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ABSTRACT

Let X denote an irreducible affine algebraic curve over an algebraically closed field k of
characteristic zero. Denote by 3)x the sheaf of differential operators on X, and 2)(X) = F(X, 3)x), the
ring of global differential operators on X. The following is established:

THEOREM. 3)(X) is a finitely generated k-algebra, and a noetherian ring. Furthermore, 2)(X) has a
unique minimal non-zero ideal J, and 3)(X)/J is a finite-dimensional k-algebra.

Let X denoted the normalisation of X, and n: X—*X the projection map. The main technique is to
compare 2)(X) with 3)(X).

THEOREM. The following are equivalent: (i) n is injective, (ii) 3)(X) is a simple ring, (iii) 3)(X) is
Morita equivalent to 2>(X), (iv) the categories 3)X-Mod and Sjj-Mod are equivalent, (v) gr 2>(X) is
noetherian, (vi) the global homological dimension of @)(X) is 1.

For higher-dimensional varieties the techniques produce examples of varieties X for which 3)(X) is
right but not left noetherian.

0. Introduction

0.1. Throughout the paper k will denote an algebraically closed field of
characteristic zero, and all rings will be A>algebras. Further, unless we explicitly
say otherwise, 'a variety X1 will always mean 'an irreducible affine algebraic
variety over k\ and 'a curve' will be an 'irreducible affine algebraic curve over k\
The ring of regular functions on a variety X is denoted 6(X). Given a variety X,
we will always write X for the normalisation of X and JT: X—> X for the natural
projection.

Given a variety X, we study 2{X), the ring of global differential operators on
X, as defined by Grothendieck [9, § 16.8.1]. If X is non-singular, the structure of
2(X) is particularly pleasant. Indeed, it follows from [9, § 16.11.2] that 2)(X) is a
finitely generated, noetherian fc-algebra, and by [4, Chapter 3, Theorem 2.5] is
even a simple ring of finite global homological dimension. Most of these
properties follow from the fact that the associated graded algebra, gr2)(X),
formed by filtering 2(X) by the order of the differential operators, is a regular,
finitely generated commutative domain [9, § 16.11.2].

The question therefore arises as to the structure of 3)(X) when X is singular;
for example, Malgrange [13] asks whether Sd(X) need be finitely generated and
noetherian. The results for singular X are scattered and partial, even when A" is a
curve, and take a commutative point of view; see, for example, [2, 5, 26]. In this
paper we study the structure of 2(X), for X a curve, from a non-commutative
point of view and obtain strong results about the structure of 2)(X).

A.M.S. (1980) subject classification: 13N05, 14H20, 16A19, 16A33.
Proc. London Math. Soc. (3) 56 (1988) 229-259.
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0.2. The main results for curves in this paper can be encapsulated in the
following two theorems. Let X be a curve.

THEOREM A. 2(X) is a finitely generated (right and left) noetherian k-algebra,
for which the endomorphism ring of every simple 3)(X)-module is equal to k.
Further, 2(X) has a unique minimal non-zero ideal J, and 3)(X)/J is a
finite-dimensional k-algebra.

THEOREM B. The following are equivalent:

(a) n is infective;

(b) 2(X) is a simple ring (and Morita equivalent to 2(X));

(c) gl.dimS(X) = l ;

(d) gr@)(X) is a finitely generated k-algebra (equivalently, grS)(Z) is
noetherian).

Theorem A has been independently obtained (with a proof very similar to
ours) by J. Muhasky [16].

0.3. The key idea in the proof of these results is to identify canonically
and 2(X), with subalgebras of 2(K) where K is the fraction field of 0\X). It
then follows that 2(X, X), the module of differential operators from O(X) to
6(X), embeds in both 2(X) and 9)(X). Furthermore,

Jf, X) c

The interplay between these five objects forms the main theme of this paper.
Thus, for example, Theorem A follows easily from the fact that Sd(X, X) is a left
ideal of both T and 9)(X). This result is proved in § 2, but see also (4.2). Some
special cases of Theorem A appear in [5] and [26].

The crucial result in the proof of Theorem B is that n is injective if and only if
3)(X) = T. However, the proofs of the various equivalences are more involved
than the proof of Theorem A, and appear in §§ 3 and 4. When n is not injective
we cannot give a complete description of the structure of 3)(X). However,
Theorem 4.11 does give a characterisation of @)(X) as an endomorphism ring,
S>(Z)sEnd2,(y)S'(Y, X), where Y is a (singular) curve for which 2(Y) can be
explicitly described.

0.4. Despite the fact that, by Theorem A, 3)(X) has only finitely many prime
ideals, and even has the descending chain condition on two-sided ideals, it is still
possible for 3)(X) to have infinitely many ideals, as is shown in § 5.

0.5. In § 6 we briefly consider the case of differential operators on a (singular)
projective curve C, and show that if n\ C—>C is injective then 2)C-Mod and
2>£-Mod are equivalent (here Sc-Mod is the category of sheaves of quasi-
coherent 2>c-modules).

0.6. Finally, we consider the structure of 3)(X) where X is a variety of
dimension at least 2. Here, the question of Malgrange mentioned earlier has a
negative answer—the first example being the normal surface given by X\ 4- X\ +
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^3 = 0 [3]. For this variety, 3)(X) is neither noetherian nor finitely generated—
the proof depends on detailed computations concerning vector bundles on an
elliptic curve. In § 7 we consider the case when X is a singular variety whose
normalisation X is non-singular; in this case the techniques for curves may still be
applied. In this situation 2>(A") is frequently not noetherian; indeed, we have

THEOREM C. If X is non-singular in codimension 1, then 2(X) is not left
noetherian. In contrast, if X has only finitely many singularities, then 2(X) is right
noetherian and a finitely generated k-algebra.

0.7. The starting point for this investigation was an example of I. Musson, who
gave an explicit description of 3)(X) for the cusp x2 = y3. He showed that
coincided with the explicit description (given in [22]) of

where A1 = k[x, d] = ^(A1) is the first Weyl algebra and d = d/dx. This curious
coincidence motivated the authors' interest in this subject, and we would like to
thank Musson for sharing his example with us. His work appears in [17].

0.8. This research was conducted while the first author was supported by a
(British) SERC Research Assistantship. Some of the research was done while the
second author was visiting the University of Washington, Seattle and supported in
part by an NSF grant. The authors would like to express their gratitude to all
three organisations.

1. Generalities on differential operators

1.1. In this section we give definitions and results on differential operators
which are required in the main part of the paper. While most of the results are
well known there is not an appropriate reference for our needs.

1.2. Let A be a commutative ^-algebra, and let M and N be y4-modules. Give

fc(M, N) the structure of an A <8)fc;4-module by defining ((a ® b)d)(m) =
ad(bm) for a,b eA, 6 eHomk(M, N), and meM. Define p: A ®J4-»J4 to be
the multiplication map, (i(a<8)b) = ab. Write JA (or simply / ) for ker fx.

DEFINITION. The space of k-linear differential operators from M to N of order at
most n is defined by

2)A(M, N) = {de Homfc(Af, N) | Jn+1d = 0},

where J° = A®kA. Set 3A(M, N): = \J~=02)A(M, N). The subscript A in
@A( > ) will be dropped whenever convenient. Write 2)(Af) = 3)(M, M).

1.3. The reader is referred to [9, § 16], [11], and [25, Chapters 8, 13] for the
following results and observations. Although some of the results hold more
generally, we assume that A ®kA is noetherian, throughout (1.3).

(a) The ideal / is generated by { l ® a - a < 8 ) l | a e . 4 } . We shall write
[0, a]:=(l®a-a®l)d = da-ad for aeA, 6 eHomk(M, N). Thus
@°(M,N) = HomA(M,N), and 2(M,N) = 0 if and only if HomA(M, N) = 0.
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Given the above description of J, one may alternatively define 3)n(M, N)
inductively by 2~\M, N) = 0 and, for n 3* 0,

9)n(M, N) = {6e Homk(M, N) | [0, a] e 2"-\M, N) for all aeA}.

(b) One verifies for all n, m e N, that the composition of maps gives
3n(M, N) x 2)m(L, Af)-> 2n+m(L, N). Hence in the special case when L = M =
N, it follows that 2(M) is a A:-subalgebra of End^M. Likewise one sees that
3}(M, N) becomes a 2(N) - 3)(M) bimodule where the module action is given by
the composition of maps. Finally, the above gives a 2(N) — 3)(L) bimodule map
®(M, N) ® a ( M ) 3)(L, M)-^ £>(L, N).

(c) The above also shows that 3)(M, - ) and 3)(-, M) are functors from
A-Mod to Mod-S)(M) (the category of right S(M)-modules) and to 2)(A/)-Mod
(the category of left 2>(M)-modules) respectively. It follows from the fact that
Homk(M, - ) and Hom^(-, M) are left exact that S)(M, - ) and S)(-, M) are
also left exact. However, they need not be right exact. But on a split exact
sequence, both 3)(M, - ) and @(-, M) are exact.

(d) For each n^O, write P ^ A ^ A / Z f 1 (we drop the subscript when
convenient). It is immediate from the definition in (1.2) that

@n(M, N) = HomAQA(Pn, Homfc(M, N))

and then from the adjointness of ® and Horn, one obtains

2n{M, N) = Hom^CF" 0 ^ M, N)

where P"®AM is formed by giving P" the right A -module structure through
A-*\®A<=:A<&A, and Pn<8AM is considered as a left A -module through
A—>A®lczA®A. It is then relatively straightforward to show that if S czA is a
multiplicatively closed subset and M is either finitely presented, or an ,45-module,
then AS®A3>A(M, N) = Q)As(Ms, Ns). Finally, the above description of
®H(M, N) gives

Pn®AM, N),

where the direct limit is the obvious one coming from the natural maps
pn + l . pn

(e) Suppose that each Pn is a projective ^-module (on the left). Then, by (d),

3>(A, N) = limHom^F1, N) = \jmN®A(Pn)*

where (P")* = Hom^(Pn, A). Because direct limits commute with tensor prod-
ucts, this gives 2)(A, N) = N<8)A (lim (Pn)*). But putting N = A, gives
lim (Pn)* = 2(A). Hence 2(A, N) = N&A9(A). As each (Pn)* is projective,
2)^4) is a flat i4-module and thus - ® ^ 2(A) = 3)(A, - ) is an exact functor from
^4-Mod to Mod-2>(A). It is also a faithful functor, since if N^O then
HomA(A,N)i=0, and thus 9){A, N)*0. Note that if / is an ideal of A then
3)(A, I) = I®A3)(A) = I2(A) where the last isomorphism is obtained by viewing
A as a subalgebra of 2(A). Similarly, 2(A, A/I) ss 3)(A)/I2(A).

(f) If X is a non-singular variety over k, and A is any localisation of 6(X), the
ring of regular functions, then each PA is projective and so (e) applies.

(g) The fc-subspaces 2n(A) of 2(A) filter 2(A), and it is easy to check that
gr 2>(A), the associated graded algebra, is commutative.
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1.4. We now concentrate on the case when A = 0(X), the co-ordinate ring of a
non-singular variety X. We shall write 2(X) for 2(€(X)). Many of the following
facts may be found in [4].

(a) The ring 2(X) is a finitely generated fc-algebra, generated by 6(X) and
Der* 0(X), the module of fc-linear derivations on 6(X). Furthermore, gr 2(X) =
6(T*X) where T*X denotes the cotangent bundle (which is also a non-singular
variety). In particular, gr 2(X) is a noetherian domain, and hence 2(X) is also a
(right and left) noetherian domain.

(b) We shall denote by 6X the sheaf of regular functions on X, and by 2X the
sheaf of differential operators on X. The stalks at a point x eX will be denoted
by 6X,X and 2Xx respectively. The stalk 2Xx has a structure similar to that of
the Weyl algebra, 2(An), since Derk0XtX is the free €x^-module generated by
derivations du ..., dn which satisfy d,(f;) = 6/7 where the t, are chosen to be a
system of parameters for the n -dimensional regular local ring 6Xx. Hence
2x,x^0XtX[di,.:,dnl

(c) By imitating the proof for the Weyl algebra, one shows that 2Xx is a
simple ring, and consequently 2(X) is a simple ring.

(d) The endomorphism ring of a simple 2 (^-module is precisely k, and for an
artinian 2(X)-modxi\e, M, End2,(A-)M is a finite-dimensional /r-vector space (this
follows from Quillen's Lemma [18]).

(e) The global homological dimension of 2(X) is finite; indeed gl.dim 2(X) =
dimX The Krull dimension (in the sense of Rentschler-Gabriel) of 2(X) also
equals dim X. The Gelfand-Kirillov dimension of 2(X) equals 2 d im^ [20].

(f) If M is a finitely generated 2 (A^-module then d(M) denotes the Krull
dimension of the associated graded module gr M. If M =£ 0, then d(M) 2= dim X,
and if equality occurs then M is said to be holonomic. If M is a holonomic
2(X)-module, then M is of finite length.

(g) If m is a maximal ideal of €{X), then m2{X) is a maximal right ideal of
2(X). This is because gr(xn3)(X)) = m gr 2{X) is a prime ideal of gr 2(X) such
that the Krull dimension of gr 2(X)/mgY 2{X) equals dimX So any proper
factor module of 2(X)/m2(X) has associated graded module of Krull dimension
strictly less than dim A!". But by (f) the only such module is zero.

1.5. DEFINITION. Let / be a right ideal of a ring R. The idealiser ofJ'inR is

lR(J):={xeR | x/c/}.

The natural importance of the idealiser arises from the fact that it is the largest
subring of R in which / is a two-sided ideal, and furthermore I( / ) / / = EndR(R/J).

One useful observation in this context is the following. Let X be a non-singular
variety, and / a right ideal of 2{X) such that 2(X)/I is of finite length. Then
1(1)/I is finite-dimensional by (1.4d)). This is an essential ingredient in the proof
of Theorem A (see also (7.3)).

1.6. The following result is often stated in the literature but never (so it seems)
proved. We give a proof partly to fill this gap, and partly to illustrate how the
elementary considerations in (1.3) may be used.

NOTATION. If D e 2(A) and a eA, there is a possibility of confusion between
D(a), through D acting on A, and Da the product in 2(A). We shall therefore
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write D * a for D(a) in order to avoid confusion. Thus, if / is an ideal of A, D * /
denotes D(I), the image of / under the action of D on A.

PROPOSITION. Let X be a non-singular variety, and Y a closed subvariety defined
by the ideal I of 0(X). Then

Proof Write A = 6(X). There is a natural map <p: 1(12(A)) -> 2(Y) given as
follows. If D e l(I2(A)) then DI c I2(A), and hence

Thus D induces D'\ A/l^A/L Since 9)(Y) = 2(A/I, A/I), we define cp(D) =
D'. The kernel is

ker q? = {D

where the final equality is given by (1.3(e), (f)). Hence <p induces an injective
map l(I2(A))/I2(A)^> 2(Y) given by D-*D'.

We construct an inverse to show it is surjective. Apply the left exact functor
2(-,A/I) to the exact sequence Q-*I-*A->A/I->0. One obtains

0 -> 2(Y)-+2(A, A/I)-> 2(1, A/I).

However, by (1.3(e), (f)), 2(A, A/I) = 2(A)/I2(A) and hence the injection
2(A, A/1) is the required inverse. This completes the proof.

2. The noetherian property for differential operators on a curve

2.1. The aim of this section is to show that many of the properties of S)(Z), for
Z non-singular, as for example illustrated by (1.4), also hold for 2(X) when X is
a curve. Thus, for example, we show that &(X) is a finitely generated, noetherian
fc-algebra. The proof of this is remarkably easy, the key idea being to take the
normalisation X of X, and canonically identify 2(X) with a subring of the
division ring of fractions of 3)(X). Since this method is more widely applicable,
we begin in a more general situation.

2.2. Let Z be a variety, and Y a variety such that there exist morphisms
X^^Yf^X such that xp is surjective and q)ip = n, where JZ: X-+X is the
normalisation morphism. (In this section our applications will be to the case
Y-X, but a more general Y will be required in §4.) In terms of regular
functions G(X) c 0(Y) c 6(X), and 0(X) is the integral closure of 0(X) in its
field of fractions K = k(X).

Since 2(K) = K<8>C{Y)2)(Y) by (1.3(d)), we may identify 2(Y) with its image
in 2(K). In other words, in the notation of (1.6),

2(Y) = {De 2(K) | D * / e 0(Y) for all / e 0(Y)}.

Of course Y may be taken to be either X or X in this identification. Thus the
three algebras 3)(X), 9)(Y), 3)(X) can (and always will) be viewed as subalgebras
of 2(K).
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2.3. If A c B are commutative fc-algebras then we write

D *feA for a l l / e f l} .

Thus, 2)(B, A) is a right ideal of 2(B). If the identifications of (2.2) are made,
with B = 0(Y) and A = 0(X), then 3)(B, A) is also a left ideal of 9)(A). In this
situation we shall write 2(Y, X):=2(0(Y), 6(X)). We remark that 3){B, A)
as defined here is not necessarily equal to 2A(B, A) as defined in (1.2).
As it does not affect the results of this section we delay discussion of this point
until (2.7).

Since <3){K) is a noetherian domain, Goldie's Theorem implies that it has a
division ring of fractions, say Q, and this is therefore also the ring of fractions of
9(X) and 3>(Y). Wr i te P = Q){Y,X) and set T = {qeQ\ qP^P}. Thus
T s End^y) P. As P is a left ideal of 9){X), it follows that 3(X)cT.
Furthermore, T^2(K). To see this, observe that the conductor / =
Annc(x)(O(Y)/O(X)) is non-zero. Obviously, I3f(Y)cP, and so if q e T then
ql c P c 2(Y). In particular, for any 0 # a e / we have g e S( Y^" 1 c S)(^), as
required.

A diagram illustrates the relationships determined in the last two paragraphs:

2.4. Before we give the main result of this section, one further definition is
required.

Two rings R and S are Morita equivalent if there exists a finitely generated
projective (right) /^-module P that is a generator in Mod-/?, and such that
5 = End,? P. While many properties of rings (such as being simple or noetherian)
are known to be Morita invariant, the following does not appear to be so well
known although it is essentially in [15]. (Standard facts about Morita equivalence
can be found, for example, in [1, Chapter 6].)

LEMMA. Suppose that S and R are Morita equivalent k-algebras. If R is a finitely
generated k-algebra, then so is S.

Proof. There exist n e N, and an idempotent e e M = Mn{R), the n x n matrix
ring, such that eMe = S and M = MeM (see [1, Corollary 22.7]). Certainly M is
finitely generated, and it therefore follows from [15, Corollary 1] that S is also
finitely generated.

2.5. THEOREM. Let X be a curve. Then 2(X)

(a) is (right and left) noetherian;

(b) is a finitely generated k-algebra;
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(c) has {Gabriel-Rentschler) Krull dimension 1;

(d) has Gelfand-Kirillov dimension 2;

(e) has the property that Endg>wM = k, for every simple (right or left)
2(X)-module M.

Proof. Make the identifications of (2.2) and (2.3). By (1.4) all the above
properties hold for 3)(X). Note that P = 3)(X, X) is a projective ^(A^-module
by (1.4(e)), and a generator in Mod-^(Z) by (1.4(c)). Thus T = EndoJ)(x)P is
Morita equivalent to 3)(X) and the above properties hold for T (see [1, pp. 252,
258] and Lemma 2.4).

We now appeal to [20]. Note that 2(X) contains the left ideal P of T. In the
language of [20] this means that 2(X) and T are equivalent orders. Thus all but
part (d) of the theorem follow from the previous paragraph and [20, Theorem
3(iii) and Corollary 4]. Finally, P is a 3)(X) - 3)(X) bimodule which is finitely
generated on both sides. Thus (d) follows from [12, Corollary 3] combined with
the statement in (1.4(e)) that GK-dim 2(X) = 2.

2.6. In [5, Corollary 3.6] and [26, II, Corollaire 4] the following is proved. Let
Z be an analytic curve irreducible at a point z eZ. Denote by €ZiZ the ring of
germs of analytic functions at z, and by 9bz>z the ring of differential operators on
€z,z- Then 3)z>z is noetherian and generated by Gz,z and a finite number of
differential operators. The proofs in [5] and [26] are sufficiently computational to
allow one to compute generators for 2Z>Z. They are also able to show that gr 2Z>2

is a finitely generated CZ;2-algebra. The proof of (2.5) may also be applied to the
analytic case to give the results on S)Zz just mentioned. We will return to the
question of whether gr 2(X) is finitely generated in (3.9).

2.7. Consider the problem mentioned in (2.3), namely that for fc-algebras
AczB, the objects 2(B, A) as defined in (2.3) and 2A(B, A) defined in (1.2)
need not be the same. For example, take A = k[t2] and B = k[t]. It is easy to
check that B(B, A) = 0, whereas 2A(B, A)¥z0. However, the only occasions on
which we use 3)(B, A) are covered by the following lemma and so the two objects
coincide. Thus the notational confusion should cause no problems.

LEMMA. Let A, B be domains such that A czB czFract/1. Then 3>(B,A) =
2A(B,A). In particular, if S<zA is multiplicatively closed, then 3)(BS, As)~
AS®A®(B,A).

Proof Note that under the embedding A ®k A c B <2)k B, we have JA c JB in
the notation of (1.2). It follows that JA^J"B, and so 2)(B, A) c 2A(B, A). For the
reverse inclusion, note first that if K = Fractal, then K®A B = K, and since A is
a domain, 3)A(B, A) is a torsion-free left .4-module. Thus (13(d)) implies that

3A(B, A)c:K®A 2A(B, A) = Q)K(K, K) = 2)(K).

Thus, if De9)A(B,A) then Jn
KD = 0 for some n, whence Jn

BD = 0. Thus
D e@)(B), and so Q)A(B, A) c Q)(B, A). The final sentence of the lemma follows
by applying (1.3(d)) again.
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2.8. We understand that J. Muhasky [16] has also (and independently)
obtained Theorem 2.5, with similar techniques.

3. When is S)(X) simple, for X a curve?

3.1. Theorem 2.5 shows, for a curve X, that many of the properties of
also hold for 2(X). Since 2(X) is a simple ring by (1.4(c)) and 2(X) is
contained in the simple ring T = E n d ^ ) 2)(X, X), it is natural to ask whether
Q)(X) is simple. We answer this question completely in this section by showing
that 3){X) is simple if and only if JZ: X^>X is injective. In fact, rather more is
true, in that if n is injective then £fi(X) = T, and hence is Morita equivalent to
2(X). As an application we show that this same condition also determines when
gr @)(X) is a finitely generated fc-algebra (Theorem 3.12).

3.2. The first two results show that the simplicity of 2(X) can be rephrased in
terms of the action of 2)(X, X) on €{X). These elementary observations will
prove useful later, so we assume that the situation is as in (2.2).

LEMMA (Notation (2.2) and (2.3)). Suppose that 2(Y, X) * 0(Y) = €{X). Then
, X).

Proof. By (2.3), 2{X) <= T c 2(K). Let D e T, and f e O(X). Then fe
2)(Y, X) * 0(Y). Thus

D * f e D2(Y, X) *6(Y)^ 2(Y, X) * €{Y) c 0(X)

(notice that D * / i s well defined because D e 0){K)). Consequently D e ®{X), as
required.

3.3. PROPOSITION. Write P = 2(X, X). Consider the following statements:

(a) @)(X) is a simple ring;

(b) 2(X, X) * 0(X) = €{X);

(c) 2(X) = EndSd{x)P.
Then (a) =£> (b) >̂ (c). Furthermore, if X is a curve, then all three statements
are equivalent to

(d) 3)(X) and 3)(X) are Morita equivalent.

Proof. If P * €{X) * 0{X) then O(X)I(P * €{X)) is a non-zero left 2(X)-
module. Its annihilator in 3)(X) contains P, and so 3)(X) is not a simple ring.
Hence (a) implies (b). That (b) implies (c) is just Lemma 3.2.

For the rest of the proof let X be a curve. As remarked in the proof of
Theorem 2.5, 2(X) is Morita equivalent to T = E n d ^ ) P. Hence (c) implies (a),
because simplicity is a Morita invariant by [1, Corollary 21.12]. Finally, if (c)
holds then 9){X) and 9)(X) are Morita equivalent, so (c) implies (d). Conversely,
if (d) holds then 2(X) is simple becauseS2)(X) is simple. Thus (d) implies (a).

3.4. We now apply (3.3) to the case when X is a curve.
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THEOREM. Let X be a curve, and suppose that n: X-*X is injective. Then
is a simple ring, Morita equivalent to 3)(X).

REMARK. The hypothesis that n is injective is equivalent to saying that each
maximal ideal of €{X) is contained in a unique maximal ideal of 0(X).

Proof. By (3.3), it suffices to prove that 2{X, X) * 6(X) = €{X). The proof
will take place locally, as this allows us to write down some specific differential
operators. To avoid some notation, write A = 6{X) and B = €(X).

Let M be a maximal ideal of A, and Q the unique maximal ideal of B
containing M; thus M = QC\A. Write S = A\M. Then BS = BQ where Bs

(respectively BQ) is obtained by inverting 5 (respectively B\Q). Set m = QBQ. As
B is integrally closed of dimension 1, (BQ, m) is a regular local ring, and m is a
principal ideal; say, m = tBQ for some teBQ. By [10, Chapter II, Theorem 8.8]
the module of Kahler differentials QBQ is the free BQ -module generated by dt,
and Der BQ is the free BQ -module generated by a derivation 3 such that 3 * t = 1
(notation (1.6)). Think of d as d/dt.

Write 1 = AnnA(B/A). Thus IBQ^AS and as the ideals of BQ are just the
powers of m = tBQ, we have trBQ c As for some r e N. Define

For any n e N, D * tn = Xnt
n for some kn e k, and further, kn = 0 if and only if

H n ^ r - 1 . Since BQ = k + kt + ... + kt1"1 + xnr, this implies that D*BQ =
k + D * mr. For any n e N, and any b e BQ,

(td -j) * (tnb) = tn{td-j + n)*be t"BQ.

In particular, D * mr c mr, and hence D * BQ^k + mr ^As. In other words,

D e 2(BS, AS)=AS®A2)(B, A)

by (2.7). Hence there exists s e S with sD e 2(B, A) = 3)(X, X). In particular, as
D * 1 e k\{0}, it follows that s e (sD) * B. Consequently, Q)(X, X) * B is not
contained in M.

Finally, since M was an arbitrary maximal ideal of 6(X) and 3)(X, X) * 0(X)
is a left ^(A^-submodule of 6(X) (and hence an ideal), it follows that
2)(X, X) * O(X) = €{X), as required.

REMARKS. (1) As X is affine, the category ^(A^-Mod is equivalent to 2
the category of quasi-coherent left ^-modules. Thus when n\ X^>X is
injective, the categories S^-Mod and 2)jrMod are equivalent.

(2) Essentially the same proof as above may be used to show that for any
variety X (not necessarily a curve), if X is non-singular, and JZ: X-*X is
injective, and #SingX<°° (that is, X has only a finite number of singularities),
then 2(X) = E n d ^ 2(X, X). However, if d imZ> 1 then 2)(X, X) will not be
a projective S)(^)-module.

3.5. COROLLARY. Let X be a curve, and suppose that n: X^>X is injective.
Then 3)(X) is a hereditary ring (that is, gl.dim 9){X) = 1).
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Proof. By (1.4(e)), gl.dim Q){X) = 1, and the result follows because global
dimension is a Morita invariant.

3.6. In order to prove the converse of Theorem 3.4 we require the following
result which appears in [6, Theorem 1].

THEOREM. Let X be a curve, and x e X. Write QXx for the integral closure of
€Xx in its field of fractions. Then n is unramified at ^ - 1(JC) if and only if

d

COROLLARY. Let X be a curve and suppose that JT: X—>X is unramified at all
points. Then 9>(X) c 2)(X).

Proof. Just observe that 2(X) = f\eX3lXMx) and ®(X) = (\ex®x,x; then
apply the theorem.

3.7. It is an (almost) immediate corollary of (3.3) and (3.6) that if A' is a curve
and n\ X-+X is unramified at some point in n~\S>\ngX) then $)(X) cannot
be a simple ring. This observation can be extended to give the converse to
Theorem 3.4.

THEOREM. Let X be a curve and suppose that n: X^>X is not injective. Then
is not a simple ring, and consequently not Morita equivalent to

REMARK. Combined with Theorem 3.4 this proves the equivalence of Parts (a)
and (b) of Theorem B of the introduction.

Proof. As before, write A = 0(X) and B = 0(X). Since n is not injective there
exists a maximal ideal m of A and (at least) two distinct maximal ideals ml5 m2 of
B which contain m. As B is a Dedekind domain, m1tn2 = rrtx Pi m2. Thus
A c k +111^2 e B. Let Y be the curve with 6{Y) = k + m1m2. Then the
morphism x: X^> Y is unramified at all points. By Corollary 3.6, it follows that
2(Y) c 2)(X) (and these are distinct since 0(Y) * 0(X)). Hence 2(X, Y), being
a right ideal of @)(X) and a left ideal of 2>(Y), is a proper two-sided ideal of
9)(Y). Since ®{Y) is not simple, (3.3) shows that 1 $ 9){X, Y) * 0(X). However,
as 2(X, X) c ®{X, Y), it follows that 1 <£ @(X, X) * O(X). By (3.3), we conclude
that 3)(X) is not a simple ring.

3.8. An immediate question is whether 2(X) and 3>(X) being Morita
equivalent actually implies that they are isomorphic. The answer is 'No', but
there is some work involved. The easiest example to consider is the cusp y2 = x3.
Here X = A1 and if €{X) = k[t], then €{X) may be identified with k[t2, t3]. Thus
2(X) = k[t, d] (where d = d/dt), and one obtains

2)(X, X) = t22(X) + (td - 1)9>(X).

Since n: X^>X is injective, by (3.3) and (3.4), 2(X) = End3)(x)3)(X, X).
Fortunately, this ring has been computed explicitly in [19], and it is shown there
that 2(X) and 2(X) are not isomorphic (some changes in notation are required).
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More generally, it follows from [24] that 9){X) and 3)(X) are non-isomorphic
whenever X =£ X = A1.

Our interest in the questions in this paper was roused by a computation of Ian
Musson. He computed 3)(X) when X is the cusp y2 = x3, and observed that 3)(X)
was isomorphic to the endomorphism ring of the

hence establishing the Morita equivalence of 2(X) and 3)(X) for this specific
example. This was an extremely surprising result (to us), and this paper is a
consequence of our attempt to make this seem less of a surprise. We would like
to thank Musson for sharing his results with us. He was also able to compute
9)(X) for various other monomial curves X, and in each case found a right-ideal
of ^(A1) such that @>(X) was isomorphic to the endomorphism ring of that right
ideal. See [17].

3.9. As remarked earlier, 3)(X) is filtered by its subspaces 3)n(X) and the
associated graded algebra gi2{X) = 0 3)n(X)/2n~1(X) is a commutative do-
main. When X is a non-singular affine variety, then grS>(Ar) is a finitely
generated, noetherian fc-algebra (1.4(a)), but for general X it is an open problem
as to exactly when gr 2(X) has these properties. As an application of the earlier
results of this section, we solve this question completely for X a curve.

Some preliminary observations are required. As in (2.3) regard 3)(X) and
®{X) as subalgebras of 3)(K), where K = Fract G(X). The order of D e 3)(X) is
the same whether D is regarded as an element of 3)(X) or as an element of
3)(K). In particular,

gr 2(X) = © (®n(X) + 2n-\K)l®n-\K)) c gr 9)(K).

We will always use this isomorphism to identify grS)(X) and gr3)(X) with
subalgebras of gr 3)(K).

3.10. We will need to compare the lattices of right ideals of Q)(X) and
grS)(X). Let / (= / be distinct non-zero right ideals of 9)(X). As dim*.(///) = °°,
we have dimfc(gr//gr/) = <». Consequently, gr//gr / cannot be of finite length as
a gr ®(^)-module. This leads one to consider the following dimension. Let
M czN be distinct non-zero ideals of gr®(Z). Then the 1-length of N/M is
defined to be the largest integer n such that there exists a chain of ideals
M = Afo c= Af! c:... <zMn= N such that dim*. Mi/Mf^ = oo for each i. Since
gr 3)(X) is a domain of Krull dimension 2, the 1-length of N/M is always finite.
The obvious induction therefore proves

(3.10.1) if / c / are distinct, non-zero right ideals of 3){X) then

l-length(gr //gr /) ^ length(///).

In fact, as we show next, there is often equality in (3.10.1). Let m be a maximal
ideal of €{X). Because giQ){X) is isomorphic to the symmetric algebra over
6(X) of Der* 6(X), it follows that gr(mS>(Z)) = m gr 2)(X) is a prime ideal of
gr @)(X). Of course, gr(m2(X)) is not a maximal ideal, and this implies that

l-length(gr ®(X)/gi(
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Since xn3)(X) is a maximal right ideal of 3)(X) by (1.4(g)), the obvious induction
proves

(3.10.2) ifO*aeG(X)then

l-length(gr 2)(X)/gr(a2l(X))) = \ength(3)(X)/a@(X)).

Together (3.10.1) and (3.10.2) may be used to prove

LEMMA. Let J be a right ideal of 2(X) containing 0J=ae 6(X). Then

l-length(gr 2)(X)/grJ) = length^ (*)//).

Proof. By (3.10.1),

l-length(gr 2)(X)/grJ) ^ length(2d(X)/J)

and
l-length(gr//gr(a£i(l))) s* \ength(J/a2)(X)).

Because 1-length is additive on short exact sequences, combining this with
(3.10.2) gives the result.

3.11. We prove the rather surprising result that grS)(A") is isomorphic to a
subalgebra of gr 2)(X), although 2(X) is rarely a subalgebra of 2(X).

PROPOSITION. Let X be a curve. Then under the identification of (3.9),
®{X)®{)

Proof. Choose O^ae €{X) such that a€{X) c O(X). Then aeQ}{X, X) and
thus ®{X)a c 2)(X, X) c 2(X). Since a e 2)°(X), this implies that

gr 3>(X) e grC^^fl- 1 ) = gr D{X)a~\

Thus the subring R = gr 2(X) gr 2(X) of gr3)(K) is also contained in
(gT9)(X))a~\ But by (1.4_(e)), g r S ^ ) is a regular ring and hence integrally
closed. Since R 3gr 3)(X)^Ra, this forces R = gi9){X). In particular,

®{X)®{)

3.12. We can now determine precisely when 3)(X) is noetherian and/or finitely
generated.

THEOREM. Let X be a curve. Then the following are equivalent:

(a) gr 9){X) is a finitely generated k-algebra;

(b) giQ){X) is noetherian;

(c) n\ X-+X is infective.

REMARK. This proves the equivalence of Parts (a) and (d) of Theorem B in the
introduction.

Proof. Suppose first that iz is not injective. The idea here is to mimic the
well-known proof that k + sk[s, t] is not noetherian. By (2.3) we have

P = 2){X, X) c= 2(X) c T = End^*) P
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and by Theorem 3.7, 2){X)±T. Thus J = P3)(X) is a two-sided ideal of 3)(X)
which is a proper left ideal of T. Hence 3>(X) c lT(J) (notation (1.5)). However,
lT(J)/J is finite-dimensional over k, since T and 3)(X) are Morita equivalent (see
(1.4(d)) and (1.5)). Hence dimk3(X)/J «*>.

Under the identifications of (3.9), gr / c gr 0){X) c gr T c gr 3)(K) and gr/ is
an ideal of gr T. However, dim* T/J = <» since T is a simple ring (of infinite
dimension), and hence dim*(gr 77gr/) = <». On the other hand,
dim^gr 3)(X)/grJ)<<x>, so gr T cannot be a finitely generated gr ^(A^-module.
However, for any 0 =£a e gr/, we have that gr Tis isomorphic to the ideal a (gr T)
of gr3)(X). Thus a(gr T) is a non-finitely generated ideal of gi3)(X). Whence
gr 2{X) is not noetherian, and consequently not a finitely generated fc-algebra.

Now suppose that K\ X^>X'Y$> injective. As before write P = 2(X, X) and set

P* = {q e Q(K) \ qP c 2(X)} = HomQ(^(P, ®{X)).

Clearly PP* c End©^ P, and so by Theorem 3.4, P P * ^ ® ^ . Note that this
implies that (gr P)(gr P*) c gr S(Ar). Thus by (3.11) we obtain

(3.12.1) (gr P)(gr P*) c gr <2>(Z) c gr

The aim of the proof is to use (3.10) to show that

dim,gr®(^)/(grP)(grP*)<oo,

and then an appeal to Eakin's Theorem [14, § 35] completes the proof.
Choose 0 * a e O(X) such that aO(X) c O(X). Thus a2(X) c P and by Lemma

3.10,
l-length(gr 2(X)/gr P) = \ength{2)(X)/P).

Similarly, P*cS)(Z)a"1 and Lemma 3.10 may be applied to the left ideals
2(X)a c 2{X) to prove that

l-length(gr P*/gr 2(X)) = \ength(P*/3l(X)).

However, since 3)(X) is a hereditary domain, Homa(*) ( - , 3)(X)) provides an
order-reversing isomorphism between the lattice of submodules of 2(X)/P and
that of P*/®(X). Thus length(S)(^)/P) = length(P*/Si(X)). Combining these
three equalities gives

(3.12.2) l-length(gr ®(Z)/gr P) = l-length(gr P*/gr ®(X)) = m, say.

Now, observe that if / i c / 2 and / are non-zero ideals of gr2)(A^ such that
i) = °°, then dimk(JI2/JIi) = <» also. Thus, if

is a maximal chain for which dim*(/,-//,•_x) = °° for all /, then

gr P = (gr P)/o c ... c (gr P)Im = (gr P)(gr P*)

is also a chain in which each factor is infinite-dimensional. By (3.12.2) this is
only possible if dim*(gr^(Z)/(grP)(grP*))<oo. Thus by (3.12.1),
dimAr(gr^(Z)/grS(Ar))<oo. Finally, by (1.4(a)), gr^(Z) is a finitely generated
fc-algebra, and hence Eakin's Theorem implies that gr 2(X) is also a finitely
generated fc-algebra (and hence noetherian).
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REMARKS. (1) It is shown in [5] and [26] that if R is the algebra of germs of
differential operators (with analytic coefficients) at an irreducible point of an
analytic curve, then giR is noetherian (and generated by the analytic functions
together with a finite number of differential operators). This corresponds to the
case of n being injective in the above theorem. The proofs in [5] and [26] are
much more computational than the above.

(2) The dichotomy displayed in the above theorem can be well illustrated by
two easy examples. In both examples X = A1. We write 6(X) = k[t] and
d = d/dt.

First take X to be the cusp v2 = *3. Thus 6(X) = k[t2, t3] and generators for
3)(X) are given in [5] (or [22] combined with (3.8)). They are

t2, t\ td, t2d, d2-2rld, td2-d, d3-3r1d2 + 3r2d

(the final operator is superfluous for generating 3)(X) but is needed to write down
generators for gr 3)(X)). Thus, viewing gr 9){X) e gr 9){X) = k[t, s], we have

gr 2(X) = k[t2, t\ ts, t2s, s2, ts2, s3] = k + (t, s)2.

In contrast, if X is the plane nodal curve y2 = x2(x +1) then

€{X) = k + (t2- \)k[i),

under the identification x = t2 — 1, v = t{t2 — 1). It follows from Proposition 4.4
below, that 2)(X) = k + (t2- 1)2)(X). Consequently,

3.13. So far, in §§ 2 and 3 we have given global information about 9)x, but it is
also possible to obtain local information about the stalks 2X,X. This information
(all of which is implicit, if not explicit in the foregoing proofs) is summarised in
the following.

THEOREM. Let X be a curve and x e X. Then

(a) 2X,X is (right and left) noetherian;

(b) 2Xx is generated by 6XiX and a finite number of differential operators;

(c) 2X>x is simple if and only if #JZ~1(X) = 1;

(d) if #3i~l(x) = 1, then <3>x>x is Morita equivalent to *3)Xyn-\X);

(e) gr 2Xx is noetherian (equivalently, gr <3)Xx is a finitely generated OXx-

algebra) if and only if #3i~l{x) = \.

3.14. Let I b e a curve, write A = €(X) and B = 6(X). As usual, set
P = 9){X, X) and P* = {q e Q \ qP cz 2)(X)}. Define

, X) = {De 2(K) | D * 0(X) c=

When 2(X) and 2(X) are Morita equivalent, the equivalence of categories is
implemented by the functor

P®3>{x)~ - 2(X)-Mod^ 2(X)-Mo6.

The inverse functor is

P* ® s W ~ : ®(*)-Mod-> ®(A>Mod,

and the next result gives a concrete description of the 2(X) - 3)(X) bimodule P*.
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PROPOSITION. Let X be a curve and suppose that 3)(X) and 3)(X) are Morita
equivalent. Then

Proof. Note that P* c 2(K) because P contains the conductor of A in B. If
q e 2(K), then qeP* if and only if q3(X, X) * O(X) <= 0(X). Because 2(X)
and 2(X) are Morita equivalent, Proposition 3.3 ensures that this condition is
equivalent to q * 0(X) c 0(X). Hence P* = 2(X, X).

The second part of the proposition follows from the embedding 2bA(A, B)^>
K®A3>A(A, B) = 3)(K). It is immediately clear that the image is precisely
2)(X, X).

4. Curves and finite-dimensional algebras

4.1. Throughout this section X will denote a curve. Theorem 3.4 may be
considered as saying that, when n is injective then the module and ideal structure
of ®(Ar) is completely determined by that of Sd(X). One would therefore like to
understand the structure of 2(X) and its modules when JZ is not injective (and
hence when 9b(X) is not a simple ring). The aim of this section is to make
progress in this direction.

Obvious test questions are to determine the two-sided ideal structure of 9b {X),
to determine its global homological dimension, and to describe 9b {X) in terms of
9b{Y) for a 'better' curve Y. Partial answers to these questions are given. For the
final question we have in mind a curve Y for which there exist morphisms
~ tit w

X — * Y —> X with \\) unramified at all points, cp injective, and cpip = x. The
idea is to compare 0){X) with 2(Y), and 2>(Y) with 3)(X).

4.2. After Theorem 2.5, the two-sided ideal structure of 3)(X) cannot be too
complicated as the next result shows. Throughout this section we set P =
9(X,X), T = Ended{jt)P, J(X) = Ann<HX)(G(X)/P*6(X)), and H(X) =
3f(X)/J(X).

PROPOSITION. There is a unique minimal, non-zero two-sided ideal in

namely J(X). In particular, J(X)2 = J(X) and J(X) = P2)(X). The quotient
H(X) = 2)(X)/J(X) is a finite-dimensional k-algebra. Furthermore, J(X) is
projective as a right {and as a left) 2(X)-module.

Proof. Write / = J(X). The following inclusions are clear:

77 * O(X) c T * (P * O(X)) =TP* 0(X) = P * €{X) c O(X).

Thus TJ c 9){X) and hence TJ c / . In particular, / is a left ideal of T. If J' is any
non-zero two-sided ideal of 3)(X), then J' contains JJ'J = (TJ)J'{TJ) = J as T is a
simple ring. To see that J¥=0 just observe that O ^ P c / . Since P^J(X) and
J(X) is the minimal non-zero ideal of 2(X), certainly J(X) = P2(X). Clearly,
H(X) is finite-dimensional since 6(X)/P * 6{X) is a finite-dimensional faithful
//(^-module.

To see that J(X) is projective as claimed consider

Q = {qe@(X)\ Tqcz®(X)}.
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By the previous paragraph, Q^J. It is clear that Q is a two-sided ideal of 9){X)
and a left ideal of T. Using the fact that T is a simple ring we see that the
following inclusions hold: / 3 QJQ = (TQ)J(TQ) = Q. Hence / = Q. As T is a
simple ring, JT = T. By the Dual Basis Lemma, it follows that both J^x) a nd
2 , ^ 7 are projective. The Morita equivalence of T and 2(X) ensures that
gl.dim T = 1, and hence jJ is a projective. Thus ^(x)^ is projective.

REMARKS. (1) Thus 9)(X) has only finitely many prime ideals, and the
descending chain condition on ideals. There does exist an example where 2(X)
has infinitely many ideals (see § 5).

(2) A natural question is to determine the precise structure of H(X) and to
determine how that structure depends on the nature of the singularities of X. For
example, (3.4) and (3.7) tell us that H(X) = 0 if and only if JZ: X^>X is injective.
Also in (4.13) we show that the structure of H(X) is a local question. More
precisely, H{X) = ® Hx, a direct sum of algebras Hx, one for each x e Sing X,
and each Hx depends only on the local ring 6X,X.

(3) It is implicit in the Proposition that 3)(X) is simple if and only if 6(X) is a
simple 2(^-module.

4.3. The following lemma is required in the proof of Proposition 4.4. It may be
well known but does not appear in the literature.

LEMMA. Let Z be a non-singular variety. Let A denote any localisation of O(Z),
and let I and J be ideals of A. Suppose that

Then Horn,*{All, A/J) * 0.

Proof. The hypothesis ensures that there exists D e 9){A) such that D $J3)(A)
and DI^J2(A). Hence (DI) * A<=J2(A) * A=J. But DI*A = D*I, and
hence D * / c / . Thus D: A^>A induces a differential operator E: A/I—>A/J.
By (1.3(e)), 9(A, J)=J2(A) and s o D M c / . Hence 0*E e ®(A/I, A/J), and
it follows from (1.3(a)) that HomA(A/I,

COROLLARY. Let A be as in the Lemma. Let xn^ and m2 be distinct maximal
ideals of A. Then

HomSd(A)(2(A)/m12(A), 2)(A)/m22)(A)) = 0.

4.4. PROPOSITION. Suppose that the conductor, I, of €{X) in 6(X) is a product
of (at least two) distinct maximal ideals of €(X), each occurring with multiplicity
one. Then

(a) J(X) = 2(X, X) = I2(X),
(b)
(c)

Proof Write A = €{X) and B = O(X). First we show that JZ: X^>X is
unramified at all points. It is enough to do it for points in JiT^Sing X). For such a
point the corresponding maximal ideal m in B contains /. Thus m occurs in the
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expression of / as a product of maximal ideals of B, and by hypothesis the power
of m occurring is 1. Hence mBm = IBm and n is unramified at this point.

Since x is unramified at all points, 2(X) c 2(X) by Corollary 3.6. Thus
P = 2(X, X) c 2(X) c 2(X), and in particular P is a two-sided ideal of 2(X),
and hence equal to J(X) by (4.2). Notice that / c P. If

(a product of distinct maximal ideals of B), then

= 0

Furthermore, the summands 3)(X)/mj3)(X) are mutually non-isomorphic simple
modules by (1.4(g)) and Corollary 4.3. Consequently, any right ideal of 3)(X)
containing IB(X) (in particular, P) must be of the form (FL wa)2(X), where
the product is taken over some subset {or} c {1,. . . ,«}. However,

which is not contained in 6(X) unless {a} = { 1 , . . . , n). Hence P = I3)(X). This
proves (a).

Since / is an ideal of 6(X), we have 6(X) c lg^x)(P) (notation (1.5)). As
2(X)/P is a direct sum of n = dim* 6(X)/I mutually non-isomorphic simple
2)(Z)-modules, one has Ends,(j^)(S)(Z)/P) = /c x. . . x fc (n copies). Hence
dimifc(I(P)/P) = n. However, 5 + I2)(X)/I2(X) = BIB D I2(X) = B/I is also of
dimension n. Thus I(P) = O(X) + I2(X).

Finally, 2)(X)^1(P) = 6(X) +I2)(X). Suppose that D = / + Z) 'eS(Z) for
some fe€(X), D'eI2(X). Then Z) * 1 = / + D' * 1 e €(X). In particular,
feG(X). Thus S(^0ce?(J0 + /®(X). The reverse inclusion is trivial, and (b)
follows.

To obtain (c), note that

H (X) = @(X)/I3)(X) = €{X)I€{X) n I2(X) = O(X)/I.

4.5. COROLLARY. Suppose that the conductor, I, of 6(X) in 6(X) is a product
of (at least two) distinct maximal ideals of €(X) each occurring with multiplicity
one. Then gl.dim 2(X) = 2.

Proof. By hypothesis, 6(X)/I is isomorphic to a product of copies of k. By the
previous proposition H(X) = 6(X)/I, and hence H(X) is semi-simple artinian.
Hence by [8, Theorem 2.2], gl.dim 2)(X) =s2. To show that gl.dim 2(X) * 1, we
show that 2)(X) has a non-projective right ideal.

Set M = G(X) + I2)(X) = \(P) by the proof in (4.4). Certainly M is a right
2(A^-module properly containing 3)(X). For any a el, aM<= 2{X), and so M is
isomorphic to a right ideal of @)(X). It therefore suffices to show that M is not
projective. Write

M* = {xe 2(X) | xM c 2(X)} = Hom2{x)(M,

By the Dual Basis Lemma [1, p. 203] it is enough to show that 1 £ MM*. If
yeM* then certainly yO(X)^3)(X), and thus y€(X) * O(X) c O(X). But
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0{X) * G(X) = 0(X); hence y * 0(X) c (9(X) and 3; e 2(X, X) = /@(Jf). So

MM* c M/$(l) = I3(X) # 3(JT).

REMARK. In fact one has M* = I2(X)=J(X), and by (4.2), M* is a projective
left (and right) ©(X)-module.

4.6. Given a curve X with normalization ^ , we explain how to obtain a curve
Y and morphisms X -^-> Y - ^ Z with <p\p = n, such that (p is injective and xp
is unramified at all points. We follow the construction of curves outlined in [21,
Chapitre IV, § 1]. From the description of 6{Y) which will be obtained it will be
possible to apply (4.4), (4.5) to obtain a good description of 2)(Y), while the
proof of (3.4) may be imitated to describe 2(X) in terms of 2>(Y).

For each xeX, let lx be the ideal of functions in 6(X) which vanish on n~\x).
Then k + Ix consists of those regular functions on X which are constant on
JZ~1(X). Set R = n {k + Ix I xeX}. Since a regular function on X, when viewed
as a function on X, is constant on each fibre n~x(x), one has €{X)ci?c 6(X).
Thus R is the co-ordinate ring of some curve, Y say, with morphisms

X -^-» Y —*-* ^ satisfying <pi/> = x. Let z, z' e^T belong to the same fibre
Jt'^x), with corresponding maximal ideals m and m'. As Ix c m, one has

Ix n R c m n /? and m n /? c m n (fc + 4) = Ix.

Consequently, m n R = Ix n R = m' D /?. In particular, i/;(z) = t//(z'). This ensures
that <p is injective. If x e X is a non-singular point then k + Ix = C(X), so R may
be expressed as a finite intersection, (?(y) = H {̂  + 4 | x e Sing .Y}. Considering
R as the regular functions on X which are constant on each fibre JT:"1^), the
conductor of 6{Y) will be the largest ideal of 6{X) which is zero on JIT1 (Sing X).
This ideal is precisely

D {/, I x e Sing*} = n {mz I z e jr-\SingX)}.

In particular, the conductor is a product of distinct maximal ideals, each occurring
with multiplicity one. Hence, by the first paragraph of the proof of (4.4), xp is
unramified.

The description of Y is completed by describing the local rings 6Y,r Let v e Y,
and write x = cp{y). By definition €Y,y consists of those rational functions on Y
which are regular in a neighbourhood of y in Y. But 6{Y) consists of those
functions regular on X and constant on each fibre n~l{w>) for w eX. Hence 6Y,y
consists of those rational functions on X which are regular on a neighbourhood of
Ji~l{x) = ty~l{y), and constant on the fibre J T " 1 ^ ) (the condition on constancy
on the other fibres can be ignored by choosing a sufficiently small neighbour-
hood). Hence 6Y,y = k + ty where r̂  is the Jacobson radical of the semi-local ring
Qx,n-\x)> corresponding to n~l{x) = f ^ c l .

We summarise the above in the following proposition.

PROPOSITION. Let Y be as above. Then n\ X'—> X factorises through

X JfU Y - ^ X,
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with %p unramified at all points and q> injective. For each y eY, 6Y,y = k + xy where
vy is the radical of the semi-local ring Ox,n>-\yy Furthermore, the conductor of
6(X) in €{Y) is a product of distinct maximal ideals of 6(Y).

4.7. The next goal is to describe £Z)(X) in terms of $>(Y). We will prove
(eventually) that 2)(Y, X) * 0(Y) = 0(X) and then apply Lemma 3.2. This
equality will be established locally and the next two lemmas are required to
obtain the local equality.

LEMMA. Let B be a regular k-algebra of finite type with dim 5 = 1. Let r^2,
and let xn1,..., tnr be distinct maximal ideals of B. Write I = mV ... mjr (where each
ij ̂  1), C = k + I, andA = k + Im^ Then 9b(C, A) * C = A.

Proof For each j , choose tjem; such that m; = mj + ktj. Write x = t1t2... tr,
and y = t\l... t';. As B is regular, dim*(///mi) = 1, and so I = Imx + ky\ thus
C = A + ky.

As B is regular, there exists deDeikB such that d*ti$mv For any
derivation 6, and any maximal ideal m, (5*m 2cm. Hence the product rule
implies that (xd) * (/ntj) c /m a . Also (t2 ... trd) * f 1 eB\m 1 and thus

(xd) *y

Thus (xd) * y = ay + h for some a e k\{0} and h e /tru. As (xd) * 1 = 0, these
observations imply that (a-xd) * C c A , and (a - xd) * 1 = a =£ 0. Thus l e
9)(C, A) * C, and A = 2(C, A) * C.

4.8. LEMMA. Let B be a regular k-algebra of finite type with dim 5 = 1. Let
r Ss 2, and letml} ..., mrbe distinct maximal ideals of B. Set C = k + mx ...mr and
A = k + mV ... mjr (where each ij ̂  1). Then 3)(C, A) * C = A.

Proof. Use the previous lemma and induction.

4.9. COROLLARY. Let B be a regular k-algebra of finite type with dim 5 = 1. Let
r 5s2, and let xn1}..., mr be distinct maximal ideals of B. Set C = k + tru ... mr,
and let A^C be any subalgebra such that (Tnx... mr)" ^A for n sufficiently large.
Then2(C,A)*C = A.

Proof. Just observe that if A' = k + m"... m" then the previous lemma gives
2)(C, A') * C = A'. In particular, 1 e ®(C, A')*C^ 2)(C, A) * C. Therefore the
result follows.

4.10. PROPOSITION. Let X and Y be as in (4.6). Then 2(Y, X) * O(Y) = O(X).

Proof Write Q = 2(Y, X). Since Q * €(Y) is an <^Q-submodule of O(X) it is
enough to prove the result locally. Pick y eY and put x = cp(y). Since q> is
injective OY,y = OXjX 0 C W O(Y). Thus

Q =

where the first equality comes from (2.7).
By Proposition 4.6, 6Y,y = k + m1... xnr where ml5 ...,m r are the maximal

ideals of the semi-local ring OXiJl-iM = Gx,y-\yy Applying Corollary 4.9 with
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C = 6Y,y and A = €XtX shows that 9)(CY,y, €XtX) * 0Y,y = €XtX. Thus the local
equality of 3)(Y, X) * €{Y) and 6{X) is established, and the result follows.

4.11. Combining the earlier results of this section gives the following theorem.
The reader is reminded that a right ideal / of a ring R is said to be generative if
RI = R. Clearly such a right ideal is a generator in Mod-i?.

i// q)
THEOREM. Let X and Y be curves with morphisms X • Y • X such

that q>\j> = JT, ip is unramified at all points, and q> is injective. Assume that JT is not

injective. Then

(a) gl.dim 9(Y) = 2;

(b) H(Y) = k X ... xk where there is one copy of k for each point in Sing Y;

(c) %(X) = End2(y) 2>(Y,X);

(d) 3)(Y, X) is a generative right ideal of 2(Y), and a projective left ideal of

REMARK. Given Part (d), it is natural to ask whether 2(Y, X) is a projective
2)(y)-module, as this would imply that 3)(X) and 2(Y) are Morita equivalent.
Unfortunately, this is not so, as we show by an example in (5.8). Thus the ideal
structure of 3>(X) may be more complicated than that of 3)(Y).

Proof Parts (a) and (b) follow from (4.4) and (4.5) given the description of Y
in (4.6). Part (c) follows from (4.10) and (3.2). To see that Q = 3>(Y, X) is
generative, it is enough to show that it is not contained in any proper two-sided
ideal of 2(Y). Suppose to the contrary that M is a maximal (two-sided) ideal of
9(Y) containing Q. By (4.2) and (4.4) such an M is of the form 3)(X, Y) + m for
some maximal ideal m of €(Y). But now 3)(Y, X) * 6(Y)^M * 6(Y)cm.
This contradicts Proposition 4.10, and proves that 9)(Y, X) is generative. Finally,
since Q2(Y) c Q c 2(X), certainly 2>(Y) c Q* = Hom s w (G , ®(X)). Thus
l e 3){Y)Q c Q*Q and the Dual Basis Lemma implies that Q is a projective
left

4.12. COROLLARY. Let X be a curve. Then gl.dimAr=l if and only if JT: X-+X
is injective.

Proof Suppose that n is not-injective and take Y as in (4.6). Write
Q = 2(Y, X) and R = End3(J0 Q- Then R 2 Q(Y). But, by (4.11(d)), 2(Y)R =
®(Y)QR = 2(Y)Q = 3>(Y). Thus R = 2>(Y). Thus, if gl.dim 2(X) = 1 then by
[1, Ex. 22.17, p. 269], gl.dim 3f(Y) = 1 also. This contradicts Theorem 4.11(a).
The converse is just Corollary 3.5.

REMARK. This completes the proof of Theorem B of the Introduction.

4.13. To obtain a better description of 2(X) it is necessary to be able to
compute H(X). This is a local problem as the next result shows.

THEOREM. Let X be a curve and x e X. Then 3)x,x has a unique minimal

non-zero ideal, Jx say, which satisfies

(a) Jx = OXtX ®0(x) J(X) = 2X,XJ(X);

(b) Jx = Ann2xX(OXIJPX * Ox>Jt-x{x)) where Gx>n-x{x) is the semi-local ring cor-
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responding to n~x{x) c.X, and

*-*), ®x,x) = ®x,x ®G(x) 9>(X, X);

(c) HX:=3)XJJX = ®x,x ®c(x) H(X) is a finite-dimensional k-algebra;

(d) Hx = 0if and only if Un~\x) = 1;

(f) H(X) = (B{HX\ xe Sing X).

Proof. To start, define Jx as in (b). The same proof as in (4.2) then ensures that
Jx is the unique minimal non-zero ideal of 3)Xx, and that 3)XtJJx is finite-
dimensional. Because Jx n 3)(X) is a non-zero ideal of 3)(X), it follows that
J(X)^JX. Thus ®x,xJ(X) = Ox>x®Gix)J(X) i s a two-sided ideal of 2XtX

contained in Jx and hence equal to Jx. This proves (a), and also gives the
isomorphism in (c). The statement of (d) is just a local version of Theorem 3.4
(and, in fact, is part of the proof of that result). Since Jx = 6XtX ®c(X)J{X), Part
(e) is an immediate consequence of (d). It remains to prove (f). For any distinct
x,y e SingX, then m j c / ^ n 3)(X) for some integer n, and similarly for y. Thus
Jxn3>(X)+Jyn2(X) = 3)(X), and the Chinese Remainder Theorem implies
that

2)(X)/J(X) = © {2(X)/JX D 2(X) | x e SingX).

However, m" ̂ Jx D 2(X) implies that

3>(X)/JX D 3>(X) = 9(X) + / , / / , = €XiX ® o{x) (®(X) + JJJX) = 2XJJX = Hx.

REMARK. This result was prompted by A. Schofield asking whether (f) was
true. We would like to thank him for his interest.

4.14. For a variety X, there is a natural decomposition S)(X) = O(X) + Lx

where Lx is defined to be the left ideal which is the annihilator of 1 e 6(X); that
is Lx = {D e 3)(X) \ D * / = 0}. In [2] the question is raised as to whether for
different varieties X and X' one can have Lx = Lx-. The question can be thought
of as asking whether distinct varieties have rings of differential operators that are
different in more than just the obvious way (namely that the multiplication
operators are different). An example is given in [2] showing that one can have
Lx = Lx, for non-isomorphic X and X'. The example is based on the Bernstein-
Gelfand-Gelfand example [3] and the varieties X and X' are of dimension 2.
Here we show that even for non-isomorphic curves X and X' one can have
Lx = Lx>.

EXAMPLE. Set B = k[t] = ^(A1), and set x = t(t- l)(t - 2)(t - 3). Define curves
X and X', both of which have normalisation A1, by 6(X) = k + xB, and
C(X') = k + kt(t - 3) + xB. Then

3}(X) = 0\X)^x2(A1)d and 2{X') = €{X') ®x2)(Al)d,

where d = d/dt. In particular, Lx = Lx-.

Proof. Note that (t{t - 3))2 e k + kt(t - 3) + xB, so 6(X') really is a ring. In
both cases the conductor in B is xB which is a product of distinct maximal ideals
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of B. Hence by Proposition 4.4(b),

3>(X) = 0(X) + x2(Al) = 0(X) ©

and similarly

4.15. Let X be a non-singular curve, and / a non-zero ideal of 6(X). In general
6(X)/I is not a direct sum of simple 6(X)-modu\cs. However, as we show below,
2(X)/I2(X) = (0(X)/I)^OW3)(X) is always a direct sum of simple 3)(X)-
modules. An amusing proof can be given by introducing a singular curve into the
problem, and using the results in § 3.

PROPOSITION. Let X be a non-singular curve, and I a non-zero ideal of 6(X).
Suppose that I = m[l... mjr where the my are distinct maximal ideals of €{X). Then
3)(X)/I2(X) = (Bj=\Mj where, for each j , Mj is a direct sum of i, copies of
the simple 3)(X)-module 2(X)/mj2>(X). Furthermore, ifj^lthen

Homsw(M^ Mi) = 0.

Proof. The crucial step in the proof is to show that if m is a maximal ideal of

0(X), then

2(X)/m22(X) =

We begin by proving this. Define A = k + m2 and let X' be the curve with
6(X') = A. The normalisation of X' is X and the natural projection JI: X-* X' is
injective. Observe that m22(X)^2(X, X')^2(X). By (3.3) and (3.4),
®(X,X')*0(X) = G(X'), whence 3){X, X') cannot equal either m23){X) or
m®{X). Hence the module 3)(X)/m23)(X) which is of length 2 by (1.4(g)) is not
uniserial. It therefore splits as required.

The result quickly follows. First write 6(X)/I as a direct sum of its primary
components and reduce to the case where / = m". Because 2(X)/m23)(X) splits,
by induction, 2(X)/mn2(X) splits as a direct sum of copies of 9)(X)/rn3)(X).
Finally the fact that H o m 3 W (Af;, A/,) = 0 for j =£ / follows from (4.3).

REMARK. It is certainly possible to give proofs of this result without introducing
the singular curve X'. One such, shown to us by R. B. Warfield (unpublished),
rests on the fact that 3)(X)/m3)(X) is isomorphic, as an (^(A^-module, to the
injective hull of 6(X)/m. The Proposition is used in (5.6).

5. Examples

5.1. The results so far are not sufficient to give a precise description of the
ideal structure of 3)(X) when X is an arbitrary curve. The examples in this section
illustrate various features of the structure of 3){X). For example, we show that
&(X) may have infinitely many ideals.

We leave as open questions (i) whether 2(X) may have infinite, or arbitrarily
large finite global homological dimension, and (ii) what restrictions are there on
the structure of H(X)—can any finite-dimensional algebra occur?
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5.2. We begin with a fairly general situation. Let X be a singular curve with a
unique singularity, and assume that n\ X-^Xxs, unramified. Write A = 6(X) and
B = 6{X). Let m be the maximal ideal of 6(X) corresponding to the singular
point, and let {mA | AeA} be the distinct maximal ideals of B containing m.
Then (i) mB = FU mA (as n is unramified), and (ii) the conductor / = kxmA(BjA)
is of the form / = IL m£ with each ik 3

s 1 (as X has a unique singular point).

5.3. LEMMA (Notation (5.2)). ®{B,A) = I9){B).

Proof. The argument is by induction on the ik. If all *A = 1, then by (4.4) the
lemma holds. Suppose for some v e A that iv > 1. Define A' = A + FL mJ£ where
jx = h for A=£v and jv = iv-l. Then A^A'c.B. Applying the induction
hypothesis to A' = €{X') with / ' = AnnA.(B/A'), we have 2)(B, A') = I'®{B).

Now I2(B)c2(B, A)^®(B, A') = I'2(B). However, m / ' c / and m is a
product of distinct maximal ideals of B. Thus the argument used in the proof of
(4.4) shows that 2)(B, A) must be of the form I"2(B) for some ideal /" of B
satisfying / c / " c / \ But I"2(B)*B = I" which forces /" = /. Hence the result
follows.

5.4. LEMMA. Let X be a curve with n: X—> X unramified at all points. Suppose
there exists an ideal I of 0(X) such that 3){X, X) = IQ){X). Then the unique
minimal ideal of 2(X) is J(X) = I9)(X) = 2(G(X), I).

Proof. By (3.6), 3)(X)Q2(X), and hence 2)(X, X) becomes an ideal of
2(X). Thus, by (4.2), J{X) = 9}{X, X). However, by hypothesis,

®(X,X)*G(X) = I,

and the description of J(X) in (4.2) gives

J(X) = {D e 2)(X) | D * €{X) c /} = 2(0(X), I).

But I3)(X) = 2)(6(X),I)^3)(0(X),I) where the first equality comes from
(1.3(e)). The lemma follows.

5.5. The problem of describing the two-sided ideal structure of H(X) for X as
in (5.2) is thus reduced to describing the structure of H(X) = 2(X)/J(X) =
2(X)/I2(X). Note that O(X)/I is a faithful //(AT)-module, so H(X) embeds in
Endk(€(X)/I).

As an easy application of the foregoing consider the following example.
Suppose that B = k[t], let x e B be of degree at least 2, and suppose that x is a
product of distinct linear factors (that is, each root of x occurs with multiplicity 1).
Write A = k + kx + x2B, set 0(X) = A and note that A satisfies the hypothesis
of (5.2). Thus x2B = 3(B, A)=J{X) by (5.3) and (5.4). Set d = d/dt e 2{B) and
set x' = dx/dt. As x has distinct roots, x' becomes a unit in B/xB. Choose f e B
such that/*' - 1 exB. Similarly, xx" — (x')2 becomes a unit in B/xB, and hence in
B/x2B. Choose g e B such that g(xx" - (x')2) - 1 e x2B. An elementary computa-
tion shows that 1, x, xfd, h(xd2 — x'd) e 3)(A), and by a degree argument their
images are linearly independent in 3)(A)/x22(B). One sees that dimfc H(X) ^ 4.



DIFFERENTIAL OPERATORS ON AN AFFINE CURVE 253

But as dim* 6(X)/x2B = 2, (5.4) implies that

H(X) c End* O(X)/I = M2(k),

the ring of 2 x 2 matrices over k. Thus H(X) = M2(k).

REMARK. An amusing consequence of the above example is that, for the ideal
m = kx + x2B, one can distinguish elements of m/m2 by their properties with
respect to differential operators. To see this, observe that {x, x2t,..., x2tn~1} give
a basis for m/m2, where n = deg(jc). As the 2)(>l)-module A has a unique
non-zero submodule x2B (this follows from the fact that x2Q)(B) is the unique
proper ideal of 2(A)), there exists D e 2(A) such that D * x = 1. In contrast, for
a\\Ee2(A), E*x2tex2B.

5.6. We can now construct our main example to show that 3)(X) may have
infinitely many ideals.

PROPOSITION. There exists a curve X such that

k 0'

k2

In particular, for each one-dimensional subspace V of k2, the set I )
is an ideal of H{X). W O /

Proof (Notation (5.2)). Take B = k[t], and x e B a product of three (or more)
distinct linear factors (that is, each root occurs with multiplicity one). Write
A = k + kx + kxt + x2B. Once again J(X) = x22(B), where 6(X) = A. Choose
f eB such that fx' — lexB. An elementary computation shows that
l,x, xt, xfd 6 3)(A), and their images in 2(A)/x22i(B) are linearly independent.
To show that these elements span 3)(A)/x22(B) seems to require rather
unpleasant calculations, and we will only outline the argument leaving the details
to the reader.

Observe that as n\ X-+X is unramified at all points, 2(A) c *3){B). By (5.3)
we have 2)(B, A)=x22(B), and hence in the notation of (1.5), £d(A)^
l(x22(B)). One now shows that

l(x23)(B)) = B + Bxd + B(xd2 -x'd)+ x22(B).

To see this, check that the right-hand side really does belong to the idealiser, and
then compare the dimension of both sides modulo x2@)(B); as x is a product of
distinct linear factors, (4.15) shows that dim* l(x23)(B))/x22(B) = 4degx, and it
is straightforward to check that the same dimension occurs on the right-hand side.

It is obvious that Der* A c Bxd, and to compute Der* A precisely note that if
6;t<9eDer*v4, then evaluation at x, xteA gives bxx', bxx'teA. This can only
occur if bekf + Bx (where / is as above). Hence 21(A)=A + kxfd + Bx2d.
Finally, we need to show that

2)2(A) cA + kxfd + Bx2d + Bx2d2.

To see this, note that if D = b(xd2 -x'd) + cxd e 3)(A) for some b,ceB, then
certainly D *A^k+xB, whence bexB and so bxd2 ex2 3) (B)^ 2 (A). Thus
D e Bx2d2 + Sd^A). Putting all these observations together shows that H(X) is
spanned by the images of 1, x, xt, xfd.
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To give a ring-theoretic description of H(X), consider the action of H(X) on
the faithful H(X)-modu\e A/x2B. The images of 1, x, xt give a basis for A/x2B.
Describing H(X) in terms of the usual matrix units with respect to this basis gives
x-^e2i, xt^>e31, xfd—>e22 + e33. Thus

H(X) =

and this ring is isomorphic to v f 2
k 0

A:
2
 A:

REMARK. Note that gl.dim H(X) = 1. It can be shown that 2 =s gl.dim 3)(X) ^ 3.

5.7. In all the examples considered so far it should be noticed that if
®(X, X) * 0(X) * 0(X) then 3>(X, X) * 0(X) is actually equal to the conductor
of 0(X) in 6(X). This need not be the case, as the following illustrates.

EXAMPLE. Set B = k[t] = ^(A1). Define X to be the curve given by

0(X) = k + kt\t - 1) + t\t -

Write A = €{X). The conductor of O(X) in O(X) = (^(A1) is equal to t\t - 1)B.
Let m = kt\t - 1) + t\t - \)B. Then 2(X, X) * 0(X) = m.

Proof. Since m is contained in two distinct maximal ideals of B, namely tB and
(t — 1)B, the normalisation map n: X—>X is not injective. By (3.7) and (3.3) it
follows that ®{X, X) * €{X) ± 6(X). _

Consider D = t\t - \){td - 1) e 2(X). An easy computation shows that D e
2)(X,X) and D * (-l) = t2(t-l)e3(X, X)* 6(X). But also t\t-l)e
2)(X, X). Thus m c S)(X, X) * O(X). Hence one has equality.

REMARKS. (1) It is easy to show that 2{X, X) = D2(X) + t\t- 1)2(X) for
this example.

(2) Since 6(X)/3)(X, X) * 0(X) is a faithful simple //(^-module, one obtains
H(X) = k for this example.

(3) As the normalisation n: X^> X is ramified at the origin, 3)(X) £ 3)(X) by
(3.6). Combined with (2) this also implies that J{X)±Q){X, X). An operator in
9D{X) but not in 2(X) is r\t - l)(td - l)(td - 2){td - 4)3.

5.8. Consider the situation of Theorem 4.11 and the remark following it.
ib w

Factorise the normalisation map X > Y > X with V unramified at all
points, and q> injective. The following example illustrates that 2(X) and 2{Y)
need not be Morita equivalent.

S e t B = k[t], O(Y) = k + x B , G(X) = k + kx + kxt + x 2 B w h e r e x e B h a s d i s -
tinct roots and degx 2*3. By (4.11), H(Y) = k, and by (5.6),

-
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Since the lattices of two-sided ideals in 3)(X) and 3)(Y) are different, 3)(X) and
2(Y) cannot be Morita equivalent.

6. Projective curves

6.1. Let C be a projective curve with normalisation C, and denote by
n: C-> C the natural projection. Let 3)C-Mo</ denote the category of sheaves of
quasi-coherent 2)c-modules, similarly for 3}Q-MO^.

THEOREM. Suppose that n\ C^>C is injective. Then the categories 3)C-Mc</ and
3)C-MM/ are equivalent

pp
equivalent.

Proof. Note that n is an affine morphism. Let n* denote the direct image
functor, and consider JZ^Q)C- AS 2>C is a quasi-coherent (?c-module, and K*€C is
a quasi-coherent ^-module, it follows that n^c is a quasi-coherent (?c-module.
Write n*3)c-Mod'for the category of JT*2)^-modules which are quasi-coherent as
(9c-modules (we may view 0c as a subsheaf of n^O^). Then, by an argument
along the same lines as [10, Chapter II, Ex. 5.17(e)], n*3)c-^odand Sdc-Modare
equivalent categories.

Write 9 — <3)c{n*6c> ®c)\ that is> ^ is the sheaf on C with sections over an
open affine U^C consisting of those differential operators on (n*0c)(U) =
Oc{n~l{U)) which send Oci^iU)) into OC(U) (which we view as a subalgebra
of Ocin'^U))). Then & is a left ^c-module, and a right ^*S>c-module. After
Theorem 3.4, there is an open affine cover Uk for C such that each ^(t/A) is a
progenerator in 3)C{UX)-Mo<t. Put &~l = WomgJ^P, 2>c) and ^=^^^{9, 9).

There is a natural morphism 0>~l ®2,c 0>-» 5̂  given by (q <8>p)(w) = ^(p)w for
q e 0>~x, p e&, w e 9*. This is locally an isomorphism and hence globally
(remember that 9 is locally free as a S)c-module, with inverse 9~l). Also the
natural morphism 9 <8)y 9~1—>@c is locally an isomorphism by Theorem 3.4,
and hence globally. It is now clear that the functors

and

are mutually inverse, and give an equivalence between these two categories.
To complete the proof observe that n^c—^- To see this, first note that there

is a morphism IZ^Q-^^ because 9 is a 9)c-n^c bimodule. This is locally an
isomorphism since for all open affine t / c C, JZ*@>C(U) = @>(U) is a simple ring.
Hence there is a global isomorphism 71*3)^ &-

7. Higher-dimensional varieties

A famous example due to Bernstein, Gelfand, and Gelfand [3] shows that the
ring of differential operators on an affine variety of dimension at least 2 need not
be finitely generated or noetherian. Their example rests ultimately on properties
of the cohomology of sheaves on an elliptic curve. In this section we show that
our techniques for curves can be applied to certain varieties of dimension at least
2 to obtain other examples of non-noetherian rings of differential operators.
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Throughout this section X will denote a singular variety over k of dimension at
least 2, with the property that X, the normalisation of X, is non-singular. If X is
regular in codimension 1, we show that 3)(X) is not left noetherian. In contrast,
however, if Sing X is finite then 3)(X) is right noetherian, and a finitely generated
fc-algebra. Thus 2{X) can display a curious lack of symmetry.

7.2. Part (a) of the following appears in [2, Proposition 1], but we include a
(different) proof since it is both easy and amusing.

PROPOSITION. Let X be a singular variety of dimension n^2, and suppose that X
is non-singular. Suppose that X is regular in codimension 1. Then

(a) ®{X) c 2(X),

(b) @)(X) is not a simple ring.

Proof. Write A = €{X), B = €{X), and / = AnnA(B/A). As X is non-singular
in codimension 1, <\im(A/I)^n -2 (where dim denotes Krull dimension). As
P = 2)(X,X)^I, it follows that d(2(X)/P)^2n-2 (notation (1.4(f))). Hence
by [4, Chapter 2, Theorem 7.1], Ext\2)(X)/P, 2)(X)) = 0. Write P* =
{qe¥ract3)(X)\ qP^2)(X)}. Apply the functor HomeJ(x)(-, @(X)) to the
sequence

to obtain 3)(X) = P*, since the Ext1 group vanishes. However, @)(X) c P * , which
gives (a). Part (b) follows from the fact that 2(X, X) is now a proper ideal of

7.3. PROPOSITION. Let X be a singular variety with non-singular normalisation
X. Suppose that Sing X is finite. Then 2)(X) is a finitely generated right noetherian
k-algebra.

Proof. If A!" is a curve this is just Theorem 2.5. Suppose that dim X = n 2s 2. By
(7.2), 3 ( I ) c S ) ( i ) . Since SingZ is finite, dimkO(X)/O(X)<o°, and
dim* G(X)/I < oo where / is the conductor of O(X) in 6(X). Thus
d{3)(X)II9)(X)) = n, and by (1.4(f)), 2(X)/I2(X) is of finite length. However,
I2(X) c 2(X, X) and 2(X, X) is a two-sided ideal of 9)(X). Thus
2)(X)/2)(X,X) is of finite length, and 2(X) cl(2(X, X)). But now by (1.5),
dimk2(X)/g)(X,X)<x>. By [20, Proposition 1], it follows that 2)(X) is right
noetherian. Further, since 2(X) is finitely generated, it follows from [20,
Proposition 2(b)] that 2(X) is finitely generated.

REMARK. For some special cases when Sdx>x is generated by 6X,X and a finite
number of differential operators (in the analytic case) see [26, Theorem 6].

7.4. Before constructing our non-noetherian rings of differential operators, we
need the following routine extension of [10, Chapter II, Theorem 8.8] for which
we have been unable to find a reference in the literature.

PROPOSITION. Let A be a regular, semi-local ring of finite type over k. Suppose,
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for each of the maximal ideals vax, ..., mr of A, that A/rtii = k and dim^4m = n =
dim A. Then there exist t1}..., tneJ(A), the Jacobson radical of A, and
dlt ..., dn e Devk A such that 3,(fy) = djjfor all 1 ^ i , j *£ n.

Proof By [10, Chapter II, Theorem 8.15], D e r ^ is a projective y4-module of
rank n. Since A is semi-local, it follows that DerkA is actually free, say with basis
dlt..., dn. For any i^n andy^r , let 3,: my/m/-»y4/m7 be the map induced by
d(. Since Der*(j4m) =Am ®A DerkA, the 5, are also a basis for Derk(Am). Thus
the d( form a fc-basis for Hom^my/mJ, A/xtij). Choose r,7em7/mj such that
dkQti) = Ski- For 1 =£ / *s n, set

I = (in,..., tir) e (m1 /m?)8 ... 0 (mr/m*) = J(A)/J(A)
2
.

Then dk(li) = 6kieA/J(A). Let /, be any inverse image of ?, in A. Then we have
shown that dk(ti) = dik(modJ(A)). Thus the matrix B = (dk(tj)) has determinant
congruent to 1 (modJ(A)), and so is invertible. Thus setting (y1}..., yn)

T =
Z?"1^!,... , dn)

T we have y, eDer*A for l^i^n and y,(ry) = <5l7, as required.

7.5. We are now ready to give the main result of this section, by providing a
large number of varieties X, such that 2(X) is not left noetherian. The idea
behind this proof was motivated by an observation of R. Resco [19] showing that
idealisers in the second Weyl algebra are. often non-noetherian.

THEOREM. Let X be a singular variety with non-singular normalisation X.
Suppose that X is non-singular in codimension 1. Then 2(X) is not left noetherian.

REMARK. This also implies that g r S ) ^ ) is not noetherian, and hence not
finitely generated. For some special cases of this see [26].

Proof. Set n = dim X. Pick x e X a singular point with corresponding maximal
ideal m c €{X). Set A = 0XtXcB = GXtn-Kx). Since Q){A) = 2(X) ®0XX) OXtX, it
clearly suffices to prove that Sd(A) is not left noetherian. As B is a regular,
semi-local ring, it follows from (7.4) that there exist tx, ...,tneB and
dlf ..., dne Der* B such that 3, * f, = <5,7 for all i, j .

Set / = AnnA(BIA). Since X is regular in codimension 1, the height of/is at least
2. Hence there exists 0=£/ e / n k[tx, ...,tn] (if not then k[tlt..., tn] embeds in
B/I, contradicting the fact that tr.degA.(5//) =s n - 2). By an elementary change
of variables, we may assume that/is monic as a polynomial in tn with coefficients
in k[t1}..., tn^i\. Again, as height(/)^2, there exists 0¥=g e / f lk[ t u ..., ^_j].
Write P = 2(B, A) and d = dn.

Suppose that 3)(A) is left noetherian. Then, as gdl € P, the module M =
E°°=o S)(A)gd' is a finitely generated left ideal of Q)(A). Hence, as gd = dg,
N = E"=o 2(A)di is a finitely generated left ^(yl)-module. Thus for some m ^ 1,
and some r,,e 2)(A), dm + E/lo1 r(d' = 0. The idea now is to mimic the obvious
(computational) proof that, for the Weyl algebra 2>(A"),

in order to prove that P = 3)(B) (so obtaining a contradiction). The relevant
computations are contained in the following sublemma.
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SUBLEMMA. Let z, w e k[tx,..., tn] c 2(B), and u, s e N. If m is as in the proof
above, then

(i) forO^i^m-1, d'z"+"V*+mezu+1ws2(B);

(ii) there exists 0 ¥= A e /: SMC/I f/wf

^ " • " V * " 1
 e Azuws+m(d * z)m + zu+1ws2)(B);

(iii) ifzqeP for some q^l, then (d * z)2mq e P.

Proof of the Theorem from the Sublemma. Recall that / e P n k[tx, ...,tn] is
monic as a polynomial in tn, of degree r, say. By (iii) and an induction argument,
(di*fY2myeP for 1 ^ **£/•. But dr *f-r\\ thus leP^2)(A). As P is a right
ideal of 3)(B), this implies that 9)(A) = 9){B), contradicting the fact that A ±B.
Hence 2(A) (and consequently 3)(X)) is not left noetherian.

It therefore remains to provide:

Proof of the Sublemma. Parts (i) and (ii) are routine consequences of the fact
that dz' = z'd+j(d * z)z'~x. Part (iii) is proved by induction. Write w = d * z.
Suppose that zq~vw2mv e P for some 0 «s v < q (by hypothesis this does hold
for v = 0). Since P2(B)QP, zi-»Hm-Dw2mv+m g p R e m e m b e r that
dT + E ' o 1 r& = 0. Thus by (i) and (ii),

I ™-1 "1

3"» + V r.gif z(q-v-l)+mw2mv+m

1=0 ' ' J
e A2<?"u"1w2mw+Www + 2 r,z'?~uw2muS)(B),

where 0 # A e A:. Since for each i, ^ ' " " ^ " 3 ( 5 ) c 2)(A)P2(B) c P, this implies
that Az9~u"1w2mu+m e P. This completes the inductive step, and so by induction,
w2mq e P.

7.6. The following summarises the local versions of the results in this
section—the proofs are essentially the same as those already given.

THEOREM. Let X be an irreducible variety, and x e X a singular point. Suppose
that the normalisation at x is regular. Then

(a) if all height-l primes of €x,x are regular {and hence dim X 2* 2) then

(i) ®x,x e 2x.n~iM,
(ii) %x,x is not a simple ring,
(iii) @}x,x is not left noetherian;

(b) if x is an isolated singularity then Q)x,x is right noetherian and is generated by
®x,x and a finite number of differential operators.
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