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We explore the extent to which basic differential operators (such as Laplace-Beltrami, Lamé, Navier-Stokes,
etc.) and boundary value problems on a hypersurface S in Rn can be expressed globally, in terms of the
standard spatial coordinates in Rn. The approach we develop also provides, in some important cases, useful
simplifications as well as new interpretations of classical operators and equations.

Copyright line will be provided by the publisher

Contents

Introduction 1
1 Brief review of classical differential geometry of manifolds 3
2 The derivation of the Lamé operator on manifolds 6
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1

Introduction

Boundary value problems (BVP’s) for partial differential equations (PDE’s) on surfaces arise in a variety of
situations and have many practical applications. See, for example, [Ha, §72] for the heat conduction by sur-
faces, [Ar, §10] for the equations of surface flow, [Ci], [Ci2], [Go] for shell problems in elasticity, [AC] for the
vacuum Einstein equations describing gravitational fields, [TZ] for the Navier-Stokes equations on spherical do-
mains, [AMM1, AMM2] for Stokes equations, [MaMi] for minimal surfaces, as well as the references therein.
Furthermore, while studying the asymptotic behavior of solutions to elliptic boundary value problems in the
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neighborhood of a conical point one is led to considering a one-parameter family of boundary value problems in
a subdomain S of Sn−1, the unit sphere in Rn, naturally associated (via the Mellin transform) with the original
elliptic problem. A classical reference in this regard is [Ko]. Finally, PDE’s on surfaces also turn up naturally
in the limit case, as the thickness goes to zero, of equations in thin layers or shells. Cf. [Ci, §3] for the case of
elasticity, and [TW], [TZ] for the case of Navier-Stokes equations.

A hypersurface S in Rn has the natural structure of a (n − 1)-dimensional Riemannian manifold and the
aforementioned PDE’s are not the immediate analogues of the ones corresponding to the flat, Euclidean case,
since they have to take into consideration geometric characteristics of S such as curvature. Inherently, these
PDE’s are originally written in local coordinates, intrinsic to the manifold structure of S.

The main aim of this paper is to explore the extent to which the most basic partial differential operators
(PDO’s), as well as their associated boundary value problems, on a hypersurface S in Rn, can be expressed
globally, in terms of the standard spatial coordinates in Rn. It turns out that a convenient way to carry out this
program is by employing the so-called Günter derivatives (cf. [Gu], [KGBB], [Du]):

D := (D1,D2, ...,Dn). (0.1)

Here, for each 1 ≤ j ≤ n, the first-order differential operator Dj is the directional derivative along π ej , where
π : Rn → TS is the orthogonal projection onto the tangent plane to S and, as usual, ej = (δjk)1≤k≤n ∈ Rn,
with δjk denoting the Kronecker symbol. The operator D is globally defined on S by means of the unit normal
vector field, and has a relatively simple structure. In terms of (0.1), the Laplace-Beltrami operator on S simply
becomes

∆S = D •D =
n∑

j=1

D2
j on S. (0.2)

(Cf. [MaMi, pp. 2 ff and p. 8].) Moreover, ∆S is the natural operator associated with the Euler-Lagrange equa-
tions for the variational integral

E [u] = −1
2

∫
S
‖Du‖2 dS (0.3)

(Cf. [MaMi, pp. 9 ff]). A similar approach, based on the principle that, at equilibrium, the displacement minimizes
the potential energy, leads to the following expression for the Lamé operator L on S:

Lu = µπ (D •D)u + (λ + µ)D(D •u)− µ (n− 1)HWu, (0.4)

for arbitrary vector fields u on S, which are tangent to S. Above, λ, µ ∈ R are the Lamé moduli, whereas H,
W stand, respectively, for the the mean curvature and the Weingarten map of S. In particular, when combined
with the recent work from [MMT] (dealing with general elliptic BVP’s on Lipschitz subdomains of Riemannian
manifolds), this identification ensures the well-posedness of the boundary-value problem



u = (u1, ..., un) ∈ Hs+1/2,2(S, Rn),

〈u, N〉 = 0 in S,

µ π (D •D)u + (λ + µ)D(D •u)− µ (n− 1)HWu = 0 in S,

u
∣∣∣
∂S

= ~f ∈ Hs,2(∂S, Rn), 〈~f, N〉 = 0 on ∂S,

(0.5)

whenever µ > 0, 2µ + λ > 0, and 0 ≤ s ≤ 1. Here Hs,2 stands for the usual L2-based Sobolev scale. Other
operators discussed in this paper are the Hodge-Laplacian
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∆HL := −dSd∗S − d∗SdS , (0.6)

where dS is the exterior derivative operator on S, and d∗S its formal adjoint, and the Navier-Stokes system on
S × (0,∞); see §7 for details.

These results are useful in numerical and engineering applications (cf. [AN], [Be], [Ce], [Co], [DL], [BGS],
[Sm]) and we plan to treat a number of special hypersurfaces in greater detail in a subsequent publication.

The layout of the paper is as follows. In §2 we review some basic differential-geometric concepts which
are relevant for the work at hand. In §3, based on variational methods (minimization of energy functional), we
identify the natural Lamé operator on a general (elastic, linear, isotropic) manifold M . Starting with §4, we
specialize our discussion to the case of a hypersurface S, viewed as a Riemannian manifold with the metric
inherited from the ambient Euclidean space. In particular, here we discuss the possibility of extending the unit
normal to S, i.e. N : S → Sn−1 in a neighborhood of S under additional assumptions. In §5 we derive some
very useful ‘integration by parts’ formulas for first order operators which are tangent to a hypersurface S.

The proof of the identification (0.2) is given in §6, via a method which is interesting in its own right. In fact,
this is flexible enough to apply to the case of systems of equations, such as the Lamé operators. This yields (0.4),
in §7. Finally, applications to elliptic BVP’s on smooth hypersurfaces with Lipschitz boundaries (such as (0.5)),
are presented in §8.

1 Brief review of classical differential geometry of manifolds

Let M be a smooth manifold, possibly with boundary, of (real) dimension n. As usual, by TM and T ∗M we
denote, respectively, the tangent and cotangent bundle on M . Throughout, we shall also denote by TM global
(C∞) sections in TM (i.e., TM ≡ C∞(M,TM)); similarly, T ∗M ≡ C∞(M,T ∗M). More generally, if
Λ`TM stands for the corresponding exterior power bundle (differential forms of degree `), then we shall use the
abbreviation Λ`TM ≡ C∞(M,Λ`TM).

We shall assume that M is equipped with a smooth Riemannian metric tensor g =
∑

j,k gjkdxj⊗dxk, denote
by (gjk)jk the inverse matrix to (gjk) and set g := det (gjk)jk. In particular, dVol, the volume element in M is
locally given by dVol =

√
g dx1...dxn. Recall next that

div X :=
∑

j

√
g
−1

∂j(
√

gXj) if X =
∑

j

Xj∂/∂xj ∈ TM, (1.1)

and

grad f =
∑
j,k

(gjk∂jf) ∂/∂xk (1.2)

are, respectively, the usual divergence and gradient operators. Accordingly, the Laplace-Beltrami operator ∆
becomes

∆ := div grad =
√

g
−1

n∑
j,k=1

∂j(gjk√g∂k · ) . (1.3)

The pairing 〈dxj , dxk〉 := gjk defines an inner product in Λ1TM . With respect to this, grad and −div are
adjoint to each other. We shall also abbreviate dxi1 ∧ dxi2 ∧ ... ∧ dxi`

by dxI , where I = (i1, i2, ..., i`) and let
wedge stand for the ordinary exterior product of forms. Then, 〈dxI , dxJ〉 := det

(
(gij) i∈I

j∈J

)
, |I| = |J | = `,

defines an inner product in Λ`TM for each 1 ≤ ` ≤ n.
If, as usual, we let d =

∑
j ∂/∂xj dxj∧ stand for the exterior derivative operator on M , and denote by δ its

formal adjoint (with respect to the above metric), then the Hodge-Laplacian on M becomes
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∆ := −dδ − δd. (1.4)

As is customary, we may identify vector fields with one-forms, i.e., TM ∼= T ∗M = Λ1TM , via ∂/∂xj 7→
gjkdxk (lowering indices). This mapping is an isometry whose inverse is given by dxj 7→ gjk∂/∂xk (raising in-
dices). In the sequel, we shall not make any notational distinction between a vector field and its associated 1-form
(i.e., we shall tacitly identify TM ≡ T ∗M ). Under this identification, grad : C∞(M) → C∞(M,TM) be-
comes d : C∞(M) → C∞(M,Λ1TM) and div : C∞(M,TM) → C∞(M) becomes−δ : C∞(M,Λ1TM) →
C∞(M).

A tensor of type (k, j) is a map

F : (TM × ...× TM)× (Λ1TM × ...× Λ1TM) → C∞(M) (1.5)

(with j factors of TM and k factors of Λ1TM ) which is linear in each factor over the ring C∞(M). There is a
natural inner product at the level of (k, j) tensors defined by

〈F,G〉 :=
∑

F (Xα1 , Xα2 , ..., Xαj , ωβ1 , ωβ2 , ..., ωβk
)

·G(Xα1 , Xα2 , ..., Xαj
, ωβ1 , ωβ2 , ..., ωβk

), (1.6)

where Xα’s are an orthonormal frame for TM and ωβ’s are the dual basis in Λ1TM (summation over all possible
choices of indices).

Next, let ∇ be the associated Levi-Civita connection. Among other things, the metric property

Z〈X, Y 〉 = ∇Z 〈X, Y 〉 = 〈∇ZX, Y 〉+ 〈X,∇ZY 〉, ∀X, Y, Z ∈ TM, (1.7)

holds. This, in concert with

X∗ = −X − div X, ∀X ∈ TM. (1.8)

further entails that

(∇X)∗ = −∇X − div X, ∀X ∈ TM. (1.9)

For each X ∈ TM , ∇X is the tensor of type (0, 2) defined by

(∇X)(Y, Z) := 〈∇ZX, Y 〉, ∀Y,Z ∈ TM. (1.10)

with trace

Tr(∇X) =
n∑

j=1

〈∇Tj
X, Tj〉 = div X (1.11)

for any orthonormal frame {Tj}j in TM . For any X ∈ TM , the antisymmetric part of ∇X is simply dX , i.e.

dX(Y,Z) = 〈dX, Y ∧ Z〉 = 1
2

{
〈∇Y X, Z〉 − 〈∇ZX, Y 〉

}
, ∀Y,Z ∈ TM, (1.12)
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whereas the symmetric part of ∇X is Def X , the deformation of X , i.e.

(Def X)(Y,Z) = 1
2

{
〈∇Y X, Z〉+ 〈∇ZX, Y 〉

}
, ∀Y, Z ∈ TM. (1.13)

Thus, Def X is a symmetric tensor field of type (0, 2). In coordinate notation,

(Def X)jk = 1
2 (Xj;k + Xk;j), ∀ j, k. (1.14)

Here, as usual, for a vector field X =
∑

j Xj∂j , we set Xk;j := ∂jXk +
∑

l Γ
l
kjXl, where Xk =

∑
l gklX

l and
Γl

kj are the Christoffel symbols associated with the metric. Deformation-free vector fields X are usually referred
to as Killing fields. They satisfy

∑
`

[
gk`X

`
;j + gj`X

`
;k

]
= Xk;j + Xj;k = 0, ∀ j, k. (1.15)

The adjoint of Def is Def∗ defined in local coordinates by (Def∗w)j = −wjk
;k for each symmetric tensor

field w of type (0, 2). In particular, if ν ∈ TM is the outward unit normal to ∂M ↪→ M , then the integration by
part formula

∫
M

〈Def u, w〉 dVol =
∫

M

〈u, Def∗w〉 dVol +
∫

∂M

w(ν, u) dvol, (1.16)

holds for any u ∈ TM , and any symmetric tensor field w of type (0, 2). Here and elsewhere, dvol will denote
the volume element on ∂M .

Formula (1.16) is a particular case of a more general integration by parts identity, to the effect that

∫
M

〈Pu, w〉 dVol =
∫

M

〈u, P ∗w〉 dVol +
∫

∂M

〈σ(P ; ν)u, w〉 dvol, (1.17)

valid for a general first-order differential operator P =
∑

j Aj∂j + zero order terms (acting between two hermi-
tian vector bundles on M ), with principal symbol σ(P ; ξ) =

∑
j Ajξj , for ξ ∈ T ∗M .

For further reference, let us note here that σ(∇X ; ξ) = 〈X, ξ〉, and that σ(d; ξ) = ξ ∧ ·, σ(δ; ξ) = ξ ∨ ·, where
we have denoted by ∨ the adjoint of the exterior product, in the sense that

〈ξ ∨ u, w〉 = 〈u, ξ ∧ w〉, ξ ∈ Λ1TM, u ∈ Λ`TM, w ∈ Λ`−1TM. (1.18)

The Riemann curvature tensor R of M is given by

R(X, Y )Z = [∇X ,∇Y ]Z −∇[X,Y ]Z, X, Y, Z ∈ TM, (1.19)

where [X, Y ] := XY − Y X is the usual commutator bracket. It is convenient to change this into a (0, 4)-tensor
by setting

R(X, Y, Z,W ) := 〈R(X, Y )Z,W 〉, X, Y, Z, W ∈ TM. (1.20)

The Ricci curvature Ric on M is a (0, 2)-tensor defined as a contraction of R:

Ric (X, Y ) :=
n∑

j=1

〈R(Tj , Y )X, Tj〉 =
n∑

j=1

〈R(Y, Tj)Tj , X〉, ∀X, Y ∈ TM, (1.21)
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where T1, . . . , Tn is an orthonormal frame in TM . Thus, Ric is a symmetric bilinear form.
Under the identification TM ≡ Λ1TM , the Bochner Laplacian and the Hodge Laplacian are related by

∇∗∇ ≡ −∆− Ric, (1.22)

a special case of the Weitzenbock identity.
Consider now S ↪→ M , a smooth, orientable submanifold of codimension one in M , and fix some ν ∈ TM

such that ν|S becomes the outward unit normal to S. If ∇S is the induced Levi-Civita connection on S (from the
metric inherited from M ) it is then well-known that

∇SXY = π(∇XY ), ∀X, Y ∈ TS, (1.23)

where

π : TM −→ TS, π = I − 〈·, ν〉ν = ν ∨ (ν ∧ · ), (1.24)

is the canonical orthogonal projection onto TS. In particular, the second fundamental form of S becomes

II(X, Y ) := ∇XY −∇SXY = π(∇XY ), ∀X, Y ∈ TS. (1.25)

In this setting, the Weingarten map

W : TS −→ TS, (1.26)

originally defined uniquely by the requirement that

〈WX, Y 〉 = 〈ν, II(X, Y )〉, ∀X, Y ∈ TS, (1.27)

reduces to

WX = −∇Xν on S, ∀X ∈ TS, (1.28)

known as Weingarten formula.
An excellent reference for the material in this section is [Ta2]. Here we only want to point out that, whenever

necessary in order to avoid confusion, we shall write dM , gradM , divM , ∆M , etc., in place of d, grad, div, ∆,
etc.

2 The derivation of the Lamé operator on manifolds

In the present paragraph ∇u, for u ∈ C∞(M) a scalar function, is naturally identified with the gradient gradu
and is identified with the Jakobi matrix (∂kuj)j,k if u = (u1, . . . , un)> is a vector-function.

One way of understanding the genesis of the Laplace-Beltrami operator (1.3) is to consider the energy func-
tional

E [u] :=
∫

M

‖gradu‖2 dVol, u ∈ C∞(M). (2.1)

Then any minimizer u of (2.1) should satisfy
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mn header will be provided by the publisher 7

d

dt
E [u + tv]

∣∣∣
t=0

= 0, ∀ v ∈ C∞
o (M), (2.2)

thus, after an integration by parts,

∆u = 0 on M. (2.3)

In other words, (2.3) is the Euler-Lagrange equation associated with the integral functional (2.1).
Similarly, minimizers of the energy functional

E [u] := −1
2

∫
M

[
‖du‖2 + ‖δu‖2

]
dVol, u ∈ Λ`TM, (2.4)

are null-solutions of the Hodge-Laplacian (1.4), while minimizers of the energy functional

E [u] := −1
2

∫
M

‖∇u‖2 dVol, u ∈ TM, (2.5)

are null-solutions of the Bochner-Laplacian (1.22).
Our aim is to adopt a similar point of view in the case of the (possibly anisotropic) Lamé system of elasticity

on M . The departure point is to consider the total free elastic energy

E [u] := −1
2

∫
M

E(x,∇u(x)) dVolx, u ∈ TM, (2.6)

ignoring at the moment the displacement boundary conditions. As before, equilibria states correspond to mini-
mizers of the above variational integral. The first order of business is to identify the correct form of the stored
energy density E(x,∇u(x)). We shall restrict attention to the case of linear elasticity. In this scenario, E depends
bilinearly on the stress tensor σ = (σjk)jk and the deformation (strain) tensor ε = (εjk)jk which, according to
Hooke’s law, satisfy σ = T ε, for some linear, fourth-order tensor T . If the medium is also homogeneous (i.e.
the density and elastic parameters are position-independent), it follows that E depends quadratically on ∇u, i.e.

E(x,∇u(x)) = 〈T ∇u(x),∇u(x)〉 (2.7)

for some linear operator

T : Mn,n(R) −→ Mn,n(R), (2.8)

where Mn,n(R) stands for the vector space of all n × n matrices with real entries. Hereafter, we organize
Mn,n(R) as a real Hilbert space with respect to the inner product

〈A,B〉 := Tr(AB>), ∀A,B ∈ Mn,n(R), (2.9)

where the superscript > denotes transposition, and Tr is the usual trace operator for square matrices. It is
customary to assume that the linear operator (2.8) is self-adjoint, that is

〈T A,B〉 = 〈A, T B〉 , A, B ∈ Mn,n(R) . (2.10)
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The operator T = (cijk`)ijk`, i.e.,

T A =
(∑

k,`

cijk`ak`

)
ij

, for A = (ak`)k` ∈ Mn,n(R), (2.11)

will be referred to in the sequel as the elasticity tensor. The condition (2.10), written in coordinate notation, is
equivalent to the following equality

cijk` = ck`ij , ∀ i, j, k, ` . (2.12)

It is also customary to impose a symmetry condition and one is presented with two natural options, namely

T (A>) = T A, ∀A ∈ Mn,n(R), (2.13)

and

(T A)> = T A, ∀A ∈ Mn,n(R), (2.14)

where the second one (2.14) follows from (2.11) and from (2.13).
Then (2.13) amounts to symmetry in the second pair of indices, i.e.

cijk` = cij`k, ∀ i, j, k, `, (2.15)

whereas (2.14) is equivalent to symmetry in the first pair of indices, i.e.

cijk` = cjik`, ∀ i, j, k, `. (2.16)

To sum up our discussion so far, we note that a linear operator T (as in (2.8)), which corresponds to the energy
functional of anisotropic elasticity (cf. (2.7)), satisfies the symmetry conditions (2.10), (2.13), (2.14). Thus, for
the corresponding matrix T = (cijk`)n

ijk`=1, the symmetry conditions (2.12), (2.15) and (2.16) hold, so this
matrix may have at most n + n2(n− 1)2/2 different entries.

The isotropic media is further assumed to satisfy

T (UAU−1) = U(T A)U−1, ∀A,U ∈ Mn,n(R), U unitary. (2.17)

As we shall see a posteriori, the conditions (2.13), (2.14) and (2.17) imply the linear operator (2.8) is self adjoint,
i.e., imply the condition (2.10). Indeed, we have:

Proposition 2.1 Consider a linear operator T , as in (2.8), such that the isotropy condition (2.17) holds. Then
T satisfies (2.13) if and only if it satisfies (2.14). Furthermore, any linear operator T which satisfies (2.17) along
with either (2.13) or (2.14) has the form

T A = λ (TrA)I + µ (A + A>), A ∈ Mn,n(R), (2.18)

for some constants λ, µ ∈ R.
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P r o o f. Let us first show that any linear operator (2.8) satisfying (2.17), (2.13) can be represented in the form
(2.18). By the previous discussion, it suffices to prove that the space of linear operators (2.8) satisfying (2.17),
(2.13) has dimension two.

Since for any A ∈ Mn,n(R) we have T A = 1
2 T (A + A>), thanks to (2.13), and since A + A> can be

diagonalized (via a suitable conjugation with an unitary matrix U ), it suffices to show that

T D =


a 0 0 ... 0
0 b 0 ... 0
0 0 b ... 0

...
0 0 0 ... b

 , where D :=


1 0 ... 0
0 0 ... 0

...
0 0 ... 0


for two numbers a, b ∈ R. To this end, consider the following types of unitary matrices:

Uio,jo
:=



1 0 ... ... ... ... 0
0 1 0 ... ... ... 0
0 ... 0 ... 1 ... 0

... ... ...
0 ... 1 ... 0 ... 0

... ... ...
0 0 0 ... ... 1 0
0 0 0 ... ... ... 1


, Wio,jo

:=



1 0 ... ... ... ... 0
0 1 0 ... ... ... 0
0 ... 0 ... 1 ... 0

... ... ...
0 ... −1 ... 0 ... 0

... ... ...
0 0 0 ... ... 1 0
0 0 0 ... ... ... 1


where the only non-zero, off the diagonal entries are at (io, jo) and (jo, io). Next, set

A := T D, A =
(
aij

)
1≤i,j≤n

and observe that D is invariant under conjugation by Wio,jo , i.e. Wio,joDW>
io,jo

= D, as long as io 6= 1 and
jo 6= 1. Thus, by (2.17), the same is true for A = T D which, in turn, eventually implies that

aioio
= ajojo

, ∀ io, jo 6= 1. (2.19)

The next observation is that D is invariant under conjugation by the product Uio,jo
Wio,jo

, i.e.

Uio,joWio,joDU>
io,jo

W>
io,jo

= D ,

this time for every 1 ≤ io 6= jo ≤ n. Hence, by (2.17), the same holds for A = T D, which ultimately implies
that aiojo

= −ajoio
for every pair of indices 1 ≤ io 6= jo ≤ n. Consequently,

aiojo
= 0, for every 1 ≤ io 6= jo ≤ n. (2.20)

Under the current assumptions, i.e. (2.17), (2.13), the desired conclusion, i.e. that T D has the two-parameter
diagonal form indicated above, now follows readily from (2.19) and (2.20).

There remains to analyze the case when the linear operator T satisfies (2.17) along with (2.14). In this
situation, it can be readily checked that T ∗, the adjoint of T with respect to the inner product (2.9), satisfies
(2.17), (2.13), so the previous reasoning applies. Consequently, T ∗ can be represented in the form (2.18), which
is invariant under adjunction. Hence T can be written in the form (2.18) also. In particular, (2.18) holds in this
case as well, and this finishes the proof of the proposition.

Remark. The above proof can be modified to hold in the case when (2.17) is (seemingly) weakened to allow
only orientation preserving unitary matrices U . All one has to do in this later case is to employ the invariance
of D under conjugation by Uko,`o

Uio,jo
Wio,jo

(with ko, `o 6= 1), in place of conjugation by (the inversion)
Uio,joWio,jo as in the original proof.

We are now ready to derive the Lamé equations of elasticity on M .
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Theorem 2.2 On a Riemannian manifold M , modeling a homogeneous, linear, isotropic, elastic medium, the
Lamé operator L is given by

L = −2µDef∗Def + λ grad div. (2.21)

In particular, L is strongly elliptic, formally self-adjoint.
If u ∈ TM denotes the displacement, natural boundary conditions for L include prescribing u|∂M , Dirichlet

type, and

Tractionu := 2µ (Def u)ν + λ (div u)ν on ∂M, (2.22)

Neumann type.
Here ν ∈ TM is the outward unit normal to ∂M and we identify (Def u)ν with the vector field uniquely

determined by the requirement that 〈(Def u)ν,X〉 = (Def u)(ν,X) for each X ∈ TM .

P r o o f. For elastic materials, it is known that the elasticity tensor (2.8) is symmetric matrix-valued, i.e. it
satisfies (2.13). Thus, according to the discussion in the first part of this section, the elasticity tensor in the case
of linear, isotropic, elastic media is given by (2.18), where λ, µ are the Lamé moduli. Consequently, the stored
energy density we need to consider is

E(A) = 〈T A,A〉 = λ (TrA)2 +
µ

2
Tr ((A + A>)2). (2.23)

Further substituting A := ∇u in (2.23) yields

E(x,∇u(x)) = λ (div u)2(x) + 2µ 〈(Def u)(x), (Def u)(x)〉, (2.24)

by (1.11) and (1.13). Thus, we are led to considering the variational integral

E [u] = −1
2

∫
M

[
λ (div u)2 + 2µ 〈Def u, Def u〉

]
dVol, u ∈ TM. (2.25)

To determine the associated Euler-Lagrange equation, for an arbitrary v ∈ TM , smooth and compactly supported,
we compute

d

dt
E [u + tv]

∣∣∣
t=0

= −
∫

M

[
λ (div u)(div v) + 2µ 〈Def u, Def v〉

]
dVol

=
∫

M

〈(λ grad div − 2µDef∗Def )u, v〉 dVol

−
∫

∂M

〈2µ (Def u)ν + λ (div u)ν , v〉 dvol (2.26)

after integrating by parts, based on (1.16) and the Divergence Theorem (i.e. (1.17) with P = div). ¿From (2.26),
the desired conclusions follow without difficulty.

Remark. In the (linear) anisotropic case, the Lamé operator takes the less explicit form

Lu = −∇∗T ∇u, u ∈ TM, (2.27)

where, as before, T is the elasticity tensor; cf. (2.11).
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3 Distinguished extensions of the unit normal to a hypersurface

We retain the notation adopted in §2, albeit specialized to the case M = Rn. In particular, ∇ and div are the
usual gradient and divergence operators, ∇ := (∂1, . . . , ∂n) and div = ∇ • , respectively, in Rn. Also, if X is a
vector field in Rn, we denote by ∂X the directional derivative X •∇. Hereafter, X •Y = 〈X, Y 〉 stands for the
standard inner product in Rn. Thus,

∇XY = (X •∇)Y = (Xk(∂kYj))j , if Y = (Yj)j , X = (Xk)k.

Also, ∇X is naturally identified with the matrix (∂kXj)j,k.
Next, let S be a Ck-hypersurface, i.e. an orientable, submanifold of class Ck, k ≥ 1, of codimension one in

Rn, with unit normal N(x) = (N1(x), . . . , N(x)), x ∈ S. Also let ∂S denote the boundary of S (∂S = ∅ if S
is closed) and γ = (γ1, ..., γn) stand for the outward unit vector to ∂S, relative to S.

Hereafter, we let dS and ds denote the ‘volume’ element on S and ∂S, respectively.
The typical situation is when S is an open region of the boundary ∂Ω of a smoothly bounded domain Ω in Rn.

The following propositions describe an extension of the unit normal to a hypersurface enjoying a number of
properties that will prove very useful in the sequel. Before stating our first result, we remind the reader that

π : Rn −→ TS, π = (δjk −NjNk)j,k, (3.1)

denotes the canonical orthogonal projection onto the tangent space to S.

Proposition 3.1 For any unitary extension ν ∈ C1(U) of N , in a neighborhood U of S, the following condi-
tions are equivalent:

(i) ∇νν = 0 on S, i.e., ∂ννj = 0 on S for j = 1, 2, ..., n;

(ii) dν = 0 on S, i.e., ∂kνj − ∂jνk = 0 on S, for k, j = 1, 2, . . . , n.

P r o o f. That (ii) ⇒ (i) follows readily by writing

〈∇νν, X〉 = 2 dν(ν,X) + 〈∇Xν, ν〉 = 2 dν(ν, X) + 1
2∇X‖ν‖2

for any vector field X in Rn.
As for the opposite implication, we first observe that, in general,

∇νν
∣∣∣
S
= 0 & ν

∣∣∣
S
= N =⇒ ∇ν

∣∣∣
S

depends only on S and not on ν. (3.2)

Indeed, for any field X ,

∇Xν
∣∣∣
S
= ∇πX ν

∣∣∣
S
+〈X, ν〉∇νν

∣∣∣
S
= ∇πXN on S,

since ∇πX is a tangential derivative operator.
In particular, given a field ν which satisfies

‖ν‖ = 1 near S, ν = N on S, and ∇νν = 0 on S, (3.3)

it follows that dν
∣∣∣
S

depends intrinsically on the hypersurface S.

Let us now consider a particular extension. To set the stage, let r : Rn → R be a function of class Ck with
the property that r = 0 on S and dr 6= 0 in some neighborhood U of S. For example, r can be taken to be
the “signed” distance to S, defined as dist (x,S) for x above S and −dist (x,S) for x below S, first in some
neighborhood of S then extended to the whole Rn.

Copyright line will be provided by the publisher



12 R. Duduchava, D. Mitrea, and M. Mitrea: DIFFERENTIAL OPERATORS ON HYPERSURFACES

In particular, dr/‖dr‖ is a unitary extension of N , the normal to S. Upon noting that dr/‖dr‖ = d(r/‖dr‖)
on S, we finally, take

ν := d
(

r
‖dr‖

)/∥∥∥d
(

r
‖dr‖

)∥∥∥
in some neighborhood U of S. Clearly, ‖ν‖ = 1 in U and

dν = d2
(

r
‖dr‖

)/∥∥∥d
(

r
‖dr‖

)∥∥∥− d
(

r
‖dr‖

)
∧ d

∥∥∥d
(

r
‖dr‖

)∥∥∥−1

.

Recall now that d2 = 0 in Rn so that the first term in the right-side above is zero. Next, d(r/‖dr‖) = N on S, so

that
∥∥∥d

(
r

‖dr‖

)∥∥∥−1

= 1 on S. Since the differential operator N ∧ d =
∑

j<k(Nj∂k −Nk∂j)dxj ∧ dxk contains
only tangential derivatives (cf. (4.10) and the discussion in §5), it follows that the second term in the right-side
above is also zero. All in all, dν = 0 on S.

In particular, by the implication already proved (i.e. (ii) ⇒ (i)) it follows that ν satisfies (i). Hence, since
this particular field satisfies dν = 0 on S, the above discussion implies that any other extension of N as in (3.3)
has this property.

The proof of the proposition is therefore finished.

Remark. A unit vector field ν, ‖ν(x)‖ = 1 for all x ∈ Ω ⊂ Rn, is called integrable if there exists a family of
surfaces filling up Ω which are orthogonal to the given vector field ν.

In [MaMi, § 1.1.4] it is proved that the necessary and sufficient condition for ν =
(
ν1, . . . , nun

)>
to be

integrable is the symmetry of the matrix

R(x) := ∇ν(x) = (Dkνj(x))j,k , (3.4)

where Dk := ∂k − νkν · ∇ are the Gunter’s derivatives (cf. the forthcoming § 4). Note, that the matrix R(x)
coincides with

R(x) := ∇ν(x) = (∂kνj(x))j,k, x ∈ U (3.5)

(see § 4) and Proposition 3.1 is not a direct consequence of the formulated result, although they are related.
Concerning the particular extension of the normal vector field with the distance function, exploited above.

This extension is well known and used often to define non-smooth (simply integrable) mean curvature to a rough
surface (cf. (3.6)). We have exposed the proof of this part just for the convenience of a reader.

In the sequel, given a hypersurface S and an extended unit vector ν in a neighborhood U of S, we shall tacitly
assume that the projection π has been extended to U by setting π = I − 〈·, ν〉ν = ν ∨ (ν ∧ · ).

The forthcoming Proposition 3.2 and Proposition 3.4 are folklore. Being unable to find a comprehensive
reference to their proofs in literature, we expose short proofs for the convenience of a reader.

Proposition 3.2 For any unitary extension ν ∈ C1(U) of N , in a neighborhood U of the hypersurface S, the
quantity div ν|S depends only on S and not on the particular ν itself. In fact,

G := div ν satisfies G
∣∣∣
S
= (n− 1)H, (3.6)

where H stands for the mean curvature of S.

P r o o f. Fix a local ortho-normal frame T1, . . . , Tn−1 in some open subset O of S. In particular,

T1, . . . , Tn−1, ν is a local orthonormal basis for Rn (3.7)

at each point on O. Next, recall that

div ν
∣∣∣
O

= Tr (∇ν)
∣∣∣
O

=
n∑

j=1

〈∇Tj
ν, Tj〉|O =

n−1∑
j=1

〈∇Tj
N,Tj〉 on O,
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since 〈∇νν, ν〉 = 1
2∇ν‖ν‖2 = 0 in U . Now, the last expression above is clearly independent of ν. Since O is

arbitrary, this justifies the first claim of the proposition.
To prove the second part, i.e. the identity (3.6), it suffices to perform calculations for a particular choice of the

unitary extension ν of N . If, locally, S is given as the graph of a function ϕ : Rn−1 → R, pick

ν(x) :=
(∇ϕ(x′),−1)√
1 + ‖∇ϕ(x′)‖2

, ∀x = (x′, xn) ∈ Rn ≡ Rn−1 × R.

Then (
div ν

)
(x′, ϕ(x′)) =

n−1∑
j=1

∂

∂xj

[ ∂jϕ(x′)√
1 + ‖∇ϕ(x′)‖2

]
, ∀x′ ∈ Rn−1.

As is well-known, the right hand-side above is n − 1 times the mean-curvature at the point (x′, ϕ(x′)) on the
graph of ϕ.

Definition 3.3 Let S be a hypersurface in Rn with unit normal N . A vector filed ν ∈ C1(U), where U is a
neighborhood of S, will be called an extended unit field for S if ν

∣∣∣
S
= N , ‖ν‖ = 1 in U , and if ν satisfies either

one of the (equivalent) conditions listed in Proposition 3.1.

It is implicit in the course of the proof of Proposition 3.1 that each Ck, k ≥ 2, hypersurface S has a Ck−1

extended unit field (which, nonetheless, is not unique).

Proposition 3.4 Let S be a hypersurface in Rn and fix an extended unit field ν in a neighborhood U of S.
Then, for the n× n matrix valued function R(x) in (3.5) the following are true:

(i) Rν = 0 in U;
(ii) Tr (R) = G in U .

Moreover, when restricted to the hypersurface S, R has the following additional properties:
(iii) R depends only on S and not on the choice of the extended unit ν.
(iv) R> = R on S;
(v) (Ru)|S is tangential to S for any vector field u : S → Rn. In fact,

R
∣∣∣
TS

= −W (3.8)

the opposite of the Weingarten map of S. In particular, the eigenvalues {κj}1≤j≤n−1 of −R (at points on S) as
an operator on TS are the principal curvatures of S, whereas its determinant is Gauss’s total curvature of S;

P r o o f. First, Rν = ∇‖ν‖2 = 0 in U , justifying (i). Next, (ii) follows from (3.6) and (3.5), whereas
(iii)− (iv) are direct consequences of (3.2) and (i) in Proposition 3.1. Next, the first part of(v) is a consequence
(i) and (iii). As for (3.8), for each X ∈ TS we write

WX = −∇SXν = −π(∇Xν) = −∇Xν = −RX

since, as we have just seen, ∇Xν = RX is tangential to S.

Remark. If vj ∈ TS, 1 ≤ j ≤ n−1, form an orthonormal system of TS and are eigenvectors for the matrix−R,
i.e. −Rvj = κjvj , 1 ≤ j ≤ n− 1, it follows that

∂vj ν = −κj vj , 1 ≤ j ≤ n− 1.
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4 Calculus of tangential differential operators

Let

Pu =
(∑

j,β

aαβ
j ∂juβ +

∑
β

bαβuβ

)
α

(4.1)

be a first-order differential operator acting on vector-valued functions u = (uβ)β in Rn. Its adjoint (in Rn) is
then defined by

P ∗v =
(
−

∑
j,α

∂j(a
αβ
j vα) +

∑
α

bαβvα

)
β

(4.2)

and its symbol is given by the matrix-valued function

σ(P ; ξ) :=
(∑

j

aαβ
j ξj

)
αβ

, ξ = (ξj)1≤j≤n. (4.3)

Let henceforth S be a fixed, C2-hypersurface in Rn, with unit normal N .
We say that P is a weakly tangential operator to the hypersurface S, with unit normal N , provided

σ(P ;N) = 0 on the hypersurface S. (4.4)

If Ω ⊂ Rn is a smooth, bounded domain, and if P is a first-order operator, weakly tangential to ∂Ω, then P can
be integrated by parts over Ω without boundary terms, i.e.

∫
Ω

〈Pu, v〉 dx =
∫

Ω

〈u, P ∗v〉 dx, (4.5)

for any C1, vector-valued functions u, v in Ω̄.
Next, call P a strongly tangential operator to S provided there exists an extended unit field ν such that

σ(P ; ν) = 0 in an open neighborhood of S in Rn. (4.6)

Since σ(P ∗; ξ) = −σ(P ; ξ)>, for each ξ ∈ Rn, it follows that P is weakly/strongly tangential if and only if P ∗

is so.
Recall that dS, ds stand for the volume elements on S, ∂S, and that N , γ denote the outward unit vectors to

S and its boundary ∂S, respectively (Cf. § 3).
Theorem 4.1 Let P be a first-order differential operator as in (4.1) with coefficients of class C1 in Rn. If P is

weakly tangential to S then P extends uniquely to an operator (still denoted by P ) which acts on C1 vector-valued
functions defined on S. In fact, this extension satisfies

(Pu)
∣∣∣
S
= P

(
u|S

)
(4.7)

for every C1 function u defined in a neighborhood of S. Furthermore, similar considerations apply to P ∗, and

∫
S
〈Pu, v〉 dS =

∫
S
〈u, P ∗v〉 dS +

∑
j,α,β

∫
S
(∂Naαβ

j )Njuβvα dS

+
∮

∂S
〈σ(P ; γ)u, v〉 ds, (4.8)
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for any C1, vector-valued functions u, v defined on S.
If in fact P is strongly tangential to S then the following integration by parts formula holds:

∫
S
〈Pu, v〉 dS =

∫
S
〈u, P ∗v〉 dS +

∮
∂S
〈σ(P ; γ)u, v〉 ds, (4.9)

for any C1, vector-valued functions u, v defined on S.

As a corollary, for a first-order differential operator P which is weakly tangential to a hypersurface S, its
transposed in Rn differs from its transposed in the sense of integration by parts along S by a zero-order term. In
fact, this term disappears if P is strongly tangential to S.

Let us consider the first-order, tangential differential operators (Stokes’s derivatives)

Mjk := Nj∂k −Nk∂j , 1 ≤ j, k ≤ n , (4.10)

where, we remind, N is the unit normal to S.
If ν is an extended unit field for S, then each surface operator Mjk extends accordingly by setting Mjk =

νj∂k − νk∂j . In the sequel, we shall make no distinction between this operator in Rn and (4.10).

Lemma 4.2 The following formulas hold:
(i) Mjk = −Mkj , for each 1 ≤ j, k ≤ n;
(ii) ∂k =

∑n
j=1 νjMjk + νk∂ν , for each 1 ≤ k ≤ n;

(iii)
∑n

k=1Mjkνk = νjG, for each 1 ≤ j ≤ n.

P r o o f. The first two identities are immediate from definitions. To see the last one, we write

n∑
k=1

Mjkνk =
n∑

k=1

(νj∂k − νk∂j)νk = νj div ν − 1
2∂j(‖ν‖2) = νjG,

as desired.

Lemma 4.3 For any C1, real-valued functions f, g on S and any 1 ≤ j < k ≤ n, there holds

∫
S

[
(Mjkf)g + f(Mjkg)

]
dS =

∮
∂S

(Njγk −Nkγj)fg ds. (4.11)

P r o o f. Let ι : S ↪→ Rn,  : ∂S ↪→ S, and i : ∂S ↪→ Rn be the natural inclusion operators. In particular,
i = ι ◦ . It is then essentially well-known that, with the superscript ‘star’ denoting pull-back,

ι∗(dx1 ∧ ... ∧ d̂xj ∧ ... ∧ dxn) = (−1)j+1Nj dS, j = 1, 2, ..., n, (4.12)

and, for 1 ≤ j < k ≤ n,

i∗(dx1 ∧ ... ∧ d̂xj ∧ ... ∧ d̂xk ∧ ... ∧ dxn) = (−1)j+k+1(Njγk −Nkγj) ds. (4.13)

Here, as usual, the ‘hat’ symbol indicates omission. Now, if we set

ω := (−1)j+k+1fg dx1 ∧ ... ∧ d̂xj ∧ ... ∧ d̂xk ∧ ... ∧ dxn,

then
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dω = (−1)k∂j(fg) dx1 ∧ ... ∧ d̂xk ∧ ... ∧ dxn

−(−1)j∂k(fg) dx1 ∧ ... ∧ d̂xk ∧ ... ∧ dxn. (4.14)

Consequently,

dSι∗(ω) = ι∗(dRnω) = [Nj∂k(fg)−Nk∂j(fg)] dS (4.15)

whereas

∗(ι∗ω) = (ι ◦ )∗ω = i∗ω = (Njγk −Nkγj)fg ds. (4.16)

The desired conclusion then follows from Stokes’s classical formula

∫
S

dS(ι∗ω) =
∮

∂S
∗(ι∗ω) (4.17)

with the help of (4.15), (4.16).

After this preamble, we are ready to present the

P r o o f of Theorem 4.1. Fix two arbitrary C1, vector-valued functions defined in a neighborhood of S. For
starters we note that, on S,

(Pu)α =
∑
j,β

aαβ
j ∂juβ +

∑
β

bαβuβ

= −
∑
j,k,β

aαβ
j NkMjkuβ +

∑
j,β

aαβ
j Nj∂Nuβ +

∑
β

bαβuβ

= −
∑
j,k,β

aαβ
j NkMjkuβ +

∑
β

bαβuβ + (σ(P ;N)∇Nu)α

= −
∑
j,k,β

aαβ
j NkMjkuβ +

∑
β

bαβuβ (4.18)

on account of the weak tangentiality of P . If we now take the last expression above as a definition of P on
functions which are defined only on S, then (4.7) holds.

Next, fix an extended unit field ν for S. Using (4.11) and integrating by parts we get

∫
S
〈Pu, v〉 dS = −

∑
j,k

∑
α,β

∫
S

aαβ
j νk(Mjkuβ)vα dS +

∑
α,β

∫
S

bαβuβvα dS

=
∑
j,k

∑
α,β

∫
S

uβ [Mjk(aαβ
j νkvα)] dS +

∑
α,β

∫
S

bαβuβvα dS

−
∮

∂S

∑
j,k

∑
α,β

(νjγk − νkγj)a
αβ
j νkuβvα ds. (4.19)

In the boundary integral, we write
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−
∑
j,k

∑
α,β

[νjγkaαβ
j νkuβvα − νkγja

αβ
j νkuβvα]

= −〈γ, ν〉〈σ(P ; ν)u, v〉+ ‖ν‖2〈σ(P ; γ)u, v〉

= 〈σ(P ; γ)u, v〉, (4.20)

since 〈γ, ν〉 = 0 on S; this term is in agreement with (4.8).
As for the first surface integral in the rightmost expression in (4.19), use Leibnitz’s rule to expand

∑
j,k

∑
α,β

uβ [Mjk(aαβ
j νkvα)] =

∑
j,k

∑
α,β

uβaαβ
j vαMjkνk +

∑
j,k

∑
α,β

uβνkMjk(aαβ
j vα)

= : I + II. (4.21)

With regard to I above, we invoke (iii) in Lemma 4.2 to write

I =
∑
j,α,β

uβaαβ
j vανjG = 〈σ(P ; ν)u, v〉G = 0, (4.22)

once again due to (4.6). Turning our attention to II , recall from (ii) in Lemma 4.2 that
∑n

k=1 νkMjk =
νj∂ν − ∂j . Thus,

II +
∑
α,β

bαβuβvα = −
∑
j,α,β

uβ∂j(a
αβ
j vα) +

∑
j,α,β

uβνj∂ν(aαβ
j vα) +

∑
α,β

bαβuβvα

= 〈u, P ∗v〉+
∑
j,α,β

[
uβνj(∂νaαβ

j )vα + uβνja
αβ
j ∂νvα

]
= 〈u, P ∗v〉+

∑
j,α,β

[
uβ∂ν(νja

αβ
j )vα − uβ(∂ννj)a

αβ
j vα

]
+〈σ(P ; ν)u,∇νv〉

= 〈u, P ∗v〉+ 〈[∂νσ(P ; ν)]u, v〉 − 〈σ(P ;∇νν)u, v〉

+〈σ(P ; ν)u,∇νv〉. (4.23)

Thanks to the weak tangentiality of P , the last term in the last line above vanishes on S; in fact, since ∇νν = 0
on S so does the next-to-the-last term. Finally, 〈[∂νσ(P ; ν)]u, v〉 =

∑
j,α,β(∂Naαβ

j )Njuβvα on S, after some
simple algebra. Thus, ultimately,

II +
∑
α,β

bαβuβvα = 〈u, P ∗v〉+
∑
j,α,β

(∂Naαβ
j )Njuβvα on S.

This, in concert with (4.19)-(4.20) and (4.22), finishes the proof of (4.8).
In the case when P is strongly tangential the identity also follows from what we have proved so far since, in

this scenario, ∂νσ(P ; ν) = 0 by definition. �

Remark. By iteration, an identity similar in spirit to (4.9) holds for higher order differential operators which are
successive compositions of first-order differential operators, strongly tangential to S.

The Stokes derivative operators Mjk = νj∂k − νk∂j , introduced in connection with a hypersurface S (with ν
denoting an extended unit field for S), are clearly strongly tangential to S, since σ(Mjk; ξ) = νjξk − νkξj . As
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M∗
jk = ∂k(νj · ) − ∂j(νk · ) which becomes −Mjk on S, it follows that, a posteriori, Lemma 4.3 is a special

case of Theorem 4.1.
In this connection, let us also point out that ν ∧ d, acting on scalar functions on S, is naturally identified with

the skew-symmetric matrix whose entries are the Stokesian derivatives, in the sense that

ν ∧ d = 1
2

n∑
j,k=1

Mjk dxj ∧ dxk =
∑

1≤j<k≤n

Mjk dxj ∧ dxk. (4.24)

Of special interest for us in this paper are the so-called Günter derivatives

Dj := ∂j − νj∂ν = ∂j −
n∑

k=1

νjνk∂k , j = 1, 2, ..., n. (4.25)

We set

Df :=
(
D1f,D2f, ...,Dnf

)
, for scalar-valued functions, (4.26)

D •u :=
n∑

j=1

Djuj , if u = (u1, ..., un). (4.27)

For further reference, below we collect some of the most basic properties of this system of differential opera-
tors.

Proposition 4.4 The following relations are valid:

(i) Dj =
n∑

k=1

νkMkj , for each 1 ≤ j ≤ n;

(ii) Mjk = νjDk − νkDj for each 1 ≤ j, k ≤ n;

(iii)
n∑

j=1

νjDj = 0 and
n∑

j=1

Djνj = G.

(iv) [Dj ,Dk] = νj(∇νk •∇)− νk(∇νj •∇) on S, for each 1 ≤ j, k ≤ n;
(v) for every C1 functions f, g on S, and every 1 ≤ j ≤ n,

∫
S
(Djf)g dS =

∫
S

[
−f(Djg) + NjGfg

]
dS +

∮
∂S

γjfg ds. (4.28)

P r o o f. The first three identities are simple consequences of definitions. To prove (iv) we first note that

DjDk = (∂j − νj∂ν)(∂k − νk∂ν) (4.29)

= ∂j∂k − (∂jνk)∂ν −
n∑

l=1

[
νk(∂jνl)∂l + νkνl∂j∂l + νjνl∂l∂k

]
+ νjνk∂2

ν

where the second equality utilizes the fact that ∂ννk = 0 on S (cf. (i) in Proposition 3.1). If we now observe,
with the aid of (ii) in Proposition 3.1, that the expression

∂j∂k − (∂jνk)∂ν −
n∑

l=1

[
νkνl∂j∂l + νjνl∂l∂k

]
+ νjνk∂2

ν

is symmetric in j and k, then the desired commutator identity follows from (4.29).
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Turning to (v), note that Dj is a first-order differential operator defined in a neighborhood of S in Rn, and
whose principal symbol is σ(Dj ; ξ) = ξj − νj〈ξ, ν〉, for ξ ∈ Rn. In particular, Dj is strongly tangential to S,
and σ(Dj ; γ) = γj . Thus, (4.28) will follow from Theorem 4.1 as soon as the transposed of Dj in Rn is properly
identified. To this end, we compute

(Dj)∗ =
(
∂j − νj

n∑
k=1

νk∂k

)∗
= −∂j +

n∑
k=1

∂k

[
(νkνj)·

]
= −Dj + νjG + ∂ννj (4.30)

and observe that, when further restricted to S, the last term vanishes, as desired.

Other important examples of strongly tangential, first-order differential operators are offered by

P1 := div − ∂ν〈·, ν〉, with P ∗
1 = −∇+ (∂ν · )ν + Gν,

P2 := ∇νπ − ν ∨ d, with P ∗
2 = −π∇ν + Gπ − δ(ν ∧ · ), (4.31)

P3 := div π(·), with P ∗
3 = −π∇.

Indeed,

σ(P1; ξ) = 〈ξ, ·〉 − 〈ν, ξ〉〈ν, ·〉, σ(P2; ξ) = 〈ξ, ν〉π − ν ∨ (ξ ∧ ·) and σ(P3; ξ) = 〈ξ, π(·)〉,

so that (4.6) is easily verified in each case.
We are interested to express these operators in terms of the Günter derivatives (4.25) rather than the ordinary

∂j’s. A general result to this effect is as follows.

Proposition 4.5 Let

Pu =
(∑

j,β

aαβ
j ∂juβ +

∑
β

bαβuβ

)
α

(4.32)

be a first-order differential operator which is strongly tangential to a hypersurface S. Then P remains unchanged
(in a neighborhood of S) if one formally replaces ∂j by Dj , i.e.

Pu =
(∑

j,β

aαβ
j Djuβ +

∑
β

bαβuβ

)
α
. (4.33)

P r o o f. The two right sides in (4.32) and (4.33) differ by σ(P ; ν)(∇νu).

When used in conjunction with the operators (4.31), the above proposition gives

Proposition 4.6 For an arbitrary vector field u we have

P1u = D • (π u) + G〈ν, u〉 − 〈Ru, ν〉,

P2u = D(〈ν, u〉) + 〈ν, u〉∇νν −R>u, (4.34)

P3u = D • (π u)− 〈Ru, ν〉,

where R :=
(
∂kνj

)
j,k

has been introduced in Proposition 3.4.
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P r o o f. These follow by invoking Proposition 4.5 plus a straightforward calculation. In the case of P2, it
helps to first notice that, if u = (u1, ..., un) ≡ u1dx1 + ... + undxn, then

ν ∨ du =
n∑

j=1

( n∑
k=1

νk∂kuj

)
dxj −

n∑
j=1

( n∑
k=1

νk∂juk

)
dxj

= ∇νu−∇〈ν, u〉+ R>u. (4.35)

We leave the details to the interested reader.

Remark. Although the tangential derivatives Mjk and Dj are known for a long time (Mjk was introduced by
Stokes and Dj by the soviet mechanist Günter in [Gu]) and were applied by several authors (see [Ce, Co, DL,
Gu, KGBB, MaMi, NDS, Ne] etc.), we have not found most of the properties listed above in the literature. In
[Gu, KGBB] these differential operators, in 3D case, are applied to problems of mechanics, while in [MaMi] to
differential geometry and minimal surfaces.

5 Expressing surface differential operators in spatial coordinates

Throughout this section we shall regard the hypersurface S as a Riemannian manifold with the natural metric
inherited from Rn. The goal is to describe the action of divS on TS, as well as that of gradS and ∆S on scalar
functions on S, it terms of the Günter derivatives (4.25). Our main result in this regard is as follows.

Theorem 5.1 For any smooth, tangential field u = (u1, ..., un) on S we have

divS u = D •u =
n∑

j=1

Djuj . (5.1)

Also, for any smooth, real-valued function f on S,

gradS f = Df =
(
D1f,D2f, ...,Dnf

)
. (5.2)

In particular, the Laplace-Beltrami operator ∆S on S takes the form

∆S f = divSgradS f = D •

(
Df

)
=

n∑
j=1

D2
j f. (5.3)

P r o o f. The operators in question have local character, so it suffices to carry out calculations in some fixed,
small open subset O of S. With π denoting the orthogonal projection onto TS, we consider the n × n matrix
A(u) uniquely defined by the requirement that

〈A(u)X, Y 〉 = 〈∇πX u, πY 〉, ∀X, Y ∈ Rn. (5.4)

Also, fix an ortho-normal frame T1, . . . , Tn−1 to TS in O, so that

T1, . . . , Tn−1, ν is an orthonormal basis for Rn (5.5)

at each point in O. Thus, if we set Tn := ν then the vectors T1, . . . , Tn form an ortho-normal basis in Rn, when
evaluated at points in O.
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Going further, if ∇S stands for the Levi-Civita connection on S then, according to (1.23), ∇SXY = π(∇XY )
for any X, Y ∈ TS. For any u ∈ TS supported in O, we may therefore write

divSu =
n−1∑
j=1

〈∇STj
u, Tj〉 =

n∑
j=1

〈∇Tj
u, Tj〉 =

n∑
j=1

〈A(u)Tj , Tj〉. (5.6)

At this point we claim that the last term in (5.6) does not depend on the particular basis of Rn. Indeed, this is
folklore and, for the reader’s convenience, a couple of such statements are collected below.

Lemma 5.2 If A is a n× n matrix with real entries then

Tr A =
n∑

j=1

〈ATj , Tj〉 (5.7)

for any orthonormal basis {Tj}j in Rn. In particular, the sum in the right side above is independent of the
particular orthonormal basis {Tj}j .

Also, if B is another n× n matrix with real entries, then

Tr (AB>) =
n∑

j,k=1

〈ATj , Tk〉〈BTj , Tk〉 (5.8)

is independent of the particular orthonormal basis {Tj}j .

Returning to the task of carrying on the calculation initiated in (5.6) we denote by ej := (0, . . . , 1, . . . , 0), for
j = 1, . . . , n, the usual canonical basis in Rn, and by

ēj := πej = ej − νjν =
n∑

k=1

(δjk − νjνk)ek, j = 1, . . . , n. (5.9)

the projection of ej onto TS. One simple yet important observation is the fact that the Günter operators are
directional derivatives corresponding to the ēj’s, i.e.

Dj = ∇ēj
, j = 1, 2, ..., n.

Relying on these observations, we may now continue –invoking Lemma 5.2– with

divSu =
n∑

j=1

〈A(u)ej , ej〉 =
n∑

j=1

〈∇ēj u, ēj〉 =
n∑

j,k=1

(Djuk)〈ek, ēj〉

=
n∑

j=1

Djuj −
n∑

j,k=1

νj(Djuk)νk =
n∑

j=1

Djuj , (5.10)

justifying (5.1).
Turning attention to the operator gradS , we note that if f is scalar and u ∈ TS, both smooth and supported

away from ∂S, then
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∫
S
〈gradSf, u〉 dS = −

∫
S

fdivSu dS = −
∫
S

f
n∑

j=1

Djuj

= −
∫
S

n∑
j=1

(D∗j f)uj dS =
∫
S

n∑
j=1

ujDjf dS.

=
∫
S
〈Df, u〉 dS. (5.11)

Here we have used (4.28) and the tangentiality of u. Since both gradSf and Df are tangential, it follows that
(5.11) holds for arbitrary smooth vector fields u : S → Rn (not just tangential). We may therefore conclude that
gradSf = Df , as desired.

Finally, (5.3) follows from (1.3) and what we have proved so far. This finishes the proof of the theorem.

Define

(∂2
Nf)|S :=

∑
j,k

NjNk(∂j∂kf)|S = (∂2
νf)|S . (5.12)

Corollary 5.3 For any smooth scalar function f , defined in a neighborhood of S, there holds

(
∆Rnf

)∣∣∣
S
= ∆S(f |S) + G(∂Nf)|S + (∂2

Nf)|S . (5.13)

To keep matters in perspective, it is illuminating to work out in detail the case when S = Sn−1, the unit
sphere in Rn. In this scenario, one can choose ν(x) := x/‖x‖, x ∈ Rn \ 0, so that G := div ν = (n − 1)/‖x‖,
and ∂ν =

∑
(xj/‖x‖)∂j = ∂r, the radial derivative in Rn. Then (5.13) becomes, after a rescaling, the classical

formula

∆Rn =
∂2

∂r2
+

n− 1
r

∂

∂r
+

1
r2

∆Sn−1 .

P r o o f. The identity (5.13) follows by expanding

∆S =
n∑

j=1

D2
j =

n∑
j=1

(∂j − νj∂ν)(∂j − νj∂ν)

and performing straightforward algebraic manipulations based on Proposition 3.1. We omit the straightforward
details.

Corollary 5.4 For any smooth scalar function f , and any smooth vector field u defined in a neighborhood of
S, the following identities hold:

gradS (〈N,u|S〉) = [∇ν(π u)]|S −N ∨ (du)|S + R(u|S), (5.14)

(div u)
∣∣
S= divS(π u|S) + G〈u|S , N〉+ 〈(∇Nu)|S , N〉, (5.15)

divS(π u|S) = div(π u)|S , (5.16)

gradS(f |S) = [π∇f ]|S , (5.17)

where R is as in (3.5).
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P r o o f. To justify (5.14)-(5.16), in the light of (4.7), we simply point to the alternative representations of the
operators P1, P2, P3 in (4.31) and (4.34), keeping in mind that ∇νν = 0 on S. Finally, (5.17) is the adjoint of
(5.16).

Corollary 5.5 For the Stokes derivatives from (4.10), here holds

1
2

n∑
j,k=1

M2
jk =

∑
1≤j<k≤n

M2
jk = ∆S on S. (5.18)

P r o o f. Denote by Q the second-order differential operator in the left side of (5.18), and fix two scalar func-
tions f, g on S, supported away from the boundary. We may then write

∫
S
(Qf)g dS = −

∑
1≤j<k≤n

∫
S
(Mjkf)(Mjkg) dS = −

∫
S
〈ν ∧ df, ν ∧ dg〉 dS

=
∫
S
[div (π∇f)]g dS (5.19)

thanks to (4.11), (4.24), and the fact that P := ν ∧ d is strongly tangential to S, with adjoint P ∗ = δ(ν ∨ · ).
Since f and g are arbitrary, it follows that

Q|S = div (π∇·)|S = divS (π∇ · |S) = divS (gradS · |S) = ∆S on S,

by (5.16)-(5.17) and (5.3).

A number of related identities, at least for n = 3 and special extensions of the unit normal, can be found in
[DL], [Ce], [Co], [KGBB], [NDS], [Ne] and the references therein.

Moreover, in [MaMi] it is proved that the solution to the Laplace-Beltrami equation

∇Sν + c2ν = 0 , c2 :=
n∑

j=1

(
Djνj

)2 =
n∑

j=1

(
∂jνj

)2
(5.20)

describes a surface with constant mean curvature.

6 The identification of the surface Lamé operator and related PDO’s

Recall from §3 that the geometric-differential definition of the deformation tensor DefS and the Lamé operator
L on S are, respectively,

DefS(X)(Y,Z) := 1
2{〈∇

S
Y X, Z〉+ 〈∇SZX, Y 〉}, ∀X, Y, Z,∈ TS, (6.1)

and

L := −2µDef∗SDefS + λ gradSdivS . (6.2)

The main result in this section, dealing with the identification of Lamé operator (6.2), is as follows.
Theorem 6.1 The following identities hold on S:

L = µπ∆S + (λ + µ) gradSdivS + µGR = µπ (D •D) + (λ + µ)D(D • ) + µGR. (6.3)

In particular, L : TS −→ TS is a second-order, strongly-elliptic, formally self-adjoint, differential operator on
S.

Copyright line will be provided by the publisher



24 R. Duduchava, D. Mitrea, and M. Mitrea: DIFFERENTIAL OPERATORS ON HYPERSURFACES

P r o o f. Given the local nature of the identities we seek to prove, it suffices to work locally, in a small open
subset O of S, where an ortho-normal frame T1, . . . , Tn−1 to TS has been fixed. As before, we set Tn := ν so
that {Tj}1≤j≤n is an ortho-normal basis for Rn, at points in O.

Next, fix u a tangent field to S supported in O, and let A(u) = (ajk(u))j,k be the n × n matrix uniquely
defined by the requirement that

〈A(u)X, Y 〉 := DefS(u)(πX, πY ), ∀X, Y ∈ Rn. (6.4)

It is then clear that

[A(u)]> = A(u) and A(u)ν = 0. (6.5)

For each j, k we can write

ajk(u) = 〈A(u)ek, ej〉 = DefS(u)(ēk, ēj)

= 1
2

(
〈∇Sēk

u, ēj〉+ 〈∇Sēj
u, ēk〉

)
= 1

2

(
〈∇ēk

u, ēj〉+ 〈∇ēj u, ēk〉
)

= 1
2

n∑
r=1

[
(Dkur)(δjr − νjνr) + (Djur)(δkr − νkνr)

]
. (6.6)

To further simplify (6.6) we note that, on S,

n∑
r=1

(Dkur)νjνr = Dk

( n∑
r=1

urνr

)
νj −

n∑
r=1

ur(Dkνr)νj = −
n∑

r=1

ur(∂rνk)νj , (6.7)

for every j, k. In the last step above we have used the fact that 〈u, ν〉 = 0 on S, and (i) in Proposition 3.1.
Combining (6.6) and (6.7) we eventually arrive at

ajk(u) = 1
2

[
Dkuj +Djuk +∇u(νjνk)

]
. (6.8)

Now if v is also a smooth vector field, tangent to S, we get –keeping in mind that DefS(u) is symmetric– that

〈DefS(u),DefS(v)〉 = Tr
(
DefS(u)DefS(v)

)
=

n−1∑
j,k=1

DefS(u)(Tj , Tk)DefS(v)(Tj , Tk)

=
n−1∑

j,k=1

〈A(u)Tj , Tk〉〈A(v)Tj , Tk〉 =
n∑

j,k=1

〈A(u)Tj , Tk〉〈A(v)Tj , Tk〉

=
n∑

j,k=1

〈A(u)ej , ek〉〈A(v)ej , ek〉 =
n∑

j,k=1

ajk(u)ajk(v). (6.9)

The second to the last equality in (6.9) relies on the second part of Lemma 5.2. Integrating, this leads to
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4
n∑

j,k=1

∫
S

ajk(u)ajk(v) dS

=
∫
S

[
Dkuj +Djuk +∇u(νjνk)

][
Dkvj +Djvk +∇v(νjνk)

]
dS. (6.10)

To proceed, we first consider

∫
S

n∑
j,k=1

(Djuk +Dkuj)(Djvk +Dkvj) dS = 2
∫
S

n∑
j,k=1

D∗j (Djuk +Dkuj)vk dS

= 2
∫
S

n∑
j,k=1

[
−vkD2

j uk − vkDjDkuj + Gνj(Djuk)vk + Gνj(Dkuj)vk

]
dS

=: 2(I + II + III + IV ). (6.11)

It is immediate that I = −
∫
S〈∆Su, v〉 dS, while

n∑
j=1

νjDj = 0 on S forces III = 0. Next we concentrate on

IV . By using Proposition 3.1 and the tangentiality of u we get

IV =
∫
S
G

n∑
k=1

vk

Dk

( n∑
j=1

νjuj

)
−

n∑
j=1

uj(∂kνj − νk∂ννj)

 dS

= −
∫
S
G〈Ru, v〉 dS. (6.12)

As for II , we employ the commutator identity from (iv) in Proposition 4.4 plus the fact that u and v are tangential
to write

n∑
j,k=1

vkDjDkuj =
n∑

j,k=1

vkDkDjuj +
n∑

j,k=1

vk[Dj ,Dk]uj

=
n∑

j,k=1

vkDkDjuj +
n∑

j,k,l=1

(∂kνl)(∂lνj)ujvk (6.13)

on S. Thus,

−II =
∫
S

( n∑
j,k=1

vkDkDjuj −
n∑

l,j,k=1

(∂kνl)(∂lνj)ujvk

)
dS

=
∫
S
〈gradSdivSu, v〉 dS −

∫
S
〈R2u, v〉 dS. (6.14)

At this point, we may therefore conclude that
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∫
S

n∑
j,k=1

(Djuk +Dkuj)(Djvk +Dkvj) dS

= 2
∫
S
〈−∆Su− gradSdivSu + R2u− GRu, v〉 dS. (6.15)

We now proceed to analyze the remaining terms in (6.10). More precisely, we still have to take into account
the terms containing either ∇u(νjνk) or ∇v(νjνk). We start with the identity

n∑
j,k=1

(Dkuj)∇v(νjνk)

=
n∑

j,k=1

νk(Dkuj)∇vνj +
n∑

k=1

(∇vνk)
(
Dk

( n∑
j=1

ujνj

)
−

n∑
j=1

uj∂kνj

)

= −
n∑

k,j=1

(∇vνk)(∇uνk) = −〈R2u, v〉, (6.16)

valid at points on S. There are four such terms in (6.10), i.e. containing either ∇u(νjνk) or ∇v(νjνk), but not
both. An inspection of the above calculation shows that, on S, they are all equal to −〈R2u, v〉.

We are still left with computing

n∑
j,k=1

∇u(νjνk)∇v(νjνk) =
n∑

j,k,r,l=1

[
ur(∂rνj)νk + ur(∂rνk)νj

][
vl(∂lνj)νk + vl(∂lνk)νj

]

= 2〈R2u, v〉+ 2
n∑

k,r,l=1

ur(∂rνk)vlνk
1
2∂l

( n∑
j=1

ν2
j

)
= 2〈R2u, v〉, (6.17)

on S. At this point we combine all the above to get

4
n∑

j,k=1

∫
S

ajk(u)ajk(v) dS = 2
∫
S
〈−∆Su− gradSdivSu− GRu, v〉 dS. (6.18)

Having deduced (6.18), we may now compute

4
∫
S
〈Def∗SDefS(u), v〉 dS =

∫
S
〈DefS(u),DefS(v)〉 dS

= 4
n∑

j,k=1

∫
S

ajk(u)ajk(v) dS (6.19)

= 2
∫
S
〈−∆Su− gradSdivSu− GRu , v〉 dS.

Thus,

4 Def∗SDefS = −2 π∆S − 2 gradSdivS − 2GR, (6.20)
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since the tangential vectors fields u, v are arbitrary (note that here we use the fact that the image of R is a subspace
of TS).

The first identity in (6.3) now follows easily from (6.20) and (6.2). The remaining identity in (6.3) then follows
from what we have just proved and Theorem 5.1.

Next recall the definition of the Hodge-Laplacian acting on 1-forms, i.e.

∆HL := −dSd∗S − d∗SdS : Λ1TS −→ Λ1TS (6.21)

where dS is the exterior derivative operator on S, and d∗S its formal adjoint. As explained in §2, 1-forms on S are
naturally identified with tangent fields to S so, from now on, we shall think of ∆HL as mapping TS into itself.

As pointed out in §2, the Hodge-Laplacian (6.21) is related to

∆BL := −(∇S)∗∇S , (6.22)

the Bochner-Laplacian on S, via the Weitzenbock identity

∆BL = ∆HL + RicS . (6.23)

Our aim is to find alternative expressions for all these objects, starting with the Ricci tensor.
Theorem 6.2 On S, there holds

RicS = −R2 + GR. (6.24)

In particular, when n = 3 –i.e. for a two-dimensional surface S in R3– the above identity reduces to

RicS = −detW = −K, (6.25)

where K is the Gaussian curvature of the surface S.

P r o o f. Let us denote by RS the Riemann curvature tensor of S. Since Rn has zero curvature, it follows
from Gauss’s Theorema Egregium that, if X , Y , Z, W are tangent vector fields to S, then

〈RS(X, Y )Z,W 〉 = 〈IIS(X, W ), IIS(Y,Z)〉 − 〈IIS(Y,W ), IIS(X, Z)〉. (6.26)

See, e.g., [Ta2], Vol. II, p. 481. In this context, the second fundamental form of S becomes IIS(X, Y ) = ∇XY −
∇SXY = 〈∇XY, ν〉ν, by (1.23). Thus, on S,

〈RS(X, Y )Z,W 〉 = 〈∇XW, ν〉〈∇Y Z, ν〉 − 〈∇Y W, ν〉〈∇XZ, ν〉

= 〈W,∇Xν〉〈Z,∇Y ν〉 − 〈W,∇Y ν〉〈Z,∇Xν〉

= 〈RW,X〉〈RZ, Y 〉 − 〈RW,Y 〉〈RZ,X〉. (6.27)

For the second equality in (6.27) we have used the fact that X , Y , Z, and W are tangential, so in particular,
∇X〈W, ν〉 = 0, ∇Y 〈Z, ν〉 = 0, ∇Y 〈W, ν〉 = 0, and ∇X〈Z, ν〉 = 0 on S.

Next, recall from (1.21) the definition of the Ricci tensor, i.e.

Ric (X, Y )S :=
n−1∑
j=1

〈RS(Tj , Y )X, Tj〉, (6.28)
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where T1, . . . , Tn−1 is, locally, an orthonormal basis in TS, and X , Y are arbitrary tangential vector fields to S.
If we set Tn := ν, and employ (6.27) together with Rν = 0, we obtain

n−1∑
j=1

〈RS(Tj , Y )X, Tj〉 =
n∑

j=1

[〈RTj , Tj〉〈RX, Y 〉 − 〈RTj , Y 〉〈RX, Tj〉]

= G〈RX, Y 〉 − 〈RY,
n∑

j=1

〈Tj , RX〉Tj〉 = −〈(R2 − GR)X, Y 〉, (6.29)

which takes care of (6.24).
Finally, (6.25) is a consequence of what we have proved so far, (3.8), and the elementary identity A2 −

(TrA)A = −(detA)I , valid for any 2× 2 matrix A.

Theorem 6.3 The following identities are valid:

∆BL = π∆S + R2, (6.30)

∆HL = π∆S + 2R2 − GR. (6.31)

P r o o f. In order to identify the Bochner-Laplacian operator ∆BL on S we observe that, with u tangential
field fixed, if the matrix A(u) satisfies 〈A(u)X, Y 〉 = 〈∇SπX u, πY 〉, for each X, Y ∈ Rn then, much as in the
proof of Theorem 5.1,

ajk(u) := 〈A(u)ek, ej〉 = 〈∇ēk
u, ēj〉 = Dkuj −

n∑
r=1

νjνrDk(ur). (6.32)

On account of this and Lemma 5.2 we can now write

∫
S
〈(∇S)∗∇Su, v〉 dS =

∫
S
〈∇Su,∇Sv〉 dS =

n−1∑
j,k=1

∫
S
〈∇STj

u, Tk〉〈∇STj
v, Tk〉 dS

=
n∑

j,k=1

∫
S
〈A(u)Tj , Tk〉〈A(v)Tj , Tk〉 dS =

n∑
j,k=1

∫
S

ajk(u)ajk(v) dS

=
n∑

j,k=1

∫
S

[
DkujDkvj

−
n∑

r=1

νjνrDjurDkvj −
n∑

l=1

νjνlDkujDkvl +
n∑

r,l=1

νrνlDkurDkvl

]
dS

=
n∑

j,k=1

∫
S

[
(D∗kDkuj)vj −

n∑
r=1

urvj(∂kνr)(∂kνj)
]
dS

=
∫
S
〈−∆Su−R2u, v〉 dS. (6.33)

In the next-to-the-last equality, we have applied the following identity to the terms under the integral sign:
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n∑
r=1

νrDswr = Ds

( n∑
r=1

νrwr

)
−

n∑
r=1

wrDsνr = −
n∑

r=1

wr∂sνr, on S, (6.34)

valid for any tangential vector field w, and any index s ∈ {1, . . . , n}. In turn, the identity (6.34) can be seen from
a direct computation (recall that ∂ννr = 0 on S). Finally, to justify the last equality in (6.33), it suffices to recall

(4.30), (5.3) and the fact that
n∑

k=1

νkDk = 0.

The conclusion is that (6.30) holds. Finally, the identity (6.30) in concert with (6.23) and (6.24) implies
(6.31).

Recall now from [EM, Note Added in Proof, pp.161-162], [Ta] (cf. also the remark at the end of this paper),
and [Ta2, Vol. III], that the Navier-Stokes system for a velocity field u, tangent to S, and a (scalar-valued) pressure
function p on S reads

∂u

∂t
− 2 Def∗SDefS(u) +∇Suu− gradSp = ~f in S × (0,∞),

divSu = 0, in S. (6.35)

Theorem 6.4 The Navier-Stokes system (6.35) is equivalent to

∂u

∂t
− π∇uu + π∆Su + GRu− gradSp = ~f in S × (0,∞),

divSu = 0 in S. (6.36)

P r o o f. This is a direct consequence of (6.20) and (1.23).

7 Further applications

We debut by briefly discussing a number of boundary value problems for tangential operators to a smooth hyper-
surface S in Rn, for which ∂S is a Lipschitz submanifold of codimension one in S.

For starters, the treatment of the classical Dirichlet and Neumann boundary problems for the Laplace-Beltrami
operator in Lipschitz subdomains of Riemannian manifolds from [MT] translate into the well-posedness results
about 

(D •D)u = f in S,

u
∣∣∣
∂S

or ∇γu prescribed on ∂S.

In order to be more specific, consider the case of the Lamé system on S and, to set the stage, let Hs,p stand
for the scale of Lp-based Sobolev spaces, 1 < p < ∞, s ∈ R.

Theorem 7.1 Assume that S is a C∞ hypersurface in Rn with unit normal N and a Lipschitz boundary ∂S.
If the Lamé moduli λ, µ ∈ R satisfy

µ > 0, 2µ + λ > 0, (7.1)

then the boundary value problem
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

u = (u1, ..., un) ∈ Hs+1/2,2(S, Rn),

〈u, N〉 = 0 in S,

µ π (D •D)u + (λ + µ)D(D •u) + µGRu = 0 in S,

u
∣∣∣
∂S

= ~f ∈ Hs,2(∂S, Rn), 〈~f, N〉 = 0 on ∂S,

(7.2)

is well-posed for each 0 ≤ s ≤ 1.
Furthermore, if the traction operator is defined by

Tractionu = 2µDef (u)γ + µ 〈Ru, γ〉ν + λ (D • u)γ (7.3)

where
Def (u) :=

(
Dkuj +Djuk

)
1≤j ,k≤n

(recall that γ ∈ TS is the outward unit normal to ∂S), then



u = (u1, ..., un) ∈ H3/2−s,2(S, Rn),

〈u, N〉 = 0 in S,

µ π (D •D)u + (λ + µ)D(D •u) + µGRu = 0 in S,

Tractionu
∣∣∣
∂S

= ~f ∈ H−s,2(∂S, Rn),

(7.4)

is Fredholm solvable, of index zero, for each 0 ≤ s ≤ 1.
For a discussion pertaining to the physical significance of (7.1) see [LL], p. 11. The proof relies on the

corresponding statement for the boundary problem for the intrinsic Lamé operator for S (viewed as an abstract
Riemannian manifold) from [Mi], and the identifications (6.3).

Theorem 7.2 Let S be a C∞ hypersurface in Rn with unit normal N and Lipschitz boundary ∂S. Then the
boundary value problem



u = (u1, ..., un) ∈ Hs+1/2,2(S, Rn), p ∈ Hs−1/2,2(S),

〈u, N〉 = 0 in S,
∫
S p dS = 0,

π (D •D)u + GRu−Dp = 0 in S,

D •u = 0 in S,

u
∣∣∣
∂S

= ~f ∈ Hs,2(∂S, Rn), 〈~f, N〉 = 0 on ∂S,
∮

∂S〈~f, γ〉 ds = 0,

(7.5)

is well-posed for each 0 ≤ s ≤ 1.
Once again, this follows by translating the main result in [MT2] by means of the identifications (6.3).
Finally, natural boundary value problems for the Hodge-Laplacian on Lipschitz subdomains of (general) Rie-

mannian manifolds have been recently treated in [MMT]. When phrased in terms of the operators studied in this
paper, these yield the following sample result:

Theorem 7.3 Let S be a C∞ hypersurface in Rn with unit normal N and Lipschitz boundary ∂S. Then the
boundary value problem


u = (u1, ..., un) ∈ H1/2,2(S, Rn), 〈u, N〉 = 0 in S,

π (D •D)u + (2R2 − GR)u = 0 in S,

(N ∧ d)u = 0 in S,

〈γ, u|∂S〉 = ~f ∈ L2(∂S, Rn), 〈~f, N〉 = 0, 〈~f, γ〉 = 0 on ∂S,

(7.6)
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is Fredholm solvable, of index zero.

We conclude with a regularity result, very useful in electromagnetic theory (see, e.g., [Ne] for a discussion in
a lower dimensional case).

Theorem 7.4 Let Ω be a smooth, bounded subdomain of Rn and set S := ∂Ω. As usual, we let N stand
for the outward unit normal to ∂Ω and denote by π the orthogonal projection onto TS. Then for each field
u = (u1, ..., un) ∈ L2(Ω, Rn) such that

n∑
j=1

∂juj ∈ L2(Ω) and ∂juk − ∂kuj ∈ L2(Ω) for each 1 ≤ j, k ≤ n, (7.7)

the following statements are equivalent:
(i) u ∈ H1,2(Ω, Rn);
(ii) πu|S ∈ H−1/2,2(S, Rn) and divS(πu|S) ∈ H−1/2,2(S);
(iii) 〈N, (u|S)〉 ∈ H1/2,2(S).

P r o o f. The departure point is to write, via (1.22) and repeated integrations by parts (cf. (1.17)), that

∫
Ω

‖∇u‖2 dx =
∫

Ω

〈∇∗∇u, u〉 dx +
∫
S
〈∇Nu, u〉 dS

=
∫

Ω

〈(dδ + δd)u, u〉 dx +
∫
S
〈∇Nu, u〉 dS

=
∫

Ω

[
‖du‖2 + ‖δu‖2

]
dx +

∫
S
〈Pu, u〉 dS (7.8)

where

Pu := ∇νu− ν ∨ du− (div u)ν. (7.9)

Next, we decompose ∇νu = ∇ν(πu) +∇ν(〈u, ν〉ν), and use (5.14)-(5.15) to replace the last two terms in (7.9).
This procedure yields

〈Pu, u〉 = 〈gradS(〈ν, u〉), πu〉 − divS(πu)〈ν, u〉 − G〈ν, u〉2 − 〈Rπu, πu〉, (7.10)

so that, all in all,

∫
Ω

‖∇u‖2 dx =
∫

Ω

[
‖du‖2 + ‖δu‖2

]
dx

−
∫
S

[
2〈ν, u〉divS(πu) + G〈ν, u〉2 + 〈Rπu, πu〉

]
dS. (7.11)

The boundary integral in (7.11) can be estimated by a (fixed) multiple of

‖〈ν, u〉‖H1/2,2(S) · ‖divS(πu)‖H−1/2,2(S)

+‖〈ν, u〉‖H1/2,2(S) · ‖〈ν, u〉‖H−1/2,2(S)

+‖πu‖H1/2,2(S) · ‖πu‖H−1/2,2(S) (7.12)

In concert with standard trace theorems, to the effect that
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‖u‖H1/2,2(S,Rn) ≤ C
[
‖∇u‖L2(Ω,Rn2 ) + ‖u‖L2(Ω,Rn)

]
,

‖〈N,u〉‖H−1/2,2(S,Rn) ≤ C
[
‖div u‖L2(Ω) + ‖u‖L2(Ω,Rn)

]
, (7.13)

‖πu‖H−1/2,2(S,Rn) ≤ C
[∑

j,k

‖∂juk − ∂kuj‖L2(Ω) + ‖u‖L2(Ω,Rn)

]
,

this implies equivalence of norms

‖u‖H1,2(Ω,Rn) ≈
∑
j,k

‖∂juk − ∂kuj‖L2(Ω) +
∑

j

‖∂juj‖L2(Ω)

+‖πu‖H−1/2,2(S) + ‖divS(πu)‖H−1/2,2(S) (7.14)

≈
∑
j,k

‖∂juk − ∂kuj‖L2(Ω) +
∑

j

‖∂juj‖L2(Ω) + ‖〈N,u〉‖H1/2,2(S).

With this a priori estimate at hand, the desired conclusion follows from a standard density argument.
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