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Differential neuronal vulnerability 
identifies IGF-2 as a protective 
factor in ALS
Ilary Allodi1,*, Laura Comley1,*, Susanne Nichterwitz1,*, Monica Nizzardo2, Chiara Simone2, 
Julio Aguila Benitez1, Ming Cao1, Stefania Corti2,† & Eva Hedlund1,†

The fatal disease amyotrophic lateral sclerosis (ALS) is characterized by the loss of somatic motor 
neurons leading to muscle wasting and paralysis. However, motor neurons in the oculomotor 
nucleus, controlling eye movement, are for unknown reasons spared. We found that insulin-like 
growth factor 2 (IGF-2) was maintained in oculomotor neurons in ALS and thus could play a role in 
oculomotor resistance in this disease. We also showed that IGF-1 receptor (IGF-1R), which mediates 
survival pathways upon IGF binding, was highly expressed in oculomotor neurons and on extraocular 
muscle endplate. The addition of IGF-2 induced Akt phosphorylation, glycogen synthase kinase-3β 
phosphorylation and β-catenin levels while protecting ALS patient motor neurons. IGF-2 also rescued 
motor neurons derived from spinal muscular atrophy (SMA) patients from degeneration. Finally, 
AAV9::IGF-2 delivery to muscles of SOD1G93A ALS mice extended life-span by 10%, while preserving 
motor neurons and inducing motor axon regeneration. Thus, our studies demonstrate that oculomotor-
specific expression can be utilized to identify candidates that protect vulnerable motor neurons from 
degeneration.

Amyotrophic lateral sclerosis (ALS) is a fatal disease characterized by a progressive loss of somatic motor neu-
rons, muscle wasting and paralysis. ALS appears mostly sporadic (sALS), but can be inherited (fALS) due to 
mutations in e.g. superoxide dismutase 1 (SOD1), TAR DNA-binding protein 43 (TDP-43), Fused in Sarcoma 
(FUS) and C9ORF72 (chromosome 9 open reading frame 72)1,2. Importantly, data from fALS models indicate 
that motor neuron intrinsic factors are crucial for initiation and early progression of degeneration3–5. While ALS 
is characterized by motor neuron loss, certain motor neuron groups are for unknown reasons relatively resistant 
to degeneration. Among the most resistant are oculomotor neurons6–9, which are located in the brain stem and 
control eye movement. Consequently, eye-tracking devices are used to enable paralyzed ALS patients to com-
municate through computers10. �us, an investigation of factors intrinsic to oculomotor neurons in health and 
disease could reveal mechanisms of neuronal resistance and be the basis for future therapeutic strategies to pro-
tect vulnerable motor neurons from degeneration. Towards this goal, we and others have previously shown that 
resistant oculomotor motor neurons display a distinct mRNA and protein signature compared to other vulnerable 
motor neuron groups11–13. We identi�ed insulin-like growth factor 1 (IGF-1) and 2 (IGF-2) as preferential to ocu-
lomotor neurons in the normal rat11. �is �nding is highly compelling in terms of intrinsic neuronal resistance 
as IGFs are known motor neuron survival factors14,15. In fact, viral delivery of IGF-1 to motor neurons in the 
SOD1G93A fALS mouse was neuroprotective and increased the life-span of the mice16. �e possible motor neuron 
protective properties of IGF-2 in ALS has not been previously investigated. IGF-2 can bind to IGF-1 receptors 
(IGF-1R), IGF-2 receptors (IGF-2R) and insulin receptors. IGF-2R has the highest a�nity for IGF-2, but the 
biological e�ects of IGF-2 are mediated through IGF-1R and/or insulin receptor, just as for IGF-1. �e binding 
of IGF-2 to IGF-1R, which is a receptor tyrosine kinase, leads to activation of PI3K/Akt and survival pathways 
or activation of mitogen activated protein kinase (MAPK) pathway and proliferation. Insulin receptor activa-
tion leads to proliferation. IGF-2 binding to IGF-2R, which lack the intracellular tyrosine binding domain and 
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thus cannot initiate downstream signaling cascades, leads to targeting of IGF-2 to lysosomal degradation. �us, 
IGF-2R functions to clear IGF-2 from the cell surface to attenuate signaling17,18. Here we further investigated the 
role of IGF-2 and its receptors on motor neurons and muscle to better understand oculomotor neuron resistance 
in ALS. Subsequently, we functionally tested the therapeutic bene�t of IGF-2 delivery in vitro on human motor 
neurons derived from ALS patient �broblasts. As we wanted to address if IGF-2 could be protective across dis-
eases, we also treated human motor neurons derived from �broblasts of spinal muscular atrophy (SMA) patients. 
SMA is a recessively inherited motor neuron disease that is caused by the loss of function of the Survival of Motor 
Neuron 1 (SMN1) protein19. While the underlying causes of ALS and SMA appear quite distinct, it has been 
shown that SMN, FUS and TDP-43 can functionally interact, indicating that SMA and ALS share pathways and 
supporting the view that common mechanisms could be targeted in these genetically distinct diseases20,21. �is is 
further supported by the loss of spliceosome integrity that has been identi�ed as a critical mechanism common to 
neurodegeneration in ALS and SMA22. Furthermore, mutant SOD1 has been shown to disrupt the recruitment of 
SMN1 to nuclear gems23. Finally, we delivered IGF-2 to SOD1G93A fALS mice in vivo using adeno-associated virus 
9 (AAV-9) to study e�ects on motor performance, life-span and motor neuron survival.

Results
IGF-2 was persistently expressed in oculomotor neurons in health and ALS. Oculomotor (CNIII) 
motor neurons in the midbrain and their targets, the extraocular muscles, are relatively resistant to degeneration 
in ALS while spinal motor neurons in the ventral horn of the spinal cord, which innervate limb muscles, are vul-
nerable (Fig. 1a)7–9,11,24,25. Analysis of muscle innervation in symptomatic P126 SOD1G93A mice (a model of fALS26 
based on over-expression of human mutated SOD1) found that extraocular muscles were still fully innervated at 
this time point (Fig. 1b), while tongue muscles, innervated by hypoglossal (CNXII) motor neurons, (Fig. 1c) and 
lumbrical muscles, innervated by lumbar spinal motor neurons, (Fig. 1d), showed evidence of denervation. �e 
SOD1G93A mice showed a decrease in weight from postnatal day 75 (P75) and onward, compared to wild-type lit-
termate controls, characteristic for this model (Fig. 1e). To better understand the relative resistance of oculomotor 
neurons to degeneration in ALS, we now investigated the IGF-2 protein level in resistant and vulnerable motor 
neuron groups in rodent and human patient tissues, by quantifying signal intensity of IGF-2 immunostainings. 
Analysis of P126 control mice (from the SOD1G93A colony) showed that the IGF-2 protein was higher in oculo-
motor neurons than in hypoglossal and spinal motor neurons (Fig. 1f–i), and remained preferential to oculomo-
tor neurons in P126 symptomatic SOD1G93A mice (Fig. 1j–m), at levels comparable to that seen in control mice 
(Supplementary Fig. 1a). Human post mortem analysis revealed that IGF-2 protein was also preferential to oculo-
motor neurons in non-demented control tissues compared to hypoglossal and spinal motor neurons (Fig. 1n–q). 
Importantly, IGF-2 remained preferential to oculomotor neurons in end-stage ALS patient tissue (Fig. 1r–u), 
indicating that this growth factor could play a protective role in these resistant motor neurons in disease.

IGF-1R and IGF-2R expression was predominant in resistant oculomotor neurons and extraoc-
ular muscles. IGF-2 exerts its biological actions through binding to IGF-1R (survival or proliferation) or 
insulin receptors (proliferation), while binding to IGF-2R leads to endosomal degradation17. In this study we 
focused on IGF-1R and IGF-2R expression centrally on motor neurons and peripherally in neuromuscular junc-
tions (NMJs). Immuno�uorescent analysis using an antibody against phosphorylated IGF-1R (pIGF-1R) protein 
showed a high level of activated IGF-1R within oculomotor neurons in wild-type and symptomatic SOD1G93A 
mice (Fig. 2a,c,e), with much lower levels on spinal motor neurons (Fig. 2b,d,e). �e level of pIGF-1R was com-
parable between control and SOD1G93A mice (Supplementary Fig. 1b). Using an antibody against both phospho-
rylated (active) and non-phosphorylated (inactive) IGF-1R gave a similar result to the pIGF-1R antibody staining 
(Supplementary Fig. 1c–g). Furthermore, in SOD1G93A spinal cords, most pIGF-1R staining was present in close 
proximity to motor neurons and appeared associated with glial cells (Supplementary Fig. 1h,i). IGF-1R protein 
also co-localized with NMJs in extraocular muscles in wild-type (Fig. 2f) and SOD1G93A mice (Fig. 2h), while it 
appeared almost absent from lumbrical muscles (Fig. 2g,i). Western blot analysis using two antibodies speci�c 
for distinct phosphorylation sites on IGF-1R (Supplementary Fig. 1j) con�rmed the data from the immuno�u-
orescent analysis and showed that extraocular muscles contained 4-fold higher levels of activated IGF-1R than 
lumbrical muscles (Fig. 2j, P <  0.0001). High magni�cation confocal images of IGF-1R staining in neuromus-
cular junctions in extraocular muscles (Supplementary Fig. 2a–i) clearly indicated that IGF-1Rs were present 
on both the pre-terminal axon (Supplementary Fig. 2g) and more prominently postsynaptically on the muscle 
endplate (Supplementary Fig. 2h,i). Phosphorylated IGF-2R (pIGF-2R) protein was present at comparable levels 
in motor neurons of the oculomotor nucleus (Fig. 2k,m) and spinal cord (Fig. 2l,n) in wild-type and SOD1G93A 
mice. However, the level of pIGF-2R within oculomotor neurons was slightly decreased in the SOD1G93A mice 
compared to control (Supplementary Fig. 1k). Peripherally, IGF-2R protein was barely detectable in extraocular 
(Fig. 2p,r) or lumbrical muscles (Fig. 2r,s) using immuno�uorescence. However, western blot analysis showed that 
IGF-2R protein was indeed present in extraocular muscles, at signi�cantly higher levels than in lumbrical muscles 
(Fig. 2t, P =  0.021). In summary, the presence of high levels of phosphorylated IGF-1R protein on oculomotor 
neurons and extraocular NMJs indicate that IGF-2 could exert a positive e�ect both centrally and peripherally on 
these resistant motor neurons.

IGF-2 protected human spinal motor neurons from ALS-like toxicity in vitro. We now asked if 
IGF-2 could prevent ALS-like degeneration of human motor neurons derived from induced pluripotent stem 
cells (iPSCs). Even if motor neurons derived from sALS and fALS patient iPSCs display some key hallmarks of 
the human disease in vitro, such as TDP-43 aggregates and C9ORF72 dipeptides, motor neuron cell degenera-
tion in culture is not overt, in particular in sALS MNs27. �erefore, to model ALS in vitro, we used two di�erent 
assays; glutamate excitotoxicity11,28 or co-culture with SOD1G93A astrocytes, which are selectively toxic to motor 



www.nature.com/scientificreports/

3Scientific RepoRts | 6:25960 | DOI: 10.1038/srep25960

Figure 1. IGF-2 was persistently expressed in oculomotor neurons in health and ALS, in mouse and man. 
(a) Schematic of the central nervous system of the mouse and connected muscles, highlighting the location of 
the oculomotor neurons (CNIII, in blue) in the midbrain and their targets the extraocular muscles, which are 
relatively resistant to degeneration in ALS. Also depicted are the vulnerable hypoglossal motor neurons (CNXII, 
in yellow) and the tongue muscles they innervate and vulnerable spinal motor neurons in the ventral horn (in 
green), which innervate limb muscles (by Mattias Karlen). Neuro�lament and SV2a stainings were used to 
visualize the presynaptic motor nerve and α -bungarotoxin (BTX) to label acetylcholine receptors (AChRs) on 
the muscle, showing that extraocular muscles (b) were fully innervated in symptomatic P126 SOD1G93A mice, 
while tongue (c) and lumbrical muscles (d) showed partial (arrow head) or complete (*) denervation. (e) Weight 
curve of the fALS SOD1G93A mouse model, showing the decrease in weight compared to wild-type littermates, 
characteristic for disease (P <  0.01 to P <  0.001, t(17) =  3.88–5.19), n =  8 control mice, n =  10 SOD1G93A 
mice multiple t test). In P126 control mice, insulin-like growth factor-2 (IGF-2) protein was preferential to 
oculomotor neurons (f,i), with 2.7-fold higher levels than in hypoglossal (g,i) and 20-fold higher than spinal 
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neurons29–31 (Supplementary Fig. 3a). Spinal motor neurons were di�erentiated from the iPSCs and monitored 
using a motor neuron speci�c lenti-Hb9::eGFP construct. �e susceptibility of iPSCs-derived motor neurons to 
glutamate overload, which could be a general downstream event in motor neuron disease, was determined over 
a range of concentrations (1 to 100 µ M). For the ALS astrocyte toxicity test, iPSCs-derived motor neurons were 
plated on the bottom chamber of a transwell co-culture system and cultured with astrocytes (in the upper com-
partment) obtained from SOD1G93A mice. �e porous membrane that separates the two compartments only allows 
di�usion of soluble molecules, allowing testing of non autonomous cell death. Control motor neurons degener-
ated in response to co-culture with SOD1G93A astrocytes (Supplementary Fig. 3b) and showed susceptibility to 
glutamate (Supplementary Fig. 2c). Addition of IGF-2 alleviated glutamate toxicity in a dose-dependent manner 
when administered prior to induction of toxicity (Supplementary Fig. 3d). sALS and fALS patient motor neurons 
were more sensitive to glutamate and astrocyte toxicity than control motor neurons (Supplementary Fig. 3e,f).  
Pretreatment with IGF-2 protected motor neurons in both ALS-toxicity assays (Supplementary Fig. 3g,h). Prior 
to toxicity, motor neurons (expressing a lenti-Hb9::eGFP construct) appeared healthy, extended processes and 
expressed Islet-1/2 (Fig. 3a) and ChAT (Fig. 3b). Importantly, addition of IGF-2 one to two days a�er initia-
tion of toxicity also protected motor neurons from SOD1G93A astrocytes (Fig. 3c–e) and glutamate over-load 
(Fig. 3f–h). To identify molecular targets of IGF-2 in the protection of ALS motor neurons we examined the e�ect 
of IGF-2 on site-speci�c phosphorylation of glycogen synthase kinase 3 beta (GSK3β ). IGF-2 is an activator of the 
PI3K/Akt pathway, through IGF-1R binding, which can regulate neuronal survival through phosphorylation and 
thereby inhibition of GSK3β 32,33. Levels of GSK3β  Ser9 phosphorylation (p-GSK-(S9)) were strongly elevated in 
response to IGF-2 in a dose-dependent manner (Fig. 3i–m), indicating that GSK3β  was inhibited. We could also 
demonstrate that IGF-2 treatment increased the level of Akt phosphorylated on residue Ser473 (p-AKT -(S473)) 
in iPSC motor neurons (Fig. 3n–r), and thus a higher degree of PI3/Akt pathway activation. Finally, we showed 
that IGF-2 induced an upregulation of β -catenin levels in iPSC motor neurons (Fig. 3s–w), thus con�rming the 
activation of the PI3/Akt and inhibition of GSK3β . Collectively, our data demonstrate that IGF-2 can protect ALS 
patient motor neurons from degeneration in two di�erent ALS-like toxicity systems and that PI3/Akt activation 
and subsequent GSK3β  inhibition, mediated through IGF-1R binding, may in part mediate this protective e�ect.

IGF-2 protected SMA patient spinal motor neurons in culture. To test if IGF-2 could also protect 
against degeneration across motor neuron diseases, we used motor neurons derived from SMA patient iPSCs, 
which degenerate due to a lack of SMN1 protein. SMA iPSCs generate motor neurons at a normal rate, but these 
motor neurons present an apparent cell autonomous degeneration in vitro, which is evident a�er 8 weeks of cul-
turing5,34 (Fig. 4a,c). When IGF-2 was added to the culture at 4 weeks and subsequently maintained, motor neu-
rons were protected and showed signi�cantly improved survival at 8 weeks of culture (Fig. 4a–c). Furthermore, 
morphometric analysis showed that IGF-2-treated SMA patient motor neurons had increased neurite lengths 
compared to untreated motor neurons (Fig. 4d). In conclusion, our data shows that IGF-2 can also protect human 
motor neurons from SMA-induced degeneration in vitro. �e regenerative properties exerted by IGF-2 on human 
motor neurons indicate that it could elicit bene�cial e�ects on nerve growth of motor neurons that have lost 
connection with muscle.

IGF-2 prolonged the survival of SOD1G93A fALS mice by preserving motor neurons and inducing 
nerve regeneration. Based on the positive e�ects of IGF-2 on motor neuron somas and axons, we next 
investigated if administration of IGF-2 could extend the life-span of SOD1G93A fALS mice. Here, an AAV9 vector 
expressing IGF-2 was injected bilaterally into the hindlimb quadriceps and thoracic muscles at P80 (11 ×  1011 
particles in total). An AAV9::null vector was used as a control for survival experiments and an AAV9::GFP vec-
tor to show transduction e�ciency of motor neurons (Fig. 5a). Using the AAV9::GFP vector we could demon-
strate that the virus transduced the spinal cord, including motor neurons, extensively (Fig. 5b,c). Importantly, 
AAV9::IGF-2 treated SOD1G93A mice showed signi�cant improvement in their neuromuscular function, in par-
ticular at 8 weeks post injection, as assessed by rotarod performance (Fig. 5d). Furthermore, AAV9::IGF-2 treated 
SOD1G93A mice showed extended survival by 14 days (157 ±  10 days mean survival) compared to AAV9::null 
treated SOD1G93A mice (143 ±  5 days mean survival) (Fig. 5e, χ2 =  5.3, P =  0.02). Histological evaluation of the 
lumbar spinal cord revealed that AAV9::IGF-2 treatment prevented the pathological changes leading to a qualita-
tive reduction in neuropil and cellular vacuolization in animals at 140 days of age (Fig. 5f,g). To determine if the 
positive e�ects exerted by AAV9::IGF-2 was due to a preservation of motor neurons, we quanti�ed the number of 
motor neuron somas in spinal cord sections and axons in ventral spinal nerve roots. At P140, motor neuron loss 
was signi�cantly decreased by AAV9::IGF-2 administration (Fig. 5h). IGF-2 treated SOD1G93A mice also showed 

(h,i) motor neurons (F(2, 185) =  61.69, P <  0.0001, n =  4, ANOVA). IGF-2 levels were 7.6-fold higher in 
hypoglossal than in spinal motor neurons (P <  0.05, ANOVA). Analysis of P126 symptomatic SOD1G93A mice 
showed that IGF-2 levels remained preferential to oculomotor neurons (j,m) with levels 4.1-fold higher than in 
hypoglossal (k,m) and 3.3-fold higher than in spinal motor neurons (l,m) (F(2, 241) =  36.05, P <  0.0001, n =  3, 
ANOVA). Analysis of non-demented control patient tissues showed that IGF-2 protein levels were higher in 
oculomotor motor neurons (n,q) compared to hypoglossal motor neurons ((o,q) F(2, 346) =  22.67, P <  0.05, 
n =  5, ANOVA; P <  0.0001, Kruskal-Wallis) and spinal motor neurons ((p,q) P <  0.0001, ANOVA; P <  0.0001, 
Kruskal-Wallis). IGF-2 remained preferential to oculomotor motor neurons in end-stage ALS patient tissue 
((r–u) F(2, 500) =  98.78, P <  0.0001, n =  5, ANOVA; P <  0.0001, Kruskal-Wallis). Values in the graphs 
represent means ±  SEM. Scale bar in (d) 30 µ m (applicable to (b,c)), (l) 50 µ m (applicable to (f–h,j,k), (t) 30 µ m 
(applicable to (n–s)).
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Figure 2. IGF-1R and IGF-2R expression was predominant in resistant oculomotor neurons and 
extraocular muscles. Phosphorylated IGF-1R (pIGF-1R) protein was present in oculomotor motor neurons in 
wild-type and SOD1G93A mice (a,c,e), with sign�cantly lower levels in motor neurons in spinal cord in control 
(b) arrow heads, (e) t(113) =  8.69, n =  4 mice, P <  0.0001, Student’s t test, values represent means ±  SEM) and 
SOD1G93A mice ((d) arrow heads, (e) t(141) =  4.30, P <  0.0001, n =  5 mice, Student’s t test, values represent 
means ±  SEM). IGF-1R protein was strongly expressed and co-localized with endplates in extraocular muscles 
in wild-type and SOD1G93A mice (f,h), while it was barely detectable in lumbrical muscles (g,i). Western blot 
analysis con�rmed that the pIGF-1R protein level was 4-fold higher in extraocular muscles than in lumbrical 
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preservation of axonal density in the L4 ventral root compared to AAV9::null injected mice (Fig. 5i). IGF-2 can 
induce motor nerve sprouting35 and some motor neurons show a great capacity for sprouting and regeneration in 
the SOD1G93A mouse36–40. �erefore we next investigated if our IGF-2 treatment had induced regeneration in the 
lumbrical muscles in the hind paws of treated mice. NMJs were quanti�ed based on their expression of GAP-43, 
a marker of regenerating neurons (Supplementary Fig. 4a–c). Importantly, NMJs in AAV9::IGF-2 treated muscles 
contained a signi�cantly larger proportion of endplates with distinct GAP-43 expression compared to AAV9::null 
treated mice (Fig. 5j–l) and had signi�cantly fewer endplates which were devoid of GAP-43 staining (Fig. 5j–l). 
In conclusion, our data demonstrates that AAV9::IGF-2 delivery induced a regenerative response in spinal motor 
neurons in these mice, which likely in part accounts for the observed functional improvement.

Discussion
In this report we show that the neurotrophic factor IGF-2 was predominantly and persistently expressed in ocu-
lomotor motor neuron cell bodies in symptomatic SOD1G93A mice and end-stage ALS patients, indicating that 
IGF-2 could play a part in protecting these cells. Furthermore, the high level of IGF-1R protein on oculomotor 
neurons and postsynaptically on extraocular muscle endplates indicate that IGF-2 could exert a positive e�ect 
both centrally and peripherally on these motor neurons. Addition of IGF-2 to the culture media protected both 
ALS and SMA patient motor neurons from degeneration. Finally, viral-mediated delivery of IGF-2 to SOD1G93A 
ALS mice improved motor performance, increased the life-span and protected motor neurons cell bodies, axons 
and promoted motor nerve regeneration.

Identi�cation of transcript and proteins speci�cally enriched or lacking in oculomotor neurons11–13,41,42 could 
give clues to their intrinsic resistance to degeneration in ALS, and perhaps across motor neuron diseases. Here, 
we show that IGF-2 and phosphorylated IGF-1R were present on oculomotor neuron somas. �is indicates that 
IGF-2 and/or IGF-1 has bound to and activated the receptor on the cell surface. From our studies we can not 
discern if IGF-1R receptor activation on oculomotor neurons was induced through cell autonomous secretion 
of IGF-2, or through IGFs produced by the choroid plexus43 and circulating in the cerebrospinal �uid (CSF). 
However, the speci�c IGF-1R activation on oculomotor neurons and much lower level of pIGF-1R on spinal 
motor neurons, indicate that local mechanisms are in play, presumably through IGF-2 production from oculomo-
tor neurons themselves. Nonetheless, the presence of high levels of pIGF-2R on both spinal and oculomotor neu-
rons indicate that endosomal degradation pathways are needed more in general and not just on resistant motor 
neurons, presumably through circulating IGFs. �e strong expression of pIGF-2R in spinal motor neurons is 
consistent with a previous study in rat which showed prominent expression in spinal and facial motor neurons44, 
while oculomotor expression was not investigated.

We also identi�ed IGF-1Rs in NMJs of extraocular muscles. Here the staining was partly overlapping with the 
neuro�lament marker SV2a, indicating that IGF-1R was present presynaptically on motor neurons. However, the 
most prominent expression was present postsynaptically on the muscle endplates as evident by co-localization 
with BTX. �e low expression of IGF-2 receptors on muscle at this age is a clear re�ection of the low endogenous 
production of IGF in adult muscle. Combined with the highly localized IGF-1R expression on motor endplates, 
this indicates that IGFs released from presynaptic terminals of oculomotor neurons act on receptors on muscle 
and that this interaction could exert a positive e�ect on motor neuron-muscle connectivity. Indeed, we found 
that the extraocular NMJs were stable in late symptomatic ALS mice, in contrast to vulnerable NMJs which were 
remodeled as visualized by GAP-43 staining.

Encouragingly, our in vitro experiments showed that IGF-2 was protective to motor neurons derived from 
fALS, sALS and SMA patients. Here we used established assays of motor neuron disease, utilizing either glu-
tamate overload or mutant SOD1 astrocyte-induced toxicity to model ALS11,27,29,30 and the accelerated cell 
intrinsically-mediated cell death of SMA patient motor neurons5,34. �e protective e�ect of IGF-2 appeared inde-
pendent of the cause of degeneration, which is promising for future therapeutic purposes, as the pathways of 
motor neuron degeneration in ALS could vary from case to case. Importantly, IGF-2 was also protective when 
added a�er induction of toxicity, which is clinically more relevant than prior treatment. IGF-2 has been shown to 
be bene�cial for axon sprouting in the mouse35,45. In addition to improving survival, IGF-2 treatment increased 
neurite lengths of SMA iPSC motor neurons. Furthermore, we showed that IGF-2 treatment activated PI3K/
Akt signaling in motor neurons as evidenced by increased levels of phosphorylated Akt and increased GSK3β  
phosphorylation, which inhibits GSK3 activity. IGF-2 treatment also a�ected downstream signaling of GSK3β  
as demonstrated by the upregulation of β -catenin expression. Importantly, β -catenin has a critical role in axonal 
and dendrite extension and maintenance46. �is indicates that the protective e�ect of IGF-2 was mediated by 
GSK inhibition through the PI3K-Akt pathway. �is is in agreement with a previous study which identi�ed ken-
paullon, a GSK inhibitor, as a survival factor for ALS patient iPSC motor neurons47.

muscles ((j) t(8) =  8.20, n =  5 mice, P <  0.0001, Student’s t test, values represent means ±  SEM). Phosphorylated 
IGF-2R (pIGF-2R) protein was present at comparable levels in oculomotor (k,m) and spinal (l,n) motor 
neurons in both wild-type ((o) t(92) =  0.6829, P =  0.4964, n =  3 mice, Student’s t test) and SOD1G93A mice  
((o) t(102) =  1.880, P =  0.0630, n =  3 mice, Student’s t test). Peripherally, IGF-2R protein was barely detectable 
in extraocular muscles (p,r) and undetectable in lumbrical muscles (q,s) of wild-type and SOD1G93A mice using 
immuno�uorescence. Western blot analysis showed that IGF-2R was indeed present in extraocular muscles at 
3.8-fold higher levels than in lumbrical muscles ((t) t(8) =  2.86, P =  0.021, n =  5 mice/group, Student’s t test, 
values represent means ±  SEM). Scale bars: (p) 50 µ m (applicable to (a–d) and (m–o)), (q) 40 µ m (applicable to 
(e–h) and (n–q)).
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During development, IGF-1 acts as a target-derived trophic factor for oculomotor neurons, promoting both 
survival and axon outgrowth48, presumably by acting on IGF-1R on oculomotor neurons, as does IGF-2. In our 
culture system, the addition of IGF-2 to the media could be seen as mimicking such muscle-secretion of a motor 
neuron survival factor rather than demonstrating a cell intrinsic survival factor. Nonetheless, this implies that it 

Figure 3. IGF-2 protected human spinal motor neurons from ALS-like toxicity in vitro. Human spinal 
motor neurons generated from iPSCs expressed Islet-1/2 (a) and ChAT (b) (photos of iPSC clone AM/ALS1.1  
shown, see supplementary Table 1). �e number of motor neurons was signi�cantly decreased a�er co-culture 
with SOD1G93A astrocytes ((c–e), F(8, 126) =  231.02, P <  0.0001, ANOVA). Addition of IGF-2 (50 ng/ml) 
24–48 a�er initiation of toxicity could rescue motor neurons ((d,e), F(8, 126) =  231.02, P <  0.0001, ANOVA). 
Exposure of cultures to glutamate also induced motor neuron degeneration ((f,h), F(8, 126) =  125.87, P <  0.001, 
ANOVA), which could be rescued by adding IGF-2 (treatment initiated 24–48h a�er addition of glutamate) 
((g,h), F(8, 126) =  125.87, P <  0.0001, ANOVA). Values represent means ±  SD from 5 independent experiments 
performed in triplicate. Addition of IGF-2 induced phosphorylation of GSK-3 on the S9 residue p-GSK-(S9), 
thus inhibiting enzyme activity in a dose-dependent way (i). Representative images showing p-GSK-(S9) 
levels in the absence (j,k) or presence (l,m) of IGF-2. Representative images depicting AKT activation by 
phosphorylation on residue S473 (p-AKT-(S473)), in the absence (n,o) or presence (p,q) of IGF-2. IGF-2 
induced p-AKT-(S473) levels in iPSC motor neurons ((r), t(8) =  5.99, P <  0.001, n =  5, Student’s t test, values 
represent means ±  SD). Immuno�uorescent analysis of β -catenin levels in control (s,t) and IGF-2 treated 
(u,v) motor neurons. IGF-2 induced β -catenin levels in iPSC motor neurons ((z), t(8) =  6.36, P <  0.001, n =  5, 
Student’s t test, values represent means ±  SD). Scale bars: (a) 60 µ m, (b) 50 µ m, (g) 75 µ m (applicable to (c,d,f)), 
(k) 75 µ m (applicable to (j,l,m)), (o) 50 µ M (applicable to (n,p,q), (t) 50 µ M (applicable to (s,u,v)).
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could be su�cient to deliver IGF-2 to muscle, without retrograde delivery, to protect motor neurons that are still 
connected with muscle or within close enough range to bene�t from secreted IGF-2, especially as motor neurons 
show regenerative capacity also in ALS patients40. However, it is likely more bene�cial to deliver IGF-2 also to 
motor neurons, through retrograde delivery, as in our in vivo approach, or through direct injection into spinal 
cord to target motor neurons that have retracted further from the muscle. �is notion is supported by the previous 
�nding that muscle-restricted expression of IGF-1 was less protective in SOD1G93A mice compared AAV-based 
retrograde delivery of IGF-1, which reached motor neuron somas16. Even though spinal motor neurons had a 
much lower level of IGF-1R compared to oculomotor neurons, this was apparently su�cient to induce a protec-
tive response a�er exogenous administration of IGF, as shown by the successful use of IGF-1 in SOD1G93A mice16 
and using IGF-2 in our study. Speci�cally, delivery of AAV2::IGF-1 to 60-day old presymptomatic SOD1G93A mice 
delayed the median onset by 31 days, with a survival that was 37 days longer than GFP-treated mice. When the 
virus was instead delivered to 90-day-old SOD1G93A mice the median survival was extended by 22 days16. In our 
study, IGF-2 delivery to 80-day-old SOD1G93A mice, which display extensive muscle denervation6, prolonged the 
life-span by 14 days. �e somewhat smaller e�ect seen with our IGF-2 treatment could be due to the lower a�n-
ity of IGF-2 for the IGF-1R compared IGF-1. It could also be the result of a less e�cient retrograde transport of 
AAV9 than AAV2 to motor neurons somas, but this remains to be further investigated. IGF-1 delivery to motor 

Figure 4. IGF-2 protected SMA patient spinal motor neurons in culture. SMA patient motor neurons in long-
term culture without (a) or with (b) IGF-2 (photos of iPSC clone SMA 1.1 shown, see supplementary Table 2).  
(c) �e number of SMA motor neurons in culture was signi�cantly decreased compared to wild-type cells  
(F(5, 84) =  135,65, P <  0.0001, ANOVA). Treatment of the cultures with IGF-2 (50–100 ng/ml, added at 4 weeks) 
was protective to motor neurons (8 weeks, grey and black bars, F(5, 84) =  135.65, P <  0.0001, ANOVA). Values 
represent means ±  SD from 5 independent experiments performed in triplicate. (d) At 8 weeks, untreated SMA 
iPSC motor neurons (shown in yellow) showed shorter axon lengths than wild-type cells (shown in black). SMA 
motor neurons treated with IGF-2 (shown in teal and red) had longer axons than untreated SMA motor neurons 
(P <  0.001, Kolmogorov-Smirnov test, 5 independent experiments performed in triplicate).



www.nature.com/scientificreports/

9Scientific RepoRts | 6:25960 | DOI: 10.1038/srep25960

neurons49 or muscle50 in SMA mice can also be protective. However, the broadly increased IGF-1R levels seen 
in SMA mouse spinal cords and the protective e�ects demonstrated by a general genetic reduction of IGF-1R51, 
warrants for cell-speci�c over-expression of IGFs in this model.

Figure 5. IGF-2 prolonged the survival of SOD1G93A fALS mice by preserving motor neurons and 
inducing nerve regeneration. (a) Schematic drawing of the IGF-2 in vivo delivery (by Mattias Karlen) where 
SOD1G93A mice were injected into the hindlimb quadriceps and thoracic muscles at 80 days of age with 
AAV9::GFP, AAV9::IGF-2 or AAV9::null at a total dose of 11 ×  1011 vg. (b) Injection of AAV9::GFP resulted in 
GFP expression within the spinal cord 2 weeks post-injection. (c) Colocalization of GFP (green) with SMI32 
(red) demonstrated that motor neurons were e�ciently transduced (n =  5 mice). (d) Rotarod performance 
of AAV9::IGF-2 treated mice (n =  10) was signi�cantly improved compared to AAV9::null mice (n =  10) in 
particular at 8 weeks a�er treatment (F(1, 36) =  18.66, P <  0.0001, two-way ANOVA; at 8 weeks: T(16) =  4.778, 
P <  0.001, Student’s t test). Error bars indicate mean ±  SEM). (e) Kaplan-Meier survival curves demonstrated 
a signi�cantly extended survival by 14 days in AAV9::IGF-2 mice (n =  10) compared to AAV9::null animals 
(n =  15) (χ2  =   5.3, P =  0.02). Representative motor neuron pools in the lumbar segment of the spinal cords of 
AAV9::null (f) and AAV9::IGF-2 (g) treated mice at P140. Quanti�cation of motor neurons (h) and axons  
(i) in the lumbar spinal cords of AAV9::IGF-2 and AAV9-null treated mice (mean ±  SD) at P140. Motor neuron 
and axon counts signi�cantly increased in the AAV9::IGF-2 treatment group compared to the AAV9::null 
group (motor neurons: F(2, 87) =  397.75, P <  0.0001; axons: F(2, 33) =  230.28, P <  0.0001, two-way ANOVA, 
n =  3/group). (j–l) Analysis of GAP-43 in NMJs of lumbrical muscles showed that AAV9::IGF-2 treatment 
signi�cantly increased the proportion of endplate with distinct GAP-43 expression in SOD1G93A mice compared 
to AAV9::null treatment F(2, 25) =  38.07, P <  0.0001, n =  5 muscles (3 mice) AAV9::null, n =  6 muscles (3 mice) 
AAV9::IGF-2, ANOVA, values shown as mean ±  SEM). (j–l) AAV::IGF-2 treated mice also had signi�cantly 
fewer endplates which were devoid of GAP-43 staining (P <  0.001, ANOVA, values shown as mean ±  SEM). 
Scale bar: (c) 50 µ m (applicable to (b)), (k) 40 µ m (applicable to (j)).
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Several clinical trials of subcutaneously delivered IGF-1 in ALS have been conducted with contradictory 
results52–54. IGF-2 has not yet been tested in clinical trials for ALS. We anticipate that delivery of IGF-2 or IGF-1 
directly to motor neurons, using gene therapy, either through muscle injections and retrograde delivery to motor 
neuron somas or intraspinal injections, could confer localized neurotrophic support directly to motor neurons 
and be bene�cial to ALS patient.

Our gene therapy data showed that IGF-2 prolonged the life-span of the SOD1G93A mice, preserving both 
motor neuron somas and axons. We showed that IGF-2 induced a signi�cant regenerative response in vivo, 
demonstrating the capability of motor neurons to regenerate in symptomatic animals. In ALS, some motor axons 
show great capacity for regeneration and appear to compensate for the loss of innervation by their neighbors36,38. 
�us, factors that in�uence motor nerve regeneration could determine motor neuron and muscle connectivity 
and consequently disease onset and duration. �is is clearly illustrated by the ephrin receptor EphA4, which 
mediates axon repulsion and is a disease modi�er in ALS55. It is possible that combining IGF-2 treatment with 
blocking of EphA4 could further improve the axon regrowth and connectivity with muscle in ALS.

In summary, our �ndings support a general motor neuron protective role for IGF-2 in ALS and indicate that 
the higher level of IGF-2 and IGF-1Rs in oculomotor motor neurons and endplate on extraocular muscles could 
be protecting these motor neurons against degeneration. Finally, our results demonstrate that oculomotor-speci�c 
expression can be utilized to identify candidates that protect vulnerable motor neurons from degeneration in ALS 
and that such candidates can have protective potential across motor neuron diseases.

Methods
Ethics statement. All the work involving animal or human subjects/tissues was carried out in accordance 
with the Code of Ethics of the World Medical Association (Declaration of Helsinki) and with national legisla-
tion and institutional guidelines. Animal procedures were approved by the Swedish animal ethics review board 
(Stockholms Norra Djurförsöksetiska nämnd) and Italian Ministry of Health review boards. Ethical approval for 
the use of the human post mortem samples was obtained from the regional ethical review board in Stockholm, 
Sweden (Regionala Etikprövningsnämnden, Stockholm, EPN). All post mortem human tissues were obtained 
from the Netherlands Brain Bank (NBB, www.brainbank.nl) or the National Disease Research Interchange 
(NDRI, www.ndriresource.org) with the written informed consent from the donors or the next of kin. Human 
�broblasts were retrieved from Eurobiobank with informed consent (ethical committee approved at the IRCCS 
Foundation Ca’ Granda Ospedale Maggiore Policlinico).

Generation of AAV vectors. Adeno-associated virus (AAV) vectors were manufactured by SignaGen 
Laboratories (www.signagen.com). �e human IGF-2 cDNA (NCBI accession number BC000531) was cloned 
into a shuttle plasmid containing both the AAV2 inverted terminal repeats (ITR) and the 1.6-kb cytomegalovi-
rus (CMV) enhancer/chicken β -actin (CBA) promoter. AAV9::IGF-2 was produced by transient transfection of 

Target Source Host species

Concentration used

mouse tissue 
(central)

mouse tissue 
(peripheral) human tissue in vitro Western blot

Neuro�lament (165 kDa) DSHB (2H3) Mouse – 1:50 – – –

β III-tubulin Millipore (MAB1637) Mouse – – – 1:200 –

CD11b AbD Serotec (MCA711) Rat 1:300 – – – –

ChAT Millipore (AB144P) Goat 1:300 – 1:50 – –

ChAT Millipore (AB143) Rabbit 1:200 – – 1:200 –

Gap43 Millipore (AB5520) Rabbit – 1:250 – – –

GAPDH Abcam (ab9485) Rabbit – – – – 1:2500

GFAP Dako (Z0334) Rabbit 1:500 – – – –

GSK3PSe LifeSpan Biosciences (LS-B55) Rabbit – – – 1:200 –

pAKTSer473 Sigma (SAB4504331) Rabbit – – – 1:200 –

β -catenin Santa Cruz (E-5) Mouse – – – 1:200 –

HB9 Millipore (ABN174) Rabbit – – – 1:200 –

IGF-2 R&D Systems (AF792) Goat 1:40 – 1:20 – –

IGF-2 Abcam (ab9574) Rabbit 1:200 – 1:100 – –

IGF-1 receptor R&D Systems (AF-305-NA) Goat 1:40 1:20 – – –

pIGF-1 receptor Abcam (ab5681) Rabbit 1:100 – – – 1:1000

pIGF-1 receptor Abcam (ab39398) Rabbit – – – – 1:1000

IGF-2 receptor Abcam (ab32815) Rabbit 1:500 1:400 – – 1:2000

pIGF-2 receptor Abcam (ab138453) Rabbit 1:100 – – – –

Islet1/2z Millipore (MABN1107) Rabbit – – – 1:200 –

MAP2 Sigma (M4403) Mouse – – – 1:100 –

SMI-32 Convance (SMI-32R) Mouse – – – 1:500 –

SV2A DSHB (SV2) Mouse – 1:50 – – –

Table 1.  Antibodies used for immunohistochemistry, immunocytochemistry and Western blot.

http://www.brainbank.nl
http://www.ndriresource.org
http://www.signagen.com
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HEK293 cells using a double-stranded AAV2-ITR-based CBA vector with a plasmid encoding Rep2Cap9 along 
with an adenoviral helper plasmid (pHelper; Stratagene). Our serotype 9 sequence was veri�ed by sequencing. 
We used AAV9 encoding GFP under the control of the CMV promoter (AAV9::GFP) to monitor transduction 
e�cacy. As a control, a third vector was generated in which the IGF-2 cDNA was replaced with a noncoding 
sequence under the CBA promoter to generate the AAV9::null vector.

Animal models. Adult male and female SOD1G93A mice (B6.Cg-Tg(SOD1-G93A)1Gur/J)26 were used as a 
model of ALS and non-transgenic littermates were used as controls. Time points used were P112, P126, P140 and 
end-stage (individually detailed within results). Animals were housed according to standard conditions, with 
access to food and water ad libitum and a dark/light cycle of 12 h.

Processing and immunohistochemistry of mouse and human tissues. Mouse immunohistochemistry.  
SOD1G93A mice and wild-type littermates were sacri�ced by inhalation of CO2 for muscle analysis. �e extraocular  
muscles and lumbrical muscles (from the plantar surface of the hind-paw) were dissected in 0.1 M PBS and 
�xed in 4% PFA (Sigma-Aldrich) for 10 min for NMJ analysis or snap frozen in 2-Methylbutane (Sigma-Aldrich) 
on dry ice for immunoblotting. Only muscles innervated by CNIII were included in the extraocular analysis 
(superior rectus, inferior rectus, medial rectus, and inferior oblique). Staining for NMJ analysis was done as 
previously described6 using antibodies detailed in Table 1. For CNS immunohistochemistry, animals were anes-
thetized with avertin (2,2,2-Tribromoethanol; Sigma-Aldrich) and perfused intracardially with PBS followed by 
4% PFA. Brains and spinal cords were dissected and post�xed (for 3 hours and 1 hour, respectively), cryoprotected 
in sucrose and sectioned (30 µ m). All CNS tissues were stained as previously described12 using the following pri-
mary antibodies (Table 1) and counter stained with NeuroTrace 435/455 Blue Fluorescent Nissl Stain (1:200 in 
PBS; Life Technologies) for 30 min. Tissues were imaged on a Zeiss LSM700 confocal microscope.

Immunohistochemistry of human tissues. �e characteristics of ALS patients and non-demented controls (ND) 
used for immunohistochemical analysis are listed in Supplementary Table 1. Tissues were processed and sub-
jected to immunohistochemistry as previously described12, using the following primary antibodies (Table 1). 
Bright�eld images were captured using a Zeiss Axio Imager M1 Upright microscope.

Motor neuron intensity and area measurements. Signal intensities of IGF-2 and IGF receptor stainings were 
measured as described previously12. To aid human and mouse tissue analysis adjacent sections were stained with 
Nissl or antibodies against ChAT, allowing us to easily visualize motor neurons. Omission of either primary or 
secondary antibodies did not result in signi�cant background levels (data not shown). All intensity measurements 
were normalized to the oculomotor nucleus. All quanti�cations were performed blind to the genetic status of the 
material.

Western blot analysis of IGF-1 and IGF-2 receptor levels. Tissues were homogenized in ice-cold 
modi�ed RIPA bu�er (50 mM Tris HCl, 1% triton X-100, 0.5% Na deoxycholate, 0.2% SDS, 100 mM NaCl, 1 mM 
EDTA, pH7.5) with 0.4 mM PMSF and a protease inhibitor cocktail (complete, Mini, EDTA-free, Roche) using 
an electric tissue homogenizer (TissueRuptor, Qiagen) for 15 seconds followed by incubation on ice for 30 min. 
Samples were sonicated brie�y (5 seconds) and centrifuged for 10 min at 4 °C and 13,200 rpm. Protein concen-
trations of the supernatants were determined with the Pierce BCA Protein Assay (�ermo Scienti�c). Samples 
were diluted with 4x Laemmli loading bu�er with 10% mercaptoethanol and incubated on a shaker at 70 °C for 
10 min before loading 20 µ g of protein onto 3–8% Tris Acetate gradient gels (LifeTechnologies). Transfer was 
done in Bjerrum bu�er with 10% Methanol onto a PVDF membrane for 1 hour at 30 V. A�er transfer, membranes 
were kept in 0.1% TBS-T or 0.5% PBS-T at 4 °C until further processing. Membranes were blocked in 1% BSA in 
0.1% TBS-T or 5% BSA in 0.5% PBS-T for 1 hour followed by incubation with primary antibodies (Table 1). A�er 
washing, membranes were incubated with HRP-conjugated secondary antibodies (goat anti rabbit-HRP, 1:10,000; 
Dako) and proteins were visualized using enhanced chemiluminescence (Amersham ECL Prime Western Blotting 
Detection Reagent, GE Healthcare) followed by imaging in a Molecular Imager ChemiDoc XRS+  (BioRad).

Quanti�cation of western blots. Band intensities were measured using ImageJ so�ware. IGF-1R and IGF-2R 
expression is shown relative to GAPDH expression.

iPSC lines and motor neuron cultures. Di�erentiation of human iPSCs into motor neurons. iPSC lines 
were generated from �broblasts obtained from Eurobiobank, see Supplementary Table 2. �e cells were tested 
for Mycoplasma (MycoAlert kit, Lonza). Spinal motor neurons were di�erentiated using a protocol developed 
for human embryonic stem cells and iPSCs56. For the generation of motor neurons from ALS, SMA and control 
patient iPSCs, cells were plated with neuronal medium composed of DMEM/F12 (Life Technologies), supple-
mented with MEM nonessential amino acids solution (Life Technologies), N2 (Invitrogen), and heparin (2 mg/ml;  
Sigma-Aldrich). A�er 10 days, retinoic acid (RA, 0.1 µ M; Sigma-Aldrich) was added for neural caudalization. 
At day 17, posteriorized neuroectodermal cells were collected. �ese clusters were then suspended for a week 
in the same medium with RA (0.1 µ M) and sonic hedgehog (100–200 ng/ml; R&D Systems). On day 24, BDNF 
(brain-derived neurotrophic factor) and GDNF (glial cell-derived neurotrophic factor) (10 ng/ml; PeproTech) 
were added. To enrich for motor neurons a centrifugation gradient was applied. Motor neurons were subse-
quently transduced with a lenti-Hb9::GFP construct5. Cells were �xed and stained for quanti�cation using known 
neuronal markers (Table 1).
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Induction of ALS-like toxicity. iPSC-derived motor neurons were exposed to ALS-like toxicity by co-culture 
with SOD1G93A astrocytes29,30 or by glutamate overload11,28. For the ALS astrocyte toxicity assay, motor neurons 
were plated on the bottom chamber of a transwell co-culture system and cultured in the presence of astrocytes 
isolated either from SOD1G93A or wild-type mice. Glial monolayers were prepared from spinal cords of new-
born pups as previously described57. For the glutamate toxicity assay, motor neurons were cultured for 7 days 
in a neurotrophin-deprived medium prior to the addition of glutamate. Toxicity was induced by the addition of 
1–100 µ M glutamate and 100 µ M L-trans-Pyrrolidine-2,4-dicarboxylic acid (PDC) for 7 days11. For analysis of 
neuroprotection, cultures were treated with recombinant IGF-2 (1–100 ng/ml, R&D Systems) either 2–4 hours 
prior to or 24–48 hours a�er induction of toxicity. Cultures were subsequently maintained for an additional 7 days 
for the glutamate assay and 3 weeks for the astrocyte toxicity assay.

SMA-like degeneration of human motor neurons. �e SMA motor neurons present an apparent cell autonomous 
degeneration in vitro a�er 8 weeks of culturing5, which was used to model SMA in vitro. For analysis of neuro-
protection cultures were treated with recombinant IGF-2 continuously (50 or 100 ng/ml) a�er 4 weeks of culture.

Immunocytochemistry of motor neuron cultures. Cells were �xed in 4% PFA for 10 min and permeabilized with 
0.25% triton X-100, followed by blocking with 10% BSA in PBS and 0.3% triton X-100 for 1 hour at room tem-
perature. Cells were incubated with primary antibodies (Table 1) overnight at 4 °C and a�er washing secondary 
antibodies were applied for 1.5 hours at room temperature (anti-goat or anti –rabbit Alexa Fluor 594 (1:400; Life 
Technologies). For imaging of cell cultures, a LEICA LCS2 confocal microscope was used. Controls, omitting 
either primary or secondary antibodies were conducted for all stainings.

In vitro quanti�cation. Quanti�cation of motor neuron survival in vitro was performed by counting 10 randomly 
selected �elds per well. Morphometric axonal length studies were performed by measuring soma diameter and 
length distance to the most distal point of the axon5. Di�erences were analyzed using the Kolmogorov-Smirnov 
test (http://www.physics.csbsju.edu/stats/KS-test.n.plot_form.html). All quanti�cations were performed blind to 
the genetic status of the material and the treatment.

Administration of AAV vectors to SOD1G93A ALS mice, analysis of behavior, survival and quan-
tification of effects on motor neurons and axons. A total dosage of 11 ×  1011 particles of AAV9 vec-
tor expressing IGF-2 or GFP were injected bilaterally into the hindlimb quadriceps and intercostal muscles of 
SOD1G93A animals at 80 days of age (n =  10 for AAV9::IGF-2, n =  5 for AAV9::GFP), using a Hamilton syringe. 
AAV9::null was used as a control vector (n =  15). Animals were randomized using an assigned animal identi�ca-
tion number. Power analysis using GraphPad was performed to calculate the number of mice needed to treat to 
detect a di�erence of 10% in life-span with 80% power (β  =  0.8) at a signi�cance level of 0.05. All mice were moni-
tored daily a�er AAV9::IGF-2 or AAV9::null treatment for phenotypic hallmarks of disease. �e investigators that 
executed the functional assessment were blind to the treatment. Body weight was recorded and motor function 
was tested weekly with an accelerating rotarod device (4–40 rpm; Rota-Rod 7650; Ugo Basile). �e animals were 
sacri�ced when they were unable to right themselves within 30 seconds when placed on either side58.

Motor neuron and axon counting in vivo a�er IGF-2 delivery. AAV9-injected mice were sacri�ced at P140 and 
the lumbar region of the spinal cord was sectioned (12 µ m) and Nissl stained with methylene blue59. �e number 
of motor neurons in the ventral horn and soma diameter were analyzed at 40×  magni�cation, according to pre-
viously established criteria59. �e axonal count was performed as previously described on semi-thin transverse 
sections stained with toluidine blue60. Axon quanti�cation was done at 60×  magni�cation on lumbar anterior 
roots using a Zeiss Axiophot microscope.

Quanti�cation of GAP-43 expression at the NMJ. For analysis of GAP-43 expression at the NMJ, control and 
IGF-2 treated mice were sacri�ced when the control group reached end-stage. Muscles were dissected and immu-
nohistochemically processed as described above. A minimum of 50 NMJs from regions across lumbrical muscles 
from mice treated with AAV9::IGF-2 or AAV9::null vector were assessed. Motor endplates were individually cat-
egorized based on the level of GAP-43 expression at each one. GAP-43 levels were categorized as distinct (bright 
and de�ned staining overlying the endplate), di�use (faint and unde�ned staining, or only partially overlying the 
endplate) or devoid (no GAP-43 overlying the endplate), Supplementary Fig. 4. All analyses and quanti�cations 
were performed blind to the genetic status of the material and the treatment.

Statistical analysis. All statistical analyses were performed with GraphPad Prism or Stats Direct so�ware 
(version 2.6.4) unless otherwise speci�ed. When making multiple comparisons on a single data set one-way 
analysis of variance (ANOVA) was used and when several variables were taken into account, two-way ANOVA 
was used, followed by appropriate post hoc analysis. Two-tailed, unpaired Student’s t test was used to compare 
two groups. Kaplan–Meier survival analysis and the log-rank test were used for survival comparisons. �e data 
met the assumptions of the speci�c statistical tests chosen, with the exception of the quanti�cation of IGF-2 
protein levels within motor neurons in human post mortem tissues, which did not display Gaussian distribution 
and thus was analyzed by Kruskal-Wallis in addition to ANOVA. Individual statistical tests are detailed in the 
�gure legends; motor neuron numbers for IGF-2 and IGF receptor quanti�cations are listed in Supplementary 
Table 3. All experiments were performed in triplicate at a minimum. All results are expressed as mean ±  SEM 
or mean ±  SD.

http://www.physics.csbsju.edu/stats/KS-test.n.plot_form.html
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