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Differential influences of environment and self-
motion on place and grid cell firing
Guifen Chen1,2, Yi Lu1,2, John A King3, Francesca Cacucci2 & Neil Burgess1,4

Place and grid cells in the hippocampal formation provide foundational representations of

environmental location, and potentially of locations within conceptual spaces. Some accounts

predict that environmental sensory information and self-motion are encoded in com-

plementary representations, while other models suggest that both features combine to

produce a single coherent representation. Here, we use virtual reality to dissociate visual

environmental from physical motion inputs, while recording place and grid cells in mice

navigating virtual open arenas. Place cell firing patterns predominantly reflect visual inputs,

while grid cell activity reflects a greater influence of physical motion. Thus, even when

recorded simultaneously, place and grid cell firing patterns differentially reflect environmental

information (or ‘states’) and physical self-motion (or ‘transitions’), and need not be mutually

coherent.
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T
he spatial firing patterns of place cells and grid cells pro-
vide a window into how we represent environmental
location1,2 and potentially how we organise conceptual

knowledge3,4. However, it is not clear how these spatial repre-
sentations are formed. Place and grid cells might represent dif-
ferent sources of spatial information provided by the sensory
environment and by self-motion5–7, or they might form a single
coherent representation in which either place or grid cell firing is
strongly influenced by the other cell type8–10. The unitary firing
fields of place cells, their tendency to ‘remap’ between environ-
ments with different sensory attributes11 and to change para-
metrically following environmental changes12 indicate a strong
influence of environmental information on place cell firing. By
contrast, the regular periodic firing patterns of grid cells, main-
tained across different environments, indicate a strong intrinsic
organisation thought to be driven by self-motion inputs2,5–7.
However, place cell firing patterns are influenced by self-
motion13, and grid cell firing patterns by environmental sen-
sory inputs2,14–16. Crucially, the relative influence of self-motion
and environmental sensory inputs on the firing of place and grid
cells within a given animal has not been quantified, and we do not
know whether the two cell types integrate these inputs separately,
or combine them to provide a single holistic representation.

Normally, self-motion drives corresponding changes in envir-
onmental inputs, so the two cannot be dissociated. However,
virtual reality (VR) can be used to manipulate the relationship
between physical (motoric/proprioceptive) self-motion signals
and environmental visual information (including both identifi-
able landmarks and optic flow) so that their relative influences
can be identified. This approach has been used on 1-dimentional
(1-d) virtual tracks while recording from place cells17 or grid
cells18, suggesting that both types of input can influence the
pattern of firing along the track in both types of cells, in ways that
vary across cells17 and conditions18, see Discussion.

Here we decoupled the physical self-motion and environmental
visual signals available to mice running in 2-d virtual open field
environments, while recording from place and grid cells. We then
compared the relative influences of these two types of informa-
tion on the scales of the characteristic 2-d spatial firing patterns of
place and grid cells. We used a VR system for mice, following a
similar system for rats19,20, which allows navigation and expres-
sion of spatial firing patterns within 2-d open field virtual
environments21.

Within the VR system, the effects of running on a Styrofoam
ball are used to drive movement of the viewpoint of the visual
projection of the environment. In the baseline configuration,
movement of 1 unit of distance on the surface of the ball is
translated to 1 unit of movement of the viewpoint within the
virtual environment: the ‘gain’ G between vision and movement is
1. Changes to this ‘gain’ allow differences between the distance
indicated by the visual movement of viewpoint and the physical
movement of the body. Under ‘increased’ gain ratios (G > 1), the
visual projection moves further than the surface of the ball, with
the opposite for decreased gain ratios (G < 1).

The visual appearance of the environment (e.g. aspect ratio)
was kept constant across trials, with changes to gain affecting the
physical distance run across the environment rather than its
visual extent. The visual gain was changed for movement along
one dimension only (the x axis), so that the remaining
(unchanged) dimension provides a within-trial control for com-
parison and to identify any potentially confounding (non-spatial)
effects, such as surprise or uncertainty. Finally, the use of VR
removes potentially confounding local cues to location, whilst
slightly reducing the overall strength of spatial coding21.

In summary, place cell firing patterns predominantly reflect
visual inputs, while grid patterns reflect a much greater influence

of physical motion. Thus, even when recorded simultaneously,
place and grid cell firing patterns differentially reflect environ-
mental information and physical self-motion, and need not be
mutually coherent.

Results
The ‘gain’ of the mapping from physical to visual motion. We
examined the spatial firing patterns of place cells from hippo-
campal region CA1 and grid cells from medial Entorhinal cortex
(mEC) in 2-d VR, focussing on probe trials in which the visual
‘gain’ (G) applied to one axis of virtual movement was both
increased (G= 2) and decreased (G= 2/3) compared to the
baseline condition (G= 1). An experimental day comprised a
baseline (G= 1) VR trial, a probe (G≠1) trial and a real-world
trial. Under non-unity gain, firing rates can be plotted against the
animal’s location according to vision (in visual coordinates) or
physical movement (in motor coordinates). These plots are
identical for baseline trials. See Fig. 1 and Methods for details and
Supplementary Figures 1–2 for examples of simultaneously
recorded place and grid cell firing patterns. Overall, we found that
there were no significant differences in mean firing rates and
spatial information between the baseline and probe conditions,
although decreases in peak firing rates and gridness scores were
observed in the probe conditions (Supplementary Figure 3).

Place cell firing patterns. We first compared place cell firing
patterns between probe and baseline trials. Figures 1 and 2 show
firing patterns for place cells plotted against visual or motor
location under increases (G= 2) and decreases (G= 2/3) in visual
gain, respectively. Firing fields had similar sizes along the
manipulated dimension in probe trials compared to baseline trials
when plotted in visual coordinates (Figs. 1g and 2e), but different
sizes when plotted in motor coordinates (Figs. 1h and 2f), indi-
cating predominantly visual coding. Field sizes along the un-
manipulated dimension did not change between probe and
baseline trials (paired t-tests, t(111)= 1.04, p= 0.30 for gain
increase; t(83)= 1.55, p= 0.13 for gain decrease).

We can quantify the relative influence of physical motion versus
visual input on a cell’s spatial firing pattern (i.e. the firing rate
map, plotted in visual coordinates) by comparing it to a stretched
version of the baseline firing rate map, and finding the stretch
factor (F) giving the best fit (allowing for all offsets of the smaller
to the larger map; see Methods). For probe trials (i.e., G ≠ 1), the
‘motor influence’ score MI= (F−1)/(G−1) varies from 0 for firing
patterns that resemble baseline patterns (i.e. F= 1; no effect of
having to run more or less than expected from vision), to 1 for
firing patterns that show stretching corresponding to the gain
manipulation (i.e. F=G; the pattern in visual coordinates appears
to stretch according to the gain relating vision to movement).

Place cell firing patterns can ‘remap’11 or become diffuse,
making comparisons difficult (e.g. if a cell fires over most of the
arena, the field shape largely reflects the shape of the arena).
Accordingly, we confined our analyses to compact firing patterns
that did not remap between baseline and probe (occupying < 50%
of the arena and having a spatial correlation > 0.3 between
baseline and the best fitting probe firing rate map, i.e. taking
account of any gain-related offset and stretch), leaving 275/497
firing patterns (166/282 for gain increase, 109/215 for gain
decrease, see Methods and Supplementary Figure 4). The
percentage of remapping varied across sessions (median: 12%,
interquartile range: 16%) but did not differ between gain increase
and decrease sessions (Supplementary Figure 5). The results from
both types of gain manipulation show an overall greater visual
than motor influence on place cell firing (median= 0.21,
interquartile range (IQR)= 0.53 for MI scores in the gain
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increase, and median= 0.37, IQR= 0.59 in the gain decrease, see
Figs. 1i and 2g and S6).

We also analysed the population vector responses of all
simultaneously recorded place cells, finding the best single offset
and stretch factor for each population (in 18 trials with multiple
place and grid cells), again finding greater visual than motor
influence on place cell populations (MI score in gain increase:

median= 0.08, IQR= 0.11; in gain decrease: median= 0.21,
IQR= 0.21, see Figs. 1j and 2h and S7).

Grid cell firing patterns. Figure 3 shows firing patterns for grid
cells plotted against visual or motor location under increases in
visual gain (G= 2). Again we restricted analyses to grid patterns
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Fig. 1 Place cell firing patterns under visual gain increase. a, b Schematic of the VR setup (a, inset: the rotating head-holder) and view from inside the VR

environment, the striped column indicates a visible reward location (b, see Supplementary Video). Adapted from ref. 21. c–f Three place cells

simultaneously recorded in a 60 × 60 cm square box (c), a 60 × 60 cm virtual square environment (d), and a probe trial where visual gain was increased

along the x axis (G= 2) plotted in visual coordinates (e) and motor coordinates (f). Firing rate maps shown with max rate below (Hz) and spatial

information above (bits/spike), stretch factor F mapping visual plots to baseline shown in red, all three trials recorded on the same day. g, h Change of

place field size (ratio relative to baseline) was significantly larger on the manipulated than un-manipulated axis when plotted in motor coordinates

(h, n= 173 for all fields, paired t-test, t(172)=−14.35, p < 0.001; n= 112 for fields distal to boundaries, t(111)=−12.22, p < 0.001) but not when plotted in

visual coordinates (g; n= 173 for all fields, t(172)= 0.29, p= 0.77; n= 112 for distal fields, t(111)=−0.03, p= 0.98), reflecting strong visual influence.

i, j Distribution of motor influence scores ‘MI’ based on firing rate maps (i) or on population vectors (j). Note MI= (F−1)/(G−1), so MI= 0 indicates firing

in visual coordinates (i.e. F= 1 implies no effect of G ≠ 1); MI= 1 indicates motor coordinates (i.e. F= G: visual stretch factor equals visual gain factor)
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that remained similar between baseline and probe (i.e. showing
spatial correlation > 0.3 after accounting for gain-related offsets
or stretches), giving 79/80 cells in gain increase days and 39/42 in
gain decrease days. Firing patterns appear elliptical in probe trials
when plotted in visual coordinates (increased in scale along the
manipulated axis, as movement in visual space requires less
physical movement) and in motor coordinates (decreased in
scale, as physical movement produces greater visual movement),
as shown by the changes in grid scale (Fig. 3e, f). Equally the
motor influence scores for firing rate maps and population vec-
tors (median= 0.58, IQR= 0.21, Fig. 3i, and median= 0.63,
IQR= 0.25, Fig. 3j) indicate a balance between motor and visual
influence, weighted towards motor.

We also analysed the shapes of pairs of individual firing fields
that remained similar between probe and baseline trials (showing
spatial correlation > 0.3 after accounting for gain-related offsets
and stretches and setting the rest of the map to zero), and that
were sufficiently centrally placed to avoid occlusion by the edge of
the environment (115/167 grid fields). The changes in sizes of
individual fields showed a similar pattern of both visual and
motor influence to the overall grid patterns (see Fig. 3g, h, and
Methods for details).

Figure 4 shows grid cell firing patterns under visual gain
decrease (G= 2/3). Grid scale and firing patterns show an even
stronger weighting towards motor influence than for gain

increase trials (median MI score= 0.89, IQR= 0.30 for firing
rate maps, Fig. 4i, and median= 0.71, IQR= 0.26 for population
vectors, Fig. 4j), with grid scale along the manipulated axis
unchanged when plotted in motor coordinates and decreased
when plotted in visual coordinates (because a given visual
distance reflects greater physical distance, Fig. 4e, f). It is possible
that increasing visual gain increases the salience of (now
increased) optic flow, and vice versa when decreasing gain,
explaining the greater visual influence during gain increase
(Fig. 3), discussed below.

Analysis of individual firing fields, and running speed. Changes
in the shapes of individual grid firing fields under gain decrease
show the opposite effect to the scale of grid patterns (field size
increased along the manipulated axis when plotted in visual
coordinates, Fig. 4g, while grid scale decreased, Fig. 4e), giving
broader firing fields in probe trials plotted in visual coordinates
(Fig. 4c, S1-2). If grid cell firing locations are reset by environ-
mental inputs in disparate locations22–24, but otherwise strongly
driven by motor inputs, changes to gain will cause offsets between
firing locations when running in opposing directions along the
manipulated axis. This directional-offset effect was present in grid
cell firing during visual gain decrease, explaining the broader
firing fields in whole-trial firing rate maps, and more so than in
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Fig. 2 Place cell firing patterns under visual gain decrease. a, b Three place cells simultaneously recorded in a 60 × 60 cm square box (a), a 60 × 60 cm

virtual square (b), and a probe trial where visual gain was reduced along the x axis (G= 2/3) plotted in motor coordinates (c) and visual coordinates (d).

Layout as Fig. 1c–f, stretch factor F mapping visual plots to baseline shown in red. e, f Change of place field size was significantly larger on the manipulated

than un-manipulated axis when plottedi in motor coordinates (f; n= 122 for all fields, paired t-test, t(121)= 9.77, p < 0.001; n= 84 for fields distal to

boundaries, t(83)= 7.71, p < 0.001) but not when plotted in visual coordinates (e; n= 122 for all fields, t(121)= 1.07, p= 0.29; n= 84 for distal fields,

t(83)=−0.45, p= 0.65), reflecting strong visual influence. (g, h) Distribution of motor influence scores ‘MI’ based on firing rate maps (g) or population

vectors (h; see Methods and Fig. 1)
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gain increase trials perhaps because of the greater visual influence
during gain increase (Supplementary Figure 8). The directional
modulation of firing of place cells (but not grid cells) in VR
precluded a similar directional-offset analysis of place fields, see
Supplementary Figure 8 and ref. 21.

The analysis of individual fields also allowed us to assess the
dependence of motor influence score on distance to the nearest

environmental boundary, but we found no significant effect in
place or grid fields (Supplementary Figure 9). However, virtual
boundaries are entirely visual and proximity to physical
boundaries in real environments may have greater influence on
firing22. We also recorded cells in mEC with spatially modulated
firing that was not grid-like, see Methods. These spatial cells
showed motor influence scores similar to grid cells, but with
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lower scores in gain decrease conditions (a little more like place
cells), see Supplementary Figure 10.

During natural foraging, the animal’s running speed is reflected
in increases in the frequency of theta rhythmicity in the local field
potential25, and in increases in the firing rates of spatial cells26,27

—most clearly seen in speed cells, by definition28. When running
along the manipulated axis, there were effects of increasing or
decreasing the visual gain on the speed dependence of LFP theta
frequency and firing rates compared to the un-manipulated axis
(which controls for non-specific changes in theta frequency). The
effects on LFP theta frequency speed dependence (i.e. the slope of
the plots in Supplementary Figure 11) are as expected from the
animal’s perception of speed reflecting visual input in addition to
physical motion, while effects on firing rates were qualitatively
similar but noisier and not significant.

Discussion
By changing the gain of the movement of the visual projection in
VR relative to the physical motion of the mouse, we have shown
that the 2-d spatial firing patterns of CA1 place cells are more
strongly influenced by visual inputs whereas those of grid cells
show a greater influence of physical motion (i.e. proprioception
and motor-efference). This difference is seen in the motor
influence (MI) scores for place and grid cell firing patterns
individually, as population vectors and in simultaneously recor-
ded populations (Fig. 4k–m), see Figures S6 and S7 for the dis-
tributions within each animal and Supplementary Figure 9 for
similar analyses comparing place and grid firing fields. We also
investigated the spatial scale of grid cell firing patterns along the
unchanged dimension of the VR, but did not observe any changes
(n= 107, t(106)=−0.15, p= 0.88, Figs. 3 and 4), ruling out
significant non-spatial effects of the between-trials gain manip-
ulation such as surprise or uncertainty.

The VR system may under-estimate the influence of physical
motion, by omitting vestibular cues to linear acceleration which
contribute to speed perception and LFP theta frequency21,29,30. It
also does not include the usual uncontrolled local environmental
cues, resulting in more directional place cell firing in VR than in
the real world21,31. The balance of influence of physical motion
and environmental sensory inputs may change according to
conditions (e.g. in darkness or on linear tracks, where physical
motion may be more influential17). In addition, the influence of
vision on firing may be enhanced by the foraging task in which
mice must pay attention to the (randomly scattered) visual
reward pillars.

Nonetheless, our results clearly indicate a significant influence
of environmental visual inputs, when available, on place and grid
cell firing patterns, and a relatively greater influence on place than
grid cell activity, which cannot reflect uncontrolled cues outside
of the VR. These differences also show that the firing of place and
grid cell populations are not tightly coupled. The lack of overlap
in the median MI scores of simultaneously recorded place and
grid cells (Fig. 4l), and in the population vectors per animal

(Supplementary Figure 7), indicates that neither population’s
representation of space is derived solely from the other.

The wide spread of MI scores across the place cells recorded in
each animal (Supplementary Figure 6), though not in the overall
population vectors (Figs. 1i, j and 2g, h), is consistent with the
wide range of effects on individual place cells’ firing of similar
manipulations on 1-d virtual tracks17. This indicates variation in
the balance of inputs received by individual place cells. It is
possible that the balance of inputs varies with a cell’s location
within CA1, as locations proximal to CA3 receive more input
from medial (cf. lateral) entorhinal cortex, i.e. potentially more
grid cell mediated self-motion information32,33. However, there is
only a single CA1 implant in each animal, and the correlation
between implant location and average MI scores does not reach
significance (Supplementary Figure 12). The depth of the cell
within the layer may also be a factor, as this has been shown to
correlate with the influence of individual landmarks on place cell
firing34.

The partial influence of visual inputs on grid cell firing patterns
was seen more strongly during increases in visual gain than
during decreases (Figs. 3 and 4; median= 0.58, IQR= 0.21 for
MI scores in gain increase, median= 0.89, IQR= 0.30 for MI
scores in gain decrease, Wilcoxon rank sum test, z=−5.25,
p < 0.001). Increased (cf. decreased) visual motion signals may
have greater salience in a grid system driven by motion rather
than environmental features, due to their increased amplitude
compared to (unchanged) physical motion signals. This finding is
consistent with the effects of gain manipulations on grid cells’
firing patterns on 1-d virtual tracks18, in which grid scale shows a
greater influence of vision under increased visual gain than
decreased visual gain. The 1-d study also suggests that discrete
landmarks along the track can reset grid phase if their dis-
crepancy with self-motion is small enough, consistent with
attractor models in which intrinsic grid scale reflects physical self-
motion18. Future work might consider the resetting of grid firing
patterns in open arenas, and this occurs specifically at the
boundary22, or whether distal landmarks also influence grid firing
within the arena, possibly mediated by place cells5, consistent
with effects of hippocampal inactivation35, or via other means of
overcoming parallax36.

Direction-dependent offsets of grid patterns produced broa-
dened firing fields in whole-trial firing rate maps under gain
decrease while the underlying grid pattern remained in propor-
tion (Supplementary Figure 8). This may reflect the strong motor
influence on grid firing during decreased visual gain, combined
with occasional sensory resetting, and could relate to direction-
dependent offsets seen in place and grid firing in real
environments37,38. These results support the regularity of grid cell
firing patterns as reflecting an intrinsic metric based on self-
motion2,5–7, while place cell populations are more strongly driven
by sensory environmental inputs11,12.

The effect of the gain manipulations on the relationship
between running speed and LFP theta frequency indicate a weak
influence of vision (Supplementary Figure 11, possibly weakened

Fig. 3 Grid cell firing patterns under visual gain increase. a–d Three grid cells simultaneously recorded in the baseline 60 × 60 cm square box (a), a

60 × 60 cm virtual square environment (b) and a virtual probe trial where the gain of visual motion compared to physical motion on the ball was increased

along the x axis (gain G= 2), plotted in visual coordinates (c) and motor coordinates (d). Firing rate maps (and max rates) shown above, spatial

autocorrelograms (and gridness scores) below, one cell per column, stretch factor F mapping visual plots to baseline shown in red, all three trials recorded

on the same day. e, f Change of grid scales was significantly larger on the manipulated than un-manipulated axis when plotted in visual coordinates

(e; n= 72, paired t-test, t(71)= 9.68, p < 0.001) or motor coordinates (f; n= 72, t(71)=−5.61, p < 0.001). g, h Change of firing field size was significantly

larger on the manipulated than un-manipulated axis when plotted in both visual coordinates (g; n= 117 for all fields, t(116)= 2.90, p < 0.01; n= 83 for distal

fields, t(82)= 6.27, p < 0.001) and in motor coordinates (h; n= 117 for all fields, t(116)=−8.09, p < 0.001; n= 83 for fields distal to boundaries, t(82)=

−12.14, p < 0.001). i, j Distribution of motor influence scores ‘MI’ based on firing rate maps (i) or population vectors (j; see Methods or Fig. 1)
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because trajectories include running along the non-manipulated
axis). Slightly stronger visual influences on theta frequency, and
on speed cell firing, were seen on the 1-d virtual track18, and were
greater under gain increase than gain decrease, echoing the visual
influence on grid cell firing. However, the much stronger effects
on grid scale suggest that they do not simply reflect those on
speed coding.

Self-motion signals can be used to guide behaviour (often
referred to as ‘path integration’). Studies using 1-d VR show that
mice remember the rewarded distance along a track using self-
motion cues and that this is impaired by inactivation of stellate

cells in mEC39. In addition, the remembered distance is influ-
enced by visual inputs in a similar way to grid cell firing—with
greater visual influence during gain increase than gain decrease18.
These results, and the difference between grid and place cell
coding of location found here, suggest that grid cell firing may
influence spatial memory directly (see also ref. 40) rather than
acting via place cells.

In summary, although place and grid cell firing patterns are
likely to be oriented by similar head-direction information2,11,
and to communicate with each other to produce a combined
estimate of location5–7, our results indicate that each cell type
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receives influential inputs independent of the other, and that
these are weighted towards environmental sensory inputs for
place cells and towards physical motion-related inputs for grid
cells. These results imply corresponding differential roles for
place and grid cells in representing evidence for states and for
transitions in conceptual spaces4,6,10.

Methods
Virtual reality. The virtual reality system is presented in ref. 21, the virtual reality
and surgical methods sections are reproduced here for convenience, with
permission.

A circular head-plate made of plastic (Stratasys Endur photopolymer) is
chronically attached to the skull, with a central opening allowing the implant of
tetrodes for electrophysiological recording (see the section Surgery). The head-plate
makes a self-centring joint with a holder mounted in a bearing (Kaydon reali-slim
bearing KA020XP0) and is clipped into place by a slider. The bearing is held over
the centre of an air-supported Styrofoam ball. Four LCD screens placed vertically
around the ball and two projectors onto a horizontal floor provide the projection of
a virtual environment. The ball is prevented from yaw rotation to give the mouse
traction to turn and to prevent any rotation of the ball about its vertical axis,
following ref. 20 (see Fig. 1a, b).

The virtual environment runs on a Dell Precision T7500 workstation PC
running Windows 7 64-bit on a Xeon X5647 2.93 GHz CPU, displayed using a
combination of four Acer B236HL LCD monitors mounted vertically in a square
array plus two LCD projectors (native resolution 480 × 320, 150 lumens) mounted
above to project floor texture. The head-holder is at the centre of the square and
60 mm from the bottom edge of the screens, and 9500 mm below the projectors.
The LCD panels are 514 mm × 293 mm, plus bezels of 15 mm all around. These six
video feeds are fed by an Asus AMD Radeon 6900 graphics card and combined
into a single virtual display of size 5760 × 2160 px using AMD Radeon Eyefinity
software. The VR is programmed using Unity3d v5.0.2f1 which allows virtual
cameras to draw on specific regions of the virtual display, with projection matrices
adjusted (see Kooima, 2008, http://csc.lsu.edu/~kooima/articles/genperspective/
index.html) to the physical dimensions and distances of the screens and to offset
the vanishing point from the centre. For example, a virtual camera facing the
X-positive direction renders its output to a portion of the virtual display which is
known to correspond to the screen area of the physical monitor facing the
X-negative direction.

Translation in the virtual space is controlled by two optical mice (Logitech
G700s gaming mouse) mounted with orthogonal orientations at the front and side
of a 200 mm diameter hollow polystyrene sphere, which floats under positive air
pressure in a hemispherical well. The optical mice drive X and Y inputs,
respectively, by dint of their offset orientations, and gain can be controlled within
the Unity software. Gain is adjusted such that real-world rotations of the sphere are
calibrated so that a desired environmental size (e.g. 600 mm across) corresponds to
the appropriate movement of the surface of the sphere under the mouse (i.e.
moving 600 mm, or just under one rotation, on the sphere takes the mouse across
the environment). Mouse pointer acceleration is disabled at operating system level
to ensure movement of the sphere is detected in a linear fashion independent of
running speed.

The mouse is able to freely rotate in the horizontal plane, which has no effect on
the VR display (but brings different screens into view). Rotation is detected and
recorded for later analysis using an Axona dacqUSB tracker which records the
position of two LEDs mounted at ~25 mm offset to left and right of the head stage
amplifier (see the section Surgery). Rotation is sampled at 50 Hz by detection of the
LED locations using an overhead video camera, while virtual location is sampled
and logged at 50 Hz.

Behaviour is motivated by the delivery of milk rewards (SMA, Wysoy)
controlled by a Labjack U3HD USB Data Acquisition device. A digital-to-analogue

channel applies 5 V DC to a control circuit driving a 12 V Cole-Parmer 1/16″
solenoid pinch valve, which is opened for 100 ms for each reward, allowing for the
formation of a single drop of milk (5 μL) under gravity feed at the end of a 1/32″
bore tube held within licking distance of the animal’s mouth.

Control of the Labjack and of reward locations in the VR is via UDP network
packets between the VR PC and a second experimenter PC, to which the Labjack is
connected by USB. Software written in Python 2.7 using the Labjack, tk (graphics)
and twistd (networking) libraries provide a plan-view graphical interface in which
the location of the animal and reward cues in the VE can be easily monitored and
reward locations manipulated with mouse clicks (see Fig. 1 and Supplementary
video).

Although the virtual environment had a hexagonally tiled floor (Supplementary
Figure 13), grid cell firing patterns are hexagonal on a much larger scale and are not
responding to floor tile vertices (Supplementary Figure 14).

Surgery. Nine C57Bl/6 wild type mice were used (Table 1). Throughout surgery,
mice were anesthetized with 2–3% isoflurane in O2. Analgesia was provided pre-
operatively with 0.1 mg/20 g Carprofen, and post-operatively with 0.1 mg/20 g
Metacam. Custom-made head plates were affixed to the skulls using dental cement
(Kemdent Simplex Rapid). Mice were implanted with custom-made microdrives
(Axona, UK), loaded with 17 μm platinum-iridium tetrodes, and providing buffer
amplification. One mouse was implanted with eight tetrodes in CA1 (ML: 1.8 mm,
AP: 2.1 mm posterior to bregma), two mice with eight tetrodes in the dorsomedial
entorhinal cortex (dmEC, ML= 3.1 mm. AP= 0.2 mm anterior to the transverse
sinus, angled 4° posteriorly), and five mice received a dual implant with one
microdrive in right CA1 and one in left dmEC (each mircrodrive carried four
tetrodes). After surgery, mice were placed in a heated chamber until fully recovered
from the anaesthetic (normally about 1 h), and then returned to their home cages.
Mice were given at least 1 week of post-operative recovery before cell screening and
behavioural training started.

Electrophysiology. Following recovery, mice were food restricted to 85% of their
free-feeding body weight. They were then exposed to a recording arena every day
(20 min per day) and screening for neural activity took place. The recording arena
was a 60 × 60 cm square box placed on a black Trespa ‘Toplab’ surface (Trespa
International B.V., Weert, Netherlands), and surrounded by a circular set of black
curtains. A white cue-card (A0, 84 × 119 cm), illuminated by a 40W lamp, was the
only directionally polarising cue within the black curtains. Milk (SMA Wysoy) was
delivered as drops on the floor from a syringe as rewards to encourage foraging
behaviour. Tetrodes were lowered by 62.5 μm each day, until grid or place cell
activity was identified, in dmEC or CA1, respectively. Neural activity was recorded
using DACQ (Axona Ltd., UK) while animals were foraging in the square envir-
onment. For further details see ref. 19.

Behavioural training. In general, behavioural training in VR started as tetrodes
were approaching target areas. It involved three phases. Firstly, mice experienced
an infinitely long 10 cm-wide virtual linear track, with 5 μL milk drops delivered as
rewards. The aim of this training phase was to habituate the mice to being head
restrained and train them to run smoothly on the air-cushioned ball. It took three
days, on average, for mice to achieve this criterion and move to the next training
phase. During the second training phase mice experienced a similar virtual linear
track. During this phase, reward beacons were evenly spaced along the long axis of
the track, as before, but placed pseudo-randomly in one of three pre-defined
positions on the lateral axis (middle, left or right). The aim of this training phase
was to strengthen the association between rewards and virtual beacons, and to train
animals to navigate towards rewarded locations via appropriate rotations on top of
the ball. This training phase also took three days, on average. During the third
training phase mice were introduced into a virtual square arena placed in the
middle of a larger virtual room. The virtual arena in the third training phase had
size 60 × 60 cm or 90 cm × 90 cm for different mice. Mice were trained on a

Fig. 4 Grid cell firing patterns under visual gain decrease. a–d Three grid cells simultaneously recorded in a 60 × 60 cm square box (a), a 60 × 60 cm virtual

square (b) and a probe trial where visual gain was reduced along the x axis (G= 2/3) plotted in visual coordinates (c) and motor coordinates (d), on the

same day, layout as Fig. 3a–d, stretch factor F mapping visual plots to baseline shown in red. e, f Change of grid scales was significantly larger on the

manipulated than un-manipulated axis when plotted in visual coordinates (e; n= 35, paired t-test, t(34)= -6.31, p < 0.001), with a smaller effect when

plotted in motor coordinates (f; n= 35, t(34)= 3.00, p < 0.05). g, h Change of firing field size was significantly larger on the manipulated than un-

manipulated axis when plotted in visual coordinates (g; n= 50 for all fields, t(49)= 3.96, p < 0.001; n= 32 for distal fields, t(31)= 2.11, p < 0.05) and

even more strongly when plotted in motor coordinates (h; n= 50 for all fields, t(49)= 9.49, p < 0.001; n= 32 for distal fields, t(31)= 6.42, p < 0.001).

i, j Distribution of motor influence score (MI) based on firing rate maps (i) or population vectors (j; see Methods or Fig. 1). k Median MI scores of non-

remapped place and grid cell firing patterns (median (red line)= 0.26, interquartile range (IQR, q1−q3, blue box)= 0.58 for place cells, median= 0.63,

IQR= 0.42 for grid cells, Wilcoxon rank sum test, z=−7.83, p < 0.001). l Mean of the median MI scores of simultaneously recorded place cell and grid

cells per trial (0.34 ± 0.05 for place cells, 0.72 ± 0.05 for grid cells, t(15)=−5.66, p < 0.001, average difference of medians: 0.38 ± 0.07). m Median

population vector MI scores between place cell and grid cell firing patterns (median= 0.11, IQR= 0.26 for place cells, median= 0.63, IQR= 0.24 for grid

cells, Wilcoxon rank sum test, z=−5.17, p < 0.001; dashed lines cover q1− 1.5 × IQR to q3+ 1.5 × IQR including all data points)
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‘random foraging’ task, during which visible beacons were placed in the square box
at random locations (at any given time only one beacon was visible), and a ‘fading
beacon’ task, during which animals had to learn to navigate to a fixed location for
invisible rewards (see ref. 21 for details).

Manipulating the gain of visual motion vs physical motion. After the animals
had been trained in the ‘fading beacon’ task, they ran in a 60 × 60 cm VR square
(Supplementary Figure 13) as their baseline environment. A probe session con-
sisted of a 40-min random-foraging baseline trial followed by a 40-min random-
foraging probe trial and a final 20-min real-world (R) trial. In the probe trial, the
ball-movement to visual-movement gain setting on one of the axes was either
double for the gain increase manipulation (gain 'G' = 2; i.e. animals had to run half
of the distance on the ball to move the same distance in the visual VR on the
manipulated axis compared to the baseline trial) or 2/3 for the gain decrease
manipulation (gain 'G' = 2; i.e. animals had to run 1.5× the distance on the ball to
cover the same distance in the visual VR on the manipulated axis compared to the
baseline trial).

The location in virtual environments can be plotted in motor coordinates or
visual coordinates. In baseline trials (where Gain= 1) these locations and the size
of the virtual environment is the same in both coordinates. In probe trials, where
the ball-to-vision gain changed (Gain= 2 or 2/3), environment size is different to
the 60 × 60 cm baseline when measured in motor coordinates (i.e. 30 × 60 cm or
90 × 60 cm) but is the same in visual coordinates. We did not use Gain= 1/2 probe
trials, as large environments—120 cm or more across in motor coordinates—
become impractical in terms of getting good coverage and also produce less stable
grid cell firing patterns near to the centre, presumably reflecting the absence of
local cues and large distance and low parallax of visual cues to location.

Data analysis. Spike sorting was performed offline using an automated clustering
algorithm (KlustaKwik) followed by a manual review and editing step using an
interactive graphical tool (waveform, Daniel Manson, http://d1manson.github.io/
waveform/). After spike sorting, firing rate maps were constructed by binning
animals’ positions into 1.5 × 1.5 cm bins, assigning spikes to each bin, smoothing
both position maps and spike maps separately using a 5 × 5 boxcar filter, and finally
dividing the smoothed spike maps by the smoothed position maps.

In VR probe trials, relative virtual/visual positions were different from relative
physical positions on the ball due to the changing gain between visual movement
and physical movement. Rate maps in a visual coordinate were constructed by
binning animal’s virtual (visual) locations. Then rate maps in a motor coordinate
were reconstructed by linear interpolation of the existing rate maps according to
the applying gain ratio.

Cells were classified as place cells if their spatial information in the baseline trial
exceeded the 99th percentile of a 1000 shuffled distribution of spatial information
scores calculated from rate maps where spike times were randomly offset relative to
position by at least 4 s. Cells were classified as grid cells if their gridness scores in
the baseline trial exceeded the 99th percentile of a shuffled distribution of 1000
gridness scores, following refs. 27,41. For each shuffle, a fixed time offset was added
to all spike times for each cell, with spike times after the end of the trial ‘wrapped’
to the beginning of the trial. Position data was unchanged. In this way, the
temporal dynamics of the spike train were preserved, but the relation of the spikes
to position was uncoupled. Each cell was compared to its own individual shuffled
data. To check that grid-like responses were not generated by visual input from the

hexagonal floor tiles we plotted the scales and phases of grid cell firing patterns
relative to the floor pattern—finding no correspondence (see Supplementary
Figure 14).

Speed-modulated cells were classified from the population of the recorded cells
in baseline trials, following ref. 27. Briefly, the degree of speed modulation for each
cell was characterised by first defining the instantaneous firing rate of the cell as the
number of spikes occurring in each position bin divided by the sampling duration
(0.02 s). Then a linear correlation was computed between the running speeds and
firing rates across all position samples in a trial, and the resulting r-value was taken
to characterise the degree of speed modulation for the cell. To be defined as speed-
modulated, the r-value for a cell had to exceed the 99th percentile of a distribution
of 1000 r-values obtained from spike shuffled data.

Cells in mEC were defined as spatial non-grid cells, using similar criteria to
place cells, if their spatial information in the baseline trial exceeded the 99th
percentile of the shuffled distribution of spatial information and their gridness
scores in the baseline trial did not exceed the 99th percentile of the shuffled gridness
score distribution.

To identify ‘remapping’ as opposed to stretched or offset firing rate maps, we
calculated the spatial correlation between a baseline firing rate map and the best-
matching (stretched and offset) probe rate map (described above). We defined a
remapped cell as having a spatial correlation between the two maps below 0.3. Only
non-remapped place cells and grid cells were included in further analysis, leaving
425 out of 497 place cells and 118 out of 122 grid cells that were quantified as non-
remapping cells. The proportions of place cells remapping between baseline and
probe conditions did not differ between gain increase and gain decrease sessions
(Supplementary Figure 5).

For place cells, we then identified firing fields at 30% peak firing rates, and
considered those cells whose fields covered more than 50% of either probe or
baseline environments as too diffuse for analyses, leaving 275 out of 497 compact
non-remapping place cells for further analysis.

To compare grid scale changes along different axes, we fitted an ellipse
circumscribing the six peaks nearest to the centre on the autocorrelogram of a cell.
The grid was not included in the analysis if the number of nearest peaks was less
than six. We then measured the diameters of the ellipse along manipulated and un-
manipulated axes. The ratios of the diameters in probe trials to those in baseline
trials were calculated based on the autocorrelograms generated in visual
coordinates and motor coordinates.

To determine the ‘motor influence score’ for firing patterns, a set of 20
transformed probe trial firing rate maps were generated via linearly interpolating
firing rate maps plotted in a visual coordinate by stretch factors ranging from 1 to
the applied gain ratio in 20 steps. Correlations between the transformed probe
maps and baseline rate maps were then calculated with offsets of 1.5 cm intervals
along the manipulated axis between the smaller to the larger map, keeping the
largest12. A stretch factor (F) was defined as the factor that produced the largest
spatial correlation. The visual gain G is the ratio distance moved by the viewpoint
in VR divided by the distance moved by the mouse on the ball surface. The ‘motor
influence’ score was defined as MI= (F−1)/(G−1) for the probe trials, so that
MI= 1 if the stretch factor is equal to the visual gain (i.e. F=G) and MI= 0 if the
stretch factor is unity despite non-unity visual gain (F= 1, G ≠ 1).

Motor influence score for population vectors. To determine the ‘motor influence
score’ for population vectors, for each session containing more than one cell, we
computed one population vector. First, we combined all simultaneously recorded

Table 1 Manipulation protocol

Mouse id Implant

typea
Number of grid

firing patterns

recordedb

Number of place

firing patterns

recordedb

Gain increase

(G = 2)c
Gain decrease

(G = 2/3)c
Number of grid

patterns

per sessiond

Number of place

patterns

per sessiondBaseline:

60 × 60 cm

Probe:

30 × 60 cm

Baseline:

60 × 60 cm

Probe:

90 × 60 cm

864 E 2(2) 0 1 0 2.0 0

984 C 0 21(12) 1 1 0 6.0 ± 0

986 E 17(17) 0 1 0 17.0 0

987 CE 29(29) 83(48) 2(1) 1 9.7 ± 2.8 24.0 ± 3.0

1014 CE 7(7) 0 1 1 3.5 ± 0.5 0

1015 CE 3(3) 53(27) 1 1 1.5 ± 0.5 13.5 ± 3.5

1060 CE 6(6) 38(30) 2 1 2.0 ± 0 10.0 ± 0.6

1061 CE 43(42) 178(105) 3 2 8.4 ± 1.6 21.0 ± 2.5

1176 CE 15(12) 124(53) 2 2 3.0 ± 0.7 13.3 ± 0.6

aE: implant in left mEC; C: implant in left CA1; CE: implant in right CA1 and left mEC
bNumbers in brackets indicate compact non-remapping firing patterns
cNumber of whole-day recording sessions for each type of manipulation, environment size given in motor coordinates. Brackets indicate one session without compact non-remapping place firing patterns
dMean ± SEM of number of compact non-remapping place and grid firing patterns analysed per session per animal
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place cells/grid cells in a vector. For each cell, we calculated the spatial correlation
values between the baseline rate map and the transformed probe map with stretch
factors ranging from 1 to the applied gain ratio in 20 steps. Then we calculated the
average spatial correlation values over all cells for each stretch factor, with offsets of
1.5 cm intervals along the manipulated axis between the smaller to the larger map.
The offset and stretch factor for the population vector (Op, Fp) was defined as the
pair with the highest average correlation over cells. The motor influence score for
the population vector was defined as MIp= (Fp−1)/(G−1).

To compare firing field size changes along different axes, we defined firing fields
based on the rate maps of the cells. For each rate map, we first excluded the bins
with firing rates lower than 30% of peak rates. Then firing fields were found by
fitting ellipses around sets of contiguous bins containing firing. Fields which were
smaller than 5% or bigger than 50% of the total area were excluded in further
analysis.

To find matching fields in the probe trial, we calculated the centroid position
C(x,y) for each field in the baseline trial. We then calculated the matching centroid
in a probe trial by shifting the x position of the baseline centroid by the best fitting
stretch factor F. A matching field was defined as a field which included the
matching centroid.

We excluded grid fields near the edge of the environment as they appear to be
occluded by the edges—causing significant changes in field shape between baseline
and probe trials (e.g. circular to semi-circular). Perhaps because they are largely
motor driven, environmental edges simply prevents further sampling of grid field.
By contrast, place fields near to the edge seem to retain their location and shape
(albeit potentially stretched), perhaps because they are largely driven by vision
(and, indeed, the distance to the boundary5). Place fields were processed similarly
to grid fields for ease of comparison (i.e. setting the rate map outside of the field to
zero and excluding place fields near to the edge).

Motor influence score for individual firing fields. To determine the ‘motor
influence score’ for individual firing fields, for each field that we identified with the
method described above, we constructed a new rate map including the field and
zero spikes for the remaining position bins. Then we computed the motor influence
score from the rate map constructed for that field.

Ethical compliance. All procedures were performed in accordance with UK Home
Office project license 70/8636 to F.C.

Data availability
Data are available on Open Science Framework, https://osf.io/uk68w/, with descriptions

of the variables, and MatLab scripts available on request.
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