proof. By Lemma 5, in some neighbourhood of ty s

- -1
1" a(8) (Z,()-T,_ (8) = (6, ()6 () 1y a(#)
>0

if t # to and

n
-1, _0(e) (T, (8)-1, ,(8))]

- : -1 -1
= vn_lc(t)((Gn_l(t)G;_2(t)) -(Gn(t)q;_l(t))
>0

for t close to to .

If v =V . 80 A(t) and C(t) have the same sign, then

Tn(t) exists everywhere, if Zl(t) is invertible. Consequently the

above inequalities can be extended using the Riccati inequalities of

the previous lemma.
Otherwise S(t) satisfies

Rl’n[S(t)] = (S(t)an_l(t>-Fn_l<t))Dn(t)(G;_l(t)S(t)-F;_l<t))

-1 ' -1)? <
and (-1, R, [S(£)]120 . And Rl,n[ﬁh_l(t}]( W <0 from

(33), since V, TV, .
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Therefore, by Theorem 1 of Chapter 2, Tn(t) exists as long as
S5(t) and Tn—l(t) exist as t moves away from to s provided

Zl(t) remains invertible, and
n
1), o) {s()-1 (£)) 2 0,

D, o) (T (9)-1,  (£)) >0 .

Likewise T _ (t) exists as long as S(t), Tn (t) exist, and

1l -2

so on. But Tl(t) always exists.
Therefore the requirement that- Tn_l(t) exist is unnecessary,

and the theorem is proved.

Bounds and the inverse -equation
If the coefficient matrices are interchanged, (1) becomes
U' = C(t) - VAU (37)
which is the inverse equation of (1): If S(¢) 1is a solution of (1)
invertible at ¢ , then S_l(t) is a solution of (37).

We denote by a bar, the derived matrices corresponding to (37);

t .
for example Vi(t) = U(to] + [ Cu)du , Vic(u) >0 etc.

i

The previous results all apply to (37) and yield a series of

bounds and approximants.to U(¢) . If U(to) is invertible,

5y = U_l(to) and S(t) is a solution of (1) with S(to) = 5, s then
the dual bounds- f;(t) are related also to S(¢) ;3 Theorem 3 applies
directly to show that

1

IT;l(t)‘S(t) L) (T () -U))U™(8) | where 5(2) = UTH(H)

1A

=-1 = -1
|Tn (t)}ITn(t)—U(t)HU ()]

0[]t—t0|2n—l] . (38)
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So if S[to) is invertible, S(¢) has two alternative continued

fraction expansions about to .
Now, using (28) and (9),
sy = — n(=-1,.*s =1
T (t) = C(t) - Tn(t)A(t)Tn(t) - (-1) (Gn (t)] Bn_l(t)Gn (%)

S0

=1, " _ =-1 =-1 nl=-1,,.|*= —-1
[Tn (t)] = A(t) = T (0T “(¢) + (-1) (Fn (t)] B, (BF “(¢) (39)

since @;l(t).’l";l(t) = F’;l(t) )

In the following lemma we show that the boilmds Un(t) = T;l(t)

derived from the inverse equation of (1) also have useful relation-
ships with solutions of (1); these bounds are particularly useful.

because they apply to solutions of (1) which may not exist at to .
and particularly to maximal and minimal solutions on intervals open-
ended at to .

LEMMA 9. Let S(¢) be a solution of (1) existing in a half-
open interval J = (to, aﬂ or |a, to) . Suppose F;(t) exists and
18 invertible on J , and let Un(t) = Ek(t)F;l(t) . Then there

exist constants a,s bn  for which

(S(t)—Un(t))

(52,

1 = b, (40)

n_
< < -
0 %J__(l)%bl

and
0 < (-1 _ o) (s()-U () .

Proof. The proof is like that of Theorem 3., For t # ¢ let

0 3
S(8) = 8(8) - U (%) .

Then
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X(t)

5@) (V)T ()}, (8)

X&) U)-T (9))U, (&) + U () W@)-T (), (£) .

But (U(t)—Tn(t))Un(t) = O]t—tol , and U (t) is bounded near. %, .
So X(¢) = Olt-tol . Therefore X(to] can be defined to be zero.

From (1) and (39),

') = (s(e)-U (&))" =

= N e I~ =1

= U, (£)0(E)U, (8) - S(IC(B)IS(E) - (-1)'FX(8)B, _ (1)F (%)
SO
X'(8) = X))k (U, (£)+8(8)) - F(U (£)+8())C(8)X(2)

(S -1
- CO'RTNDE,_ (DOF @)

Let 6(f) be a fundamental matrix of ©' = %C(t)(Un(t)+S(t))9 .

Then

t
X = --1% ey | 8* T B, L WF M w)oG)dud ™ (8)
Jto VL- n

But 6(u), G-l(u), ﬁ;_l(u) and E;{l(u) are bounded in a compact

neighbourhood J of ¢ Suppose Y 1is a bound to all of them.

0 M
Then if ¢t € J ,

| X8|

A

t.
YS‘I [F;l(u)lzdu
tb v
2n-1

1A

b, |t-tyl
using ‘Lemma 5, where bn is a positive constant.

Conversely, for some vector & , let &(u) = F;l(u)e(u)e_l(t)g .
Then  [&] = lf;(u)lle—l(u)||6(t)||€(u)l s SO

2(n-1
g = v, lu-g, |28
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by Lemma 5. And VB (w) zY T . But
ne ¢ - =
- - * = *
a(£)(-1)"V _E*X(2)E = 0(¢) L £ v, 1B, (w)E(u)du
0
-1 t
z Yy To(¢) I E*(u)E(u)du
%o

v

2n-1 2
an|t_to| |£|

X(t)
——————55:1-2 anI >0,

where a = Y2Y—l . So -1V
7 2 ~ n-1 |t-t l
0

proving the lemma.
LEMMA- 10. On any interval ineluding 2 where Un(t) and

Un+l(t) both exist

N—
-1, o), ,,(#)-U, () >0 . (42)

Proof. Un+l(t) - Un(t) = Un+l(t) - 8(t) + 85(¢) - Un(t) near

2n+l

ty and U () - S(&) = 0(s-t) . But

(-5 o(e)(8(£)-U_(£)) > ¥a I|t-t |t

n-1 7 n 0
by Lemma 9.
Vo
. . _ _ N
So in some neighbourhood of ¢, , (Un+l(t) Un(t))( 1) vn_lc(t) 0.

But

_ = -1, = 5L
U, () = U (8) (F;;ﬂ(t)) G* (&) - G (6)F “(¢)

nt+l

- “1(m = = -1
#*.,(®) (G;;_I_l(t)Fn(t)-F;ﬂ(t)Gn(t))Fn (£)

n-1(z (\7 -1
DT E(OF ()T

I

= = -1 . . . .
*
But (F (u)Fn+l(u)) is certainly invertible on (to, é] or

[t, to) so the 'sign of ,Un+l(t) - Un(t) cannot change. Therefore,

(—l)n\_)n_lcf(t)(Un+l(t)—Un(t)] > 0 wherever Un+l(t)’ Un(t) exist.
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THEOREM 5. et S5(t) be the maximal solution of (1) at. ty s

1

go U(t) =8 (&), t# ty s 18 the solution of (35) with U[to) =0,

Suppose v = (—l)n\3O so that A(t) and C(t) have opposite
signs. Then S(¢) exists on [to, tl] only if Un(t) exists on

(to, tlJ, for each n .

Proof. From Lemma 9, vo(g(t)—Un(t)) > 0 , since

= _ RN . 2 .
Vo1 =V, T (-1) V, Pprovided S(t), Un(t)_ exist for ¢, =t =¢

And from Lemma (10), vO(Un(t)—Ul(t)) >0, n=1, where

1

t -1 :
Ul(t)~= (f C(u)du] exists for all ¢ # t, - So if Un(t) does
t :
0

not exist on an interval, then vOUn(t) must become unbounded in a
positive direction so vog(t) must also becothe infinitely large.
COROLLARY. A test for oscillation (non-disconjugacy) for the

Hamiltonian system corresponding to (1) is thevefore to enquire

whether F; is8 non-invertible at some point in (to, ti] say. If so,

then (1) has no solution on (to, tl] .

As an example, if this test is applied to the equation y' =1 + y2 .
with the approximants Un(t) determined about to = 0 , then the

upper bound for the first right-hand conjugate point of 0 ,

determined by the first positive zero of f;(t) , 1s for

n=3, 3.87,
no=lk , 3.24 ,
n=5, 3,153,
n==6, 3.1425 ,
no=7, 3.14165 ,

the actuyal point being T = 3.14159 ...

Convergence

On the matter of convergence, we have not been able to prove
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that under any general circumstances the sequence {Tn(t)} of

convergents of the continued fraction converge to a solution of (1).
However, at least in the case where A(f) and C(t) are of opposite

sign, {Tn(t)} converges to some limit: T(Z) wherever S(Z) exists,

since it is a monotone sequence. And so

(z (-1 )" = (6,063 ()T >0 as n> e,

If G () >0 unifornly for all 7 , then
1\ (s -1 -1
R{Z (£)} = (-1)"(GX(£)) "B (£)G ~(¢) > 0

uniformly so R{T(£)} = 0 , and T(¢) = S(¢) .

So it is the gap between the knowledge . that

(6, (262 ()™~ 0

and the requirement that (Gn(t))_l + 0 uniformly that needs to be

filled.

The autonomous equation

If A(¢Z) and C(C(f) are positive definite and independent of
t , convergence can readily be proved for continued fraction solutions.

Expanding the solution which has value zero at ¢ = 0 , we have

Zn(t) = B

Y ST (where B, =(C, B, = A , and Bn = (¢ if n 1is

0 1

even, A if »n is odd). And Gn(t)G;_l(t) is a polynomial in ¢
with positive definite matrices as coefficients, and its leading term
is

2n-1 ]—l

[ ACA. .. ACAt
(2n—l)(2n—3)2..,lJ

with (2n-1) matrices in the product.

So
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non-1 2n-1
Yy & . - _
|7, )-1, ((B)] s Imte— i 4] =0, o] = v,

+~0 as n -+, for all t¢ .

Useful results can also be obtained if (1) is derived from an
autonomous equation with linear terms as in Chapter 3. However, the
situation then is more complex, and although continued fraction
solutions have promising application, we shall not pursue the question

here.

Relaxation of the sign requirements. for the coefficients:

One way of avoiding the requirement that A(Z) , as well as
C(t) , in (1) should be positive or negative definite, is to transform

the Riccati equation. Let

t
Vl(t) =K + I Auddu (43)

%y

for a constant symmetric matrix X , and U(t) = W(E) - Vl(t) » where
W(t) 1is a solution of (1).
Then

U'(t) = -W(E)C(EIW(E)

=UeH)e)yu(te) - Vi(t)C(t)U(t) - U(t)C(t)Vl(t)

- Vl(t)C(ﬁ)Vl( ) o (4y)

Let M(t) be an invertible solution of

M = C(t)Vl(t)M (45)
and S(t) = M*(£)U(£)M(t) . Then

s8'(¢) = s e s - M*(t)Vi(t)C(t)Vi(t)M(t) (48)

which 1s of the same form as (1), and the coefficients have opposite

signs. S(Z) can then be approximated by a continued fréctionf

In return for the assured existence of the coefficients needed
to construct a continued fraction, a linear equation (45) has to be
solved, which sacrifices the explicit character of the original

solution.
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However, with more complex definitions we can proceed directly
even without special properties for A(%) . Because of the greater

complexity we give only the basic definitions here. A pair of

sequences L (t) and V;i(t) can be defined, for ¢ # ¢, :

2n+l
_ -1
Lone1 () = = Loy g (805 5 {00V, (2)
p- -b —l -
L V2n(u)V2n_2(u)L’2"n_3(u)C(u)L2n_l(u)du
0
-1
t Lo 1 (B0, g 1 ’
" -
+ It LG_l(u)C(u)LG_S(u)VQn_B(u)VQn(u)du
L O .
t
Vy,(£) = f Ly (WCQ)L,  (w)du
t
0
and

-1 _
L (&)W () = I,

t
V,(¢) = 5, + j Alw)du .

%o

Ll(t)

We can impose some local conditions at to to ensure that
L2n_l(u)£ is not identically zero in a neighbourhood of to for any

vector & # 0 , and to ensure that the integrands in the definition

of L, . ,(¢) are integrable near ¢, . A(tO) > 0 would be an

adequate condition, but it seems likely that much weaker conditions

would serve.

If the sequence {Vn(t)} as defined earlier, exists here, then
_ -1 .
L2n+l(t) = Vi(t)VQ,(t) oo Vén+l(t) . But otherwise, V2n+l(t) may
not exist for n > 0 .

: ) 10
We define Z2n+l(t) = L2n+l(t)vén(t)L2n—l(t) and

(t) . Define H (¢) by

—l _ “l *
ZQn(t) - L2n—l(t)v2n(t)L2n-l 2n+l
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ey 1
By (8) =V, (I, (&) us Vo (E)
[~ t 1 -
Vén(t) + ft Vén(u)Vén~2(u)LSn—3(u)C(u)LQn—l(u)du
0
x, X

t
-1
+ I 2n l(u)C(u)L (u)Vén~2(u)V2n(u)du

L ‘%, .
-1 (-1
x VQn(t) - VQ, t)
and Hl(t) = Vl(t) .
Then the approximants- T2n+l(t)f are given by
- -1y-1
Ty (8) = Hy(8) = (Hy - (B - ... H2n+l(t)) 7.
We can define
_ -1
2n+l<t) L2n+l(t)vén(t)vén—2(t) te
(-1)" (-1)"
v VT ) (2, (8)-7 (1)) coe (T4, (BT, (t))
Then R[7, .. (£)] = G} l(t)C’(t)G (8

The proof of this last result is more difficult than in Theorem

1. However it is very useful, because it is a Riccati equation in-

(%)

(£) which involves only terms known to exist, like

2n+l 2n+l

n
-1
e

. -1
and terms like [T3(t)—Tl(t)) T, _l(t)-TQn_B(t)) whose

existence can be established sequentially.

The sequence. {T (¢)} is once again monotonic, and bounded

2n+l
by the solution S(£) of (1) being approximated. Consequently it

can be shown that T2n+l(t) exists between t and to if S(¢)

exists on the same interval.
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A necessary condition for the existence of solutions of the Riccati
equation
Let
v

v
Vi(u, v) =,I Alw)dw , Vi(u, v) = J cw)dw -,
U Uu

v
fu Vi(u? t)A(t)Vi(u, t)dt

_V-Q(u, U)

where u, v € [to, tl] .

THEOREM 6. If C(t) >0 on [to, tl] s and (1) has a solution

. existing on (to, tl) s then 1if ty <uzv <t

=1, =1 = —-1
V(s w) + V(5 u)Vé[tO, u)Vi (tgs W) + 7 (u, 0)

= T (s v) + T8, 0T, (8, )70 (8y, 0) . (48)

1f A(t) <0 in [£,, u], [, t;] then Vy(tys w) <0,

72 (tl, v} > 0 and Theorem & reduces to Theorem 5 of Chapter 3.

Proof. If any solution of (1) exists on (to, tl) there is a -
maximal solution 5'+(7‘;) and a minimal solution S_(t) . Near 1;0 s

§.7(¢) is the solution of V' = C(¢) - VA(£)V with V(t,) = 0 .

4]

R _ . A
Let 7] (u, v)(Vl(u, )47, (u, v))Vl (u, v) = Uylu, ») .

In some interval [to, a:] , 0 <ol = C(u)

IA

BT .

Then 0 < aft-t;)I =7 (¢, ) < B(t-¢;)I . Therefore,
Vy(tgs t) = o(lt-to|3) . Let Tp(ty, t) = U;l(to, ) . T, is well
defined for ¢ close to to s since in some neighbourhocod of to R

7, (tgs t) 2 alt-t0)I > -7, (¢, t)

and so 71(1:0, t) + 72 (to, t) is invertible. Then
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Tyltgs ) = 7, (5 U= (7, (5 147, (0 #)) 77, (50 #))

1
==
e
Ay
(@]
“w
-
p
+
-
————
o
H
o
(e
w
L EE——

Elsewhere,

T) (2, t) = C(2) - ?;(to, LA, (¢, ¢)

- [ﬂ_z» (b0> )71 (£ 8) - I}G(’t’)(ffil(i;o, 8T, (tgs 8) - I] |

-1, -1, - ) -1 —
and §7'(2) = C(t) - STMAMISTNE) . so SN 2T (¢, 8) >0

0,

near to . Now
-1 =~1
Uy(ty> t) = AGE) - U,C(8)U, + [Vl (to, tJ—UQJC(t)[Vl (2,5 t)—UQ]

and near t, , 5 (t) =T, '(¢), t) = U(ty> t) . Therefore,

O b4
5,.(t) = U,(t,, t) wherever 5.(t) exists. 4And

. v
S+(v) - S+(u) = Vi(u, v) - Ju S+(t)0(t)s+(t)dt

so S+(v) < Vi(u, v) + S+(u) on [u, vl if S+(t) exists on

Lu, v] . - By an argument like the earlier one in this proof,

S () 2 Uy(¢), v) - But S_(v) =5,(») , that is,

U .

ot v) SV G 0) + U, (85 W) - QED

Further tests for disconjugacy can be devised on an individual

basis.

Notes for Chapter 4

As this thesis was in the final stages of preparation for
submission, a paper appeared by W.G. Fair [1] called "Continued.
fraction solutions to the Riccati equation". It deals with Riccati

equations in a Banach algebra, and generalises a paper by E.P. Merkes
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and W.T. Scott [1]. It is unfortunate that we have not had sufficient
time to investigate in detail the relationship between this chapter,
and Fair's approach, which is from a quite different direction. Fair.
deals with the unsymmetric Riccati equation with analytic coefficients,
and his expansions are derived from the coefficients-of the power
series expansions of the matrix coefficients. They do not have any
significance as bounds; and are treated formally, and may not-

necessarily approximate solutions.,

Fair concludes with some remarks on significance for control

theory, in the autonomous case.
A form of the bound fé(t) appears in a proof of a stability

theorem of Kalman ([2], p. 114-115), This proof contains some
errors, the most difficult to rectify being in the second part,
which could have been treated as a dual of the first. A different

version, making more explicit use of the bounds T2(t) and Té(t)

was given by W.A. Coppel in a seminar series at the Australian
National University. A similar application is given in Cerollary 2
to Theorem 2 of our next chapter.

It is interesting that in the linear regulator problem posed in

a simple form in the next chapter, Té(t) and its function as a

bound.can be derived by application of a constant (non-optimal)
control, and comparison of the value of the criterion function with

its optimal value.
Bucy [1] produces a bound .which is, in effect of the type
Vl + (Vl)jl (Lemma 4). His proof is however, defective, since it

uses the assumption that if 4, B, ¢ are symmetric, 0 =.4 =B and

¢ >0 , then ACA = BCB . This is false even when ( = I . However,

“L(£) can be used to establish his later

a bound of the type Tz

theorems.

For some recent papers using a quasilinearization approach to
finding bounds for the solutions of the autonomous matrix Riccati

equation see Bellman [1], Aoki [1], Kleinman [7] and McClamroch [7].

In connection with a test for oscillation due to Tomastik [71],
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Barrett [3, p. 504] raises the question of whether, it was necessary
to impose sign requirements on both coefficients. Theorem 5 of
Chapter 3 ailows a partial relaxation, and appears to go as far as is
possible with criteria of that kind. The test in Theorem 6 above only:

uses the. sign of one coefficient C(Z) .
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CHAPTER 5

ASYMPTOTIC BEHAVIOUR OF RICCATI EQUATIONS AND THEIR:
ASSOCIATED LINEAR SYSTEMS

Introduction

This chapter investigates the behaviour of symmetric solutions

of the Riccati equation
Ww'o= A(t) - WC(EIW (1)

where A(t), C(t) are symmetric and non-negative definite on

(-®, ©) and of solutions of the associated linear equation
y' = C(EIW(E)y (2)

where W(t) 1s a symmetric solution of (1), and is particularly

concerned with the asymptotic behaviour of solutions of (2).

We assume everywhere .

b
controllability [C] : I c(t)dt >0 if a > b , and
a

b
observability : J ACt)dt >0 if a > b .
a

These conditions could be relaxed, particularly by assuming

b
f- A(t)dt > 0 1if b - a exceeds some minimum value, but this would.
a

be a diversion from our chief purpose.
Any solution W(t) of (1) with W[to) > 0 exists in [to, w]
since

t
0= W) = W(t,) + f Alw)du .

%o

Since [C] holds, there is a minimal solution %(t) of (1) on

[to, “ﬂ » using a dual version of Theorem 1, Chapter 3.

Although we assume less about A(t) and C((¢) than in the
previous chapter, properties of the bounds Tl(t), T2(t), T3(t),
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Ti(t), Té(t) and Té(t) are unaffected. In particular, if

H(t, to) is the solution of (1) with H[to, tO] = .0 , then

wt) = (e, ¢ te)

1

Vl(tl)(Vl(tl)+V2(tl))—lVi(tl)

where
tl+e
Vl(t) = - f Alu)du < 0
t
if € >0, and
tl+e
V2(t) = - Jt Vl(u)C(u)Vl(u)du =0 ;

so %(tl) <0 .

If w(t) 1is a solution of (1) and y(¢) a solution of (2), it
is fairly easy to get information about the behaviour of
y*(EI)W(t)y(t) which acts as a Lyapunov function for (2). This is
shown in Lemma 1, which is directly applied in Theorems 1 and 2. The
behaviour of solutions . W(Z) of (1) is, in a sense, like that of the
coefficients A(£) and C(C(£) ; if A(¢) and C(f) are constant,
then W(f) tends to a constant non-zero limit as ¢ -+ © , and if
A(t), C(t) are polynomial functions, then at worst eigenvalues of
W(t) tend to zero or infinity asymptotically with a finite pwoer of
t . Furthermore the behaviour of W(£) is usually influenced mostly
by the nearby values of A(t) and C(¢t) . This situation contrasts
with that of the linear equation (2), whose solutions behave in a way
most unlike that of the coefficient functions. And if #»n = 1 .
fz CCQu)W(u)du

y(®) = ylzg) o ° ﬂ

so asymptotic behaviour for linear equations is affected as much by

distant values of the coefficients as by nearby values.

These remarks are not made in a spirit of rigor, but to motivate

our strategy for determining the asymptotic behaviour of (2). Having
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found inequalities for y*(£)W(¢)y(t) , it is then necessary to find
bounds (possibly time-varying) for W(¢) . This is done in, for

example, the corollaries to Theorem 2 below.,

Information about the asymptotic behaviour of (2) is often
important, as in control theory applications, for example. But it
also has implications for the behaviour of solutions of (1) relative
to each other; Theorem 3 shows that the set of solutions of (1),
excluding those which differ from the principal solution by a
singular matrix, have a tendency to aggregate as t > *© , and the
rapidity of this aggregation is determined by the behaviour of

corresponding solutions of (2).

To summarise the applicable parts of the results of this chapter,
Theorems 1 and 2 give information abeut solutions y(¢) of (2) near
infinitely, provided that the corresponding solution of:(1l), W(¥t) ,
is bounded in some way. The bounds of the previous chapter give in-
formation about the behaviour of W(£) ; Corollary 2 to Theorem 2
shows how the bounds can be used in a certain situation with
particular application to the case of a uniformly controllable and
observable system. No simple general criteria for the eventual
asymptotic behaviour of solutions of (1) are given, but an example
at the end of this chapter illustrates a method of approach using the

results of the previous chapter.

The linear regulator problem

We present a rather simplified version of the linear regulator
problem; it nevertheless has the important features of the usual,

more general version, to which our arguments also apply.

Problem. Let y(¢) be a "state" vector, z(t) a '"control"
vector, with y'(¢) = C(¢)z(¢) . Find a "control law" or function
k(x, t) for which z(¢) = k(y(t), y) minimises the function

31

V. {5y By t1) = yHEPYE) + f (y* Ay (W) +z* (w)C(u)z (w))du

%

A(t) and C((t) are assumed symmetric and positive definite on

[to, ti]v, y(to) =Yg o and Pl is also assumed symmetric.
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Solution. k(x, t) = W(t)x , so 2(£) = W(t)y(t) , where W(%)

is the solution of
W'o= ACE) - WC(EIW (1)

with W(g)) = B, . Then Vly,, t,, t,) = y*(6,)W(t )y (2,)

A solution certainly exists for to < t, if Pl <=0, so.

1
wit) <o

On an infinite interval (with tp = ® ), the function to be

minimised is

f Ay (w)+a* (W)C(w)z(w))du .
t
0

The solution is k(x, t) = W(t)x , where

w(t) = 1im W(e, t) s
T o

1

where W(t, tl) is the solution of (1) with W(tl, tl) =0.

Then
V(ggs tgs 1) = (8 )W)y (2,)

W(t) can be shown to exist and be negative definite for each t..

In fact, ﬁkt) is the inverse of the minimal solution (on

(-, ®) ] of the inverse equation V' = C(¢) - VA(t)V . We also show
that under certain conditions, there is only one negative definite
solution of (1) on (-, @) , so %(t) is also the minimal solution

of (1).

For solutions of the infinite interval problem, it is necessary

to know whether solutions of the equation
y' = C(e)W(t)y (2)

are stable, and alsc whether W(¢) is a stable solution of the

Riccati equation (1).

We show that solutions of (2) are, under fairly general

conditions, stable (as a consequence of the negativity of W(%) ),
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but that W(t) is not a stable solution of (1). This conclusion was
reached by Kalman [2] in the case wheve the coefficlents are uniformly
controllable and observable, that is, behave like functions bounded

awvay from 0 and <« ,

Asymptotic behaviour of the Tinear equation
The following lemma is basic.

LEMMA 1. IFf P(¢t) <8 a solution of (1) existing on [b, el ,
I(t) a function of t differentiable on [b, el , y(t) a.solution
on [b, el of

y' = C(EIP(t)y (2)

and

Q(z) = [P(e)-N(£)IC(£)[P(¢)-TI(£)] ~ RII(¢)] (3)
then
y*(e)P(e)yle) = y*(BIP(D)Y(®) + y*(e)l(elyle) - y*(BI(BIy(b)

(44
+ I y*(0)Q(t)y(t)dt ()
b

v

y*(BIP(D)y(b) + y*(e)li(e)yle) - y*(B)I(b)y(D)

[«]
- [b Yy*(EIRLI(E) Jy(E)dt . (5)

Proof.

Loy*(2) (P£)-1(8))y (£)]
'P(t)C'(t)(P(t)—n(t)]+(P(t)—H(t))C(t)P(t):| (
y(t

y*(tj
+A(t)-P(t)C(t)P(t)-TI" (¢t)

[(P(e)-T()) C(t) (P(t)-n(t)]-H(t)C(t)H(t)M(t)}
y()

- (8)

y*(t)

y*(£))y(e) .

The stated result follows on integration.

COROLLARY. If T(t) <8 a solution of (1) with I(b) = 0 , then
Q(t) =20, so

y*(e)P(a)y(e) = y*(b)P(BL)y(b) + y*(e)ll(elyle) . (8)
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The next theorem gives information about the asymptotic behaviour
of y*(£)P(¢)y(¢t) . In investigating stability of (2), this acts as

a Lyapunov function.

THEOREM 1. If P(¢) <s a solution of (1), y(t) a correspond-
ing solution of (2) on [b, ¢l and if m(t) is a continuous function
throughout [b, el for which

n(£)P(E) < A(E) + P(£)C(£)P(E) (7)
then
fgm‘(u)du
y*(e)P(e)y(e) = y*(D)P(b)y(ble- ) (8)

Remark. If P(b) > 0, m(¥) > 0 , then (8) says
ly*(e)P(e)y(e)| is an increasing function of e . If P() <o,

P(e) < 0 , then |y*(e)P(e)y(e)| is decreasing as ¢ increases.

Proof. Let. II(¢) =0 in Lemma 1, and so

Q(t) = A(E) + P(E)C(E)IP(E) . (9)
Then
c
y*(e)P(elyle) =.y*b)PM)y(b) + I y*(£)Q(e)y(L)det . (10)
b
Let
t
s(t) = y*(BYP(B)yb) + [ y*(u)Q(u)y (u)du . (11)
b
Then
s' (L) = y*(£)Q(L)y(t)
> m(t)y*(B)P(E)y (£)
= m(t)s(t)

by (10) and (11). Therefore

d —fzm(u)du
ag-s(t)e =0
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fzm(u)du
and so s(t) = s(b)e and s(b) = y*(D)P(b)y(b) . Therefore,

, jgm(u)du
YH(E)P()y(£) = 8(8) = y*(B)P(B)y(B)e .

COROLLARY 1. (7) holds if either m(£)P(t) < A(t) or

m(£)P 1(£) < C(¢) . Alternatively if m (£)P(£) < A(#) , and P($)

is invertible on [k, e] , and m2(t)P_l(t) <= C(¢t) , then (7) and (8)

hold with m(z) = ml(t) + m2(t) .
COROLLARY 2, If p(2)I = P(t) = q(t)I , then

{Sm(u)du
p()|y()|? = q) |yr)|% P .

> > _a(®)
If p(£) >0 , and A(t) =2 a(¢)I =2 0 we can take m(¥) = o If
q(t) <0 , we can take m(¢t) = 322; .

So  the asymptotic Dbehaviour of y*(£)P(t)y(¢) can be
expressed in terms of a relation between P(¢) and the coefficients
A(t) and C((¢t) . However the behaviour of P(t) , as a solution of
(1), should be more closely related to the integrals of the.
coefficient matrices over some intervals, and the following theorem
is introdﬁced with this in mind. Its proef is, to some extent, a

-discrete analogue of the prcof of Theorem 1.
Let Il(u, v) be a function with Il(v, v) = 0 ,

%%—(u, ) = Aw) - Tu, D)CEOT(u, v) .

THEOREM 2. Suppose P(t) <& a solution of (1) ewisting on
[to, ©) and that {tn}, {dn} are sequences of real numbers for

which

0 <dP(t) =T, t, 1) s

dn <1 and tn > tn—l forall n=1,2, .v., P, t, =Db,
t =c¢ . Then
p
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y*(a)P(a)y(a) = y*(B)P(b)y(h) TETT-la— (13)
i=2 1%

Proof. By Corollary 1 to Lemma 1,
y* (8P (e, )u(8,) 2 w2 (e, )P, Jult, o) + vr()0(s,, ¢, Ju(s)

y*(t, )P, Jy(e, ) + dy*(e,)P@,)y(t,) .

IV

v

Let ¢, = y*(tn)P(tn)y(tn] . Then (1-d)e 2ec , . So
> __._1.‘.___ »
?° ﬁ T %
that is,
y*(e)Ple)y(e) = y*(b)P(b)y(b) Tal’l—_la?— :
| i=2 ~ %4

COROLLARY 1. 1If

P(t ) g H(tn’tn—l)v
a b
n n

o

for sequences. {an}, {bn} then we can take d = aﬁ- in (13). In-
n

this cdse, if P(¢) is a positive solution,

a.
2
Gl )17 2 r (s, )2 )u(6) = ¥ ()2 (e ey) TT -
If 0<a =a, bn =b >0, we can take
_b V
dn - E 9 (lLI')

and then y*(ti)P(ti)y(ti) + © exponentially as % + * . If
dn = 0 > 0 then again
1

(1-a)P~t

-+ © exponentially as p >« .

RICAEICAM RIS CAEICH MY

But if d < -0<0 , so P(tn) <0, n=1,2, ... then
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—_—
(140)P ™2

+ 0 exponentially as p + « ,

ly* ()P0, )y (8,) | = ly*(e,)P(e )y (e,) | (15)

COROLLARY 2. 1If there are positive constants. & and B for

which
t
7
ol < J C(u)du < BI ,
t?_’l:-l
t.
n
ol < J Alu)du < BI , (18)
tn—l
for all n =1, 2, ... and a monotone increasing sequence {tn} then

-1
n n—l). = Vl (tn) (Vl (tn)"'VQ (tn)] Vl (tn)
from Theorem 2, Chapter 4, where

t
Alw)du , Vz(t) = {
t

n-1 n-1

Vi(t) = J Vi(u)C(u)Vi(u)du

>]e]

Ll CHRE IS IS Al R IR A CR VA CR A

-1 -1,
so T+ o v,z )
But
t
" 2
v, (¢t ) = I,J |V, )| 7| c(u) | du
2V'n 1
t
n-1
t
2" 3
< nIB ’[ Clu)du| = nB"I
tn—l
because
|c(u)| = maximum eigenvalue of C(u)

1A

trace C(u) .
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So
t t t .
n 7 n
I. lcw)|du < [ tr C(u)du = .tr I C(u)du
tn-l ‘tn—l tn—l,
t
n
<n f Clu)du
tn-l

1

Therefore, H(tn, t ) 2 YI where Y—l = o+ nOL_QBa . Let

n—l)
P_l(t) be a positive solution of W' - C(£) + WA(£)W = 0 on

[to, t%] . If w(t, tn-l) 1s the solution of this equation with-
(g, o ¢, ) =0, then P"l(tn_l) >0 .80 P8 ) 2w, )

And by the same process as for the original equation,

w(tn, tn_l] > yI..

Therefore, P_l(tn) >yl , and P(tn) < Y_lI . Therefore, Y_l‘> Yy

and Y < 1.

Using Corollary 1, with aq = Y—l , b =7v in (1W),
1 ym-1
2 Yoo ) Y 2
B 122 (2 ¥ (s,
m y l—YJ Y-l 1
2
- Y l 2
=TT y(t-)l . (17)
(l—Yz)m 1 1
If P(t) 1is a negative definite solution on ltl, tm+l| then
p(z;) |
an analogous argument gives 0 < 5 =< (t., t ) and
—y T -1
—Y_lI s P(ti) < yI<0, 2=1...m. Then again from Theoren 2,
m Y2
y* (e, )P(2 )y (e,) = v*(¢)P(¢ )y () Hmz ;
that is,
1

Yy )] = ly(e,)]
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These results can be applied in a variety of situations, showing
that as t > , y(t) >0 if P(t) <0, |y()| + if P(t) >0 .
We 'give a specific application where A(f), C(f) are like constant

matrices.

If the inequalities of the hypothesis of Corollary 2 hold for
any pair of equally spaced points separated by a distance & , then.
(1) is said to be ﬁniformly controllable and observable. If this
condition holds for some interval length & , it holds for all larger

interval lengths. In particular,

tl
f C(u)du
s

S
A

A

28T

tl
[ ACu)du =< 28T ,
tO

A

&
A

whenever to + 8 = tl < to + 26 .

So if ¢ and g are two points for which ¢#nd = 8 < t+(n+l)8 ,
n =21, then from (17), if P(t) >0 on [¢t, 8] , and [t, 8] is

divided inte n. equal intervals,

ly(s)| = |y(&)] E————j;;ﬁg where y T = o™t + sno”2gd
=Y
= |y(t)|e(s_t)eyf l-Y2 where © =.f%-log(i-Y2}

1 2
2?;-t) log(1-v7) .

A

Therefore, y(s8) * ® exponentially as 8 +® ; y(t) >0 as
t >~ , If P(t) <0 on [t, 8] , then

ly(e)] = |y(#)] ———54—-6—(8-t)e‘ where © = 26 log(l+Y ).

Yo+
So |y(8)|'-> 0 exponentially as ¢+ ® , and in this case

y' = C(£)P(t)y is uniformly asymptotically stable at < .

Remark. The conditions of uniform controllability and observability,
used by Kalman [2] and Bucy [!] in generalising the asymptotic

properties of systems with constant coefficients, have no special status
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in our approach. In particular it is the ratioc of values of A(%)
and- C(t) rather than their absolute values, which tends to

influence asymptotic behaviour of the Ricecati equation.

There is an example at the end of this chapter where particular
application of our theorems is possible although there is no uniform

controllability or observability.

Aggregatioh of solutions of the Riccati equation

There is a relationship between solutions of (2) and the
differences of solutions of (1) which has been exploited in Chapter
3. If Y(t) 1is a fundamental matrix of (2), P(¢) being a solution
of (1) existing on [b, ©) , and if @(£) is another solution of (1)

existing on [b, ®) then

é%-Y*(t)(P(t)—Q(t)]Y(t) = 7r(8) (P(£)-(£)) C(2) (P(£)-9(#)) ¥(#)

so if U(t) = ¥*(¢) (P(£)-9(£))¥(£) then
U () = U N o) ) . (19)

1l

If U(b) is invertible, then, V(¢t) = U ~(t) is a solution of

VI(8) = Y o) v ()

which exists on [b, ®) , so U(t) is invertible on [b, ®) , and if
t

S(#) = [ yYawecw)r* w)du , then S(¢) > 0 if ¢ > b , from [C]
b
and
) = ey -se))
= 0b) (87H)-u)) st (20)

Now S—l(t) is decreasing, non-negative and so has a limit X as

t >+, If K - U(b) is invertible, then.
U(t) » U (&-UB)) T as b+ . (21)

Then U(t) 4is bounded on [b, ®) , so there exist scalars
h, k , for which &I = U(¢t) < kI on [b, ) . Then

n(FOXH)) T = Pe) - Qe) s k(Z(B)TA)) T (22)
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Both Theorems 1 and 2 give information about the asymptotic

behaviour of (Y(t)Y*(t))_l as t increases. From (22) and Theorem

1l we deduce:

THEOREM 3. If P(t) is a positive solution of (1) on [b, ®) ,
Y(t) <s an invertible solutions of Y' = C(£)P(t)Y .,

t .
K = lim f Y—l(u)C(u)Y*—l(u)du‘, (the Limit must exisat), and Q%)
tve /h -

18 a solution of (1) existing on [b, ®) for which P(b) - @) 1is

invertible, and P(b) - Q) - Y* T(B)kr™1(b) is invertible, and if
m(t) ig a continuous funetion: m(Et)P(t) < A(t) + P(t)C(t)P(t) then

—me(u)du‘

|P(£)-@()| = g|P(t)]e for some constant g . (23)

Proof. From (8),

C () du
I

\Y

YX()P(£)Y(t) = Y*(B)P(L)Y(b)e

v

and we assume Y*(¢)P(t)Y(¢) =z pI > 0 for a constant p , since
p(b) > 0 . Then

- [Em(u)du
P(t)e P > p (X)) r* ()t
and
-ftm(u)du .
|P(t)|e b z pl| (Z(£)Y* () JL|
> 2 |P(£)-Q(¢
z = |P(£)-0() |
from (22) where ¢ = é‘-max(]bl, |k]) . QED
~[FmCudu
Remark. If |P(t)|e + 0 , as in many important cases

it does, then Theorem 3 asserts that "almost all" solutions approach
P(t) asymptotically as t =+ ® , The requirement that P(b) - @(b)
is invertible is inessential, and only made for convenience; if it

is not obtained, then P and & can be compared with a third

solution. The requirement that P(b) - @(b) - Y*—l(b)KY—l(b) is
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”~ ~
invertible is, however, essential; 1if @(b) = W(b) , W Dbeing the

principal solution at < , then P(b) - Q(b) - ooy = o
from the proof of Theorem 1 of Chapter 3.

So Theorem 3 says that in this case all solutions except the
principal solution and those which differ at b from the principal
solution by a simgular matrix, converge in a single bundle as
t + © , The bundle contains positive soclutionsj the exclusien of
the principal solution is not surprising, since it is the negative

solution.

"= 1 - y2 has the general solution

As an example, Yy
y = tanh(t+a) or coth(t+a) , with +1 and -1 as special solutions.

As t + o

-t-
o t-a

(1 - tanh(tra) = ey > O

and
, e—t—a
1l - coth(t+a) = m‘* 0 .
So all solutions except Yy = -1 aggregate about +1 as

t + % ., This follows from Theorem 3 with P(¢) =1, m(t) = 2 .,

Results summarised for a special case, and an example.

Finally to show the use of the results of this chapter, we first
summarise their effect where the Riccati equation is uniformly-
controllable and observable, and then give an example of qualitatively
similar behaviour of solutions of an equation which is not uniformly

controllable or observable.

If equations (16) apply whenever tn - tn—l = d for some fixed

d , which is the definition of uniform controllability and

observability, and P(t) 1is a solution of (1) positive at ¢ = ty >
then there is a comstant g for which P(¢) > gI , P(t) < g-lI if

t>t + d, from (16).

There is a positive constant h for which |y(%)]| = O(eht) as
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t + © , where y(t) is a nontrivial solution of y' = C(£)P(t)y .
The principal solution W(t) of (1) on [to, ®] is negative

definite for all ¢ . If &(¢) is another solution with

2ht)

() > W(to) , then |P(£)-Q(#)] = Ofe as t =+ , where P(t)

is any non-negative definite solution of (1).

If y(£) 1is a sclution of y' = C(t)W(£)y then
e_ht)

lyte)| = of as t + ® , for some constant %k > 0 .

The aggregation of solution ensures that the Riccati equaticn
with constant coefficients has only one constant positive and one

negative solution at most.

Example of the application of Theorem 1 to the modified Bessel

equation of order zero:

2 2

tz" + tx' -tx=0, tz21, (24)
its equivalent Hamiltonian system
1
y’ =';z ’
(25)
' =ty ,
and Riccati equation
1 2 - _ 1
w' = A(E) -wC(t) , AE) =t , C(£) =7 (26)

If w(t) is a solution of (26) with w(¢) > 0 in (¢-1, t) ,
-1 -2 -1
then w(t) = Té(t) , where Tz(t) = (Vl (t)+Vl‘(t)V2(t) s

U t

A(s)ds and Vz(t) = I Vi(u)C(u)du,. By elementary

V.(u) = f
1 -1

calculation, it can be verified that

t-1

% (t-%)

kt

T2(t)

v

v

if t=z 2.
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On the other hand wv(t) = w_l(t) is a solution of
v o= %-~ tv2 . Operating in the same way with this dual equation,

and omitting the very similar details, v(¢) = (zt)‘l s SO

w(t) <=2t , t=2. Therefore, Fw(t) =t = A(E) ,
% wfl(t) = %a, so  Aw(t) = wz(t)C(t) .  Therefore,

w(£) < A(#) + w2(£)C(t) . Therefore, in Theorem 1, m(t) = 1 ,

and
f: du
2 2 0
y (B(e) z y (t,)w(t,)e
t-t )
2 (

=y (tdu(t)e  °
where y(t) 1is a solution of

, 1

y' = E—w(t)y . (27)

But w(Z) = 2t » SO yz(t) = e K(to) where

o

k(e = y° (b Jwlt,) if w@) z0 on [t,-1, ¢] .

In the same sort of way it can be verified that for ¢ 2 2 , if

.

INTRSS

w(t) <0 on [¢-1, t] , then - 2% = w(¢) = -

~ Then —w(t) = A(¢) + w2(t)0(t) and from Theorem 1,

- (-t)

g2 (Ew(t) = yQ(t-o]w(to)e or, if w(¢) <0, w(t,) <o,

2 2 B (t'to) -
then y (&) |w(t)| =y (to)lw(to)|e . Therefore,

2 1 -t 2 |
y°(t) s 5y e K(t,) where x(t)) =y (¢.)[w(zy)] .

Using Theorem 3, we conclude that the solutions of (26) aggregate

about a positive solution, with one exception, and for two of the
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aggregating solutions wl(t) and wQ(t) s

3
]wl(t)—wz(t)l'f Kte 2¥ as t >,
These conclusion can be verified by knowledge of the general.

solution of (28):

atl, (£)-BtK, (t)

w(t) = &I (E)¥BE, (2)

where o, B are arbitrary constants, and IO, Il’ KO’ Kl modified

Bessel functions. The minimal seolution has & = 0 , and solutions of

the corresponding linear equation (27) are multiples of Ko(t) .

Other solutions of (27) for other solutions w(¢&) of (28) are
aIO(t) + BKb(t) , O # 0 , which tend to ®©, As ¢t +» ® ,
t t

1 t
Io(t) Y /me N tIl(t) v Eﬁ:e s

™ -t mt -t
K, (£) '\'/z:e‘ , tKl(t)'\» /-_2—-e :

and so the predicted behaviour of solutions can be verified.

Notes

On the role of the Riccati equation in the linear regulator
problem, the stability of its solutions and the solutlons that it
generates, seé Kalman [Z2]. Our approach to the stability of solutions
of the Riccati equation differs from that of Kalman, and is like that
of Buey [1]. However we have not needed to invoke the Lyapunov

stability theorem.

The results on uniformly controllable and observable systems that
are corollaries of our Theorems 2 and 3 are given by Kalman [2, 6.10
and 7.2] and Bucy [71]. The results in this case, about aggregation
of solutions are due to Bucy [/, Theorem 4], although his statement
of the matter is incomplete, apd'in fact incorrect, since it does not
observe the distinct behaviour of the principai,solution. As Kalman's
paper makes clear, solutions of linear equations associated with

principal solutions are of great importance, being stable. Also, as
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observed in the notes to Chapter 4, the a priori bounds to solutions
of the Riccati equation are incorrect, as used by Bucy in [1].

With respect to Bucy's final remarks, 1lim I(#, to) always

' by

exists (if C(¢) = 0 and is controllable, A(t) < 0 ); this follows
from our proof of the existence of a maximal solution on (-%, ®)
which does not use variational arguments. Reid [15] has generalised
the monotone properties of Buycy [/, Section 3] but has. to assume the

coeffidient matrices absolutely continuous.

The properties of stabilizability and defectability,,used by
Wonham [71], [2], and Lukes [1], do not readily generalise to the
non-autonomous case. Equation (1) of this chapter is derived from
that of Chapter 3 by a.congruence transformation; stabilizability
exploits the possibility of first making a translation operation to

give the resulting equation more desirable properties.

We draw attention to some very recent remarks of Fair [1], with
the promise of a forthcoming paper, on approximating solutions of
matrix quadratic equations by continued fractions., Our continued
fraction expansions of Chapter 4 are helpful here, If the value at

to of the negative principal solution at <+~ is wanted, and

uniform controllability and observability, say, apply, then because
of the aggregation of solutions it suffices to approximate the

solution Iz, t0+d) at ¢, , where d 1is positive and sufficiently
large. I(t, t0+d) is the solution of (1) which takes the value zero
at to + d , and can be approximated by a continued fraction expansion.
This procedure avoids problems of instability of principal solutions.

If, for example, C(¢) = A(t) = 1 , the principal solution as
to. is -1 . If one tries to find its value at ¢ = 0 by expanding
the continued fraction of II(0, 5) one gets the sequence of

approximations:
-5, -0.54, -1.,21, -0,057, -1,0074, -0,99893, -1.00001, -0.99990 .

Another approach to finding values of the principal solution
involving Newton-type approximations. (quasi linearization), is given

in the papers of Bellman.[!], Aoki [1] and McClamrock [T7].
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