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Abstract

Face recognition systems are extremely vulnerable to

morphing attacks, in which a morphed facial reference im-

age can be successfully verified as two or more distinct

identities. In this paper, we propose a morph attack detec-

tion algorithm that leverages an undecimated 2D Discrete

Wavelet Transform (DWT) for identifying morphed face im-

ages. The core of our framework is that artifacts resulting

from the morphing process that are not discernible in the

image domain can be more easily identified in the spatial

frequency domain. A discriminative wavelet sub-band can

accentuate the disparity between a real and a morphed im-

age. To this end, multi-level DWT is applied to all images,

yielding 48 mid and high-frequency sub-bands each. The

entropy distributions for each sub-band are calculated sep-

arately for both bona fide and morph images. For some of

the sub-bands, there is a marked difference between the en-

tropy of the sub-band in a bona fide image and the identical

sub-band’s entropy in a morphed image. Consequently, we

employ Kullback-Liebler Divergence (KLD) to exploit these

differences and isolate the sub-bands that are the most dis-

criminative. We measure how discriminative a sub-band

is by its KLD value and the 22 sub-bands with the high-

est KLD values are chosen for network training. Then, we

train a deep Siamese neural network using these 22 selected

sub-bands for differential morph attack detection. We ex-

amine the efficacy of discriminative wavelet sub-bands for

morph attack detection and show that a deep neural net-

work trained on these sub-bands can accurately identify

morph imagery.

1. Introduction

Face recognition systems are increasingly replacing hu-

man inspectors in border control and other security appli-

cations. Face capture is non-invasive, can be performed at

a distance, and benefits from a relatively high social accep-

tance. Furthermore, face recognition systems also have a
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natural safeguard: if the algorithm triggers a false alarm,

a human expert on site can easily perform the verification.

For these reasons, the International Civil Aviation Organi-

zation (ICAO) has mandated the inclusion of a facial ref-

erence image in all passports worldwide [16]. Still, all the

characteristics that make face recognition systems appeal-

ing also make them vulnerable. The mass adoption of au-

tomatic biometric systems for border control has exposed

the inability of these systems to reliably detect a falsified

image in a passport, particularly a morphed image, which

has been identified as a serious threat. A morph attack is

when a single morphed face image can be positively ver-

ified as two or more distinct identities [12]. This type of

attack requires no complex forgery of passport technology,

but rather a simple manipulation of the passport photo at

time of application. Many morphing applications are easily

and freely accessible and have no knowledge barrier [25]. It

follows that a criminal attacker, who otherwise cannot travel

freely, could obtain a legitimate travel document by morph-

ing his face with that of an accomplice with similar features,

resulting in existing face recognition systems verifying the

morph image as either of the two individuals.

Morphed images are not visually perceptible to the hu-

man eye, which makes them especially difficult to detect.

As characteristics of both subjects are taken into account

when morphing an image, face recognition systems are eas-

ily deceived and, as such, the false acceptance rate is very

high. In addition, these systems are designed to tolerate

a large intra-class variance to account for the significant

changes in facial appearance that occur in the 5 to 10-year

life cycle of a passport. Many commercial off-the-shelf

(COTS) systems have repeatedly failed to detect morphed

images [34]. Similarly, studies also show human recogniz-

ers are unable to correctly differentiate between a morphed

image and an authentic one [34] [30] [5]. Even after instruc-

tion on how to detect a morphed image, human recognizers

still perform worse than face recognition algorithms [24]

[18].

In this paper, we propose a differential morph attack

detection algorithm using an undecimated 2D Discrete

Wavelet Transform (DWT). By decomposing an image to



Figure 1. Network architecture. Image pairs are decomposed into wavelet sub-bands, only selecting the discriminative wavelet sub-bands

for network training. The selected sub-bands are then sent to the Inception ResNET v1, where contrastive loss is applied during training.

From the feature embedding representation, verification is performed by computing the L2 distance between the feature vectors and a

decision score is produced.

wavelet sub-bands, we can identify the morph artifacts that

are hidden in the image domain more clearly in the spa-

tial frequency domain. Our analysis of wavelet sub-bands

demonstrates that specific high-frequency components are

more discriminative for morph attack detection. To this

end, multi-level DWT is applied to the images, yielding

48 mid- and high-frequency sub-bands each and discard-

ing the low-frequency bands altogether. To isolate the most

informative sub-bands, we employ Kullback-Liebler Diver-

gence (KLD) [19] on the sub-band entropy distributions.

The higher the KLD value, the more discriminative the sub-

band is for morph detection. We then use the selected infor-

mative sub-bands to train a deep Siamese network for the

differential morph attack detection scenario. The Siamese

network takes bona fide and morph pairs as input and yields

a confidence score on the likelihood of the pairs being from

the same person as shown in Figure 1. Siamese networks are

ideal for this scheme as they are primarily employed in tasks

that require finding similarities between two inputs. We

examine the usefulness of wavelet sub-bands for differen-

tial morph attack detection and show a deep neural network

trained on these sub-bands can accurately identify morph

imagery. The experiments are conducted on three different

morph image datasets: VISAPP [23], MorGAN [8] [9], and

LMA [8]. Additionally, cross-dataset performance is evalu-

ated on AMSL [27].

The paper is organized as follows: we briefly summarize

the related works in Section 2, explain the methodology in

the Section 3, and discuss our experiments and subsequent

results in Section 4. Finally, conclusions are presented in

Section 5.

2. Related Work

The vulnerability of face recognition systems to morph

attacks was first introduced by [12]. Many morph detection

algorithms have been proposed since then for both single

(no reference) and differential morph attack detection sce-

narios. Single (no reference) morph attack detection algo-

rithms rely only on the potential morphed image to make

their classification. Conversely, differential morph attack

detection algorithms compare the potential morphed image

with an additional trusted image, typically a live capture at

border security. As such, differential morph attack detec-

tion algorithms have more information at their disposal to

make their classification and, therefore, generally perform

better than single morph detection algorithms [37].

With respect to single morph attack detection, many clas-

sical hand-crafted feature extraction techniques have been

explored. The most well-performing of these general image

descriptors is Binarized Statistical Image Features (BSIF)

[17], in which extracted BSIF features were classified us-

ing a Support Vector Machine (SVM) [31]. However, deep

learning methods consistently perform better than these

general feature extraction techniques [40] [48] [32]. In

[32], complementary features from pre-trained VGG-19 and

AlexNet models are concatenated and then used to train a

Probabilistic Collaborative Representation-based Classifier

(ProCRC). The authors of [36] employ a multi-algorithm

fusion approach by extracting feature vectors using BSIF,

LBP [20], SIFT [22], SURF [4] and HOG with additional

deep feature embeddings from OpenFace DNN [3] used as

the last feature vector. These feature vectors are then used

to train separate SVMs, applying score-level fusion at the



end to obtain the final decision score. Photo Response Non-

Uniformity (PRNU) spectral analysis has also been pro-

posed to analyze the alterations caused by morphing fea-

tures [35]. In [26], the authors design a face morphing de-

tector by combining spatial and frequency feature descrip-

tors from an image. Fuzzy LBP in color channels of HSV

and YCbCR color spaces are investigated in [33]. Addition-

ally, studying the residual noise computed on color chan-

nels using deep CNN-based denoising has also been pre-

sented for reliable face morphing detection [45] [46]. This

paper aggregates several denoised instances of an image in

the wavelet domain.

There are a few papers that also address differential

morph attack detection. Of these, reverting of a face morph

or face demorphing has provided some encouraging results

[13] [14]. In simplistic terms, the demorphing algorithm

subtracts the potential morph image from the trusted image.

The difference image is then compared to the trusted im-

age and a low similarity score signifies a morphed image.

Face demorphing has also been approached using a GAN

framework to restore an accomplice’s image [29]. Classi-

cal feature extraction methods have also been applied to the

differential scenario by taking the difference of the feature

vectors of the images being compared. This difference vec-

tor along with the original feature vector for the potential

morph is then used to train a difference SVM and a feature

SVM, respectively. This method is explored in [37], using

LBP, BSIF, SIFT, SURF, and HOG descriptors. Scherhag et

al. [38] uses deep face representations from feature embed-

dings extracted from ArcFace [10] to detect a morph attack.

The authors also emphasized the need for high variance and

trained their network on a morph database constructed using

multiple different morph generation techniques. Disentan-

glement of appearance and landmarks is another method re-

cently proposed for differential morph detection [42]. The

use of Siamese networks for differential morph image de-

tection has also been explored [43], but only in the image

domain.

Because of the lack of large, publicly available morph

database, many morph detection algorithms train on small

morph datasets, usually created in house. However, re-

searchers can submit their morph detection algorithms to

the NIST FRVT morph detection test [28] for objective

evaluation. Most of the algorithms submitted to NIST ex-

hibit less than ideal performance on almost all tested morph

datasets, which vary in quality and method. The deep learn-

ing method in [38] outperforms the other models in the

NIST test, most likely due to the training protocol employ-

ing cross-database training.

3. Method

Our morph attack detection framework centers around

applying undecimated 2D wavelet decomposition and train-

Figure 2. Discriminative wavelet sub-band selection algorithm.

Bona fide (left) and morphed (right) images are decomposed into

48 wavelet sub-bands each. The entropy distributions and corre-

sponding KL divergence values are found. For a given sub-band,

the dissimilarity between the bona fide and morph entropy distri-

bution represents how informative the sub-band is for morph de-

tection. KL divergence is applied to isolate the discriminative sub-

bands. A Siamese network is trained with the selected informative

sub-bands.

ing a Siamese deep neural network to classify morphs based

on the most discriminative wavelet sub-bands. Because the

mrophing process can involuntarily introduce artifacts in

the final morph image, the proposed method aims to isolate

these artifacts in the wavelet domain and effectively utilize

them for morph detection. A close study of the wavelet

sub-bands shows that most morphing artifacts reside in the

high frequency spectrum. As such, we do not consider the

Low Low (LL) sub-band for decomposition and drop the LL

sub-band completely after the first level of wavelet decom-

position. Instead, we decompose only the Low High (LH),

High Low (HL) and High High (HH) sub-bands down to

the third level. After three levels of uniform decomposition,

48 sub-bands are obtained per image. We determine the

most optimal sub-bands for network training using Shan-

non entropy [41] and KL divergence [19]. After instituting

a threshold over the KLD values of the 48 sub-bands, we

obtain 22 sub-bands with the highest KLD values. Figure 3

displays the sub-bands that are selected for network training

and their location in the wavelet decomposition. A final set

of 22 informative sub-bands is then used to train a Siamese



Figure 3. Selected sub-bands. The selected sub-bands are shown

with regards to their location in wavelet decomposition. Most of

the informative sub-bands chosen by KL divergence are those that

have been filtered with the HH filter.

deep neural network, consisting of the Inception ResNET

v1 architecture as the base network.

3.1. 2D Discrete Wavelet Transform

A 2D Wavelet transform decomposes an image in the fre-

quency domain, essentially capturing different frequencies

at different resolutions. This means that wavelet transform

allows us to separately examine the approximation and de-

tail data in an image. Particularly for morph detection, we

can pinpoint the sub-bands where the morph artifacts ap-

pear and discard the sub-bands that are not informative for

our problem.

Wavelet decomposition occurs by applying the low-pass

and high-pass filters both vertically and horizontally simul-

taneously on a given image. After one level of decompo-

sition, the LL, LH, HL, and HH sub-bands are obtained.

We can continue decomposing the image further by filter-

ing each sub-band separately. In our framework, we adopt

undecimated wavelet decomposition, which maintains the

resolution of the image with each decomposition, and de-

compose the LH, HL, and HH sub-bands specifically down

to the third level. Our chosen naming convention for the

sub-bands is such that each sub-band is labeled LH HL HH,

where LH is the sub-band after the first decomposition, HL

is the sub-band after the second decomposition, and HH is

the sub-band after the third level of decomposition. As mor-

phed images are, in essence, approximations of the original,

our research indicates that the LL sub-band is unhelpful for

morph detection.

3.2. Subband Selection using KL Divergence

Training on all 48 sub-bands does not isolate which sub-

bands truly contribute to the classification result. Conse-

quently, we employ Shannon entropy and Kullback-Liebler

divergence to identify the optimal sub-bands for morph at-

tack detection. Shannon entropy, in particular, is used to

measure the embedded information in each sub-band. Fig-

ure 2 illustrates the wavelet sub-band selection algorithm.

For each of the three datasets, Shannon entropy and the en-

tropy distributions are computed for all 48 sub-bands. Since

we are interested in the comparison of bona fide and mor-

phed images, we calculate the entropy distributions for all

bona fide and morphed images in a dataset separately. Then,

KL divergence (relative entropy) is calculated between the

bona fide entropy distribution and the morph entropy distri-

bution for each sub-band.

The method for finding the KLD values is as follows: af-

ter the entropy distributions of each sub-band are found, we

find the histograms of entropy of all 48 sub-bands for both

morphed and bona fide images. Accordingly, 96 normal

distributions (48 bona fide and 48 morphed) are estimated

using these histograms. f̂bi represents the estimated bona

fide normal distribution for the ith sub-band, and similarly,

f̂mi
represents the estimated morph normal distribution for

the ith sub-band. Dissimilarity of the two probability dis-

tribution functions, namely (f̂bi , f̂mi
) is calculated for all

48 sub-bands and the KL divergence is computed for each

relative entropy distribution.

The KLD values vary by dataset as each dataset is cre-

ated using a different morphing technique. Therefore, we

focus on selecting the sub-bands that are discriminative

across different morphing techniques. As such, the KL di-

vergence values of each dataset are normalized by remov-

ing the mean. Then, the normalized values are averaged

over the KLD values of each sub-band for each of the three

datasets. Figure 4 presents the distribution of the normal-

ized KL divergence values for the three morphed datasets

and their average values. The higher the normalized KLD

value for a single sub-band, the more informative the sub-

band is for morph classification. After sorting the nor-

malized KLD values from highest to lowest, we institute

a threshold for selecting the sub-bands for training. Ac-

cording to the method described in [2], the optimal number

of sub-bands is found to be 22. Thus, our final network

is trained with 22 input channels, consisting of the top-22

most discriminative sub-bands for morph detection.

3.3. Siamese Network

A Siamese neural network [6] is the architecture used

to train with the wavelet sub-bands. A Siamese network

consists of two identical sub-networks which share weights.



Figure 4. Normalized KL divergence values in the sub-bands 0 to 48 for all three morphing techniques: LMA (orange), MorGAN (blue),

and VISAPP (green). The averaged KL divergence value is represented in red.

Siamese networks are ideal for morph attack detection as

they are primarily designed to find similarities between two

inputs. Contrastive loss [15] is the loss function utilized for

training the Siamese network. Contrastive loss is a distance-

based loss function which attempts to bring similar images

closer together in a common latent space. At the same time,

the loss function distances the dissimilar ones even more.

Essentially, contrastive loss seeks to emphasize the similar-

ity between samples of the same class and exaggerate the

differences between images of different classes. The dis-

tance is found from the feature embeddings of the input pair

produced by the Siamese network. The margin is the dis-

tance threshold that regulates the extent to which pairs are

separated. The equation for calculating contrastive loss is

as follows:

Lc = (1−yg)D(I1, I2)
2+yg max(0,m−D(I1, I2))

2, (1)

where I1 and I2 are the input face images, m is the margin

or distance threshold to control the separation and yg is the

ground truth label for a given pair of training images and

D(I1, I2) is the L2 distance between the feature vectors:

D(I1, I2) = ||φ(I1)− φ(I2)||2. (2)

Here, φ(.) represents a non-linear deep network mapping

image into a vector representation in the embedding space.

According to the loss function defined above, yg is 0 for

genuine image pairs and yg is 1 for imposter (morph) pairs.

To streamline training, a Siamese Inception ResNET v1

architecture [44] is adopted, using weights pre-trained on

the VGGFace2 dataset [7]. The network is then re-trained

with the morphing datasets for the differential Siamese im-

plementation. The model is optimized by enforcing con-

trastive loss on the embedding space representations of

the genuine and imposter morph samples. The pre-trained

Siamese network is then additionally fine-tuned using the

training portion of each morph database. The feature em-

beddings are taken from the last fully connected layer and

the L2 distance between the two embeddings is calculated

for verification.

4. Experiments

4.1. Datasets

We train our network on three different morph datasets

that apply three different morphing techniques: splicing,

GAN generation, and landmark manipulation to investi-

gate how our model generalizes. The two morph image

databases used in this experiment are VISAPP [23] and

MorGAN [8] [9]. VISAPP is a collection of complete

and splicing morphs generated using the Utrecht FCVP

database [1]. The images are 900 × 1200 in size. This

dataset is generated by warping and alpha-blending two face

images together [49] and then splicing the resulting face

into one of the faces of the original contributing images.

This preserves the background and hairline of one of the

contributing faces, which helps avoid blurry artifacts and

ghosting that typically occurs in these regions and makes

morphs easier to spot [23]. For our network, we only use

a subset of 183 high quality splicing morphs that is con-

structed by selecting the morph images that have no recog-

nizable artifacts (VISAPP-Splicing-Selected dataset) along

with 131 genuine neutral and smiling images for a total of

314 images.

The MorGAN database is generated from a selection of

full frontal face images manually chosen from the CelebA

dataset [21]. It consists of a custom morph image gener-

ation pipeline (MorGAN) [8], created by the authors that

uses a GAN, inspired by the learned inference model [11],

to generate morphs. The encoder in the GAN transforms

the images into a latent space and when two latent spaces

related to two different subjects are combined, a morphed

image is synthesized. The database consists of 1,500 bona

fide reference images, 1,500 bona fide probe images and

1,000 MorGAN morphs of size 64 × 64 pixels. To com-

pare their GAN morphs, the authors also generate 1,000

LMA (landmark manipulation) morphs [25]. The VISAPP



Table 1. Performance of the proposed framework and baselines. With the exception of RGB-66 testing on MorGAN, BW-22 exhibits

superior performance.

Testing Method
APCER@BPCER BPCER@APCER D-EER

5% 10% 5% 10% %

MorGAN

BW images 7.88 6.17 13.1 3.1 5.57

RGB images 4.5 3.3 3.22 1.74 4.17

LL-removed BW images 5.5 3.14 4.5 3.28 5.53

LL-removed RGB images 3.66 2.98 1.58 0.79 3.55

BW-22 wavelets 3.71 1.85 3.06 0.26 3.89

RGB-66 wavelets 0.86 0.0 0.37 0.37 1.62

LMA

BW images 22.7 14.3 36.5 15.1 11.6

RGB images 11.1 6.68 12.2 5.62 8.8

LL-removed BW images 25.9 14.4 19.0 11.5 11.5

LL-removed RGB images 15.75 7.4 12 6.48 8.06

BW-22 wavelets 4.95 2.67 4.38 1.46 4.52

RGB-66 wavelets 10.53 5.39 9.44 4.72 7.36

VISAPP

BW images 5.97 0.0 0.0 0.0 3.17

RGB images 1.32 0.08 0.0 0.0 0.0

LL-removed BW images 1.57 0.08 5.63 4.22 0.0

LL-removed RGB images 2.98 0.8 0.0 0.0 3.25

BW-22 wavelets 0.0 0.0 0.0 0.0 0.0

RGB-66 wavelets 0.0 0.0 0.0 0.0 0.0

UNIVERSAL

BW images 15.0 8.95 14.4 7.5 8.53

RGB images 6.65 4.01 5.22 2.5 5.63

LL-removed BW images 19.1 6.74 10.872 7.78 8.45

LL-removed RGB images 10.9 3.53 5.52 4.56 5.52

BW-22 wavelets 3.25 1.69 3.01 0.65 3.93

RGB-66 wavelets 6.4 2.67 5.15 2.57 5.15

and MorGAN images differ significantly in terms of qual-

ity and resolution. However, varying quality and resolution

during training can result in a network that is more robust

and performs better on different morphing techniques, par-

ticularly when the bona fide images are of equal resolution

to the morphed images. An additional publicly available

dataset, the Advanced Multimedia Security Lab (AMSL)

Face Morph Image dataset [27], is used as an “unseen”’

dataset to measure cross database performance. This dataset

consists of approximately 102 bona fide images and 2,175

morph images, created using the Combined Morph tool, as

described in [27]. This dataset is used for testing purposes

only.

All images are preprocessed according to the FaceNet ar-

chitecture [39]: face detection and alignment is performed

via MTCNN [50]. All images are resized to 160× 160 pix-

els before uniform wavelet decomposition is applied. Ac-

cording to the KLD sub-band selection algorithm, the top

22 wavelet sub-bands are selected for each image to pre-

pare for network training. As the Siamese network expects

pairs of input, the morph wavelet bands are paired off into

genuine face pairs and imposter face pairs, where a genuine

pair consists of two trusted 22 selected wavelet sub-bands

and an imposter pair consists of a trusted image’s wavelet

sub-bands and a corresponding morph image’s wavelet sub-

bands. 50% of the subjects are considered for training while

the other 50% are used to evaluate the performance of the

network. In addition, 15% of the test set is selected dur-

ing model optimization as the validation set. The training

data is further augmented with horizontal flips to increase

the training set and improve generalization. By design, the

train-test split is disjoint, with no overlapping morphs or

contributing bona fides to morphs. This enables us to attain

an accurate representation of performance. Batch size of 64

pairs of 22 selected wavelet sub-bands of size 22×160×160
is used for training the model. The batch generator also

compensates for class imbalance, ensuring that the network

sees an equal number of morph pairs and genuine pairs ev-

ery iteration.

4.2. Network Setup and Metrics

We fine-tune an Inception ResNET v1, already pre-

trained on VGGFace2, on the 22 selected sub-bands. We

train the network using the training portions of all three

datasets, calling it the “universal” dataset. The margin m

of contrastive loss is set to 1. Adam is the chosen optimizer

and the initial learning rate is 0.0001. The performance is

monitored by the validation loss and whenever the valida-

tion loss achieves a new low, the best weights are saved.

Every time the validation loss plateaus, the best weights are

re-loaded, the learning rate is divided by 10, and training

continues from there down to 1e-07. After that, early stop-

ping is implemented if the loss still does not improve after

35 epochs. The network is implemented using PyTorch and

training is accelerated with the use of three 12 GB Titan

X (Pascal) GPUs. We train the network on the universal

dataset for 150 epochs. All experimental results in the pa-

per are reported for the final iteration.



Figure 5. DET curves for all protocols, tested on the universal test

set. The universal test set consists of the testing portions of all

three datasets and serves as an indicator for overall network per-

formance.

The standard quantitative measures for morph attacks

are used to measure performance: APCER and BPCER.

Attack Presentation Classification Error Rate (APCER) is

the percentage of morphed samples incorrectly classified as

bona fide. Conversely, the Bona-fide Presentation Classifi-

cation Error Rate (BPCER) is the percentage of bona fide

images classified as morphs. D-EER stands for Detection

Equal Error Rate at which APCER equals BPCER. The

APCER5 is the APCER rate when BPCER = 5% and sim-

ilarly APCER10 is the APCER rate when BPCER is 10%.

In real world applications, the BPCER rate is the measure

by which individuals are inconvenienced with a false alarm.

We plot these rates in a Detection Error Tradeoff (DET)

graph.

4.3. Results

We assess the performance of our morph detector using

the test data of each individual dataset as well as the univer-

sal test set (which consists of all three individual test sets).

The universal test set performs essentially as an “average”

of how the universally trained network performs on each of

the individual databases. We feel it is important to capture

how the network learns each morphing technique separately

and generally. As is standard for wavelet transform, the im-

ages are converted to grayscale before wavelet decompo-

sition is applied. The 22 most discriminative sub-bands are

selected for training according to the procedure described in

Section 3.2. These grayscale 22 selected sub-bands, called

BW-22, are then used to train a Siamese network for morph

detection.

To determine how wavelets perform for RGB images, we

also apply wavelet decomposition separately to each chan-

nel of an RGB image following the methodology described

in Section 3, yielding 144 wavelet sub-bands (48 sub-bands

per channel). 22 sub-bands are chosen for each channel,

totaling 66 sub-bands each (RGB-66). The 22 sub-bands

selected from each channel are the same as BW-22 to fa-

cilitate comparison. The training protocol is identical for

both BW-22 and RGB-66, except for the batch size. Be-

cause RGB-66 consists of 66 channels of 160 × 160, the

batch size is halved to 32 in our configuration to conserve

memory.

Accordingly, we compare the performance of our

wavelet Siamese networks, BW-22 and RGB-66, with other

frameworks to validate the efficacy of our method. We ap-

ply each baseline to both color and grayscale images to

gauge how color information plays a role in morph de-

tection. The first baseline is RGB images (referred to as

RGB) to compare how the original images’ performance

varies from that in the wavelet domain. We also train a

Siamese network for the grayscale (referred to as BW) im-

ages to act as a baseline for BW-22 before wavelet decom-

position is applied. Additionally, as the LL sub-band has

shown to be unhelpful for morph detection, we have only

decomposed the mid- and high-frequency information for

our wavelet Siamese network. To mirror the removal of

the approximation data in the image domain, we decom-

pose the images into wavelet sub-bands. Then, we remove

the LL-band in the wavelet domain, and reconstruct the im-

age using Inverse Wavelet Transform. We do this for both

RGB images and grayscale images in our dataset, designat-

ing these baselines as LL-removed RGB and LL-removed

BW respectively. Theoretically, the LL-removed RGB and

LL-removed BW baselines should be approximately equiv-

alent to the original 144 sub-bands of RGB-66 and the 48

sub-bands of BW-22 before sub-band selection. We train a

separate Siamese network using the same training protocol

for each of the above scenarios: RGB, BW, LL-removed

RGB, LL-removed BW, RGB-66, and BW-22.

All networks are trained using the combined portions of

the three datasets: VISAPP, LMA, and MorGAN to obtain

a robust network that generalizes to many different mor-

phing techniques. The performance of each network can

be observed in Table 1. From Table 1, it is clear VIS-

APP performs consistently, regardless of framework. This

is likely due to the small size of the VISAPP dataset that the

models easily learn VISAPP’s morphing technique. Gen-

erally speaking, the networks trained on RGB information

perform better. This implies that there is in fact informa-

tion in the color channels that is useful for morph detec-

tion. Notably, grayscale images exhibit poor performance

all around. Table 1 also shows how difficult LMA morphs

are to detect in comparison to MorGAN and VISAPP. This

is in line with research that GAN-generated morphs are eas-

ier to detect than landmark manipulation morphs [47]. BW-

22 performs significantly better on LMA morphs than the



Figure 6. DET curves for all protocols, tested on the MorGAN test

set. RGB-66 performs the best for this morphing technique.

other models. From Figure 6, it should be noted RGB-66

performs extremely well on the MorGAN dataset. This sug-

gests that the MorGAN morphing technique contains more

color information than LMA and VISAPP, which were cre-

ating using landmark-based techniques. MorGAN, on the

other hand, was created using a GAN architecture, meaning

it is essentially a synthesized image created using the two

contributing images. Still, while RGB-66 performs unusu-

ally well for the MorGAN test set, BW-22 performs better

on the LMA dataset (see Figure 7) as well as overall perfor-

mance as can be seen in Figure 5, which shows the perfor-

mance of the networks on the ’universal’ dataset. From the

results, we can derive that color information plays a smaller

role in the classification of morphs in the wavelet domain.

Figure 5 shows the DET curves for all tested networks. It

is clear from Figure 5 that the wavelet Siamese networks,

particularly BW-22, exhibit superior performance.

Additionally, in Table 2, we compare the performance of

our wavelet-based morph detector with other classical fea-

ture extraction techniques that have been used for morph de-

tection, namely BSIF [17], LBP [20], SIFT [22], and SURF

[4], each combined with an SVM. Each method is trained

using the universal dataset and evaluated on the test sets of

the individual datasets. We also measure the baseline per-

formance of FaceNet [39] on all the morph test sets. To

evaluate cross-database performance, AMSL dataset is used

for testing only.

5. Conclusion

In this paper, we introduced a framework to detect mor-

phed face images using undecimated DWT. The core of our

method was the ability to identify morph artifacts in the

wavelet domain and to leverage the most informative sub-

bands for differential morph detection. To select the optimal

Figure 7. DET curves for all protocols, tested on the LMA test set.

Table 2. Performance Comparison of Proposed Framework. All

algorithms trained with the Universal dataset.

Testing Method
APCER@BPCER D-EER

5% 10% %

MorGAN

SURF 86.8 70.11 46.1

SIFT 57.6 47.7 27.3

LBP 90.13 82.2 41.6

BSIF 86.8 71.6 31.7

FaceNet 36.80 31.15 22.25

BW-22 wavelets 0.86 0.0 1.62

LMA

SURF 81.1 63.69 51.1

SIFT 63.2 55.8 36.7

LBP 91.1 83.4 40.5

BSIF 86.5 75.0 36.4

FaceNet 43.70 40.90 30.35

BW-22 wavelets 4.95 2.67 4.52

VISAPP

SURF 94.1 90.3 47.8

SIFT 91.1 84.7 52.2

LBP 31.1 19.5 16.0

BSIF 30.6 22.73 16.4

FaceNet 25.0 15.8 15.5

BW-22 wavelets 0.0 0.0 0.0

AMSL

SURF 96.7 91.3 53.0

SIFT 94.65 84.9 38.0

LBP 91.0 72.9 43.0

BSIF 91.0 82.0 41.3

FaceNet 38.6 31.35 19.86

BW-22 wavelets 33.78 23.61 16.4

sub-bands, a data driven approach based on KL divergence

is employed. The 22 selected sub-bands were then used

to train a deep Siamese network successfully. Our frame-

work achieves an EER of 3.93% on the universal test set,

significantly better than the other baselines. Furthermore,

the framework performs well on an unseen morph dataset,

AMSL, that uses a different morphing technique than our

training set, achieving an EER of 16.4%. This shows how

wavelet decomposition with selective sub-bands is useful in

the morph problem domain.
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