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Abstract. In 1938, H.L. Krall discovered a fourth-order differential equation that has 
orthogonal polynomial solutions, called the Legendre type polynomials. Properties of these 
polynomials and the right-definite problem generated by this fourth-order equation were 
studied by A.M. Krall in 1981. In this paper, we shall consider this right-definite problem 
from a different point of view which will enable us to study the fourth-order equation and 
the polynomials in the left-definite case. As a particular consequence of this study, we shall 
produce the orthogonality of the derivatives of the Legendre type polynomials. The work 
in this paper extends earlier work of Titchmarsh, Pleijel and Everitt who studied the right
and left-definite problems associated with the classical Legendre polynomials. 

1. Introduction. The second-order differential equations which have the classical or
thogonal polynomials as solutions are some of the best examples available to illustrate the 
well-developed theory of self-adjoint extensions of formally symmetric differential expres
sions. For a comprehensive study of these second order self-adjoint operators, the reader 
is referred to the survey paper of Littlejohn and Krall [10] and also to the thesis of Otieno 
[12]. Besides doing a thorough study of the right-definite boundary value problems associ
ated with the differential equations for these classical orthogonal polynomials, Otieno also 
considers the left-definite boundary value problems for these equations, extending work of 
Titchmarsh [15], Pleijel [13] and Everitt [4]. For a detailed analysis of self-adjoint extensions 
of symmetric operators, the texts of Naimark [11] and Akhiezer and Glazman [1] are recom
mended. The books of Szego [14] and Chihara [2] are two excellent sources for properties of 
orthogonal polynomials in general. 

The theory of self-adjoint extensions of formally symmetric differential expressions of order 
greater than two is considerably more complicated than that of second-order expressions. 
To illustrate this extension theory with some concrete examples, are there higher order 
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differential equations which have orthogonal polynomial solutions? The answer is yes, in 
fact, the study of orthogonal polynomial solutions to higher order equations was launched by 
H.L. Krall [8, 9] from 1938-1940. During the 1930's, there was a wide search for orthogonal 
polynomial solutions to higher order equations and it was Krall who first succeeded. In fact, 
he found all fourth order differential equations of the form: 

4 

L ak(x)y(k)(x) = Any(x) (1.1) 
k=l 

that have orthogonal polynomial solutions. He produced three fourth-order equations of 
the form (1.1) which have nonclassical orthogonal polynomial solutions. Furthermore, Krall 
showed that the weight functions for these polynomials all have jump discontinuties at one 
or more endpoints of the interval of orthogonality, contrary to the situation for the classical 
weight functions. 

In 1981, A.M. Krall studied these polynomials in detail [7], naming them the Legen
dre type, Jacobi type and the Laguerre type polynomials. Like the classical orthogonal 
polynomials, these polynomials can be found through a three-term recurrence relation, var
ious generating functions or a Rodrigues-type formula. Besides a thorough study of these 
polynomials, Krall also studied the self-adjoint differential operators, associated with each 
equation, that produce the orthogonal polynomials as the eigenfunctions. As Krall showed, 
the domains of these self-adjoint operators are obtained by applying appropriate boundary 
conditions to functions in the maximal domains of the operators. 

In this paper, we shall focus our attention on the fourth-order equation for the Legendre 
type polynomials. The Legendre type polynomials 

[n/2[ ( -l)k(2n- 2k)!(o: + n(n-1) + 2k)xn-2k 

P;:(x) := L 2nk!(n- k)!(n 2- 2k)! 
k=O 

(1.2) 

satisfy the fourth-order differential equation: 

where 

Mk[Y] := (x2 - 1)2y(4) + 8x(x2 - l)y(3 ) + (4o: + 12)(x2 - l)y" + 8o:xy' + ky (1.3) 

and An = n(n + l)(n2 + n + 4o:- 2). Here, the numbers o: and k are, respectively, fixed 
positive and nonnegative parameters. Observe that Mk[y] is formally symmetric; i.e. 

We remark that the Kralls studied the operator M 0 [y], i.e. equation (1.3) when k = 0. For 
reasons that will be clarified later, we shall study (1.3) for k ~ 0. 

Let [1,( x) denote the monotonic increasing function defined by: 

{ 
-(o: + 1)/2 

{l(x) := o:x/2 

(o: + 1)/2 

ifxE(-oo,-1] 

if X E ( -1, 1) 

if X E [1, oo) 
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Then, as is well-documented (see [5], for example), [l generates a regular positive measure 
f-l on the Borel sets of the real line. The Legendre polynomials are orthogonal in L~ [ -1, 1], 
where 

L~[-1, 1] := {f: [-1, 1]-> Clf is Lebesgue measurable and { IJI 2 df-l < oo} (1.4) 
1[-1,1] 

is the Hilbert space with inner product: 

(f, g)Jl: = { f(t)g(t) df-l(t) 
1[-1,1] 

(1.5) 

= /(1~(1) + ~ /_11 f(t)g(t) dt + !( -1~( -1) 

and norm 11!11 11 := (f, !)~12 . More precisely, the Legendre type polynomials satisfy the 
orthogonality relationship 

{ P;:(t)P~(t) df-l(t) = [a(a + n(n 2-
1)) (a+ (n + 1)2(n + 2) )/(2n + 1)]8nm (1.6) 

1[-1,1] 

where Dnm is the Kronecker delta function. 
From a different point of view than that taken by A.M. Krall in [7], we shall also consider 

the self-adjoint operator associated with (1.3) in the space L~[-1, 1]. This is the so-called 
right-definite boundary value problem associated with the Legendre type polynomials. From 
this, we can study the left-definite boundary value problem. That is to say, we shall study 
the operator Mk in a Hilbert space H, to be properly defined later, endowed with the inner 
product: 

(f, g)H := ~ / 1 
{ (1- t2 ) 2 f"(t)g"(t) + (8 + 4a(1- t2 ))f'(t)g'(t)} dt + k(f, g) 11 (1.7) 

2 -1 

Here, it is essential that k > 0. 
This work is a continuation of earlier work of Everitt [4] who considered the right- and left

definite boundary value problems for the Legendre polynomials. The methods used in this 
paper to obtain our results are significantly different from those in [4]. Indeed, the Legendre 
equation can be studied by classical means following the treatment of such problems in 
Titchmarsh [15, Sections 4.3-4. 7] and Akhiezer and Glazman [1, Appendix 2, §3] for example. 
However, because the spaces where the right- and left-definite problems associated with the 
fourth-order equation for the Legendre type polynomials are different from those considered 
by these classical texts, the analysis involved in this paper to obtain our desired results will 
be quite different. As a consequence of studying the left-definite problem, we will establish 
the orthogonality of the derivatives of the Legendre type polynomials in the space H. In 
fact, we shall show the orthogonality relationship: 

(P;:, P~) H = (1.8) 

n(n-1) (n+1)(n+2) 
{[n(n+l)(n2 +n+4a-2)+k]a(a+ 2 )(a+ 2 )/(2n+1)}8nm· 
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The organization of this paper is as follows. In §2, we develop some essential properties 
of functions in the maximal domain b.k of Mk in £ 2 ( -I, I) and we also list Green's formula 
and Dirichlet's formula. In §3, we define the operator Tk, with domain b.k, associated with 
Mk and show that Tk is symmetric in L~[-I, I]. In fact, Tk, with domain b.k, is actually 
self-adjoint in L~[-I, I] but, in order to prove self-adjointness of Tkl we need to show self
adjointness of three related operators. We define these operators in §4 and study their self
adjointness there. In §5, we prove the self-adjointness of Tk in L~[-I, 1]. The left-definite 
problem associated with the Legendre type polynomials is discussed in §6. Lastly, in §7, the 
self-adjoint operators associated with the half-range Legendre type series are discussed. 

2. Properties of the maximal domain of Mk. The maximal domain b.k of Mk in 
£ 2 ( -1, I) is defined to be 

b.k := {f: (-I, 1)----> C I J, J', J", f( 3 ) E AC!oc( -I, I) and J, Mk[f] E L2 ( -I, I)} (2.I) 

Here, AC1oc (-I, I) refers to the set of functions f : (-I, I) ----> C that are locally absolutely 
continuous on (-I, I), i.e., f is absolutely continuous on all compact subintervals of (-I, 1). 
Since C0 (-I,I) C b.kl it follows that b.k is dense in £ 2 (-I,I). 

For J, g E b.k and [o:,,B] C (-I,1), we have Green's formula 

r~ ~ 
}a { Mk[f](t)g(t)- Mk[gJ(t)J(t)} dt = [!, g](t)la' (2.2) 

where [f, g] ( ·) is the skew-symmetric sesquilinear form defined by 

[!, g](x): = {((I- x 2 ) 2 J"(x))'- (8 + 4o:(I- x2 ))J'(x) }g(x) 

- { ((1- x2 ) 2g"(x))'- (8 + 4o:(I- x2 ))g'(x)} f(x) (2.3) 

-(I- x2 ) 2 J"(x)g'(x) +(I- x2 ) 2 g"(x)J'(x), -I< x < 1, 

and Dirichlet's formula 

l~ {(I - t 2 ) 2 !" (t)g" (t) + (8 + 4o:(I - t 2 )) !' (t)g' (t) + kf(t)g(t)} dt 

=(I- t2 ) 2 J"(t)g'(t)l:- {((I- t2 ) 2 J"(t))'- (8 + 4o:(I- t2 ))f'(t) }g(t)l: (2.4) 

+ l~ Mk[f](t)g(t) dt. 

Of particular importance later will be Dirchlet's formula when f = g: 

i(j {(1- t2 ) 2 if"(t)i 2 + (8 + 4o:(1- t2 ))if'(t)l 2 + kif(t)l 2 } dt 

=(I- t2 ) 2 J"(t)J'(t)l:- {(I- t2 ) 2 f"(t))'- (8 + 4o:(I- t2 ))J'(t)} !(t)l: 
(2.5) 

+ 1: Mk[f](t)f(t) dt. 
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From the definition of b.k, we see that the limits 

lim [!, g](x) 
x-->±1 

(2.6) 

exist and are finite, for all f, g E b.k. Note also, and we shall use this later in our definition 
of Tk, that the function 1 E b.k and 

[/, l](x) = ((1- x2 ) 2 J"(x))'- (8 + 4cx(l- x2 ))f'(x), -1 < x < 1 (2.7) 

for all f E b.k. The main result of this section is the following theorem: 

Theorem 2.1. Let f, g E b.k. Then 

(i) lim { ((1- x2 ) 2 J"(x))'- (8 + 4cx(1- x2 ))f'(x)} exist and are finite. 
x-->±1 

(ii) /'EL2 (-1,1) 

(iii) f E AC[-1, 1] 

(iv) ((1-x2 ) 2 f")'EL 2 (-1,1) 

(v) (1-- x2 )f" E 1 2 (-1, 1) 

(vi) limx--.±1(1- x2 ) 2 f"(x)g'(x) = 0. 

In order to prove Theorem 2.1, which is fundamental to all that follows, we first have to 
digress to consider some properties of the second-order symmetric differential expression: 

N[f](x) := -((1- x2 ) 2 f'(x))' + 4cx(1- x2 )f(x), x E ( -1, 1). 

We shall consider these properties of N [ ·] on [0, 1); there are similar results for ( -1, 0]. Recall 
that the maximal domain b.N of N[·] in 1 2 [0, 1) is defined to be: 

b.N := {J: [0, 1)--+ Cjj, f' E ACioc[O, 1) and j, N[f] E 1 2 [0, 1) }. 

Lemma 2.2. 

(i) (1- x2)f' E 1 2 [0, 1) for all f E b.N 

(ii) lim (1- x2 ) 2 f'(x)g(x) = 0 for all f, g E b.N 
X-->1 

Proof: For J, g E b.N, 0:::; x < 1, we see that 

1x { (1- t 2 ) 2 f'(t)g'(t) + 4cx(l- t2)j(t)g(t)} dt = 

1x N[f](t)g(t) dt + (1- x 2 ) 2 J'(x)g(x)- j'(O)g(O). 

It suffices to prove (i) for real-valued f E b.N. For such f and g = f, (2.8) reads: 

lax {(I- t2 ) 2 (f'(t)) 2 + 4cx(1- t2 )(f(t)) 2 } dt = 

lax N[f](t)f(t) dt + (1- x 2 ) 2 f'(x)f(x)- f'(O)f(O). 

(2.8) 
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Since the integrand on the left-hand side of this equation is non-negative, either we must 
have 

(a) lim r { (1- t2 ) 2 (J'(t)) 2 + 4cx(1- t 2 )(J(t)) 2 } dt exists and is finite, or 
x~l Jo 

(b) lim {x { (1- t2 ) 2 (J'(t)) 2 + 4cx(1- t2 )(J(t)) 2 } dt = oo. 
x~l Jo 

If case (a) occurs, clearly N[·] is Dirichlet, i.e., (1- x 2 )f' E £ 2 [0, 1). Suppose then that 
situation (b) occurs. Since limx~ 1 J; N[f](t)f(t) dt exists and is finite, we see that for 
any c > 0 and x near 1. we have (1- x2 ) 2 f'(x)f(x) ~ c > 0. Integrating the inequality 
f'(x)f(x) ~ c/(1- x2 ) 2 yields (f(x)) 2 ~ c/(2(1- x)) + g(x), for x close to 1 and for some 
g E L[O, 1). However, this contradicts our assumption that f E £ 2 [0, 1). This proves (i). 
Observe now, from (2.8), that limx~d1- x2 ) 2 f'(x)g(x) exists and is finite. If this limit is 
not 0. there exists c > 0 such that 

(1- x 2 )lf'(x)g(x)l ~ c/(1- x2 ) for x near 1. 

However this contradicts the fact, from (i), that 

(1- x2 )lf'(x)g(x)l E L[O, 1). 

Hence limx->1(1- x2 ) 2 f'(x)g(x) = 0, for all J, g E 6.N. 1 

Applying Frobenius' method [6, Sections 16.1-16.33], the indicia! equation of N[·] at x = 1 
is I(r) = 4r(r + 1). Consequently, it follows that N[·] is limit point at x = 1. We now define 
a self-adjoint operator A in £ 2 [0, 1) by 

A[f] := N[f] 
for f E D(A) := {! E 6.N I f(O) = 0} 

The fact that A is self-adjoint in £ 2 [0, 1) follows from the analysis in N aim ark [11]. Since 

we see that A is bounded below in £ 2 [0, 1) by zero. In particular, we have that -8 E p(A), 
the resolvent of A, and hence the resolvent operator R>-. (A) := (A - >..!)-I, for >.. = -8, is a 
bounded operator from £ 2 [0, 1) onto D(A), where I is the identity operator on £ 2 [0, 1). It 
is easy to check that, for f E £ 2 [0, 1), 

N[(R>-.(A)f)(x)] = -8(R>-.(A)f)(x) + f(x), x E [0, 1) (2.9) 

i.e., R>-.(A)J, for>..= -8, is a solution of the nonhomogeneous equation 

N[y](x) = -((1- x2 ) 2 y'(x))' + 4cx(1- x 2 )y(x) = -8y(x) + f(x), (2.10) 

withy E D(A), i.e., y E £ 2 [0, 1) and y(O) = 0. 
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We can give, and require, an explicit representation of R>. (A) when A= -8. Consider the 
differential equation 

-((I- x2)2y'(x))' + 4o:(I- x2 )y(x) = -8y(x), x E [0, I), (2.11) 

i.e., N[y] = -8y. 

The indicial equation of (2.11), at x =I, is I(r) = 4(r- I)(r + 2). Thus, from Frobenius' 
method, one solution of (2.11) has the form 

00 

<p(x) :=(x-I) L an(x -I)n, ao "1- 0 (2.I2) 
n=O 

where this series converges for lx -II < 2. Consequently, <p E £ 2 [0, I). By reduction of order 
[6, Section 5.22], another linearly independent solution is given by 

{X dt 
1/J(x) := <p(x) lo <p2(t)(I- t2)2 O:<:;x<I (2.I3) 

Since equation (2.11) is limit point at x =I in £ 2[0, I) and since <p E £ 2[0, I), we see that 
1/J fl. £ 2[0, I). We also note, again using Frobenius' method, that there exist constants o:, 
(3 E C such that 

bo b1 ~ 2 
1/J(x) = o:<p(x) + {3<p(x) ln(I- x) + (I_ x) 2 + (I_ x) + ~ bn(x- It- , (2.I4) 

where bo -1- 0. We now claim that <p(O) -1- 0. For, if <p(O) = 0, then <p E D(A). This implies, 
however, that <p is an eigenfunction of A with eigenvalue A = -8, contradicting the fact 
that A is bounded below by zero. Hence <p(O) -1- 0. We are now in a position to prove: 

Lemma 2.3. For any f E £ 2 [0, I), we have 

(R-s(A)f)(x) = <p(x) lax 1/J(t)f(t) dt + 'lj;(x) i 1 
<p(t)f(t) dt, xE[O,I). 

Proof: Define, for f E £ 2[0, I), 

ci>(x; f):= <p(x) lax '1/J(t)f(t) dt + '1/J(x) 11 <p(t)f(t) dt, xE[O,l). (2.15) 

From (2.I3), it follows that ci>(O; f) = 0 for all f E £ 2[0, I). A direct calculation yields 
N[ci>] = -8ci> + f on [0, I); combining this with (2.9) gives us 

N[R-s(A)f- ci>(·; !)] = -8(R-s(A)f- ci>(-; !)). 

Hence there exists constants c1 , c2 E C such that 

(R_ 8 (A)J)(x)- ci>(x; f)= c1<p(x) + c2'1/;(x), X E [O,I). (2.I6) 
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Evaluating this identity at x = 0 immediately yields c1 = 0. To show that c2 = 0, we apply 
a result of Chisholm and Everitt [3] which shows cl>(- ; f) E L2 [0, 1) for all f E L2 [0, 1) if 
and only if there exists a constant K > 0 such that 

lax l1/!(t)l 2 dt [
1 I~P(t)l 2 dt :'::: K for all x E [0, 1). ( 2 .17) 

By (2.12), (2.13) and (2.14), it follows that (2.17) does hold so that cl>( · ; f) E L2 [0, 1) for 
all f E L 2 [0, 1). Consequently, the left-hand side of (2.16) is in L 2 [0, 1) while the right-hand 
side of (2.16) will be in L 2 [0, 1) only when c2 = 0. This establishes the lemma. 1 

Proof of Theorem 2.1. By (2.6) and (2.7), property (i) follows immediately. Alternatively, 
it is easy to check that if, for -1 < x < 1, A(-) is defined by: 

A(x) = A(x; f):=-{ lax Mk[f](t) dt + f( 3l(o)- (8 + 4a)j'(O)- k lax f(t) dt} (2.18) 

then 

-((1- x2 ) 2 J"(x))' + (8 + 4a(1- x2 ))J'(x) = A(x), -1 <X< 1. 

Since J, Mk[f] E L2( -1, 1) c L( -1, 1), it follows from (2.18) that 

lim A(x) 
x--->±1 

(2.19) 

exist and are finite. Notice, in fact, that A E AC[-1, 1] C L 2 ( -1, 1). If we write y := J', 
f E /J.kl observe that (2.19) may be written as 

N[y](x) = -8y(x) + A(x), xE[0,1). (2.20) 

Since A E AC[O, 1), we can say that every solution of (2.20) can be represented in the form, 
for some constants k1 , k2 E C, 

y(x) = k11p(x) + k21/!(x) + cl>(x;A), XE [0,1), 

where ci> is defined by (2.15). Accordingly then we have, for any f E !J.k, the identity: 

J'(x) = k11p(x) + k21j!(x) + cl>(x; A), xE[0,1). (2.21) 

Integrating (2.21) yields: 

J(x) = k1 lax 1p(t) dt + k2lax 'ljJ(t) dt +lax <P(t; A) dt + d, xE[O,l), 

where d is some constant. Of the terms on the right-hand side, the first, third and fourth 
are all in L2 [0, 1). The second term gives, from (2.14) and for some constant c -=J 0 and 
g E L 2 [0, 1), 1x c 

1/;(t) dt = -( -) + g(x), 
0 X- 1 
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which however implies k2 J;'l/J(t)dt tJ_ £ 2 [0,1) unless k2 = 0; this is now required since 
f E £ 2 [0, 1). Hence, from (2.21), we now have the following representation: 

f'(x) = k1 cp(x) + ci>(x;A), xE[0,1), 

and it follows that f' E £ 2 [0, 1). A similar argument shows that f' is also in L2 ( -1, 0] and 
this completes the proof of (ii). 

From the fact that f' E ACioc( -1, 1), i.e. that f(x) = f(O) +fox f'(t) dt, -1 < x < I, 
and knowing that f' E L2 ( -I, 1) C L( -1, 1), we see that limx-+±1 f(x) exist and are finite. 
If we define /(±1) = limx-+± 1 f(x), and we shall henceforth assume this, then we see that 
f E AC[-1, 1]. This proves (iii). Because f' E L 2 ( -1, I) and (8 + 4a(I- x2 )) is bounded 
on ( -1, 1), clearly, we have (8 + 4a(1- x2 ) )!' E L 2 ( -1, 1). Since A E L 2 ( -1, 1), it follows 

from (2.19) that ((I- x2 ) 2 !")' E L 2 ( -1, 1), proving (iv). To prove (v), we return to (2.5) 
in the form: 

lax { (1- t2 ) 2 1f"(tW + (8 + 4a(1- t2 ))1f'(tW + klf(tW} dt 

= ( 1 - x2 ) 2 f" ( x )J' ( x) - { ( (1 - x2 ) 2 f" (x))' - (8 + 4a( 1 - x2 )) f' ( x)} J( x) 

+lax Mk[f](t)f(t) dt + K, where K is a constant and 0 ~ x < 1. 

By (i) and (iii), we know that the limit 

lim { ((1- x2 ) 2 J"(x))'- (8 + 4a(1- x2 ))f'(x)} J(x) 
x->1 

exists and is finite. Also since j, Mk[f] E £ 2 [0, 1), we have that 

lim r Mk[f](t)f(t) dt and lim {x lf(t)l 2 dt 
x-+1 } 0 x->1 } 0 

exist and are finite. Since f' E £ 2 [0, 1) and (8 + 4a(1- x2 )) is bounded, clearly, 

lim fx (8+4a(1-t 2 ))1f'(tWdt 
x-+1 Jo 

exists and is finite. Consequently, if (1- x 2 )f" tJ_ £ 2 [0, I), it follows that 

lim (1- x2 ) 2 f"(x)/'(x) = oo. 
x-+1 

Without loss of generality, we may assume that f is real-valued on [0, 1). Then, for any 
constant c > 0 and x near 1, we have: 

(1- x 2 ) 2 J"(x)f'(x) 2: c > 0. 

Integrating the inequality f"(x)f'(x) 2: c/((1 + x) 2 (1- x) 2 ), yields: 

d 
(J'(x)) 2 2: -- + g(x), 

1-x 
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for some constant d f 0 and g E L[O, 1). However, this implies 

a contradiction. Hence, (1- x2 )J" E L2 [0, 1). Similarly, we have that 

This establishes (v). To prove (vi), we consider (2.4) in the form: 

lax { (1- t 2 ) 2 J"(t)g"(t) + (8 + 4a(1- t 2 ))J'(t)g'(t) + kf(t)g(t)} dt 

= (1- x2 ) 2 J"(x)g'(x)- { ((1- x2 ) 2 J"(x))'- (8 + 4a(1- x2 ))f'(x) }g(x) 

+lax Mk[f](t)g(t) dt + K, K a constant. 

For J, g E t::.k, the left-hand side of this equation has a finite limit as x --+ 1; this follows 
from the definition of f:::.k and properties (ii) and (v). Furthermore, the second and third 
terms on the right-hand side of the above equation are finite; this follows from the definition 
of D.b and (i) and (iii) of Theorem 2.1. Hence, we see that 

exists and is finite. Suppose this limit is not zero. Then, there exists a number b > 0 such 
that 

(1- x2 ) 2 lf"(x)g'(x)l ~ b > 0 for all x near 1, 

and hence 

(1- x2 )if"(x)g'(x)l ~ (1 ~ x2 ), for all x near 1. (2.22) 

Since (1 - x2 )f", g' E L2 [0, 1), the left-side of (2.22) is in L[O, 1). However, the 
term on the right-hand side of (2.22) is not, giving us a contradiction. Hence, 
limx_, I( 1 - x2 ) 2 J" ( x) g' ( x) = 0. Similarly, the corresponding limit at -1 is zero; this com
pletes the proof of the theorem. 1 

3. Definition of Tk. Recall from (2.6) and (2.7) that the limits 

lim [!, 1](x) 
x--->±1 

both exist and are finite. We define 

[!, 1](±1) := lim [!, 1](x). 
x-+±1 

Also, recall in §2 that we defined !(±1) = limx_,±1 f(x), f E f:::.k. Hence, from Theorem 2.1 
(iii), we see that f:::.k C L~[-1, 1], where L~[-1, 1] is the Hilbert space defined in (1.4) with 
inner product given in (1.5). 
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Define the operator Tk in L~[-I, I] by: 

{ 
a[f, I]( -I)+ kf( -I) if x =-I 

Tk[f](x) := Mk[f](x) if -I< x <I 

-a[f, Ij(I) + kf(I) if X= I 

D(Tk) := b.k 

Theorem 3.1. Tk is symmetric in L~[-I, I]. Furthermore, Tk is bounded below in L~[-I, I] 
by kl, where I is the identity operator on L~[-I, I]. 

Proof: Let J, g E D(Tk)· First, notice in light of (2.7), that Green's formula (2.3) may be 
written as: 

j_1

1 
Mk[f](t)g(t) dt 

= lim {[!, I](x)g(x)- [g, I](x)f(x)- (I- x2 ) 2 J"(x)g'(x) +(I- x2 ) 2g"(x)J'(x)} 
x->1 

- lim {[!, I](x)g(x)- [g, I](x)f(x)- (I- x2 ) 2 J"(x)g'(x) +(I- x2 ) 2 g"(x)J'(x)} 
X--+-1 

+ i 1

1 
Mk[gJ(t)f(t) dt, 

where we have written [g, I](x) = [g, I](x), since the coefficients of Mk[·] are real-valued on 
(-I, I). By Theorem 2.I, all eight terms in the above limits have individual limits; in fact, 
we can infer from Theorem 2.I that the above equation may be simplified to: 

i 1

1 
Mk[f](t)g(t) dt 

= [!, I](I)g(I)- [g, I](I)j(I)- [f, I]( -I)g( -I)+ [g, I]( -I)f( -I)+ i 1

1 
Mk[g](t)j(t) dt. 

Consequently, 

(Tk[f], g) 11 = Tk[f] ~I)g(I) + ~ill Mk[f](t)g(t) dt + Tk[f]( -2I)g( -I) 

= _ a[f, Ij~I)g(I) + kf(I~g(I) + ~ { [!, I](I)g(I) _ [g, I](I)f(I) 

-[!,I]( -I)g( -I)+ [g, I]( -I)f( -I)+ /_1

1 
Mk[g](t)j(t) dt} 

a[!, I]( -I)g( -I) kf( -I)g( -I) (3.I) 
+ 2 + 2 

= kf(I~g(I) - ~[g, Ij(I)f(I) + ~[g, I]( -I)f( -I) 

+ kf( -I~g( -I) +~ill Mk[gJ(t)j(t) dt 

= (!, Tk[gl) 11 • 
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Hence Tk[·] is Hermitian. Since 0 00 [-1, 1] c D(Tk) and C 00 [-L 1] is dense in L~[-L 1]. 
we have that D(Tk) is dense in L~[-1, 1]. Consequently, Tk is symmetric in L~[-1, 1]. From 
Dirichlet's formula (2.4) and Theorem 2.1 (vi), we see that 

/_
1

1 
Mk[g](t)f(t) dt 

= /_1

1 
{ (1- t2 ) 2 J"(t)g"(t) + (8 + 4a(1- t2 ))f'(t)g'(t) + kf(t)g(t)} dt 

+ [g, 1 ]( 1) - [g, 1] ( -1 )!( -1). 

Combining this with equation (3.1) yields the identity: 

(Tk[J], g)fl = ~ /_1

1 
{ (1- t2 ) 2 f"(t)g"(t) + (8 + 4a(1- t2 ))f'(t)g'(t)} dt + k(J, g)fl. (3.2) 

valid for all J, g E D(Tk)· In particular, since 

we have: 

(Tk[!].f)fl = ~ /_1

1 
{(1-t2 ) 2 lf"(tW+ (8+4a(1-t2 ))1J'(t)1 2 }dt+k(J,J)fl 

~ k(J, f)fl. 

Hence, Tk[·] is bounded below by kl in L~[-1, 1]. This completes the proof. 1 

(3.3) 

Remarks. l. Notice that the right-hand sides of equations (3.2) and (1.7) are the same. 
2. Observe that P:: E 6.k, n = 0, 1, 2, .... Furthermore, by construction, it is easy to see 
that Tk[P::J = (>-n + k)P::; i.e., P:: is an eigenfunction of Tk with corresponding eigenvalue 
An+ k. If we substitute f = P:: and g = P::, into (3.2) and use (1.6), we arrive at the 
following orthogonality relationship of the derivatives of the Legendre type polynomials: 

(3.4) 

which is equivalent to the formula given in (1.8). Notice that this orthogonality is with 
respect to Lebesgue measure and not with respect to the measure Jl· 
3. The inequality in (3.3) is best possible. Indeed, take f(x) = Ptf(x) =a, x E [-1, 1], to 
see this result. 

4. Three associated operators. In order to prove that Tk is self-adjoint in L~[-1, 1], 
we need to show the self-adjointness of three related operators, two of which will sum to Tk. 
To discuss these operators, it is essential to first discuss, in some detail, the solutions of 

(4.1) 
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Since the coefficients of Mk[·] are analytic on (-1. I). we can use the Frobenius method to 
construct series solutions of (4.I). The endpoints x =±I are regular singular endpoints of 
Mk[·] and the indicia! equation at both x =±I is I(r) = r(r- I)(r- 2)(r +I). Following 
the analysis in [6, pp. 396-403], it can be shown that four linearly independent solutions of 
( 4.I) about x = I are given by: 

00 

¢2(x) =(I- x) 2 L an(x -l)n, ao I- 0 (4.2) 
n=O 
00 00 

n=O n=O 
bo I- 0 

(4.3) 
¢I(x) =(I- x) L bn(x -l)n +(I- x) ln II- xl L Cn(x -l)n, 

00 00 

¢o(x) = L dn(x -l)n + ln II- xl L en(x -l)n, do I- 0 ( 4.4) 
n=O n=O 

00 00 

fo I- 0, 
(4.5) 

<P-1(x) =(I- x)- 1 { L fn(X -l)n + ln II- xl L gn(x -l)n }, 
n=O n=O 

where all series have radius of convergence 2. Here, the subscripts refer to the indicia! roots. 
Note that ¢r E L2 [0, I), r = 0, I, 2, but that <P- 1 tf. L2 [0, I). Consequently, Mk[·] is in the 
limit-3 case at x = L Similarly, Mk[·] is in the limit-3 case at x =-I, where there are four 
solutions 1/Jr, r = 0, I, 2, -I, similar to the four above satisfying 1/Jr E L 2 (-I, 0], r = 0, I, 2, 
but 1/J-1 tf. L 2(-I,O]. 

We can, in fact, describe the solutions ¢1, ¢2 in a little more detail. Indeed, since we 
have, for r = 0, I, 2, 

we require that the constant c0 in (4.3) and the constants e0 , e1 in (4.4) be zero. This 
follows since (I- xt ln(I- x) E ~k[O, I) only when O" 2 2. A similar simplication can be 
made for the solutions 1/J1, 1/Jo at the point x = -1. 

Define h± E C4 [-I, I] as follows: Let h+ (respectively, h_) take the value +I in a 
neighbourhood of I (neighbourhood of -I) and the value 0 in a neighbourhood of -I 
(neighbourhood of I). Together, h+ and h_ are linearly independent modulo the minimal 
domain of Mk[·] in L 2 ( -I, I) and they satisfy the symmetry [h±, h±](±I) = 0 for any choice 
of± signs, where [·, ·] is the bilinear form defined by (2.3). We now define the operator Ak 
in L 2 ( -1, I) by: 

Ak[f] := Mk[f] 

D(Ak) := {! E ~k 1 [f,h_](-I) = [f,h+](l) = o}. 

Theorem 4.1. Ak in L2 (-I, I) is self-adjoint. Furthermore, Ak is bounded below in 
L2 ( -I, I) by kl, where I is the identity operator on L 2 ( -I, I). 

Proof: Because Mk[·] is limit-3 at x =±I, the Naimark theory [11, §I8] for the construction 
of self-adjoint operators requires, for the separated case, one boundary condition at each 
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singular endpoint ±1. The operator Ak satisfies these conditions soAk is self-adjoint. Notice 
that the boundary conditions [f,h+](1) = [f,h_](-1) = 0 imply that 

lim { ((1- x2)2 J"(x))'- (8 + 4o:(1- x2))J'(x)} = 0, f E D(Ak)· 
x~±l 

Since D(Ak) C D(Tk), it follows from (2.4) and Theorem 2.1 that Ak is Dirchlet and, in 
particular, from (2.5), 

(Akf, f)= i 1

1 
Mk[J](t)f(t) dt 

= i 1

1 
{ (1- t2)2lf"(t)l2 + (8 + 4o:(1- t2))1f'(t)l2 + kiJ(tW} dt 

~ k(J, f), f E D(Ak). 

Hence Ak[·] is bounded below by kl, where I is the identity operator in L2 (-1, 1). As with 
Tk [ ·], this estimate is best possible. 1 

In order to discuss more properties of Ak[·], we first must return to our earlier study 
of the solutions of (4.1). Since the solutions ¢r, r = 0, 1, 2, are linearly dependent on the 
four independent solutions 1/J_ 1 , 1/Jo, 1/J1 , 1jJ2 , we can find constants O:rs E C such that, for 
-1<x<1, 

2 

rPr(x) = L O:rs'l/Js(x). 
s=-1 

By elimination of 1/J- 1 , if necessary, we can find two linearly independent solutions cp 1 and 
1P2 of ( 4.1) with representations 

2 2 

IPr = L fJrsrPs = L /rs'l/Js' 
s=O s=O 

satisfying IPr E D.k, r = 1,2. 
By taking IP+ = o: 1 cp 1 + o:2cp2, we can choose o:1 and o:2, not both zero, so that 

[cp+, 1]( -1) = 0. It follows then that [cp+, 1](1) -1- 0; otherwise, IP+ E D(Ak)· This would im
ply, however, that IP+ is an eigenfunction of Ak with eigenvalue 0, contradicting the fact that 
Ak is bounded below by kl, k > 0. By scalar multiplication, we can take [cp+, 1](1) = -1. 

There is a similar construction for a solution cp_ such that [cp_, 1 ]( -1) = 1 and 
[cp_, 1](1) = 0. Note that IP+ and cp_ are linearly independent; for if o:cp+ + (Jcp_ = 0, 
then [o:cp+ + (Jcp_, 1](1) = 0. i.e., o:[cp+, 1](1) = 0 and therefore o: = 0. Similarly, (J = 0. 
We also note that IP+ and cp_ are unique. Indeed, if IP+.l also satisfies the conditions 
[IP+, 1 , 1](1) = -1 and [IP+, 1 , 1]( -1) = 0, then IP+- IP+,l E D(Ak), again contradicting the 
fact that Ak is bounded below by kl. 

We pause to state that, since Ak is bounded below by kl, then 0 E p(Ak) the resolvent of 
Ak. Consequently, the resolvent operator R0 (Ak) := A;; 1 exists and is a bounded operator 
from L2 (-1, 1) onto D(Ak)· This fact will be used when the operator Tk, defined below, is 
shown to be self-adjoint. 
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We define the operator T~ in L~ [ -1, 1] as follows: 

{ 
a[f, 1](-1) 

Tk[f](x) := Mk[f](x) 

--a[f, 1](1) 

D(Tn := D.k 

if X= -1 

if - 1 <X< 1 

if X= 1 

111 

Since the calculations made in Theorem 3.1 to show that Tk is symmetric in L~[-1, 1] are 
not affected by the terms k/(±1), we see immediately that Tk is symmetric in L~[-1, 1]. To 
show that T~ is self-adjoint in L~[-1, 1], we appeal to the following theorem [1, I, §41]: 

Theorem 4.2. Suppose A is a symmetric operator in a Hilbert space H. If the range of A 
is all of H, then A is self-adjoint. 

Theorem 4.3. Tk is self-adjoint in L~[-1, 1]. 

Proof: Let f E L~[-1, 1]. We claim that 

g(x) := f(- 1) ~-(x) + (Ro(Ak)f)(x) + !(1) ~+(x) 
a a 

is in D(Tk) and satisfies Tk[g] =f. Since~± E D.k = D(Tn and Ro(Ak)! E D(Ak) c D(Tn, 
we have g E D(Tn. By definition of~± and the fact that Ro(Ak)f E D(Ak), we see that 

[g,1](-1) = f(- 1) and [g,1](1) = _!(1); 
a a 

consequently, we see that (Tkg)(-1) = f(-1) and (Tkg)(1) = /(1). Also, since~± are 
solutions of the homogeneous equation (4.1) and Ro(Ak) is the inverse of Mk[·] on ( -1, 1), 
we see that, for -1 < x < 1, 

(T~g)(x) = Mk [ f(: 1) ~- (x) + (Ro(Ak)f)(x) + ~~1 ) ~+ (x)] 

= f(x). I 

We now define the operator T~' in L~[-1, 1] by: 

{ 
kf( -1) 

(Tf f)(x) := 0 

k/(1) 

D(T~') := L~[-1, 1]. 

Theorem 4.4. Tf in L~[-1, 1] is self-adjoint. 

if X= -1 

if-1<x<l 

if X= 1 

Proof: It is easy to see that Tf is symmetric in L~[-1, 1]. Since the domain ofT~' is all of 
L~[-1, 1], it follows from a well-known result [1, I, §41] that Tf is self-adjoint. 1 

5. The self-adjointness of Tk. We shall need the following theorems to prove that 
Tk is self-adjoint in L~[-1, 1]. In the statements of these theorems, H will denote a Hilbert 
space. 



112 W.N. EVERITT AND L.L. LITTLEJOHN 

Theorem 5.1. [11, §14. 7}. Suppose A is a closed symmetric operator in H and B is a 
bounded, Hermitian operator in H. Then A and A + B have the same deficiency indices. 

Theorem 5.2. [11, §14.4}. A closed symmetric operator in H is self-adjoint if and only if 
its deficiency indices are both zero. 

Theorem 5.3. {11, §11.4}. Suppose A is a self-adjoint operator in H. Then A is closed. 

Theorem 5.4. Suppose A and B are closed operators in H. If B is a bounded operator, 
then A + B is closed in H. 

Proof: Suppose Xn E D(A +B)= D(A) n D(B) with Xn -> x and (A+ B)xn -> y. We are 
to show that x E D(A +B) and (A+ B)x = y. Since Xn E D(A) and A is closed, we see 
that x E D(A); similarly x E D(B). Hence x E D(A +B). Since B is bounded, 

IIBxn- Bxmll :::; IIBIIIIxn- Xmll-> 0 as n, m-> oo, 

which implies that {Bxn} converges to, say, wE H. Writing Axn =(A+ B)xn- Bxn, we 
see that { Axn} also converges to, say, z E H. Since A and B are both closed in H, we see 
that Ax = z and Bx = w. Define u := w + z so (A+ B)x = u. Since 

IIY- ull = IIY- w- zll 
:::; IIY- (A+ B)xnll + IIAxn- zll + IIBxn- wll-> 0 as n-> oo, 

we see that y = u and we have proved the theorem. 1 

Theorem 5.5. Tk is self-adjoint in L~[-1, 1]. 

Proof: Observe that Tk = T~ + T~', where we recall that T~ is self-adjoint in L~[-1, 1] 
and T~' is a bounded self-adjoint operator in L~[-1, 1] (in fact, IIT~'II = k). By Theorem 
5.3, both T~ and Tf: are closed and, from Theorems 5.4 and 3.1, Tk is therefore a closed, 
symmetric operator in L ~ [ -1, 1]. Since T~ is self-adjoint, its deficiency indices are both zero 
and hence, by Theorem 5.1, the deficiency indices of Tk are also 0. By Theorem 5.2, it now 
follows that Tk is self-adjoint in L~[-1, 1]. 1 

We note that the resolvent operator R0 (Tk) := TJ; 1 exists fork> 0 and can be represented 
in the form 

(Ro(Tk)J)(x) = (3_cp_(x) + (Ro(Ak)J)(x) + !h'P+(x) (5.1) 

for all x E [ -1, 1] and all f E L ~ [ -1, 1] where /3± are determined uniquely by /3± 
[Ro(Tk)f, 1](±1). 

Recall that the Legendre type polynomials ( 1.2) satisfy: 

i.e., P::'(x) is an eigenfunction of Tk[-]. From a general theorem ([14, §3.1]) in Szego, we 
know that the Legendre type polynomials are complete in L~ [ -1, 1]. Consequently, the self
adjointness of Tk and the completeness of these polynomials in L~[-1, 1] imply that the 
spectrum of Tk is given by 

a(Tk) ={An+ kIn= 0, 1, 2, ... }; 
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i.e., a(Tk) is discrete and bounded below and all eigenvalues are simple. 
Since Tk[P:;'] = (>.n + k)P:;', we see that 

(>.n + k)P:;'(±1) = (Tk[P:;'])(±1) (5.2) 

= =t=a[P~, 1](±1) + kP~(±1). 

But since P:;'(x) is a polynomial, it follows from (2.7) that 

[P~, 1](±1) = -8d(P:;'(x)) I . 
dx x=±l 

(5.3) 

From (5.2) and (5.3), we see that: 

AnP~( -1) = -8a d(P:;'(x)) I 
dx x=-l 

AnP~(1) = 8a d(P:;'(x)) I . 
dx x=l 

(5.4) 

These are the >.-dependent boundary conditions discussed in [7] but they are satisfied only 
by the eigenfunctions of Tk and not, in general, by the elements of D(Tk)· In this sense, the 
equations in (5.4) are to be seen as a property of the Legendre type polynomials but not as 
an essential element in the definition of Tk. 

Remark. If we define the operator Tin L~[-1, 1] by: 

T[f] := (Tk - kl) [f] 
D(T) := D(Tk), 

where I is the identity operator on L~[-1, 1], then T is self-adjoint in L~[-1, 1] and its 
spectrum is a(T) = Pn In = 0, 1, 2, ... }. However note that T, which is the operator A 
that Krall defined in [7], does not have an inverse and R0 (T) is not defined on the whole of 
L~ [ -1, 1]. Indeed, in this case, 0 is an eigenvalue of T. 

6. The left-definite problem. In this section, we shall assume that k > 0. Define the 
space H by 

H := {f: [-1, 1]-+ C If E AC[-1, 1], J' E AC!oc( -1, 1), J', (1- x2 )J" E L 2 ( -1, 1) }. 

Then His a Hilbert space with inner product given by (1.7); i.e., 

The completeness of H can be shown by classical arguments; see [12], where similar analysis 
is used with the left-definite spaces associated with the classical orthogonal polynomials. 
We emphasize that it is essential for k to be positive; otherwise, if k = 0 the equation 
(!, f) H = 0 implies that f is only constant almost everywhere and not necessarily the zero 
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function in H. Observe that from Theorem 2.1, 6.k = D(Tk) is a linear manifold of H. 
Furthermore, it is easy to see that 

H C £~[-1, 1] and kllfll~ ~ 11/11~, f E H. 

From (3.2), we see that 

By mimicking the arguments in Theorem 2.1 we can, in fact, show that: 

(Tk[f], g) 11 = (!, g)H for all f E D(Tk), g E H 

(!, Tk[gl) 11 = (!, g)H for all f E H, g E D(Tk) 

Define the operator Bk : H _, H by 

Bk[f] := Ro(Tk)f 

D(Bk) := H, 

(6.1) 

(6.2) 

(6.3) 

where Ro(Tk) is the resolvent operator of Tk, defined by (5.1), at the point 0 E p(Tk)· By 
(6.1), we see that Bk[f] is well-defined; furthermore, since R0 (Tk)f E D(Tk) = 6.k c H, we 
see that Bk does indeed map H into H. 

Now, from (6.2) and since T;; 1 = R0 (Tk), we have for all J, g E H, 

(6.4) 

Similarly, from (6.3), we see that for all J, g E H, 

(6.5) 

Hence equations (6.4) and (6.5) imply that Bk is symmetric in H and since the domain of 
Bk is all of H, it follows [1, I, §41] that Bk is self-adjoint and bounded in H. Furthermore, 
suppose Bk[f] = 0, for some f E H. Apply Tk to this equation to get f = 0 in H. Hence, 
Sk := B-;; 1 exists and, from [1, I, §41], Sk is a self-adjoint operator in H. Noting that 
P;: E D(Tk), we have that P;: E Hand from the fact that Tk[P;:] = (>..n + k)P;:, we obtain: 

Now apply Sk to obtain 

Thus, in H, the Legendre type polynomials { p;: (X)} are eigenfunctions of sk with eigen
values An + k, n = 0, 1, 2, .... From this result, we find that Sk is unbounded since 
1imn ..... 00 (An + k) = oo. Also, the Legendre type polynomials are orthogonal in H; we 
established this in §3, although the orthogonality would follow from the facts that sk is 
self-adjoint and the Legendre type polynomials are eigenfunctions of Sk. Equations (1.8) 
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and (3.4) show explicitly this orthogonality relationship. The authors believe that the Leg
endre type polynomials are complete in H; this will be looked at in the future. If this is 
true, then the spectrum of sk is 

o-(Sk) ={An+ kIn= 0, I, 2, ... }. 

Unfortunately, as with the case of the left-definite Legendre polynomial problem [4], there 
is no explicit representation for Sk; it does not seem possible to characterize the operator 
Sk in terms of the fourth-order differential expression Mk[·]. The reason for this is that 
BJ; 1 must be computed in H and not in L~[-I, I]. Also in this case, the operator Bk is 
less explicit since the formula (5.I) depends on the resolvent Ro(Ak) for which we have no 
explicit formula. 

In one sense we have used some sophisticated (although well-known) operator theorems 
in Hilbert space and it is not surprising that we have to lose some measure of explicit 
representation. 

7. Half-range Legendre type series. We now discuss some half-range expansions of 
the Legendre type polynomials. This is similar to the discussion in [4] of half-range Legendre 
expansions. 

For example, we work in the space L~[O, I] and define 

In this case, Theorem 2.I applies to ~k[O, I), specifically at x = +1. The inner product in 
L~[O, I) is 

(!, g)t = ~ lal f(t)g(t) dt + f(I~(I). 

We define the operators Tk,E and Tk,o as follows: 

T [f](x) = T [f](x) := { -o:[f, 1](I) + kf(I) 
k,E k,o Mk[f](x) 

if X= I 

if 0:::; X< 1 

D(Tk,e) := {! E ~k[o, 1) 1 J(o) = f"(o) = o} 

D(Tk,o) := {! E ~k[o, I) I j'(O) = f( 3l(o) = o} 

We introduce the Naimark operators At,E and At,o• as defined in §4 : 

At,e[f] = At,0 [f](x) = Mk[J](x) x E [0, 1) 

D(At,e) := {! E ~k[o, 1) I[!, 1](1) = o, f(O) = !"(O) = o} 
D(At.o) := {! E ~k[O, 1) I[!, 1](1) = o, j'(O) = f( 3l(o) = o}. 

Then, as by Theorem 4.1, AtE and At 0 are self-adjoint in L2 [0, 1). By entirely the same 
procedure as in Sections four' and five, the self-adjointness of Tk,E and Tk,o can be estab
lished. The eigenfunctions of Tk,E are the even Legendre type polynomials { Pfn ( x)}, and 



116 W.N. EVERITT AND L.L. LITTLEJOHN 

the eigenfunctions of Tk,O are the odd Legendre type polynomials { Pfn+l (x )}; both sets of 
eigenfunctions are orthogonal and complete in L~ [0, 1). Similar arguments can be made in 
the left-definite half-range cases. 
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