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ABSTRACT 

 

Purpose: Using a novel technique of high-density surface electromyography (HDEMG) 

decomposition and motor unit (MU) tracking, we compared changes in the properties of vastus 

medialis (VM) and vastus lateralis (VL) MUs following endurance (END) and high-intensity 

interval training (HIIT). Methods: Sixteen men were assigned to an END or HIIT group (n=8 

each) and performed six training sessions over 14 days. Each session consisted of 8-12×60s 

intervals at 100% peak power output (PPO) separated by 75s of recovery (HIIT) or 90-120min 

continuous cycling at ~65% VO2peak (END). Pre and post intervention, participants performed: 1) 

incremental cycling to determine VO2peak and PPO and 2) maximal (MVC), submaximal (10, 30, 

50 and 70% MVC) and sustained (until task failure at 30% MVC) isometric knee extensions 

while HDEMG signals were recorded from the VM and VL. EMG signals were decomposed 

(submaximal contractions) into individual MUs by convolutive blind source separation. Finally, 

MUs were tracked across sessions by semi-blind source separation. Results: After training, END 

and HIIT improved VO2peak similarly (by 5.0 and 6.7%, respectively). The HIIT group showed 

enhanced maximal knee extension torque by ~7% (p=0.02) and was accompanied by an increase 

in discharge rate for high-threshold MUs (≥50% knee extension MVC) (p<0.05). In contrast, the 

END group increased their time to task failure by ~17%, but showed no change in MU discharge 

rates (p>0.05). Conclusions: HIIT and END induce different adjustments in MU discharge rate 

despite similar improvements in cardiopulmonary fitness. Moreover, the changes induced by 

HIIT are specific for high-threshold motor units. For the first time we show that HIIT and END 

induce specific neuromuscular adaptations, possibly related to differences in exercise load 

intensity and training volume. Key Words: High-density surface electromyography, motor unit 
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decomposition, motor unit tracking, motor unit discharge rate, motor unit adaptation, 

neuromuscular adaptation. 
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INTRODUCTION 

High intensity interval training (HIIT) describes physical exercise that is characterized by 

brief, intermittent bursts of vigorous physical activity, interspersed by periods of rest or low-

intensity exercise (15). Subjects perform short periods of training (from 30 seconds to 1 minute) 

at intensities from 90% of maximum heart rate and above, interspersed with a passive or active 

rest, achieving a maximum exercise volume of 10 to 20 min/session (30-60 min/week). In 

comparison to traditional high-volume endurance training (END), HIIT induces similar changes 

in a range of physiological (e.g., enhanced aerobic metabolism), performance (e.g., faster 

completion of a certain amount of work), and health-related markers (e.g., increased flow-

mediated dilation) (4, 16, 22, 31), but with a much lower time commitment. Therefore, HIIT is 

typically offered as an alternative to END. However, no study has evaluated the neuromuscular 

adaptations induced by HIIT. Since neuromuscular adaptations to training are highly specific and 

vary according to the training regime (35), differences in neuromuscular adaptations to HIIT and 

END might be expected since the training protocols differ in load intensity and exercise volume.  

Recordings of motor units provide a window to the central nervous system, allowing 

analysis of the way in which the central nervous system controls muscle force (13). In one of the 

few studies assessing motor unit adaptations following training, Vila-Cha et al. (35) observed 

different changes in low-threshold motor unit discharge rates (average discharge rate and 

discharge rate variability) between END and strength training. These findings suggested a 

specific adaptation in motor unit discharge rate according to the training regime applied. 

However, these differences could not be assessed for high threshold motor units due to previous 

technical limitations. Indeed, there is a lack of knowledge about changes in discharge rate of 

high threshold motor units (9), since classic methods for electromyography (EMG) signal 
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decomposition are limited to the identification of a few motor units concurrently, at low forces 

(8). Nonetheless, high-density surface electromyography (HDEMG) has recently emerged as an 

alternative to overcome this limitation. The availability of many (tens) observation sites allows 

for automatic methods of source separation to reliably identify a large number of motor units, for 

a wide range of forces (close to the maximum voluntary contraction, MVC, force) (10, 24, 29). 

Moreover, several observation channels can be used to track the same motor units across 

different sessions, therefore allowing longitudinal studies of the same motor units in humans 

over long periods of time (weeks) (25). This achievement has opened new possibilities to study 

the neuromuscular adaptions to training. 

The purpose of the study was to evaluate, for the first time, changes in muscle activity 

and motor unit properties (discharge rate, discharge rate variability and recruitment threshold) of 

synergistic knee extensor muscles, following short-term low-volume HIIT and high-volume 

END training interventions, utilizing a novel technique of HDEMG motor unit tracking. It was 

hypothesized that, despite similar increases in cardiorespiratory fitness parameters (e.g., peak 

oxygen uptake, VO2peak (26)), these two training protocols will induce different changes in motor 

output (maximal strength, rate of torque development, time to task failure) that will be related to 

different adjustments in motor unit discharge rates. Moreover, we hypothesized that these 

adjustments will vary across the motor unit pool, with low-threshold motor units showing 

different changes compared to high threshold motor units, given the differences in load intensity 

and training volume between the two types of training.        
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METHODS 

Participants 

Eighteen healthy men (mean (SD) age: 29 (3) years, height: 178 (6) cm, mass: 79 (9) kg) 

participated. All subjects were physically active and took part in some form of recreational 

exercise at least two to three times per week (e.g. soccer, running, etc.). None of the subjects 

were engaged in regular training for a particular sporting event or competition. Exclusion criteria 

included any neuromuscular disorder as well as any current or previous history of knee pain and 

age < 18 or > 35 years. Participants were asked to avoid any strenuous activity 24 h prior to the 

measurements. Nine subjects were randomly assigned to a HIIT group and the other nine were 

assigned to an END group. A control group was not implemented since we previously reported 

no changes in motor output and vasti muscles motor unit properties, in control subjects measured 

in the space of two weeks (24). The ethics committee of the Universität Potsdam approved the 

study (approval number 26/2015), in accordance with the declaration of Helsinki (2004). All 

participants gave written, informed consent. 

 

Experimental protocol 

The experimental protocol consisted of baseline measurements (i.e., isometric knee 

extension torque, EMG recordings, peak oxygen uptake (VO2peak) determination), a 2-week 

intervention of END or HIIT training and post-training measurements. 

Baseline measurements (Torque and EMG measurements). The participant was seated in 

an isokinetic dynamometer (CON-TREX MJ, PHYSIOMED, Regensdorf, Switzerland), with the 

trunk reclined to 15° in an adjustable chair while the hip and distal thigh were secured to the 

chair. The rotational axis of the dynamometer was aligned with the lateral femoral epicondyle of 
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the dominant leg and the lower leg was secured to the dynamometer lever arm above the lateral 

malleolus. Maximal and submaximal isometric knee extensions were exerted with the knee 

flexed to 90°. After placement of the surface electrodes (as described in Data acquisition below), 

subjects performed three maximal voluntary contractions (MVC) of knee extension each over a 

period of 5 s. These trials were separated by 2 min of rest. The highest MVC value was used as a 

reference for the definition of the submaximal torque levels. Five minutes of rest were provided 

after the MVC measurement. In each of the baseline and post-intervention sessions, the 

submaximal torques were expressed as a percent of the MVC measured during the same session. 

After the MVCs, the participants performed three maximal-ballistic isometric contractions, each 

separated by 30 s of rest. They were encouraged to exert their maximal torque as fast as possible 

in response to a visual signal shown on a computer monitor. Then, after 5 minutes of rest, and 

following a few familiarization trials at low torque levels (10 and 30% MVC), subjects 

performed submaximal isometric knee extension contractions at 10, 30, 50 and 70% MVC in a 

randomized order. The contractions at 10-30% were sustained for 20 s, while the contractions at 

50 and 70% MVC lasted 15 and 10 s respectively. In each trial, the subjects received visual 

feedback of the torque applied by the leg to the dynamometer, which was displayed as a 

trapezoid (5 s ramps with hold-phase durations as specified above). Each contraction level was 

performed twice per session and 2 minutes of rest were allowed after each contraction. The 

randomization order of these contractions was kept the same for each subject in the pre and post 

intervention sessions, to minimize the possible influence of cumulative fatigue in the results of 

the motor unit data when studying the training-induced adaptations. Finally, the subjects 

performed a further isometric knee extension contraction at 30% MVC, maintaining the torque 

level for as long as possible. Time to task failure was defined as the time instant when the subject 
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exerted a force 10% MVC below the target force for an interval of time of 2 s (5).  

Then, 24 h after these measurements, the subjects returned to the laboratory to perform an 

incremental test to exhaustion on an electronically braked cycle ergometer (Lode Excalibur Sport 

V2.0, Groningen, the Netherlands). VO2peak and the submaximal ventilation thresholds were 

determined using a gas analysis system (ZAN 600, Nspire Health, Oberthulba, Germany), which 

was calibrated before each test with known values of oxygen (O2), carbon dioxide (CO2), and 

volume. Following a 3-min warm-up at 30 W, the test began with the workload increasing by 6 

W every 12 s until volitional exhaustion. The revolutions per minute were maintained between 

80 and 90 throughout the incremental test and training sessions. The value used for VO2peak 

corresponded to the highest value achieved over a 30 s collection period. Peak power output was 

defined as the maximal power (W) achieved at the end of the ramp VO2peak cycle-ergometer test. 

Finally, the first ventilatory threshold (VT1) was identified by the ventilatory equivalent method, 

where VT1 corresponded to the power output and VO2 value at which the ventilatory equivalent 

for O2 (VE/VO2) exhibited a systematic increase without a concomitant increase in the 

ventilatory equivalent for CO2 (VE/VCO2) (37). The respiratory compensation point (VT2) was 

identified by using the criterion of an increase in both VE/VO2 and VE/VCO2 and by using the 

first decrease in the end-tidal pressure of CO2 (PETCO2) as a confirmatory indicator (37). 

Training Protocols. The training interventions were performed using two protocols that 

have shown similar improvements in cardio-respiratory fitness (VO2peak) and aerobic capacity, 

despite differences in total training volume and intensity (16, 22). The training protocol 

commenced approximately 72 h after the incremental test and consisted of six training sessions 

over 14 days. Each session was performed on Mondays, Wednesdays, and Fridays. An 

investigator of the study (E.M-V) supervised all training sessions. For the END group, training 
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consisted of 90-120 min of continuous cycling at 65% of VO2peak using a protocol described 

previously (16). The duration of exercise increased from 90 min during sessions 1 and 2 to 105 

min during sessions 3 and 4, and finally to 120 min during sessions 5 and 6. For the HIIT group, 

training consisted of 60 s bouts of high-intensity cycling at 100% peak power output as described 

previously (22). These bouts were interspersed by 75 s of cycling at 30 W for recovery (22). 

Participants completed 8 high-intensity intervals during sessions 1 and 2, 10 intervals during 

sessions 3 and 4, and 12 intervals on the final two sessions. A warm-up period of 3 min at 30 W 

was performed each session prior to training.  

In summary, the HIIT group performed the exercise at an intensity of ~335 W, with a 

total training commitment of 8-12 min per session (18-27 min including recovery). The total 

training commitment for HIIT over the two weeks was 60 min (135 min including recovery), 

reaching a total exercise volume of ~1205 kJ (~1375 kJ including recovery). In contrast, the 

END group performed the exercise at an intensity of ~165 W, with a total training commitment 

of 90-120 min per session. The total training commitment for END over the two weeks was 630 

min, achieving a total exercise volume of ~6250 kJ. 

Post-training measurements. The post-training sessions (torque, EMG recordings and 

incremental test) were identical to the baseline-testing procedures and were performed 

approximately 72 h post training.  

 

Data Acquisition 

EMG signals were acquired from the vastus medialis (VM), vastus lateralis (VL) and 

biceps femoris (BF) muscles during maximal and submaximal isometric contractions as 

described above. For the VM and VL, surface EMG signals were recorded in monopolar 
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derivation with a two-dimensional (2D) adhesive grid (SPES Medica, Salerno, Italy) of 13 × 5 

equally spaced electrodes (each of 1 mm diameter, with an inter-electrode distance of 8 mm), 

with one electrode absent from the upper right corner. The electrode grids were positioned as 

described previously (21, 24). EMG signals were initially recorded during a brief voluntary 

contraction during which a linear non-adhesive electrode array was moved over the skin to detect 

the location of the innervation zone and tendon regions (23). After skin preparation (shaving, 

abrasion and water), the electrode cavities of the grids were filled with conductive paste (SPES 

Medica, Salerno, Italy) and the grids positioned between the proximal and distal tendons of the 

VL and VM muscles with the electrode columns (comprising 13 electrodes) oriented along the 

muscle fibers. Reference electrodes were positioned over the malleoli and patella of the 

dominant leg. Signals from the BF were recorded in bipolar mode with Ag-AgCl electrodes 

(Ambu Neuroline 720, Ballerup, Denmark; conductive area 28 mm
2
) and were positioned 

according to guidelines (2). The location of the electrodes was marked on the skin of the 

participants using a surgical pen (subjects were instructed to re-mark the electrode zone daily). 

Also, the position of the electrodes was further reported on a transparent sheet by using 

anatomical landmarks. These procedures allowed a similar electrode positioning across sessions. 

Torque and EMG signals were sampled at 2048 Hz, converted to digital data by a 12-bit 

analogue to digital converter (EMG-USB 2, 256-channel EMG amplifier, OT Bioelettronica, 

Torino, Italy, 3dB, bandwidth 10-500 Hz).  EMG signals were amplified by a factor of 2000, 

1000, 500, 500 and 500 for the 10, 30, 50, 70 and 100% MVC contractions, respectively. Data 

were stored on a computer hard disk and analyzed in Matlab offline (The Mathworks Inc., 

Natick, Massachusetts, USA). Finally, before decomposition, the 64-monopolar EMG channels 

were re-referenced offline to form 59 bi-polar channels using the difference between the adjacent 
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electrodes in the direction of the muscle fibers.  

 

Signal analysis 

Torque. The torque signal was low-pass filtered offline at 15 Hz. The coefficient of 

variation (CoV) of torque (SD torque/mean torque) was calculated from the stable-torque region 

during the submaximal contractions. Rate of torque development (RTD) was calculated from the 

ballistic contractions as the maximum slope of the torque-time curve (∆torque/∆time) as 

presented previously (35). Briefly, for RTD calculation, the torque signal that was originally 

sampled at 2048 Hz was low pass filtered at 15 Hz and then resampled at 30 Hz, the peak slope 

was detected from the derivative of this torque signal. The onset of torque during the ballistic 

contractions was defined as the time instant when torque exceeded 7.5 Nm (1).  

Interference EMG. The average rectified values (ARV) obtained from submaximal, 

maximal and explosive contractions, were averaged over all channels of the electrode grid to 

increase its repeatability between pre-post intervention trials (14). During the submaximal 

isometric contractions, the ARV was computed from the HDEMG and bipolar (for BF) signals in 

intervals of 1 s. These values were extracted from the stable-torque region of the contractions 

(e.g., hold-phase of 20 seconds at 30% MVC). ARVs of the maximal (MVC) contractions were 

analyzed in a time window of 250 ms centered at the peak EMG activity. During the explosive 

contractions, ARV was calculated in a 50 ms interval centered at the time instant of the maximal 

slope in torque (35). Finally, co-activation was quantified as the average of VM and VL ARV 

divided by the BF ARV (33). 

Motor unit analysis. The EMG signals recorded during the submaximal isometric 

contractions (from 10 to 70% MVC) were decomposed offline with a method that has been 
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extensively validated (29). The signals were decomposed throughout the whole duration of the 

submaximal contractions and the discharge times of the identified motor units were converted in 

binary spike trains (24). The mean discharge rate and discharge rate variability (coefficient of 

variation of the inter-spike-interval, CoVisi, see below for details), were calculated during the 

stable plateau torque region. Recruitment thresholds for each motor unit were defined as the knee 

extension torque (Nm) at the times when the motor unit began discharging action potentials. 

Discharge times that were separated from the next by > 200 ms were excluded from the 

estimation of recruitment thresholds to avoid aligning the thresholds with noise-generated 

discharges. Only motor units with a coefficient of variation for the inter-spike interval (CoVisi) 

<30% which satisfied the constrains described in (29), during the stable torque portion of the 

contraction were considered for further analysis. Finally, discharges that were separated from the 

next by <33.3 ms or >200 ms (30 and 5 Hz, respectively) were excluded from the mean 

discharge rate and CoVisi estimates because these discharges are likely due to decomposition 

errors (24).  

Motor unit tracking. A motor unit tracking procedure was applied using a method that has 

been recently presented (25). The motor unit identification and tracking method is an extension 

of the convolutive blind source separation technique described by Negro et al. (29) and it was 

adapted to extract motor units with multi-channel action potential shapes maximally similar 

across sessions. After the full blind HDEMG decomposition was performed on the baseline 

recording session, we applied a semi-blind separation procedure on the post-training session, 

focusing on finding only the sources that had de-whitened projection vectors (original 

multichannel filters or motor unit action potential profiles) similar to the ones extracted from 

session 1. The normalized cross-correlation between the extended projection vectors was used as 
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a measure of similarity. For each motor unit identified in the pre-intervention trial, we ran the 

semi-blind algorithm on the post-intervention trial until a motor unit with normalized cross-

correlation >0.8 was found. The algorithm maximized the probability to find the matched motor 

units across different trials (25). In this study, we used an extension factor of 16 for the 

decomposition iteration and 50 samples for computing the similarity measures between de-

whitened projection vectors (motor unit action potential profiles). These parameters have been 

validated in (25). 

 

Statistical Analysis 

Before comparisons, all variables were tested for normality using the Shapiro-Wilk test. 

The assumption of sphericity was checked by Mauchley’s test and, if violated, the Greenhouse-

Geisser correction was made to the degrees of freedom. Statistical significance was set at p < 

0.05. Results are expressed as mean and standard deviation (SD) unless stated otherwise.  

The effects of the two training programs on peak torque (MVC), RTD, time to task 

failure, CoV of torque and co-activation, as well as cardiopulmonary fitness parameters (VO2peak, 

peak power output, VT1 and VT2) were assessed with a two-way repeated measures analysis of 

variance (ANOVA) with factors group (END and HIIT) and time (pre and post). Changes in 

ARV parameters during MVC, RTD and the submaximal contractions as well as mean discharge 

rate and CoVisi, were evaluated with three-way repeated measures ANOVA with factors group 

(END and HIIT), time (pre and post) and muscle (VM and VL) at each torque level (10, 30, 50 

and 70% MVC) independently. Pairwise comparisons were made with the Student-Newman-

Keuls post hoc test when ANOVA was significant. A four-way repeated measures ANOVA was 

performed [(factors: group, time, muscle and torque level (10, 30, 50, 70% MVC)] to check 
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whether the recruitment thresholds (knee extension torque at which motor units began 

discharging action potentials) of the identified motor units, at each submaximal MVC level, 

increased with torque and also to evaluate if this parameter changed after the intervention. The 

intra-class correlation coefficient (ICC2,1) was also computed in each of the groups (HIIT and 

END) at all submaximal torque levels, in order to check the consistency of the recruitment 

thresholds from the motor units tracked between pre and post training sessions. Finally, the 

partial eta-squared (ηp²) for ANOVA was used to examine the effect size of changes in all the 

aforementioned parameters after the training intervention. A ηp² less than 0.06 was classified as 

“small”, 0.07-0.14 as “moderate”, and greater than 0.14 as “large” (6). 

 

RESULTS 

The two groups initially consisted of 9 subjects each; however, 1 subject from the END 

group and 1 subject from the HIIT group did not complete the full training protocol and were 

excluded from the analysis. Therefore, results are presented for 8 participants in the END group 

(mean (SD) age: 29 (2) years, height: 177 (6) cm, mass: 77 (8) kg) and 8 participants in the HIIT 

group (mean (SD) age: 29 (3) years, height: 177 (7) cm, mass: 79 (7) kg). No differences were 

observed between groups for age, height and weight (P > 0.51). Moreover, there were no 

differences between the groups for any of the motor output (peak torque, time to task failure, rate 

of torque development and CoV of torque), cardiopulmonary fitness (VO2peak, peak power output 

and submaximal ventilation thresholds) or electrophysiological (surface EMG amplitude, vasti-

BF co-activation, motor unit discharge rate, CoVisi and recruitment threshold) parameters 

assessed during the baseline sessions (prior to training) (P > 0.32 in all cases).  
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Cardiorespiratory fitness 

Table 1 summarizes cardiorespiratory fitness changes assessed pre and post intervention 

for the HIIT and END protocols. Overall, all the variables changed similarly in both groups and 

none of the parameters showed a between-group interaction effect (P > 0.56). VO2peak increased 

after training by 6.7 (4.1)% and 5.0 (7.8)% in HIIT and END group, respectively (main effect for 

time; p=0.001, ηp²= 0.54). Peak power output also increased by 7.4 (3.3)% in HIIT and by 6.3 

(3.0)% in END (main effect for time; p<0.001, ηp²= 0.88). Regarding the submaximal ventilation 

thresholds, HIIT and END training only induced a significant increase of VT2 work intensity 

(W) of 9.1 (8.3)% and 9.0 (8.2)% in HIIT and END, respectively (main effect for time; p<0.001, 

ηp²= 0.58). Further results for the cardiorespiratory fitness parameters and post-hoc tests can be 

found in Table 1. 

 

Motor output 

HIIT and END training induced specific changes in motor performance after the 

intervention (Figure 1). Two weeks of HIIT produced a significant increase in peak torque 

(MVC) of 6.7 (6.6)% that contrasted to the response of END, which showed similar peak torques 

across pre and post testing sessions (interaction: time × group; p=0.01, ηp²= 0.38).  On the 

contrary, END showed a significant increase in time to task failure of 16.9% (14.4) that 

contrasted to the response of HIIT, which showed similar times to task failure across testing 

sessions (interaction: time x group; p=0.01, ηp²= 0.33). Neither HIIT nor END induced any 

significant change in RTD (interaction: time × group; p=0.09, ηp²= 0.087). Finally, CoV of 

torque increased significantly from 2.2 (0.4)% to 2.5 (0.6)% after training for the submaximal 

contractions at 10% MVC in the HIIT group (interaction: time × group; p=0.033, ηp²= 0.28). 
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Conversely, CoV of torque at the other torque levels (30, 50 and 70% MVC) showed no 

significant changes after the intervention for either group (P > 0.25) (see figure, supplemental 

digital content (SDC) 1, CoV of torque for HIIT and END groups across all force levels pre and 

post intervention, http://links.lww.com/MSS/A850).  

 

Surface EMG 

Figure 2 shows the EMG amplitude (ARV) of the VM and VL during submaximal (10, 

30, 50 and 70% MVC), maximal (MVC) and ballistic isometric knee extension contractions for 

each testing session (pre-post). Overall, both vasti muscles showed similar changes of EMG 

amplitude over the training period (interaction: time × muscle; P > 0.15 for all isometric 

contractions). Regarding submaximal contractions (Fig. 2a and 2b), EMG amplitude at 10 and 

30% MVC did not change after the intervention for any training group or muscle (VM, VL) (P > 

0.14). However, the ARV of VM and VL during the 50% MVC contractions increased 

significantly for HIIT [11.4 (7.6)% and 11.3 (5.2)% increase in VM and VL, respectively] but 

not for END (interaction: time × group; P=0.007, ηp²= 0.44). These differences were maintained 

at 70% MVC (interaction: time × group; P=0.02, ηp²= 0.35), where ARV from the HIIT group 

increased by 13.0 (10.9)% and 14.1 (10.6)% in VM and VL, respectively. A similar result was 

observed for ARV during the maximal contractions (Fig. 2c), since VM and VL activity only 

increased in the HIIT group by 17.3 (12.6)% and 14.1 (10.2)%, respectively (interaction: time × 

group; P=0.001, ηp²= 0.55). Neither HIIT nor END training induced any significant change in 

ARV during the ballistic contractions (Fig. 2d) (P > 0.16). Finally, the amount of vasti-BF co-

activation did not differ across sessions in either group (P > 0.50 for all isometric contractions). 
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Motor unit decomposition and tracking  

The total number of decomposed motor units across the different torque levels and 

sessions was between [mean (range)] 134 (116 - 154) and 122 (95 – 141) for VM and VL, 

respectively. An example of the motor unit tracking procedure is reported in Figure 3. Figure 3a 

shows three motor units of the VM muscle that were identified at 70% MVC (upper left corner). 

A de-whitened projection vector (motor unit action potential profile) from motor unit 1 (MU 1 

PRE, blue) was extracted. This vector was then used to find a source that was maximally similar 

after the intervention (MU 1 POST, red). Finally, both projection vectors were visually inspected 

and matched by cross-correlation in order to confirm that the automatic tracking was correct 

(cross correlation between both projected vectors was 0.86, Figure 3a, right). This procedure was 

then repeated for motor units 2 and 3 (not shown in the figure). Figure 3b shows instantaneous 

discharge rates during the stable force part of the isometric contraction at 70% MVC (motor unit 

firings were low-pass filtered at 2 Hz) from the same 3 tracked motor units presented in Figure 

3a PRE (left) and POST (right) HIIT. A clear increase from 19.0 (1.7) to 22.0 (2.1) pulses per 

second (pps) was observed for these units after the intervention (see Motor unit properties 

results). Following this procedure, the number of tracked motor units across pre and post 

intervention testing sessions varied between 60 (46 - 69) and 50 (33 - 74) for VM and VL, 

respectively (across all submaximal force levels, in all 16 subjects). Therefore, 44.8 (39.5 – 

50.9)% and 41.0 (33.7 – 49.7)% of motor units from those identified by decomposition could be 

tracked across sessions (average number of tracked motor units per subject was 4 (1) and 3 (1), 

for the VM and VL, respectively). The cross correlation values from the projecting vectors of the 

tracked motor units (from VM and VL) ranged between 0.80 and 0.96 (average: 0.86).  
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Motor unit properties  

Figure 4 depicts the mean motor unit discharge rate for the VM and VL during the 

submaximal contractions at 10, 30, 50 and 70% MVC. No differences in the mean motor unit 

discharge rate were observed between the VM and VL in each testing session (interaction: time × 

muscle; P > 0.30 for all submaximal contractions). However, VM showed significantly greater 

mean motor unit discharge rates at 50 and 70% MVC (effect: muscle; P=0.006, ηp²= 0.45 and 

P=0.016, ηp²= 0.37, at 50 and 70% MVC, respectively). For the contractions at 10 and 30% 

MVC (low threshold motor units, Fig. 4a), the average discharge rate for both vasti muscles was 

not influenced by either training (interaction: time × group; P=0.30 and 0.1, at 10 and 30% 

MVC, respectively). However, at both 50 and 70% MVC (high threshold motor units, Fig. 4b), 

the VM and VL increased their discharge rates (by 8.5 (9.0) and 9.5 (7.1)% at 50% MVC and by 

12.1 (7.6) and 9.5 (6.6)% at 70% MVC in VM and VL, respectively) in the HIIT group but not in 

the END group (interaction: time × group; P=0.036, ηp²= 0.29 and P=0.015, ηp²= 0.38, at 50 and 

70% MVC, respectively). The recruitment thresholds of the identified motor units increased with 

torque (effect: torque; P<0.001, ηp²= 0.88), similarly for both muscles (interaction: torque x 

muscle; P=0.2, ηp²= 0.12) and did not change after the intervention (interaction: time x group x 

torque; P=0.16, ηp²= 0.14). These results are confirmed by the high ICCs found for the 

recruitment thresholds pre and post intervention at all force levels (average ICCs of 0.90 and 

0.95 for HIIT and END, respectively) (Figure 5). Finally, neither training induced change in 

CoVisi (P > 0.57) (see table, SDC 2, VM and VL CoVisi results for HIIT and END groups across 

all force levels pre and post intervention, http://links.lww.com/MSS/A851). 
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DISCUSSION 

This is the first study to show that HIIT and END training elicit distinct adjustments in 

motor output and motor unit behavior despite similar changes in cardio-respiratory fitness. HIIT 

determined an increase in MVC peak torque, with an increase in EMG amplitude and motor unit 

discharge rate at the highest force levels (from 50% MVC and above). Conversely, END induced 

an increase in time to task failure for a sustained contraction at 30% MVC and no changes in 

isometric knee extension strength or motor unit discharge rate. Taken together, these findings 

suggest that HIIT and END induce specific neuromuscular adaptations, which likely relate to 

their differences in exercise intensity and training volume. 

 

Training protocols and motor output 

 Previous studies have reported that HIIT can be used as an alternative to endurance 

training. Studies comparing short-term low-volume HIIT and high-volume END have found 

similar physiological adaptations in aerobic metabolism (16, 22), exercise performance (16, 26) 

and cardiorespiratory fitness (15, 26), despite large differences in exercise volume and exercise 

intensity. Therefore, we used previously validated protocols that differed in both time 

commitment and intensity, but were known to induce similar metabolic and cardiorespiratory 

fitness adaptations (16, 22). These protocols were selected in order to verify whether similar 

adaptations were also observed at the neuromuscular level, despite the divergent nature of both 

training regimes (HIIT: low-volume, high-load vs. END: high-volume, low-load). As expected, 

the two trainings resulted in a similar increase in VO2peak, peak power output and submaximal 

ventilation thresholds (Table 1), in agreement with previous reports (15, 26). However, HIIT and 

END induced different changes in motor performance that can be related to their different 
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training characteristics (Fig. 2). Currently there are no other studies that have detailed changes in 

neuromuscular performance following HIIT. In the only study that examined changes in muscle 

function, the authors did not observe changes in isometric knee extension strength after a 4-week 

HIIT intervention (7), in contrast with our results. However, the training consisted of lower loads 

(average peak power output of 236 W vs. 335 W, in the current study). Moreover, peak power 

output was estimated with a stepwise incremental cycling protocol with relatively long steps of 3 

min, which is known to underestimate the peak power (38). The current results suggest that HIIT 

training must be performed at the maximum (or supra maximum) power output achieved during 

an incremental ramp test in order to induce a significant increase in knee extensor strength. 

Indeed, the repetitive muscle activity at high loads was presumably responsible for the increase 

in MVC peak torque after HIIT. 

Previous studies have also reported a significant increase in isometric knee extension 

endurance time (time to task failure) during low-level submaximal contractions after an END 

training intervention (34, 35). For instance, Vila-Cha et al. (35) observed a 30% increase in time 

to task failure after a 6-week END cycling intervention. In the same study, the authors did not 

find any increase in time to task failure following strength training. These results are comparable 

to our findings. Again, these different adaptations are presumably due to the differences in 

training volume and exercise intensity between the two interventions (HIIT: short periods of 

activity at high intensity vs. END: long periods of activity at moderate intensity).   

  Even though HIIT was associated with increased MVC peak torque, no change in RTD 

was observed (Fig. 1c). Small to moderate increases in knee extensor strength (approximately 

7% in the current study) are not typically associated with increased RTD. Both Vila-Cha et al. 

(35) and Aagaard et al. (1) only observed an increase in RTD after the isometric knee extension 
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strength (following resistance training) increased by 18% and 17%, respectively. Nevertheless, it 

is possible that more ballistic HIIT protocols, such as the Wingate-based sprint interval training, 

may induce changes in RTD. 

 

Maximal and submaximal contractions and global EMG parameters 

Changes of VM and VL EMG amplitude showed similar behavior in the HIIT and END 

groups at the lowest torque levels (10 and 30% MVC), where no significant change in EMG 

amplitude was observed. However, only HIIT showed a significant increase in EMG amplitude 

for both vasti muscles in contractions at 50, 70 and 100% MVC (Fig. 2). Previous studies have 

documented that both increases in muscle cross sectional area and neural factors are responsible 

for increases in maximal muscle strength (9). Since changes in muscle-fiber architecture have not 

been documented after only two weeks of training, the surface EMG results in the current study 

strongly suggest that the observed changes in maximal isometric muscle torque after HIIT are 

mainly of neural origin. Increased agonist muscle activation and decreased antagonist activation 

have been suggested as important factors influencing increases in muscle strength (9). However, 

we did not identify changes in vasti/BF co-activation (at all torque levels). Therefore, the 

increased maximal torque was presumably due to factors that also influenced the EMG-torque 

relation in the agonist, such as changes in motor unit discharge rates or peripheral factors (e.g., 

muscle fiber conduction velocity), as also shown in a recent study (35). These early adaptations 

likely involve changes in supraspinal excitability, spinal pathways or changes in the membrane 

properties in the motoneurons (9). Nevertheless, the exact nature of these early neural 

adaptations is not yet known (9). Regarding the submaximal contractions, the observed changes 

in surface EMG amplitude in HIIT were markedly greater among the highest contraction levels 
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(Fig. 2a), which ultimately suggest a preferential change in the discharge rates of high threshold 

motor units (see Submaximal contractions and motor unit properties). Indeed, it is likely that the 

high loads placed on the subjects during HIIT increased the activity of these units. In support of 

this observation, Vila-Cha et al. (35) previously reported an increase in EMG amplitude at 30 

and 100% MVC, but not at 10% MVC, after 3 weeks of resistance training. However, this earlier 

work also showed an increase of EMG amplitude at 10 and 30% MVC after 3 weeks of END 

training. Since a decrease in motor unit discharge rate was simultaneously observed after END 

training, this result was interpreted as an increase of motor unit recruitment at these force levels, 

although EMG amplitude depends on multiple influencing factors (11, 12). In this study, we 

attempted to limit the variability in EMG amplitude estimates by averaging across all electrodes 

of the grid (14, 24). 

 

Submaximal contractions and motor unit properties 

In accordance with the surface EMG results, the HIIT and END groups showed similar 

motor unit discharge rates pre- and post-training for VM and VL at 10 and 30% MVC. However, 

only HIIT induced an increase in motor unit discharge rate at 50 and 70% MVC, which is also in 

agreement with surface EMG results (Fig. 4). Together, these findings suggest that changes in 

motor unit discharge rate are not only specific to the training protocol, but also to the size (18) 

and threshold of the motor units recruited during the exercise. Indeed, the main differences 

between HIIT and END are the volume of training and the loads at which the subjects perform 

the exercise. Even though we did not measure motor unit recruitment during cycling (this is not 

technically possible), the HIIT protocol, that involved short exercise bouts at the maximal power 

output, likely required the recruitment of most motor units (20, 36) whereas the END training, 
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that was performed at a much lower load, likely involved lower threshold units with greater 

aerobic capacity (20, 36). In accordance with size-specific adjustments in motor units, Kamen 

and Knight (19) previously observed an increase in VL discharge rates at 100% MVC, but not at 

10 or 50% MVC, after 6 weeks of resistance training involving maximal knee-extension 

isometric contractions. For END, we did not find training-induced changes in motor unit 

discharge rates in the torque range investigated (Fig. 4). This observation is in accordance with 

Mettler et al. (27) but contrasts with the results of Vila-Cha et al. (35). However, the latter study 

differed with respect to ours for training intensity (50 to 75% of heart rate reserve vs. 65% 

VO2peak), volume (60 to 150 min/week vs. 285 to 345 min/week), and duration (3 to 6 weeks vs. 

two weeks) (35). Collectively, these findings suggest that END would lead to either maintained 

or decreased discharge rates, since MVC torque is not expected to change after this type of 

training (17). Maintained or decreased motor unit discharge rates after END training 

interventions (at the same relative torque level) are thought to be important factors for longer 

times to task failure during submaximal, isometric fatiguing contractions (27, 34, 35).  

The tracking technique applied in this study allowed for the first time to compare 

individual motor unit recruitment thresholds before and after training. The recruitment thresholds 

of the tracked motor units were similar before and after the intervention for both muscles and 

groups (Fig. 5), suggesting that the observed changes in discharge rate after HIIT were mainly 

due to an increased neural drive to the muscle, and not to changes in intrinsic motor neuron 

properties. Previous studies documenting changes in motor unit discharge rates have used 

unmatched population samples to infer adaptations to a particular motor unit pool (19, 27, 30, 32, 

35). However, these previous approaches are limited by the possibility of comparing different 

motor units, with different recruitment thresholds, in the pre and post training sessions. 
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Conversely, we could record and follow the same motor units across sessions, providing an 

accurate interpretation of changes in discharge rate and recruitment threshold. Finally, no change 

in discharge rate variability (CoVisi) was observed for any of the groups after the intervention, 

despite that there was a significant increase in CoV of torque for the HIIT group at 10% MVC. A 

recent study showed that 6 weeks of resistance training increases force/torque steadiness 

(reduction in CoV of force/torque) and reduces motor unit discharge rate variability (CoVisi) in 

submaximal contractions at 20 and 30% MVC (33). However, an increase in force steadiness 

following resistance training has not been observed in all studies (3) and the association between 

enhanced force steadiness and the reduction of CoVisi is poor (28). Therefore, the increase in 

CoV of torque at 10% MVC for the HIIT group in the present study could be related to other 

factors rather than an increase in CoVisi. Although the high loads performed during HIIT might 

have induced a reduction in the accuracy to maintain the required steadiness at low torque levels, 

torque steadiness remained similar at all torque levels following END training despite of the low 

to moderate loads used for this type of training. Therefore, the observations of training-induced 

changes in torque steadiness require further investigation.  

 

Methodological implications 

In this study, for the very first time, we applied motor unit tracking across sessions to 

study training interventions (25). With this approach, all differences in motor unit discharge rate 

between END and HIIT groups had a large effect size and showed a clear intervention effect. 

Previous investigations of this type but without motor unit tracking have shown contradicting 

results (19, 27, 32, 35). Some studies have even failed to report an effect in discharge rates 

despite clear increases in muscle strength and surface EMG amplitude (30). We suggest that 
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these changes could have been masked because of the low number of identified motor units 

(usually low-threshold) and the unmatched motor units across sessions. Accordingly, we have 

previously shown that the effect size in longitudinal investigations is substantially increased with 

our technique (25), which opens new possibilities for further research.  

 

CONCLUSION 

Two weeks of HIIT and END showed similar improvement in cardiorespiratory fitness 

but different adjustments in motor unit behavior. HIIT enhanced maximum torque output and 

was accompanied by an increase in motor unit discharge rate at the highest torque levels (50 and 

70% MVC). In contrast, END increased the time to task failure, but did not influence motor unit 

discharge rates. These findings reveal that HIIT and END induce differential adaptations among 

low and high threshold motor units. The study also shows the first results on training-induced 

changes in motor unit discharge rate by tracking the same individual units before and after 

training. This methodology may open new perspectives in the study of neural adaptations to 

training.  
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FIGURE CAPTIONS 

 

Figure 1. Results show changes [mean (SD)] in motor performance across the 2-wk training 

intervention. A: peak torque assessed during isometric maximal voluntary contractions (MVC). 

B: time to task failure assessed during sustained isometric contractions at 30% MVC. C: rate of 

torque development during maximal isometric ballistic contractions (maximum slope). *P<0.05.  

 

Figure 2. Values are means (SE) for the average rectified value (ARV) of the vastus medialis 

(VM) and vastus lateralis (VL) obtained during submaximal [10, 30, 50 and 70% of the 

maximum voluntary contraction (MVC)], maximal (MVC) and ballistic isometric knee extension 

contractions before and after training (pre-post). A: high intensity interval training (HIIT) 

submaximal ARVs. B: endurance (END) training submaximal ARVs. C: ARV values during 

MVC for HIIT and END. D: ARV values during explosive contractions for HIIT and END. ARV 

was assessed during a time interval of 50 ms centered at the time instant of the maximum slope. 

*P<0.05.     

 

Figure 3. Procedure for motor unit tracking from one representative subject in the HIIT group. 

A) Three vastus medialis (VM) motor unit spike trains decomposed with convolutive blind 

source separation at 70% of the maximum voluntary contraction (MVC) before (PRE) the 

intervention can be seen in the left half of the figure. A de-whitened projection vector (motor 

unit action potential shapes across the electrode grid in 59 single differential channels) from the 

first motor unit is shown in blue. Semi-blind source separation was applied after the intervention 

to extract the source that was maximally similar to the projecting vector of motor unit one (center 
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half of the figure, red). Finally, these two projecting vectors were compared by cross-correlation 

(right half of the figure), and were regarded as the same motor unit since they had a cross 

correlation of 86%. This procedure was repeated for motor units 2 and 3 (not shown). B) 

Instantaneous firing rates (motor unit firings were low pass filtered at 2Hz) from the same three 

motor units presented in A, during the stable force region before (PRE, left half of the figure) 

and after (POST, right half of the figure) the intervention. This subject increased peak toque by 

5% (298.0 vs. 313.6 Nm) after the intervention. The recruitment thresholds of these units were 

192.2 vs. 192.2 Nm (64.5 vs. 61.3% MVC, motor unit 1), 175.5 vs. 178.5 Nm (58.9 vs. 56.9% 

MVC, motor unit 2) and 168.4 vs. 177.0 Nm (56.0 vs. 56.4% MVC, motor unit 3), pre and post 

intervention respectively. Note the increase in firing rates from 19 (1.7) pulses per second (pps) 

to 22.0 (2.1) pps.  

 

Figure 4. Values are means (SE) for motor unit discharge rates (in pulses per second, PPS) of 

the vastus medialis (VM) and vastus lateralis (VL) obtained during submaximal [10, 30, 50 and 

70% of the maximum voluntary contraction (MVC)] contractions. A: Low threshold motor units 

discharge rate results (10 and 30% MVC) of endurance (END) and high intensity interval 

training (HIIT). B: High threshold motor unit discharge rate results (50 and 70% MVC) of END 

and HIIT. *P<0.05.    

 

Figure 5. Motor unit recruitment threshold individual values (whiskers represent the 95% 

confidence interval) for vastus medialis (VM) and vastus lateralis (VL), before (PRE, filled 

circles) and after (POST, open circles) high intensity interval training (HIIT) and endurance 

training (END) at all force levels (10, 30, 50 and 70% MVC).   
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Table 1. Training response for aerobic parameters assessed during incremental cycling in the HIIT and END training groups 

 HIIT END 

Parameter Pre Post P-value Pre Post P-value 

VO2peak (ml/kg/min) 44.2 (7.1) 47.5 (8.0)* 0.02 44.9 (6.3) 47.2 (4.9)* 0.03 

Peak power output (W) 334.8 (57.8) 360.3 (53.1)* <0.001 339.6 (62.5) 361.5 (58.3)* <0.001 

VT1 (ml/kg/min) 28.0 (6.9)  32.5 (7.8) 0.14 28.7 (6.6) 32.0 (4.9) 0.17 

VT1 (W) 198.5 (38.9) 222.4 (43.6) 0.07 196.8 (40.5) 227.5 (36.3) 0.05 

VT 2 (ml/kg/min) 38.0 (6.0) 41.2 (6.8) 0.07 38.4 (6.9) 41.4 (5.9) 0.10 

VT2 (W) 267.8 (39.3) 295.0 (35.4)* 0.03 269.3 (53.3) 294.0 (41.4)* 0.01 

Values are means (SD). VT1, first ventilatory threshold; VT2, second ventilatory threshold or respiratory compensation 

point. Pre, pre-training; Post, post-training. There were no significant differences for any variable between HIIT and END 

(no interaction effects P>0.05).*Significant difference from Pre (P<0.05), according to post hoc analysis (Student-Newman-

Keuls test). 
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Table. Coefficient of variation for inter-spike interval (CoVisi)% for motor units identified in each group, muscle, load and session 

 

HIIT END 

 

PRE POST PRE POST 

Force 

level 

%MVC 

VM VL VM VL VM VL VM VL 

10% 16.8 (1.4) 17.7 (2.9) 16.9 (3.7) 18.9 (5.8) 18.8 (1.9) 15.9 (3.4) 18.6 (3.4) 16.2 (4.5) 

30% 20.5 (4.1) 24.4 (5.5) 21.2 (2.6) 23.0 (5.2) 24.4 (5.5) 23.2 (6.1) 22.9 (5.3) 24.2 (7.7) 

50% 25.4 (3.6) 27.1 (6.9) 26.3 (4.2) 28.2 (4.4) 26.5 (4.5) 21.5 (5.2) 26.5 (3.6) 22.8 (6.6) 

70% 28.3 (7.3) 29.0 (4.2) 27.3 (5.2) 28.8 (3.2) 27.4 (4.8) 27.5 (4.8) 27.2 (4.2) 26.1 (6.8) 

Coefficient of variation for the inter-spike interval (CoVisi)% of motor units from each group, muscle [vastus medialis (VM) and 

vastus lateralis (VL)], force level [10, 30, 50 and 70% of the maximum voluntary contraction (MVC)], and session (pre and post). All 

comparisons were non-statistically significant (P>0.57).  
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