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Introduction. Among all linear differential operators in Euclidean space R”, those
that have constant coefficients are characterized by their invariance under the transitive
group of all translations. The special role played by Laplace’s equation is partly due to
its invariance under all rigid motions. Another example of physical importance is the
wave equation which can essentially be characterized by its invariance under the Lorentz
group. This implicit physical significance of the Lorentz group so far as electromagnetic
phenomena is concerned is made explicit in Einstein’s special theory of relativity. Here
the Lorentz group is given an interpretation in terms of pure mechanics.

In the present paper a study is made of differential operators on a manifold under the
assumption that these operators are invariant under a transitive group G of ‘‘automor-
phisms” of this manifold M. Let p be a point of M, H the subgroup of G leaving p fixed
and M, the tangent space to M at p. It is easy to set up a linear correspondence between
the set of invariant differential operators on M and the set of all polynomials on M, that
are invariant under the action of the isotropy group H at p. However, the multiplicative
properties of this correspondence are complicated and are better understood (at least in
case G/H is reductive) by describing the differential operators by means of the Lie algebras
of ¢ and H (Theorem 10).

Our purpose is to study various geometrical properties of solutions of differential
equations involving these invariant operators. We give now a summary of the different
chapters. :

Chapter I contains a general discussion of linear differential operators on manifolds.
On pseudo-Riemannian manifolds there is always one differential operator, the Laplace-
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Beltrami operator, which is invariant under all isometries but under no other diffeomor-
phisms.

Chapter II. In § 1 we recall some essentially known results on transitive transformation
groups and homogeneous spaces. Two-point homogeneous spaces admit essentially only
one invariant differential operator, the Laplace-Beltrami operator. Potential theory has a
particularly explicit character. In § 3 we prove some properties of these spaces which are
used later, e.g., the symmetry of non-compact two-point homogeneous spaces. A fairly
direct proof of this fact is possible, but for the compact spaces such a proof seems to be
unknown although the symmetry can be verified by means of Wang’s classification. In
§ 4 we investigate in some detail Lorentzian spaces of constant curvature and the behavior
of the geodesics on these spaces. For the spaces of negative curvature (simply connected)
the timelike geodesics through a given point are infinite and do not intersect each other.
The spaces of positive curvature that we consider have infinite cyclic fundamental group.
Their timelike geodesics through a given point are all closed and do not intersect each
other.

Chapter III. In § 1 we represent the algebra D (G/H) of invariant differential operators
by means of the symmetric invariants of the group Ad;(H). Thus if H is semi-simple,
D(G/H) has a finite system of geﬁerators. If G/K is a Riemannian symmetric space,
D(G/K) is finitely generated and commutative (Gelfand [11], Selberg [36]). For Lorentz
spaces of constant curvature (or two-point homogeneous spaces) I (G/H) is generated by
the Laplace-Beltrami operator.

Chapter IV. We consider in § 1 the mean value operators M* which in a natural way
generalize the operation M" of averaging over spheres in R" of fixed radius r. It is well
known that M" is formally a function (Bessel function) of the Laplacian A. The analogue
holds for the space ¢//K if K is compact. In fact M7 is formally a function of the generators
DY, ..., D' of D(G/K). This has some applications, for example a generalization of the
mean value theorem of Asgeirsson. For two-point homogeneous spaces we obtain more
explicit results, for example a simple geometric solution of Poisson’s equation. In § 4 is
given for a Riemannian space of constant curvature a decomposition of a function into
integrals over totally geodesic submanifolds. A somewhat analogous problem is treated in
§ 7 for a Lorentzian space of constant curvature. Here a function is represented by means
of its integrals over Lorentzian spheres. We use here methods of analytic continuation
introduced by M. Riesz in his treatment of the wave equation. In § 8 we verify that Huygens’

principle in Hadamard’s formulation is absent for non-flat harmonic Lorentz spaces.(?)

(1) This confirms, in a very special case, a well-known conjecture attributed to Hadamard.
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An outline of the results of this paper (with the exception of Ch. II, § 4 and Ch. IV,
§§ 5-8) was given [25] at the Scandinavian Mathematical Congress in Helsinki, August
1957. An exposition was given in a course at the University of Chicago, Spring 1958. I am
grateful to Professor Asgeirsson for advice concerning some problems dealt with in Chapter
IV, § 3. T am also grateful to Professor Harish-Chandra for interesting conversations about

the topic of his paper [21].
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CaaptER 1

Preliminary remarks on differential operators

Let M be a locally connected topological space with the property that each connected
component of M is a differentiable manifold of class C* and dimension n. We shall then
say that M is a O*-manifold of dimension n. We shall only be dealing with separable C*-
manifolds and will simply refer to them as manifolds. If p is a point on the manifold M,
the tangent space to M at p will be denoted by M,,. The set of real valued indefinitely dif-
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ferentiable functions on M constitutes an algebra C*(M) over the real numbers R, the
multiplication in C* (M) being given by pointwise multiplication of functions. The fune-
tions in C*° (M) that have compact support form a subalgebra CF°(M). We use the topology
on OF (M) which is familiar from the theory of distributions (L. Schwartz [33] 1, p. 67), and
is based on uniform convergence of sequences of functions and their derivatives. The
derivations D of the algebra C*(M) are the C*-vector fields on M; each X €D leaves O (M)
_ invariant. An endomorphism of a vector space V is a linear mapping of V into itself. If
D is an endomorphism of C* (M) and f€C* (M) then [Df](p) will always denote the value
of Dfat pe M. If X €D, then the linear functional X, on C* (M) defined by X, (f) = [X f1(p)
for feC* (M) is a tangent vector(!) to M at p, that is X, € M,. Let R" denote the Euclidean
n-space with a fixed coordinate system. If the mapping ¥ : x—(x,, ..., 2,) €R" is a local
coordinate system valid in an open subset U < M, we shall often write f* for the composite
function fo¥~! defined on W (U). We also write D, for the partial differentiation /2,
and if @ = (ay, ..., &,) is an n-tuple of indices a; >0 we put D* = D7 ... Dinand || =, +

e ot

DEFINITION. A continuous endomorphism D of CF(M) is called a differential
operator on M if it is of local character. This means that whenever U is an open set in

M and feC¥ (M) vanishes on U, then Df vanishes on U.

ProrosiTioN 1.(2) Let D be an endomorphism of C3 (M) which has the following
property. For each peM and each open connected neighborhood U of p on which the local
coordinate system W :x—(2,,...,2,) 8 valid there exists a finite sef of functions a, of

class C* such that for each feCZ (M) with support contained in U
D] (w)=§;,%(w)[D“f*](w1, s @) for x€U
[Df](x)=0 for x¢ U.

Then D is a differential operator on M and each differential operator on M has the property

above.

Proof. Let E be a differential operator, p, U and ¥ as above. Let ¥ be an open subset
of U whose closure V is compact and contained in U. Let Oy (M) and Oy (M) denote the
the set of functions feC% (M) with compact support contained in ¥ and V respectively.
The operator E induces a continuous endomorphism of C'y(M). This implies that for each

£ > 0 there exists an integer m and a real number ¢ > 0 such that

() We use here and often in the sequel the terminology of Chevalley [7].
(2) This proposition is attributed to L. Schwartz in A. Grothendieck, Sur les espaces de solutions
d’umne classe générale d’égquations aux dérivées partielles. J. Analyse Math. 2 (1953) 243-280.
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|Ef(z)|<e forallz€V

whenever [D*f*](2,, ..., #,) is in absolute value less than é for all (z,, ..., 2,)€¥ (V) and
all x satisfying || <m. For a fixed point €V we put 7'(f*) =[Ef](z) for all feCy(M).
The linear functional f*->T(f*) is then a distribution on W (V) of order <m in the sense
of [33] I, p. 25. From the local character of E it follows that this distribution has support
at the point ¥ (x). Due to Schwartz’ theorem on distributions with point supports (loc.
cit. p. 99), T(f*) =[Ef}(x) can be written as a finite sum

[Zf] (w)=laém @ (#) [D* 1 (21, ... s %a) (1.1)

where the coefficients a, (z) are certain constants. Each constant a, (x) varies differentiably
with x as is easily seen by choosing f such that D*f* is constant in a neighborhood of
¥ (x). The representation (1.1) holds for all ze V and all f€Cy(M). However, since U can
be covered by a chain of open sets each of which has compact closure it is easily seen that
(1.1) is valid for all xe U and all feC? (M) with support contained in U.

On the other hand, let D be an endomorphism of C¢° (M) with the properties described
in the proposition. D is obviously of local character. Also D is continuous on the subspace
of functions that have support inside a fixed coordinate neighborhood. Using the well-
known technique of partition of unity (see for example [7], p. 163), D is seen to be conti-
nuous on the entire C°(M).

A differential operator on M can be extended to an endomorphism of O (M) such
that the condition of local character holds for all f€C* (). This extension is unigue.

Let ® be a homeomorphism of M onto itself such that @ and ®~' are differentiable
mappings. The mapping @ is then called a diffeomorphism of M. If p€ M, the differen-
tial d ®, maps M, onto My, in such a way that d @, (X,) f=X, (fo @). For each 0> —
vector field X on M we obtain a new vector field X? by putting X® f= (X (fo®)) o ®*
for f€C>™ (M). It follows then that (X®)gy,=d @, (X,) and we often write d® - X instead
of X2, If 4 is an endomorphism of C* (M) we define the operator A? in accordance with
the notation above by A®(f)=(4 (fo®))o® . If D is a differential operator on M,
then so is the operator D®. The transformation ® is said to leave D invariant if D® = D.
We sometimes write f® for the composite function fo®~?. We have then the convenient
rule A? f=(4f0 1.

Let M be a connected manifold. A linear connection on M is a rule which assigns to

each X €9 a linear operator Vx on D satisfying the following two conditions

@) Vixiov=1Vxz+9Vy
(ii) V() =fvx(Y)+(XHY
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for f, geC® (M), X, Y €D. The operator Vx is called covariant differentiation with respect
to X. This definition of a linear connection is adopted in K. Nomizu [33], and we refer to
this paper for a treatment of concepts in the theory of linear connections such as paral-
lelism, curvature and torsion tensor. A curve in M is called a patk if it has a parameter
representation such that all its tangent vectors are parallel. Let p be a point in M and
X =0 a vector in M. There exists a unique parametrized path {—yx(f) such that y,(0) =p
and y%(#) = X. The parameter ¢ is called the canonical parameter with respect to X. We
put y,(f) =p. The mapping X—yx(1) is a one-to-one C*°-mapping of a neighborhood of
0 in M, onto a neighborhood of p in M. This mapping is called Exp (the Exponential map-
ping at p) and will often be used in the sequel.

A pseudo-Riemannian metric ¢ on a connected manifold M is a rule which in a dif-
ferentiable way assigns to each p€M a non-singular symmetric real bilinear form @, on
the tangent space M,. Since M is connected the signature of @, is the same for all p. If the
signature is + + -+ + we call M a Riemannian space; if the signature is + ——--- — we
speak of a Lorentzian space, otherwise of a pseudo-Riemannian manifold. On a pseudo-
Riemannian manifold there exists one and only one linear connection (the pseudo-Rie-
mannian connection) satisfying the conditions: 1°. The torsion is 0. 2.° The parallel displace-
ment preserves the inner product ¢, on the tangent spaces. In the case of a Riemannian
space, arc length can be defined for all differentiable curves. The space can then be metrized
by defining the distance between two points as the greatest lower bound of length of
curves joining the two points. For a Lorentzian space where this procedure fails we adopt
the following terminology from the theory of relativity. The cone €, in the tangent space
M, given by @,(X, X) =0 is called the null cone or the light cone in M, with vertex p. A
vector X €M, is called timelike, isotropic, or spacelike if @,(X, X) is positive, 0, or negative
respectively. Similarly we use the terms timelike, isotropic, and spacelike for rays (oriented
half lines) or unoriented straight lines in M,. A timelike curve is a curve each of whose
tangent vectors is timelike. Such curves have well-defined arc length. If a path has timelike
tangent vector at a point, then all of its tangent vectors are timelike and the path is called
a timelike path. A curve is said to have length 0 if all its tangent vectors are isotropic.

A diffeomorphism ® of a pseudo-Riemannian manifold M is called an isometry if
@, (X, Y)=0Qow @, X, a0,7Y)

for each p€ M and each X, Y € M,. The group of all isometries of M will be denoted by
1 (M). Let U be an open neighborhood of p on which local coordinates z — (2, ... , %)

i (€)= Q (; 0 )

xi’ 8:01

are valid. We put
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and define the functions ¢* (z), ¢ (x) on U by

%qﬂ‘ (@) g (@) =0, g (2)=|det (g ()],

8] being Kronecker deltas. For each function f€ 0 (M) we set

Af (Z ¢"* (@) Vg (@) *—)

The expression on the right is invariant under coordinate changes due to the classical
transformation formulas for the functions g¢;;. It is easily seen that A is a differential

operator on M. It is called the Laplace-Beltrami operator.

ProPOSITION 2. Let @ be a diffeomorphism of M. Then ® leaves the Laplace- Bel-

trami operator invariant if and only if it is an isometry.

Proof. Let p€ M and let U be a neighborhood of p on which local coordinates
x—>(%y, ..., %,) are given. Then ® (U) is a neighborhood of the point ¢=® (p) and

Y—> (Y15 ..., Yn) Where y=® (), y,==;, (¢=1, 2,..., ») is a local coordinate system on
® (U). We also have
0 0
~ 1= =1 27 ’
@ - (3 951) oy ¥ ’ ")

For each function f€C (M) we have

@HO W =1AN =723 7 (3w Vaw ) 1.2
B0 @) =y o (S e @ S, 13)
% OX, \'T o,

Due to the choice of coordinates we have

of _a(jo®) &f _&(fod)
oY, o ’ayiayk 0x; 0y

(1:, kzl, 2, ...,n).~

Now, if @ is an isometry, then g (x)=gy (y) for all ¢, & so the expressions (1.2) and
(1.3) are the same and A®=A. On the other hand, if (1.2) and (1.3) agree we obtain
by equating coefficients, g, (%)= ¢ (y) for all i, k, which shows that ® is an isometry.

For Lorentzian spaces the Laplace-Beltrami operator will always be denoted by [7.
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CHarTER II

Homogeneous spaces

1. The analytic structure of a coset space

Let G be a separable Lie group and H a closed subgroup. The identity element of a
group will always be denoted by e. Let L(g) and R(g) denote the left and right translations
of G onto itself given by L(g)-x =gz, R(g)-x =xg*. The system G/H of left cosets‘gH
has a unique topology with the property that the natural projection n» of G onto G/H is
a continuous and open mapping. This is called the natural topology of the coset space G/H.
In this topology G/H is a locally connected Hausdorff space. For each # €@, the mapping
v(x) : gH-—+>xgH is a homeomorphism of G/H onto itself. The connected components of
G/H are all homeomorphic to G,/Gy N H where G, is the identity component of . The
point 7 (¢) will usually be denoted by p,. For later purposes we need Lemma 1 below which
gives a special local cross-section in @, considered as a fiber bundle over G/H. The group
H is a Lie group, regularly imbedded in G and thus the Lie algebra §) (= H,) of H can be
regarded as a subalgebra of the Lie algebra g ( = G,) of G. We choose a fixed complementary
subspace to ) in g and denote it by m. Let exp denote the usual exponential mapping of
g into G and V" its restriction to m.

LemMA 1. There exists a neighborhood U of 0 in m which is mapped homeomorphically
wnder ¥ and such that = maps W (U) homeomorphically onto a neighborhood of p, tn G/H.
Proof. Consider the mapping @ : (X, ¥)—>exp X-exp Y of the product space m x J)
into G. We choose a basis X, ..., X, of g such that the first n elements form a basis of
m and the r —n last elements form a basis of §j. Let ,, ..., x, be a system of canonical
coordinates with respect to this basis, valid in a neighborhood V'’ of e in G. For sufficiently

small ¢; the element

exp (tl X1+ +tan) eXp (tn+1 Xn+1+ +trX,~)

belongs to V' and its canonical coordinates are given by z;=¢&;(t;, ..., t,) where &, are
analytic functions in a neighborhood of 0 in g. The Jacobian determinant of the
transformation (¢, ...,%)— (%, ...,%,) i8 = 0 in a neighborhood of 0 in §. There exists
therefore a neighborhood of 0 in g of the form N,xN, where N,cm, N,<§) which
® maps homeomorphically onto an open subset V'’ of ¥’. Choose a neighborhood V
of e such that V™'- V< V"”. Let U be a compact neighborhood of 0 in m contained
in ® (V)N N,. Then ¥ maps U homeomorphically onto ¥ (U). Also z maps ¥ (U)
in a one-to-one fashion because otherwise there exist X;, X,€ U and h € H, h = ¢ such
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that exp X, = exp X, h. It follows that A€V’ and there exists a Y €N, such that
h=exp Y, Y+0. The elements (X,, 0) and (X,, Y) belong to N,xN, and have the
same image under ® which is a contradiction. The set W (U), being compact, is
mapped homeomorphically by z and the image x (¥ (U)) is a neighborhood of p,in G/H
because n(V' (U))== (V' (U)H), ¥ (U)H is a neighborhood of ¢ in G and = is an

open mapping.

TaEOREM 1. The coset space G/H has a unique analytic structure with the property that
the mapping (x, gH)—>xgH is a differentiable mapping of the product manifold G < G/H
onto G/H. A coset space G/H will always be given this analytic structure.

Proof. We use the terminology of Lemma 1 and introduce coordinates in G/H as
follows. For each p€G/H we can find a g €4 such that n(g) = p; let N, denote the interior
of the set 7 (g¥"(U)). Then the mapping

w(gexp (4, X+ -+, X)) = (4, ... )

is a system of coordinates valid on V,. It is not difficult to show that this procedure defines
an analytic structure on G/H with the property that the mapping (x, gH)—2gH is an
analytic mapping of G X Q/H onto G/H (Chevalley [7], p. 111). The uniqueness statement

is contained in the following theorem.

THEOREM 2. Let G be a separable, transitive Lie group of diffeomorphisms of a manifold
M. Assume that the mapping (g, ¢)—g-q of G X M onto M is continuous. Let p be a point on
M and G, the subgroup of G that leaves p fized. Then G, is closed and the mapping g-p—>g G,
18 a diffeomorphism of M onto G/@, in the analytic structure defined above.

If M is connected, then Gy, the identity component of G, is transitive on M .

Proof. We first prove (following R. Arens, “Topologies for homeomorphism
groups”, Amer. J. Math. 68 (1946), 593-610) that the coset space G/G,, in its
natural topology, is homeomorphic to M. For this it suffices to prove that the
mapping ®:g—g-p of G onto M is an open mapping. Let V be a compact sym-
metric neighborhood of e in (; then there exists a sequence (g,)€G such that
& =l1{gn V. Thus M =angn V.p and it follows by a category argument that at least

one of the summands has an inner point. Hence V:p has an inner point, say & -p
where AE€V. Then p is an inner point of A™'V-p< V2-p so @ is an open mapping.
In particular dim G/G,=dim M.

Consider now the interior B of the subset W (U) from Lemma 1. B is a sub-

manifold of & because (I, ...,%) and (¢, ...,%) are local coordinates of the points
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exp (4 X, + - +t, X,)
and exp ({, X+ -+, X,) exp (tpi1 Xny1+ -+ X))

in B and @ respectively and thus the injection ¢ of B into @ is regular. By the definition of
the analytic structure of G/G,, = is a differentiable transformation of B onto an open
subset N of G/G,. Due to a theorem of S. Bochner and D. Montgomery (‘‘Groups of dif-
ferentiable and real or complex analytic transformations™, Ann. of Math. 46 (1945), 685-
694), the continuous mapping (g, ¢)—>¢g-¢g is automatically differentiable. The mapping
g@,—g-p is a homeomorphism of N onto an open set in M and is differentiable since it
is of the form ®otom1. To show that the inverse is differentiable we just have to show
that the Jacobian of @ at g = ¢ has rank equal to dim M. Let g and ) denote the Lie algebras
of @ and G, respectively. We shall prove that if X €g and X ¢1) then (d®), X +0, in other
words the Jacobian of @ at e has rank equal to dim g — dim §) = dim M. Suppose to the
contrary that (d®), X = 0; then if feC*(M) we have

d
0=(@0) X /=X, (fo®)= - (exp tX-p)}

t=0

If we use this relation on the function f*(¢)=f (exp sX :q) we obtain

d d
0=Ef*(exth'p)} :Zi;f (exp s X - p)

t=0

which shows that f(exp sX-p) is constant in s. Hence exp sX-p=p and X €.
This shows that M is diffeomorphic to G/G,. For the last statement of the theorem

consider a sequence (z,)€ (G such that G=U G,z,. Each orbit Gz, -p is an open
n

subset of M; since M is connected we conclude that @, is transitive on M.

In general, if G'is a group of diffeomorphisms of a manifold M, the isofropy group at
peM, G, is the subgroup of @ which leaves p fixed. The linear isotropy group at p is the
group of linear transformations of M, induced by G,.

Suppose now G is a connected Lie group with Lie algebra g. Let g—>Ad (g) denote the
adjoint representation of @ on g and X—ad X the adjoint representation of g on g. Then
ad X(Y) =[X, Y] and Ad (exp X) =¢*** for X, Y€g. Let H be a closed subgroup of &
with Lie algebra [). The coset space G/H is called reductive (Nomizu [31]) if there exists
a subspace 1 of g complementary to § such that Ad(k)m <m for all he H. We shall only
be dealing with reductive coset spaces. All spaces G/H where H is compact or connected
and semi-simple are reductive. For reductive coset spaces G/H, the mapping (dn), maps m
isomorphically onto the tangent space to G/H at p, such that the action of Ad (%) on m
corresponds to the action of d7 (k) on the tangent space. It is customary to identify these
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spaces. If in a reductive coset space the subspace m satisfies [m, m] < ) we say that G/H
is infinitesimally symmetric. Suppose the group ¢ has an involutive automorphism ¢ such
that H lies between the group H, of fixed points of ¢ and the identity component of H,,.
The space G/H is then called a symmetric coset space. Such a space is infinitesimally sym-
metric as is easily seen by taking m as the eigenspace for the eigenvalue — 1 of the auto-
morphism do of g.

Let G/H be an infinitesimally symmetric coset space. Here one has the relations
g=h+m, AdE)m<miorall heH, [m, mj<]. 2.1)

On G/H we consider the canonical linear connection which is defined in Nomizu [31] and
has the following properties. It is torsion free, invariant under ¢ and the paths (that is
the autoparallel curves) through p, have the form {—exp ¢{X-p, where X ent. This last
property is usually expressed: paths in G/H are orbits of one-parameter groups of trans-
vections. In terms of the Exponential mapping at p, we can express this property by the

relation
Exp X=moexp X for Xem. (2.2)

In particular G/H is complete in the sense that each path can be extended in both directions
to arbitrary large values of the canonical parameter. Now it is known that the differential

of the exponential mapping of the manifold g into G is given by

1— e—2dX

d EXPX:dL (GXP X)O“ﬁ—

Xe€qg. (2.3)
This is essentially equivalent to the formula of Cartan (proved in Chevalley [7]), which
expresses the Maurer-Cartan forms in canonical coordinates. A different proof without
the use of differential forms is given in Helgason [24]. To derive a similar formula for
d Expx (X €m) we observe, as a consequence of (2.1), that the linear mapping (ad X)?
maps m into itself. Let 7'y denote the restriction of (ad X)? to m. From the relation o L{g) =
7(g) o m and (2.2) we obtain for Y em

—padX
4 Bxps (V) =dnod expx (V) =dmod Diexp X) oo (¥)
_ = (ad X
_dr(epr)odn%( 1) (m+1)!(y)_

From the relations (2.1) it follows that

(TH"(Y) it m=2n

an(adX)m(Y):{ 0 if m is odd
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We have then proved the desired formula

o Vg3
d Expxy=dz (exp X) o%m for X €m (2.4)

which will be used presently.

2. Spherical areas

Let M be a Riemannian manifold such that the group I(M) of all isometries of M is
transitive on M. M is then called a Riemannian homogeneous space. The group I(M),
endowed with the compact-open topology, is a Lie group (S. Myers and N. Steenrod [30]).
Let p, be a point in M and K the subgroup of I(M) that leaves p, fixed. It is well known
that K is compact. Now M, and consequently the group I(M), are separable. By the
definition of the topology of I1(M), the mapping @ : (g, p)—g-p of I(M) X M onto M is
continuous. Theorem 2 then implies that (M )/K~ is homeomorphic to M, in particular
connected. The group K, being compact, has finitely many components and it follows
easily that the same is true of I1(M). Let G denote the identity component of I{M) and let
K =GnK. Then K is compact and due to Theorem 2 we can state

LeMmMA 2. A Riemannian homogeneous space M can (with respect to the differentiable
structure) be identified with the coset space G/K where G is the identity component of 1' (M)
and K is compact. Here I (M) is any closed subgroup of I(M), transitive on M.

On the other hand let G be a connected Lie group and H a closed subgroup. We
assume that the group Adq(H) consisting of all the linear transformations Ad(k), heH, is
compact. Then G/H is reductive and there exists a positive definite quadratic form on
m invariant under Adg(H). This form gives by translation a positive definite Riemannian
metric on G/H which is invariant under the action of G. Such a space we shall call a Rie-

mannian cosel space.

Lemwma 3. Let G/H be a symmetric Riemannian coset space which is non-compact, simply
connected and irreducible (that is, Adq(H) acts irreducibly on m). Let A (r) denote the area
of a geodesic sphere in G/H of radius r. Then A(r) is an increasing function of .

Proof. We can assume that G acts effectively on G/H because if N is a closed normal
subgroup of @ contained in H then the coset space G*/H*, where G* =Q/N, H* =H/N
satisfies all the conditions of the lemma. The G-invariant metric on G/H induces the
canonical linear connection on G/H (K. Nomizu [31]), and the paths are now geodesics.
Since G/H is irreducible and non-compact it has sectional curvature everywhere <0 due
to a theorem of E. Cartan [4]. (Another proof is given in [24]). Furthermore, since G/H

is simply connected and has negative curvature, a well-known result of J. Hadamard and
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E. Cartan ([5] and [17]) states that the mapping Exp is a one-to-one mapping of m onto (1)
G/H. Now, each 7(z), x€G is an isometry of G/H. From (2.4) it follows therefore that the
ratio of the volume elements in G/H and m is given by the determinant of the endomor-

phism
-] TXTI.

AX:%W' (25)

For the volume of a geodesic sphere in G/H with radius » we obtain the expression

V)= [ det (4 dX.
Hxll<r

Here d X and || || denote the volume element and norm respectively in the space m. On
differentiation with respect to r we obtain

A(ry= [ det (4dx)dw, (X) (2.6)

1 Xt=7

where dw, is the Euclidean surface element of the sphere [|X|| = in m. Now it is known
that the irreducibility of G/H implies that either g is semi-simple or [m, m] = 0. (A proof
can be found in K. Nomizu [31] p. 56; observe the slight difference in the definition of ir-
reducibility). In the case [m, m] =0, Lemma 3 is obvious so we shall now assume g semi-
simple. In the proof of Theorem 2 in [24] it is shown that the Killing form B is not only
non-degenerate on g but

B(X,X)>0 for X+0in m (2.7)

B(Y,Y)<0 for Y=0 in §. (2.8)
Using the invariance of the Killing form we obtain also

B ({ad X}* Z,, Z)) = - B(IX, Z,], [X, Z]) = B(Z,, {ad X}* (Z,)) (2.9)

which shows that for X em, Ty is symmetric with respect to B. Using (2.7), (2.8) and
(2.9) for Z, = Z, we see also that the eigenvalues of T’y are all > 0. If we call these £, (X),
..., £, (X) and throw T’y into diagonal form we obtain the formula

deb (Ay) = 11‘[ sinh (&, (X))}

Y~ a@y (210)

The function sinh ¢/t is increasing; it follows then from (2.6) that the function 4 (r) increases

with 7, in fact faster than +"-1,

(*) Using the theory of symmetric spaces, the assumption in Lemma 3 could be reduced some-
what. In fact, either G/H is a Euclidean space or G is semi-simple. In the latter case it can be proved
directly, without using the simple connectedness (Cartan {31, Mostow {29]) that Exp is a homeomorphism
of m onto G/H.
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The example of a sphere shows that the hypothesis in Lemma 3 that G/H is non.
compact cannot be dropped. However, it seems very likely that the conclusion of Lemma 3
holds for every simply connected Riemannian manifold of negative curvature. The proof

above shows (after decomposition) that this is the case if the space is symmetric.

3. Two-point homogeneous spaces

DeFINITION. A connected differentiable manifold M with a positive definite Rie-
mannian metric of class C* is called a two-point homogeneous space if the group I(M) is
transitive on the set of all equidistant point pairs of M.

We shall now outline a proof of a theorem which will be of use later. This theorem is
known through the classification of the two-point homogeneous spaces. We aim at proving

the theorem more directly.

THEOREM 3.
(i) A two-point homogeneous space M is isometric to a symmelric Riemannian coset
space G/K where G is the identity component of I(M) and K is compact.

(ii) If M has odd dimension it has constant sectional curvature.
(iii) The non-compact spaces M are all simply connected, tn fact homeomorphic to a

EBuclidean space.

REMARK. Considerably more is known about two-point homogeneous spaces even
under less restrictive definition. A complete classification of the compact two-point homo-
geneous spaces was given by H. Wang [36]. He found that these are the spherical spaces,
real elliptic spaces, complex elliptic spaces, quaternian elliptic spaces and the Cayley
elliptic plane. The dimensions of these spaces are respectively d, d + 1, 2d, 4d and 16 (d =
1,2,...). These are known to be symmetric spaces, that is the geodesic symmetry with
respect to each point extends to a global isometry of the whole space. We indicate briefly
how (i) follows in the compact case.

Choose a fixed point p,€M and let s, denote the geodesic symmetry around p,. In
view of Lemma 2 we can identify M and G/K. (Here K is the subgroup of G that leaves
P, fixed). The mapping o : g—>$,93, is an automorphism of I(M) which maps the identity
component @ into itself. Also s,-k-s, = k since both sides are isometries which induce the
same mapping on M, . It follows that the involutive automorphism (do), of g is identity
on f, the Lie algebra of K. On the other hand if (d¢),X = X for some X in g then g-exp X =
exp X and exp X p, is a fixed point under s,. Hence X f. Thus f is the set of fixed points

“of (do), and it follows immediately that G/K is a symmetric coset space.

The non-compact two-point homogeneous spaces were classified by J. Tits [35]. In
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the following we shall establish (i) more directly. When this is done Tits’ classification
could be obtained from Cartan’s classification of non-compact symmetric spaces of rank
1 {[4], p- 385). Using Cartan’s terminology, the spaces that occur are: A IV (the hermitian
hyperbolic spaces), BD II (the real hyperbolic spaces), C II (for ¢ =1) (the quaternian
hyperbolic spaces) and F II (the hyperbolic analogue of the Cayley plane).

Suppose now M is a two-point homogeneous space, p, a fixed point in M and K the

subgroup of I1{M) that leaves p, fixed.

LeMma 4. Let G be a closed, connected subgrowp of 1(M), and assume that G is transitive
on equidistant point pasrs of M. If G is a closed connected normal subgroup of G (G’ =+e)
then G’ is transitive on M. '

This lemma is essentially due to Wang and Tits. We give a proof for the reader’s con-
venience. Let pe€M and let H be the subgroup of @ leaving p fixed. H is compact. The
Lie algebra g of G can be written g =) + m where | is the Lie algebra of H and m is in-
variant under Adg(H). From Lemma 2 it is clear that M is isometric with the Riemannian
coset space G/H and m can be identified with the tangent space M,. Now the group G,
being a group of motions, acts effectively on M, so M’, the orbit of p under &, does not
consist of p alone. Due to S. Myers and N. Steenrod [30], we know that this orbit is a regu-
larly imbedded submanifold of M. We can choose a one-parameter subgroup g, of &
which does not keep p fixed. Let X be the tangent vector to the curve g, p at £ = 0. Then
X =+0. In fact, assume to the contrary that X =0. Then we have for each feC* (M),
Xf:%f (gt-p)}t_():O. Using this on the function f* given by f*(q9) =f(g.'¢q) we find

Ed;f(gu'p) =0 so g, p=p which is a contradiction. If A€ H the curve hg,h~1-p lies in

M’ and has tangent vector Ad(h)X. But the group Adg(H) acts transitively on the di-
rections in m. Therefore, if I denotes the imbedding of M" into M, d I,, is an isomorphism
of M, onto M,. Consequently some neighborhood of p in M lies in M’. By homogeneity
this holds for each p€ M’ and M’ is open in M. This proves that each orbit in M under &
is open. By the connectedness of M this is impossible unless M’ = M and the lemma is

proved.

LeMMA 5. Let G/H be a reductive coset space (H == Q) and let H, denote the identity compo-
nent of H. Let m be a subspace of g (the Lie algebra of G) such that g =m + Hand Ad(R)m< m
for he H. Here Y is the Lie algebra of H.

(i) If Adg(H,) acts irreducibly on m, then V) is a maximal proper subalgebra of g.
(i) If [m, m] < Y (that is G/H is infinitesimally symmetric), the converse of (i) is true.
This lemma which is undoubtedly known can be proved as follows. Suppose Adg(H,)
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acts irreducibly on m and that ) is not maximal. Then there exists a subalgebra fj* of g
such that we have the proper inclusions §j< h* < g. The subspace m* = [* N m satisfies
[, m*] < h* nm =m* so wm* is invariant under Ady(H,). Hence tm* =0 or m* = m. This
last possibility is impossible because it implies §* = g. But the relation m* = 0 is also im-
possible because if X belongs to the complement of f) in §* we have X = Y +Z, where
Yeh, Zem and Z+0. But Z=X — Yel* so Zem n §* = 0. This proves (i). In order to
prove (ii) assume 1t is a proper subspace of mi, invariant under Adg(H,). The relation
[m, m] < fy shows that §) +1 is a proper subalgebra of g, which properly contains §.

We shall now indicate a proof of Theorem 3 in case M is non-compact. Let G be the
identity component of I(M). We know that M is isometric to G/K where K =G K. We
can assume dim M > 1. Then a small geodesic sphere S, around p, is connected and K
acts transitively on 8,. From Theorem 2 we see that K, having the same dimension as K,
acts transitively on 8, and thus G acts transitively on equidistant point pairs of M. If
G is not semi-simple, G contains an abelian connected normal subgroup =+ e which by Lemma
4 acts transitively on M. M is then a vector space for which Theorem 3 is obvious. If on
the other hand @ is semi-simple, we see from Lemma 5 that f, the Lie algebra of X, is a
maximal proper subalgebra of g. Since maximal compact subgroups of connected semi-
simple groups are connected, we conclude that K is a maximal compact subgroup of G
and G/K is a symmetric coset space. Due to a well-known theorem of Cartan on semi-
simple groups, G/K is homeomorphic to a Euclidean space. In our special case, this can
be established as follows. Clearly /K has an infinite geodesic and therefore all its geodesics
are infinite. The mapping Exp of m into G/K has Jacobian determinant at X given by
(2.10) (the derivation of {2.10) did not use the simple connectedness of G/ H). The expression
(2.10) is always #0 so Exp is everywhere regular. Since geodesics issuing from p, intersect
the geodesic spheres around p, orthogonally we see that geodesics issuing from p, do not
intersect again. Thus Exp is one-to-one and hence a homeomorphism.

Part (ii) of Theorem 3 which is due to Wang [36] depends on the fact that if a linear
group of motions acts transitively on an even-dimensional sphere then the action is transitive

on equidistant point pairs.

4. Harmonic Lorentz spaces

Let M be a Lorentz space with metric tensor Q. Let p, be an arbitrary but fixed point
of M and let Exp be the Exponential mapping at p, which maps a neighborhood U, of 0
in M, in a one-to-one manner onto a neighborhood U of p, in M. Let X, ..., X, be any
basis of M. If X = 32, X, and x = Exp X the mapping z— (,, ..., %,) is a system of
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coordinates valid on U. Following Hadamard we consider now the distance function
I'(z) =@, (X, X) defined for x =Exp X in U.

DeFINITION. Suppose M and ¢ are analytic. M is called karmonic if for each
P €M there exists a neighborhood of p, in which [T is a function of I" only, [T = f(I").

We shall now study in some detail three types of harmonic homogeneous spaces. These
are denoted G°/H, G-/H and G*/H below. For each integer n >1 there is one space of
each class with dimension n. lf n =1, G°/H =G~/H. If n =2, G-/H and G*/H are diffeo-
morphic but not isometric. Otherwise the spaces are all different (even topologically).
Due to Theorem 9 these spaces exhaust the class of harmonic Lorentz spaces up to local
isometry.

G/H. Flat Lorentz spaces. We consider the Euclidean space R” as a manifold in the
usual way that the tangent space at each point is identified with R" under the usual identi-

fication of parallel vectors. We define a Lorentzian metric @° on R” by
G, V)=yi—ys— —yn

if Y={(y,...,¥,) 18 a vector at peR". We have then obtained a Lorentz space M. Let
L, denote the general Lorentz group, that is the group of all linear homogeneous trans-
formations k of R" such that Q)(h-X, k- X)=@%(X, X) for all X€R* Each isometry
gel(M) can be uniquely decomposed g =th where ¢ is a translation and heL,. Hence
I(M)=R"L, R"is a normal subgroup of I(M). If G° is the identity component of I (M)
and H is the subgroup of G° that leaves 0 fixed, then M is diffeomorphic to G°/H and H
is connected. G°/H is a symmetric coset space under the mapping th—>¢-1h, teR”, he H.

The group L, acts transitively on the set of timelike rays from 0; L, also aets transi-
tively on the set of spacelike rays from 0. Furthermore L, acts transitively on the punctured
cone C, — 0. Since [] is invariant under L,, it follows in particular that [JI" is a function
of T" only; G°/H is harmonic.

G-/H. Negatively curved harmonic Lorentz spaces. We consider now the quadratic form
T(Y7 Y:)Z_y%+y%++y2+l Y=(y1,---;?/n+1)

and let G-~ denote the identity component of the group L, ., which leaves the form 7'(Y, Y)
invariant. Let' H be the subgroup of G~ that leaves the point (0,0, ..., 1) fixed. If the
transformations geL, ., are represented in matrix form g = (g,,) then g €G-~ if and only if
¢11 > 0 and det g = 1. From this well-known fact follows immediately that H is connected
and actually the same as the group H above. The coset space G—/H can be identified with
the orbit of the point (0, 0, ..., 1) under G—. This is the hyperboloid — y} + 3 +... +yny =1
which is homeomorphic to §"-1 x R (8™ denotes the m-dimensional sphere). It is clear that
17 — 593805. Acta mathematica. 102. Imprimé le 16 décembre 1959
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G- acts effectively on G—/H. Let g~ and 1) denote the Lie algebras of G~ and H respectively.
If J denotes the matrix of the quadratic form 7' then a matrix 4 belongs to G- if and only if
*AJA=J (*4 is the transpose of A). Using this on matrices of the form 4 =exp X,
X eg~ we find that a basis of g~ is given by

X,=E,+E, 2<i<n+1),X,=E,—E, @<i<j<n-+1). (2.11)

Here E,; denotes as usual the matrix (ay,,) where all a;,, = 0 except a,; = 1. A basis of [j is

given by
Yi=E11+E11(2<i<n), YiszU—Eji (2<7;<?‘<n).

Let B~ (X, X) denote the Killing form Tr (ad X ad X) on ¢~.

LeMMA 6. The Killing form g~ ts given by

B (X, X)=(n—1) Tr(XX)=2(n—1)f x5 — €5
| 2<i<n+1 2gi<jxn+1
if X= > xXi+ X z;Xy
2ign+1 2gi<ign+1

Proof. The complexification ¢° of g~ is the Lie algebra of complex linear transforma-
tions which leave invariant the form —22 425 +...+22,;. However within the complex
number field the signature — + +...+ is equivalent to the signature + +...+ and
thus ¢° is isomorphic to the Lie algebra p(n + 1, C) which consists of all skew sym-
metric complex matrices. The isomorphism X—X' in question is given by the mapping
X,—~>i (B, — Ey,) and X,;;,— X,;,. Now the Killing form B on p{»n + 1, €) is well known
to be B (X', X') = (» ~1)Tr(X' X’). Since Tr(XX)=Tr(X’'X") and since Killing forms
are preserved by isomorphisms we see that the Killing form B° on ¢°i given by B°(X, X) =
(n — 1) Tr(X, X). Now the restriction of B to g~ coincides with B~ and Lemma 6 follows.

Let s, be the linear transformation
S0t (Y1s +oes Yns1) > (= Y15 —Yas eees ~Yns> Yns1)-

8p leaves the form 7' invariant and the mapping o : g—8,¢5, is an involutive automorphism
of G—. The corresponding automorphism of ¢ is do : X—s,X s, and it is easy to see that fj
is the set of all fixed points of do. Thus G—/H is a symmetric coset space. Let p be the
eigenspace for the eigenvalue — 1 of do. b is the subspace of g~ spanned by the basis vectors

X, and X, 4, (2 <i<n), and we have the relations

g" =B+, [h,pl=p, [p,pl=h (2.12)

and since H is connected, Ad(k)p <. As usual we identify p with the tangent space to
G-/H at p,.
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Since the Killing form B- is invariant under all Ad(g), g €G~ we see that the quadratic
form @~ on p given by '

Q- (X’ X) = x%wl - % x?.nﬂ: X=0p1 Xnp1t 22: Ti,n+1 Xi,n+1 (2-13)

is invariant under the action of Ad(H) on p. The form @~ “extends’ uniquely to a G~
invariant Lorentzian metric on G—/H which induces the canonical linear connection on
G~/H (Nomizu [31]). We denote the metric tensor also by @-. Consider now the action of
the group 1{G~/H). Let H* denote the corresponding linear isotropy group at p, which

consists of certain linear transformations leaving the form - invariant.

LEMMA 7. H* acts transitively on 1°. The punctured cone C,, — 0; 2°. The set of all time-
like rays from 0; 3°. The set of all spacelike rays from 0.

Proof. H* contains the restriction of the group Ade—(H) to b which is isomorphic
to H. H* contains also the symmetry X — — X. As remarked earlier L, acts transitively on
the set

M, ={X€p|X=+0, Q" (X,X)=c}.
Here ¢ is any real number. Due to Theorem 2, H acts transitively on each component of
M. If (n,c)=+(2,0), M, consists of one or two components, symmetric with respect to 0.
If we exclude for a moment the case (n, ¢) = (2, 0), H* acts transitively on M, as stated in

the lemma. If » = 2, M, consists of four components which are the rays
t(Xy+ Xyg), t(Xy— Xyg), t(— X+ Xp), t(—X;—X,5)
where 0<t< oco. H* will clearly be transitive on M, if we can prove that the mapping
A: wg Xgtay, Xy > — 25 Xg+ 93 X,y
belongs to H*. The Killing form on g~ is
B (X, X)=2(3+a5—a%), X=w,X,+1, X3+;1023 Xy

G~ is the group leaving B~ invariant and H is the subgroup of G~ which leaves the point
(1,0, 0) fixed. G—/H can thus be identified with the hyperboloid B-(X, X)=2. Hence
~ G—/H is isometrically imbedded in the flat Lorentz space g~ with metric B-. Now the
transformation (i, Ty, ) (¥, — @5, p,) is an isometry of g~ which maps the hyperboloid

onto itself and leaves the point (1, 0, 0) fixed. Hence 4 belongs to H*, as we wanted to prove.

CoRroLLARY. G-/H is harmonic.
In fact (I is invariant under the isotropy subgroup of I(G-/H). Due to Lemma 7
[T is a function of I" only.



258 SIGURDUR HELGASON

LemMma 8. The timelike paths in G—/H are infinite and have no double points.

Proof. Consider the vector X, ,, €p which lies inside the cone @~ (X, X) = 0. The path
with tangent vector X, ,, has the form moexpt X, .4, (€R). If we use the matrix representa-

tion (2.11) we get

exp t Xy1 =1+ (cosh t — 1) (B + Eni1,ne1) + (8inh ) Xy oy

and this one-parameter subgroup intersects H only for ¢ = 0. It follows easily that the path
in question has no double points and since I(G~/H) is transitive on the timelike paths the
lemma follows.

As before, let Exp denote the Exponential mapping of p into G-/H and Ay the linear

transformation (2.5).

LEMMA 9.

det Ax= {w}n1

(@ X, X))t
if @ (X, X)>0. In particular, Exp is regular in the cone @~ (X, X)>0.

Proof. Let as before 7'y be the restriction of (ad X)*top. If n =1, Ty =0and G /H =R;
hence we assume » > 1. Suppose now @~ (X, X) >0 and that ¥ 40 is an eigenvector of
Ty with eigenvalue & There exists an element h€H such that Ad(A)X =c¢X,., where
¢ =Q- (X, X). The relation Ty ¥ =&Y implies

TX Y* — §

n+l pe)

Y*  where Y*=Ad () Y. (2.14)
Writing Y*=yn.1 Xnp1 + ; Yins1 Xiny1 we find easily [X,.1, Y= — ; Yi,nr1 X; and

Tx, .. Y*=,§yi,n+1 X;. (2.15)

From (2.14) and (2.15) we obtain

EWni1 Xni1t+ 22: Yi,n+1 Xini1)= ¢ (% Yi,n+1 Xins1)

This shows that either & =0 (in which case Y is a non-zero multiple of X) or & =¢? (in
which case y,., =0, ¥; ., arbitrary). This shows that the eigenvalues of Ty are 0 and
Q- (X, X); the latter is an (n — 1)-tuple eigenvalue. The lemma now follows from the relation
(2.10).

Suppose now M is an arbitrary complete Lorentz space with metric tensor ¢. For a

given point p€M let 8,(p) be a “sphere” in M, of radius » and center p; that is S.(p) is
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one of the two components of the set of vectors {X|X € M, @,(X, X) =r*}. If Exp is the
Expounential mapping at p we put 8,(p) = Exp 8, (p). For the present considerations it is
econvenient not to speeify which of the two components is chosen. In Chapter IV, § 5 we
shall (for the special cases treated there) make such a choice in a continuous manner over
the entire manifold.

Lemma 10. The timelike paths in G—/H issuing from p, intersect the manifold 8, (p,)

at a right angle (in the Lorentzian sense).

Proof. 8,{p,) is a manifold since Exp is regular in an open set containing S,(p,). Let
p be a point on S,(p,), X the vector p:p and Y a tangent vector to S,(p,) at p. Clearly
Q; (X, Y)=0. To prove the lemma we have to prove

Q7 (d Expx (X), d Expx(Y))=0 (¢=Exp X). (2.16)

(Here we have considered X as a tangent vector to p at p, parallel to p:p.) Using
(2.4) and the fact that 7(g), g€G is an isometry of G~/H we see that (2.16)

amounts to
B~ (4x(X), Ax(Y))=0.

This relation, however, is immediate from the invariance of B-.
It is possible to extend Lemma 9 to arbitrary Lorentz spaces by using the structural
equations for pseudo-Riemannian connections. We do not do this here since the proof in

the special case above is much simpler.
LEMMA 11. Let Z be a non-vanishing tangent vector to S,(p,) at q. Then Qg (Z, Z) < 0.

Proof. 1t suffices to prove this when ¢ = Exp X, in which case
Z=d EXan+1 (Y) with Y = 22: Yi,n+1 Xi,n+1

To prove @, (Z, Z) <0 we just have to prove
Q" (dx, ,(Y), Ax, ,(Y))<O. (2.17)

This however is obvious since T Xni1' Y=Y and Q- (Y, ) <0.
From Lemma 11 it follows that 8,(p,) has at each point a unique Lorentzian normal

direction. Combining this with Lemmas 8, 9, and 10 we obtain

TureoREM 4. The Exponential mapping at pywhich maps p into G~/ H is a diffeomorphism
of the interior of C,, into G—/H. (By the interior of C,, we mean the set of points p €M, such
that pgio 18 timelike).
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On the manifold §,(p,) the tensor — @ induces a positive definite Riemannian metric.

The same applies clearly to S,(0) in the flat Lorentz space R".

THEOREM 5. Suppose the space G—/H has dimension n > 2. With the metric induced by
— @7, 8,(p,) is a Riemannian manifold of constant negative curvature. The same statement
holds for 8,(0) in the flat Lorentz space R™(n > 2).

Proof. Let q, =Exp(rX,,,). The group H acts transitively on 8,(p,) and leaves in-
variant the positive definite metric on 8,(p,). Let H, be the subgroup of H leaving ¢,
fixed. H, is connected since S,(p,) is simply connected. The group Ady(H,) is the group of
all proper rotations in the tangent space to 8,(p,) at ¢,. In particular, Ady(H,) acts transi-
tively on the set of two-dimensional subspaces through ¢, Thus 8,(p,) has constant sec-
tional curvature at g, and, due to the homogeneity, at all points. Since S, (p,) is non-
compact the curvature is non-positive. If n =2, 8,(p,) is flat, but for » > 2 we see from
Lemma 6 that H is semi-simple (actually simple), and S,(p,) cannot be flat.

Let M be a connected manifold with a linear connection X—Vy. The curvature
tensor R of this connection is a mapping of D x D into the space of linear mappings of D
into itself given by (X, Y)—R(X, Y) where

_R(X, Y)=VX Vy—VyVx— V[X.Y]'

Here [ X, Y] is the usual Poisson bracket of vector fields. If x—(x,, ..., #,) is a system of

coordinates valid in an open subset of M the coefficients R/ of R are defined by

0 7 7 b7
Rl—, —) —=2R'y—.
(ax, awk) ox; ; He o

Suppose the connection X—V x is the connection induced by a pseudo-Riemannian metric

Q on M. If q,; is defined as in Chapter I, the coefficients R/ are given by
i
Ry = om  Pm +2 @ D™ =Tl TY™)
7] m

where I'j, are the Christoffel symbols

Oqu Oqu ©Oqu
j o1 1 (¢ qu R L
' ngq (6xk+8x,- e

As usual, we put Rya=2 @ B™u.
m
The pseudo-Riemannian manifold is said to have constant curvature x if the relation

B = % (@ G — Qe 951) (2.18)
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holds on M. For a Riemannian manifold (with positive definite metric) the relation (2.18)
is a necessary and sufficient condition for the manifold to have constant sectional curvature

in the ordinary sense.
THEOREM 6. The space G—/H (n > 1) has constant curvature x = ~— 1.

Proof. The G—-invariant Lorentzian metric induces the canonical linear connection on
the symmetric space G—/H. The curvature tensor at p, is given by R(X, Y)-Z = —{[X,
Y], Z]for X, Y, Zep; see e.g. K. Nomizu [31]. We choose coordinates z;, ..., 2, in a neigh-
borhood of p, such that

0 0
—) =Xui1, [—) =Xin 2<i<n).
(8 xl)p,. o (6331')270 b (Bsvsm)
At p, we have ¢;;,=1, ¢s9= "+ =@un= — 1. The coefficients of the curvature tensor at

P, can be found by routine computation. The result is

Ry =07 8] = 6% 6}

i} (2<i, 7, k&, 1<n).
Rlilj = - ij = Ril]l = - Run = - 5;‘

All other coefficients vanish. It is immediate to verify that (2.18) holds with » = — 1.
Since the validity of (2.18) is independent of the choice of coordinates and since G—/H is

homogeneous, the theorem follows.

G* /H. Positively curved harmonic Lorentz space. Still maintaining the notation from
above, we consider the complexification ¢° of the Lie algebra g—. If we consider ¢° as a
real Lie algebra, it is clear that g* = [y + 4 is a real subspace, and in fact a real subalgebra
due to the relations (2.12). Let G* denote the corresponding real analytic subgroup of the
general linear group G L(n + 1, 0), considered as a real group. H is then a closed subgroup
of @* and we shall now investigate the space G*/H of left cosets g H. A basis for g* is given
by

X, 2<e<n), Xy 2<i<j<n), 1 Xni1, 1 X (2<i<0).
and the bracket operation in g¢* is the ordinary matrix bracket [4, B]=4 B— B A.
The relations
g*=D-+ip, [h,ipl=ip, [ip,ipl=h (2.19)
are obvious from (2.12) and, since H is connected, Adg+ (h)ip < i for each A€ H. Thus
G*/H is an infinitesimally symmetric coset space. To see that G*/H is a symmetric coset

space, let s; denote the linear transformation

S0t (Y1 oo Yrs Yna) >~ Yo — Yo +or — Yns Ynpd)-
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It is easy to see that the mapping o:g—s,98, is an involutive automorphism of
G* and §) is the set of fixed points of do.

LemwmaA 12. The Killing form on g% is given by
B (X, X)=(n—1)Tr (XX)=2(n—1) {2 > @i > ah—anat D @hia)

<ign 2<i<i<n 2<7%n |

in terms of the basis above.

Proof. Let B° denote the Killing form on the complex Lie algebra g°. The forms
B* and B~ are the restrictions of B to g and g~ respectively. If we write X=Y + Z,
Y€y, Zep we have

B (X,X)=B(X,X)=2iB~ (Y,Z)+ B~ (Y, Y)- B~ (Z,%)
—(n—1)Tr(Y+i2) (Y +iZ)

Due to the invariance of the Killing form the quadratic form on 7p given by
Q" (X, X) =9€%+1“‘;x12,n+1, X =xn1 (8 Xns1) +gx,,n+1 (1 Xy n41)

is invariant under the action of Adg+(H) on ip. The tangent space to G*/H at p, can be
identified with the subspace ip of g*. As before Q" extends to a G*-invariant Lorentzian
metric on G@*/H. If n =1, G*/H can be identified with 8'. If n > 1, @' is semi-simple and
from the signature of B, (}(n® —3n + 4) minus signs), one knows that G* has a maximal
compact subgroup of dimension } (r® — 8 + 4). This group is generated by X ;; (2 <¢ <j < n)
and ¢X, ;. The vectors X,; (2 <7 <j<n) generate a maximal compact subgroup of H.
From this it can be concluded that G*/H is homeomorphic to 8! x R*-1 (also for n = 1) but
we shall not need this fact. Lemma 7 extends easily to the space G*/H, and G*/H isa
harmonic Lorentz space. Note that for n = 2, @' /H and G—/H are diffeomorphic to a hyper-
boloid F: —yi+y5+93 =1 such that @, = —@;, if p, and p, correspond to the same
peEF.

Lemma 13. Al the timelike paths issuing from p, are closed and have length 2.

Proof. We consider the one parameter subgroup of @* generated by the timelike vector
i1X,,,. We find
exp ti X, 1 =1+ (cos t—1)(E+Ey 1,ns1)+ (5i08) (2 Xnsia).
The path in 6" /H with tangent vector X, at p, has the form woexp ¢¢X, ., and thisis
clearly a closed path of length 2. (The matrix I —2(Ey; + E, 4 ,,;) does not belong to
H). Since Adg:(H) acts transitively on the set of timelike lines through p,, the lemma

follows.
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Levma 14.

det (4z) = {w}n_l

(@ (Z, 2))?

for all Zeip that lie in the cone Q7 (Z, Z) > 0. From (6) it follows that Exp is regular in the
set 0 <QF(Z,2) <z

The proof is entirely analogous to that of Lemma 8 and will be omitted. Just as before
it can also be proved that Q3 (Z, Z) < 0 if Z is a non-vanishing tangent vector at ¢ to 8, (p,),

(r <z), and Lemma 10 remains valid here if » <z;. Combining these results we have

TuEoREM 7. The Exponential mapping at p, which maps ip into G /H is a diffeomor-
phism of the open set 0 <Q*(Z,Z) <n® into G* /H.
The situation is thus somewhat analogous to the sphere in Euclidean space. The

following question arises. Do the timelike paths issuing from p, all meet at the point
P*=a (I —2(Ey+Enir,ni1))

in G*/H which corresponds to the antipodal point on the sphere? The answer is no and

the timelike paths behave more like geodesics in a real elliptic space.

LeMma 15. Two different timelike paths issuing from p, have no other point in common.

Proof. We can assume that one of the paths is t—>m(exp t¢ X, ;). The other then has
the form t—n (exp t Ad (k) ¢X, ) with h€H. By Theorem 7 it is clear that the only possible
point of intersection other than p, would be the point p* above, occurring for ¢ =s. Then
there exists h, € H such that

(En + By, n1) hl =h (Eu +HEni1,n41) R

We can represent h;, h and A" in the form
n
by =Eni1ni1 —I—i ;Z;laij E;

n
h =E,,1,n11 +i ;lsz By

n
-1
K =Eui1,n1 +1 zlcﬂ B,
,i=

Then the relation above implies

bycyy=ay (I<j<n)
bicy=0 (l<i<n, 1<j<n).
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Also ¢ — ; cii=1 50 ¢;;#+0 and therefore b, =0 for 1<i<n. On the other hand,
by bu—i_zzbn by=0 (1<7y)
so b;,=0. Hence h=E +Euitnin+ 2 by By
1i2

which obviously commutes with ¢ X, ,; this implies that the paths coincide, contrary to

assumption.

TuroREM 8. The space G*/H has constant curvature » = + 1.

The proof is entirely analogous to that of Theorem 6 and will be omitted.

Now let M be an arbitrary harmonic Lorentz space. An important theorem of A.
Lichnerowicz and A. G. Walker [28] states that such a space has constant curvature in
the sense of the relation (2.18). Using a similarity transformation (i.e. a multiplication of
@ by a positive constant) we can assume that the curvature » is 0, 1 or — 1. In particular,
the covariant derivatives of the curvature tensor all vanish, Vx R =0 for all X e D. A tor-
sion-free linear connection with this last property is uniquely determined in a suitable
neighborhood U, of a given point p, by the value R, (see e.g. [31]). Furthermore, a diffeo-
morphism @ leaving invariant a pseudo-Riemannian connection is an isometry if (d®), is

an isometry for some point p. From the quoted result of Lichnerowicz and Walker follows

TurorEM 9. The spaces G°/H, G~ /H and G*/H exhaust the class of harmonic
Lorentz spaces up to local isometry.

It is customary to denote by 80" (r) the identity component of the group of
h n
non-singular real nxn matrices that leave invariant the quadratic form — > 27 + > 22,
1

h+l

S0°(r) is the usual rotation group SO (n). In this terminology we have

G°/H=R"-80" (n)/S 0" (n), G /H=S80" (n+1)/S 0" (n).

CaarTER III

Invariant differential operators

1. A general representation theorem

To begin with we introduce some notation which will be used in the rest of the paper.
Let G/ H be a reductive coset space with a fixed decomposition g = §) -+ m, where Ad(h)m <
m for all e H. We shall in this chapter study the set D (G/H) of differential operators on
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G/ H that are invariant under the action of (; a differential operator D on G/H belongs
to D(G/H) if and only if D™ = D for all ge@. We shall write D (G) instead of D (G/e).
Let L(g) and R {(g) denote the left and right translations of G onto itself given by L(g)-2 =gz,
R(g)-x = xg. For each feC*(G/H) we put { = fon. Then feC” (G) and fis constant on
each coset g H. The set of all such functions will be denoted by C§° (G). Finally let Dy (G)
denote the subset of D (&) consisting of operators that are invariant under right translations
by H, that is DeD,(Q) if and only if D*® = D and D*® = D for all ge@G and all he H.
Each DeD,(G) leaves the space Cf°(G) invariant.

LewMa 16. The algebra D (G/H) is isomorphic with the algebra of restrictions of
D, (G) to C° (G).

Proof. The mapping f—fom is an isomorphism of C*(G/H) onto Cf (G). Let
D,€D, (G); we define DED (G/H) by the requirement (Df)” =D, f for all f€C* G/H).
This gives a mapping ¥: Dy— D of the algehbra of restriction of D, (G) to CF ()
into D (G/H). It is easy to see that W is one-to-one, linear and preserves multiplica-
tion. To see that the image of ¥ is all of D (G/H), let D' €D (G/H). We choose a
basis X,,...,X, of m; Lemma 1 shows that for small ¢, exp (¢, X, +--- +¢, X,) is a
local cross section in G' over a neighborhood N of p, in G/H and the mapping

w(exp (b X, + - +1, Xp)) = (4, ..., 1)
defines a local coordinate system on G/H wvalid in N. There exists by Proposition 1
a polynomial P in » variables such that

D11 = [P(F s ) om0 Kyt 1, ) 1)

ot t=0

for f€ 0* (G/H). Using (D'Y® =D’ we find easily that if g-p,=p

d 4 ) f(g exp (b Xy + - + 1y Xn))] . (3.2)

[D’.f](p)= [P(ga’.'.’a_t; 0

If X0o.1,..., X, is a basis of I, the mapping
g exp (t1X1+ +trXr)_)(t1: --->tr)

is a coordinate system valid in a neighborhood of g€G and the operator Dq defi-

ned by

4 4 ) F (g exp (8 Xy =+ -+, Xr))] (3.3)

[D(,)F](g)=|:P(5—i;:--’a—tn ‘o

for FEC™ (@), is a differential operator on G. Now if R€ H we know (D)™ =D’ so
for f€C0*(G/H)
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(D’ f1(po) = [D f** ] (py)

= [P( 9. . ’8%) fhexp (¢, X+ -+ +1, X,) kfl)]
n ¢

ot ~0
~[P(i —a—)f(ex Ad(R) (t, Xy + -+, X ))]
= atl,...,atn P 1 n <Ap im0

which in view of (3.1) implies
PX,,....,X,)=P(Ad (h)- X;, ..., Ad (h)- X,,) for all hEH,

that is, P is invariant under H. It follows quickly that Dj is invariant under all
R (h), h€ H. Similarly, if z€G
[(Do) * © F](g)=[Do F*“ ] (x™* g)
0 0

= [P (3—t, ,a—t) FEeD (x lgexp (b X, + ...+, X,))] = [Dy F](g)
1 n t=0

so Dy€D,(G). The relations (3.2) and (3.3) imply that
(D'f)"=Dof for fEC™ (G/H)

so the image of ¥ is all of D (G/H).

Now each X €g defines uniquely a left invariant vector field on G. This vector
field is a differential operator on G (again denoted X) satisfying X*©@ =X for all g€ G.
It follows easily that ‘

d
X1l = [d_tf (9 exp tX)] for f€C% (G). (3.4)

t=0

This mapping of g into D(G) sends the Lie algebra element [X, Y] in the operator
X -Y—-Y-X and extends uniquely to a homomorphism & of U(g), the universal en-
veloping algebra of ¢, into D(G). More crucially, & is an isomorphism of U (g) onto D (G).
(See Harish-Chandra [22]). On the other hand, let X, ..., X, be a basis of g and S(g) the
symmetric algebra over g, that is the set of polynomials over R in the letters X, ..., X,.
Harish-Chandra’s version [19] of the Poincaré-Birkhoff-Witt theorem gives a one-to-one

linear mapping 2 of S(g) onto D (G) with the property that for arbitrary elements Y,,... ¥,
1
MY Y, .. Yp)=p—!2 Yoy Yoy oo Yoy (3.5)

where ¢ runs over the symmetric group on p letters. (Note the difference in the notation
for multiplication in S(g) and D (G).) We shall refer to a mapping with the property (3.5)

as “‘symmetrization”.



DIFFERENTIAL OPERATORS ON HOMOGENEOUS SPACES 267

For each g€e@, Ad(g) is an automorphism of g and extends uniquely to an automor-
phism of U (g) which combined with & gives an automorphism of D (G). Denoting this auto-
morphism again by Ad(g) we have

Ad (g)- D=D®®  for DED (G). (3.6)

In fact, since D—>D®® is an automorphism of D (@) it suffices, due to the uniqueness
mentioned, to prove (3.6) when D is a vector field X. But Ad(g)- X =X(X X))@ = X 7@
Now if f is analytic in a neighborhood of g €@, (3.4) implies that

oo N

(g exp tX)=3 L IXf1(0) (37)

for sufficiently small ¢. Using the fact that D€D (G) has analytic coefficients we
obtain from (3.4) and (3.7)

D-X=X-D if and only if DEE®!5 =D for all ¢ (3.8)

Let Z(@) denote the center of D (&); from (3.6) and (3.8) we see (1) that D € Z(G) if and only
if Ad(g)-D =D for all ge@.

If V is a finite dimensional vector space over R, X, ..., X; a basis of V, S(V) shall
denote the symmetric algebra over V, that is the algebra of polynomials over R in the
letters X, ..., X;. Let 4 be an endomorphism of V. A induces a homomorphism of S(V),
say P—A-P where (4-P)(X,, X,, ..., X;)=P(4X,,AX,, ..., AX)). Using (3.5) it follows
that A-1(Z (@) is the subset I(g) of S(g) consisting of all polynomials that are invariant

under Ad(G). In the same manner we obtain

LeMma 17. 271Dy (@) is the set of polynomials PeS(q) such that Ad(h)P = P for oll
heH.

Levma 18. D(G) =D (@) +A(S(m)) where the sum is a direct sum of vector spaces.
(Here D (G)Y) denotes the left ideal in D (G) generated by §).

Proof. To begin with we shall prove by induction that for each P€S(g) there
exists Q€8 (m) such that A (P-Q)€D(@)). This is obvious if P has degree 1 and we
assume it true for all P€S(g) of degree <d. To prove it for P of degree d we can
assume P has the form Xf7'... X, e+ .- +e,=d where X;, ..., X, is a basis of g
such that X;€m for 1<i<n and X,;€h for n+1<j<r. If ey 1 =---=¢,=0 there is

nothing to prove; otherwise A(P) is a linear combination of terms of the form

() Equivalent result is given in Harish-Chandra [20] Cor. of Lemma 11 and in I. Gelfand [12].
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X, Xe, ... Xy, where for some i, Xuief). Let 8,(g) denote the set of homogeneous

d
polynomials in S(g) of degree e and put Dy (G)=2 (> 8. (g)). Then
0

Xy Xy oo X)) = (X X, - X X,,X.,)€Da1(6).

%51 CATREE

Therefore, there is an element D€D,;_; (G) such that
AP)=D mod (D(@)h).

Using the inductive assumption we obtain a Q€8 (m) such that A(P—@Q)€D(G)]) as
desired. To prove the nniqueness we note first that if PeSlg), fEC™(Q)

A (P)fl(e)= [P (aitl ' t)]‘(exp X+ +t. X ))] Y (3.9)

In fact, if f is analytic on a neighborhood of e in @, (3.7) shows that for sufficiently

small ¢,
Floxp (6 Xy, X)) = 3 o[l X+ oo+, X1 (0
0
1 M! -
AT, S SR LX) )

Tmem my!...m,!

Il
) M8

Comparison with the usual Taylor formula yields (3.9). Now, by Lemma 1, exp
(¢, Xy + - +1, X,) defines for small ¢ a local cross section in G over a neighborhood
N of p, and (¢, ...,#,) are local coordinates on N. If P€S(m), P40 we can choose
f*=f @, ..., t,) of class C® such that

0 0
Pl—,...,—I| 1" 0
[(%”M%Lﬂ*

and there exists a function f€C§ (G) such that
f(exp (t Xl Tttt Xn))=]‘* (B1s o5 tn)

for sufficiently small ¢;. From (3.9) we have

umnw=k(ﬁ aywme+ +u&ﬂ

o8’ ot t=0
=[P(~3~ a)f(ex (t, Xy + e+t X))] +0
at,’ "ot Pt manll| T

Since each operator in D (@)}) annihilates all of C§° (G) we see that A (S (m)) N D (G))h=0.

This proves Lemma 18.
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LemMma 19. Each P €S (g) which is invariant under Adg (H) is congruent mod 1-1(D(G) )
to a polynomial in S(m) invariant under Adg(H).

Proof. By Lemma 18, P =@ + @, where Q€S(m) and 1(Q,)eD () ). For each hecH
we obtain P =Ad(k)-Q + Ad(h) @, and by (3.5) and (3.6), A(Ad (h)-Qp) =A(Q,)*™. Now
the mapping D— D*® is an automorphism of D (G) leaving }) invariant. Hence it leaves
D(@) Y invariant and A(Ad (2)-Q,) €D (G)}. On the other hand Ad (%)@, €S (m) and Lemma
19 follows from the uniqueness statement in Lemma 18.

Let I(g/l) denote the set of polynomials in 8(m) that are invariant under Adg(H).
We define a mapping of I(g/4) into D (G/H) as follows. If PeI(g/}), then A(P)eD,(G)
and the restriction of A(P) to CF (G) gives by Lemma 16 rise to a well-defined operator
D,eD(G/H). This mapping P—> Dy is linear. It maps I(g/f)) onto D (G/H) because Lemma
19 shows that if P€S(g) is invariant under Adg(H) there exists a Q€I(g/f)) such that
A(P) and A(Q) have the same restrictions to C§°(®). Finally the mapping P— Dj is one-to-
one. In fact, let P€I(g/Y), P+ 0. As shown in the proof of Lemma 18 there exists a function
feCF (G) such that [A(P)f](e) 0. The following theorem gives the desired representation
of D(G/H).

TEEOREM 10. Let G/H be o reductive coset space, g =Y +m, Ad(h)(m<mfor heH.
Let X, ..., X, be a basis of m, and let f =f om for f€C™ (G/H). There is a one-to-one linear
correspondence Q— Dg between 1(g/Y)) and D (G/H) such that

[Dof](p)=[Q(a a)f(geXp(thﬁr---Jrrann))]

a—ﬁ,...,a; o

where p=mn (g). Dy is obtained from @ (X,, ..., X,) by symmetrization (followed by the
mapping ¥V from Lemma 16).

ReMARk. If P=Xj ... X;r then (3.5) shows easily that
AP)=X7 X3 ... - X7r+2(Q)

where @ is of lower degree than P. It follows that if P,, P, € I (§/)) then Dy p,= Dp Dp,+ D
where the order of D is less than the sum of the degrees of P, and P,.

CoroLLary If I(g/f) has a finite system of generators, say P, ..., P, and we put

D;= Dy, then each D can be written
D=3 ot,..n,Di*... D" where an,.n, €R.

In fact, suppose D= D, where P€I(g/fj). Then P can be written
P=Zﬂn,...nl P:{h Plnl» ,Bn,...nIER-
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If P ... P{" is the term of highest degree, the preceding remark shows that
D-g...- DN

is of lower order than D and the corollary follows by induction.

2. Invariant differential operators on two-point homogeneous spaces and on
harmonic Lorentz spaces

TaeorREM 11. Let M be a two-point homogeneous space. The only differential operators
on M that are invariant under all isometries of M are the polynomials in the Laplace- Beltrami

operator A.

Proof. If dim M =1, M is isometric to the real line or to a circle and in both cases
Theorem 11 is obvious. We can therefore assume that dim M > 1. From Chapter II, § 3
we know that M is isometric to a homogeneous space G/K where K is compact, G is a
connected Lie group of isometries which is pairwise transitive on ¢//K. The Lie algebra
g of G can be written g =¥ + m where f is the Lie algebra of K, the group Adq(K) leaves
m invariant and acts transitively on the directions in m. Adg; (K} leaves invariant a positive
definite inner product on m; let X, ..., X, be an orthonormal basis with respect to this
inner product. Each DeD(G/K) has by Theorem 10 the form D, where Pel(g/f). Ex-

plicitly, we write P = 3 ar,...r, X3....X}* and consider the corresponding polynomial
function P* on m given by P*(X) =3 ar,. ., .... 2 if X =3, X,. Since Pel(g/f)
we have P*(Ad(k)X)=P*(X) for all k€K, and it follows that P* is constant on each

sphere around the origin in m. Thus P* can be written

N

P* (X)=§ak(x%—l—~--+x3,)" where a;, €R

N

and P=3a, (X3+ -+ X2)
1

Let A denote the member of D (G/K) that corresponds to the invariant polynomial
N

X3+ -+ X% TFrom the remark following Theorem 10 we know that Dp— > a, A*= Dy
1

where @ belongs to I(g/k) and has degree lower than P. Theorem 11 now follows by
a simple induction.

It is to be expected in view of Theorem 11 that potential theory on two-point homo-
geneous spaces parallels potential theory in Euclidean spaces very closely. This agrees also

with the fact that two-point homogeneous spaces are harmonic spaces and as Willmore
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[37] has shown, harmonic spaces can be characterized by the fact that the usual mean value
theorem for solutions of Laplace’s equation Au = 0 remains valid.

We shall next consider the case of a harmonic Lorentz space M with metric tensor Q.

THEOREM 12. The algebras D(G°/H), D(G/H and D (G*/H) consist of all polyno-
maals in the Laplace- Beltrami operator [].

It is easy to adapt the proof of Theorem 11 to the present case. The essential point
is that Adg(H), (G =G G~ or G7), acts transitively on each component of the set
{Xem|X=+0, Q(X, X) =c}. Here @ is the quadratic form on m invariant under Adg(H).

3. The case of a symmetric coset space

The assumption that M is symmetric also has important consequences as Theorem
13 shows. This theorem is essentially known from Gelfand’s paper [11], and in [34] A. Sel-

berg gave a very direct and transparent proof.

THEOREM 13. Let G/K be a symmetric coset space, K compact. Then D(G/K) is com-
mutative.

In the special case when G is a complex semi-simple Lie group and K is a maximal
compact subgroup, the algebra D (G/K) can be described more explicitly. It is known that
K is connected and the Lie algebra g of G is the complexification of ¥, the Lie algebra of
K. We express this by the relation g =f + ¢ f where g and f are considered as Lie algebras
over R. As is well known G/K is a symmetric coset space and thus D (G/K) is commutative.
Let I(f) denote the set of polynomials in S(f) that are invariant under the adjoint group
of K. Then it is easy to see that the mapping ¢ X—X of 7 f onto f induces an isomorphism
of I(g¥/) onto I(f). The algebra I(f) has significance in topological study of the group K
(see e.g. C. Chevalley [8]) during which the following results have been proved. Let 1 be
the rank of K (dimension of the maximal tori) and let p, be the indices occurring in the

Hopf-splitting of the Poincaré polynomial of K

> B, t"=iH (14 %).

=1

Then I (f) is generated by ! algebraically independent polynomials P,, ..., P; of de-
grees § (p;+1), =1, ...,1. The corresponding operators Dp, ..., Dp, form a system of
generators of D (G/K).

18 — 593805. Acta mathematica. 102. Imprimé le 16 décembre 1959
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CHAPTER IV

Mean value theorems

1. The mean value operator

Suppose now that G is a connected Lie group and K a compact subgroup. We fix a
G-invariant Riemannian metric tensor @ on G/K, and denote the distance function by d.
There exists in this case a finite system D2, ..., D' of generators() for D (G/K). Let d k denote
a normalized invariant measure on K. If x is the natural projection of G onto G/K we
put as before f = fozx for each f€C™ (G/K). Let x be a fixed element of @. The function

g-»ff(gkx)dk

is constant on each coset gy K and determines a C*-function on G/K which we eall
M*f. M? is therefore the linear operator on C*(G/K) given by

[M* ] (p) =hjf<gkx)dk it 7 (g) = p.

The set {n(gkx)|ke K} is the orbit of the point 7(gx) under the group g Kg—! and lies on
a sphere in /K with center n(g). [M*f](p) is the average of the values of f on this orbit.
In the case that @ is pairwise transitive on G/K, M* is the operation of averaging over a
sphere of fixed radius equal to d (7 (e), 7z (x)). Next theorem shows that M can be represented
as a function of the operators D, ..., D'. This was proved by Berezin and Gelfand in [2]
for the case when G/K is symmetric. Their proof, which does not seem to generalize to

the non-symmetric case, is different from ours, which was found independently.

THEOREM 14. Let peG/K and let U be a neighborhood of p. Suppose X € is so small
that U contains the sphere with center p and radius d(m(e), m(exp X)). Then there exists a

neighborhood V of p, V < U, and certain polynomials without constant term, say p,, such that

[0 f] (Q)=f(Q)+;[Pn (DY, ..., DY {l(g)
for each f analytic on U and each q€V.

Proof. Choose g,€G such that 7 (g,) = p, and let x =exp X. Then n(g,kz)eU for all
ke K, and there exists a neighborhood U* of g, in @ such that m(gkx)eU for allge U*
and all keK. Put V =z (U*). Now suppose f is analytic in U and ge V. Select g €G such
that m(g9) = ¢. Then

(*) This is also proved in [34].
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[M* ] <q>=ff<gkxk-l)dk=l{f<g exp Ad (k) X)dk

J

Let X,, ..., X, be an orthonormal basis of I8 and write Ad(lc)=r¥k,-Xi where
=@, (X, X) and Sk =1. Put

which by (3.4) is equal to
1
il

[(Ad (k) X)"[1(9)d (4.1)

o\ 8

Aty ... t)=F(g exp ((, Xy + -+, X0).
Then by (3.9)

(AdE)X)"Ag [( + 1k, i)mf*(tl, t,,)]
oty =0

and (4.1) is just the ordinary Taylor series for f*(rk, ... rk,). Thus the series (4.1) converges
uniformly in % so the summation and integration can be interchanged; also (Ad{k)X)" =
Ad (k) X™ and the operator [Ad(k)- X™ dk belongs to Dy (G). By Lemma 16 this corresponds
to an operator D™ ¢ D (G/K) which can be written p™ (D3, ..., DY) as we have seen, and the
theorem follows.
We shall now generalize the well-known mean value theorem of Asgeirsson 1] for

solutions of the ultrahyperbolic equation

& u Fu_ Pu & u

ot T et o

which states that each solution w (2, ..., s ¥y ..., Yn) =u (X, Y) satisfies the relation

[ w(X, Y)de, (X)= [ u(X,, V)dw(T)
Sy (Xo) S (Yo)

for every X,, Y,€R" Here d w, stands for the Euclidean area element of the sphere §,.

DEerINiTION. Let u be a function in C*(GQ/K x G/K). We say u is of slow growth if
D,u and D,u are bounded for each DeD (G/K).
THEOREM 15. Let u be a function on G/K X G/K which is either of slow growth or ana-

lytic. Suppose u satisfies the differential equations
Dyu=D,u forall DeD(G/K) (4.2)
Then iu=Miu forall z€G (4.3}
(Here the subscripts 1, 2 on an operator indicate that it operates on the first and second variable

respectively.) Conversely, if (4.3) holds for a function of class C*, then (4.2) follows.
18* — 593805
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Proof. We first prove the theorem under the assumption that « is analytic (but not
necessarily bounded). If (4.2) holds, it follows from Theorem 14 that (4.3) is valid at least
if x lies in a suitable neighborhood of e in G. Since however both sides of (4.3) are analytic
in «, (4.3) holds for all z. On the other hand, if u belongs to C* (G/K X G/K) and @ is
defined by (g, ¢') = u(n(g), 7w (g')) then 2€C*” (G X @) and the relation (4.3) can be written

Jﬁ@k%gﬁdk=gd@,yk@dk (4.4)

We take now an operator 7'€ D, (g) and apply to both sides of (4.4) considered as functions
of z, and put x = e. It follows that
[T,@1(g, ) =1T,41(g, 9')
which is equivalent to (4.2).
Let us consider the case when % is constant in the second argument, i.e., di(g, ¢') =
%(g, e) and put §(g) =7(g, e). The algebra D (G/K) always contains an elliptic operator,
e.g., the Laplace-Beltrami operator with respect to the G-invariant metric. By S. Bernstein’s

theorem, a function v that satisfies the equation
Dv=0 (4.5)

for all D that annihilate constants, is automatically analytic. Using (4.3) we see that each

solution of (4.5) is characterized by the mean value relation
M*v=w» for all xeG.

This result was proved somewhat differently by Godement [15]. It generalizes the mean
value theorem for harmonic functions in R". Earlier Feller [10] had extended this theorem
to certain non-Euclidean spaces in connection with mean value theorems for more general
elliptic equations. Whereas the assumption of analyticity is no restriction in Godement’s
theorem, this is not so in Theorem 15 where the most interesting solutions are the non-
analytic ones.

Let dg denote a left invariant Haar measure on ¢. The convolution f,% f, of two

functions f, and f, on G is defined by

fr*fs (@)= Gf h)f(y o) dy

whenever this integral exists. We shall use the following lemma to prove Theorem 15 in
full generality.
LEMMA 20. Let f be a bounded continuous function on G, & a number >0 and C a compact

subset of G. Then there exists a function ¢ on G such that
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pxf is analytic {4.6)
| (@*f)(x)—f(x)|<e forall x€C. 4.7)

Proof. If @ is compact the lemma is an easy consequence of the Peter-Weyl theory
and it can also be proved directly for a commutative Lie group. The general case is handled
by using the fact that as a manifold @ is analytically isomorphie to a product manifold
K X N where K is a compact subgroup of ¢ and N is a submanifold of G analytically
isomorphic to a Euclidean space.

An analogous procedure is followed in Harish-Chandra’s theory of well-behaved
vectors (see Harish-Chandra [20] and the generalization given by Cartier-Dixmier [6]).
As we shall indicate, Lemma 20 is essentially contained in the theorem which states that
the well-behaved vectors are dense in the representation space.

Let 7z denote the left regular representation of G' on the Banach space L' (#) of func-
tions on G that are integrable with respect to left invariant Haar measure, that is [7 (x) 2] (y)
= h(z1y) for heL'(G). If h is a well-behaved vector in L!(G) then so is 7z (x) % and from

Lemma 18 in [20] it follows that if f is bounded and continuous on @, the function
z—[f(y) [ (@) ] (v) dy
G

is analytic on @ and the function 4 f likewise. Now to prove Lemma 20 we select a conti-

nuous function v on G of compact support such that
|y*f () —f(x)] < % for z€C;

next we select a sequence (@,) of well-behaved vectors converging to y. Then the sequence
(@, f)(g9) converges to (y*f)(g) uniformly on G and a suitable @y satisfies (4.6) and (4.7).
Now we can finish the proof of Theorem 15. Let u be a solution of (4.2) of slow growth.

The function % on G X @ introduced earlier satisfies
T,4=Ty for each T €D, (G).

If ¢ belongs to C* (@ x G) and L' (G x @) the convolution

(p*u) (@, @)= [ @y, yo) Wy 2y, y2' 2o) dy, dy,

Gx G

exists, and since % is of slow growth
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and therefore
T, (pxua)="T,(px%) forall TE€D(G). 4.8)

The function ¢x#, being constant on left cosets mod (X x K} determines a funetion
v€C” (G/K x G/K) such that
v (7 (9), m(g') = (p*@) (9, §')
and D,v=D,v forall DED(G/K).
1f we choose ¢ in accordance with Lemma 20, v is an analytic solution of (4.2), and a suitable

sequence of such solutions approximates » uniformly on compact subsets of G/K and (4.3)

follows.

RemARK. The relation M*» = v which characterizes the solutions of (4.5) can be writ-

ten differently. Let A have compact support on G and satisfy the conditions:
(i) h(xk)="h(x) forall z€G and all k€K

(i) [A@)dz=1.
G

The relation M®v=v for all x is then equivalent to
T*h=17
for every h with the properties (i} and (ii). This is easily proved by using the integration

theory on homogeneous spaces and shows how the operators in D (G/K) appear as infinite-

simal generators for the convolution operators f — f%% considered as operators on C* (G/K).

2. The Darboux equation in a'symmetric space

We shall now suppose G/K is a symmetric coset space and K compact. Here the

algebra D(G/K) is commutative; we shall give certain consequences of this fact.
THEOREM 16. For each z€G, M* commutes with all the operators in D(G/K).

Proof. It is clear from Theorems 13 and 14 that if f is analytic on /K and DeD (G/K),

then
DM*f=M*Df 4.9)

if « is sufficiently close to e in G. However f and Df are analytic so (4.9) holds for all z€G.
Let T be the operator in Dy(&) that corresponds to D according to Lemma 16, and N*®
the operator on C*° () given by
[N F)(g)= [ F (gkx)dk.
K
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We shall now prove (4.9) for feCY (G/K) and fixed x €. The arguments used in the proof
of Lemma 20 show that there exists a sequence g, of functions on @ such that ¢,*f,
@, % TN*f and ¢@,% Tf are all analytic functions on G and the sequences (g,%f),
(@n* TN*J), (po* Tf) converge to the functions f, TN*f and Tf uniformly on ¢ Using

the obvious relations

@u* T f=T (. %]),

(4.9) follows easily for each feC¢°(G/K). Finally, to prove (4.9) for each fe¢C*(G/K), one
just has to observe that for each compact subset M of G/K there exists a function f,,€C&
(G/K) which agrees with f on an open set containing M.

The following corollary is proved in [2] in a different way.

CoROLLARY. Let fEC™(G/K) and put

V (, g)=kff(gk:v)d,ic.

Then V satisfies the *“ Darboux Equation”
T, V=T,V for each T €Dy (G).

In fact, write 7f=F. Then

[TV, 9)=[ F(gk=z)dk=[N"Tfl(g)=[T N [1(g) =T, V] g).
k

The zonal spherical functions ¢ on G/K introduced by E. Cartan and I. Gelfand are
by definition the (analytic) eigenfunctions of all DeD(G/K) which are invariant under
K, that is ¢"® = ¢ for all ke K. Since M* (for x near ¢ in G) is a power series in the generators
D, ..,D, M*=P(D ..., D", itis clear that ¢ is an eigenfunction of M*, M<p =2A¢p.
It follows that if ¢ is not identically 0, then ¢ (m(e)) +0 so we assume the zonal spherical

functions normalized by @ (7 (e¢)) = 1. These functions then satisfy the functional equation
M =g (n(@)e.

On the other hand, there exist constants A', ..., ' such that D'¢p=A4¢. Hence
Mo=P@H, ..., Vg so
() =P@, .... 1.

This shows that ¢ is determined by the ordered system (A2, ..., A") of eigenvalues. Formally

M? is a zonal spherical function of the operators Di, ..., D\
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3. Invariant differential equations on two-point homogeneous spaces

We shall now combine the previous group theoretic methods with special geometric
properties of two-point homogeneous spaces. This leads naturally to more explicit results.

We shall now assume that M is a two-point homogeneous space, and we exclude in
advance the trivial case when M has dimension 1. Let G be the connected component of e
in the group of all isometries of M. Then M can be represented G/K where K is compact
and G is pairwise transitive on M. D(G/K) consists of all polynomials in the Laplace-
Beltrami operator A. We see also that the mean value operators M* and M? are the same
if d(n(e), m(x)) =d(n(e), n(y)) and consequently we write M" instead of M* if r =d (5 (e),
7{x)). Let p be a point in M, 8,(p) the geodesic sphere around p with radius r, d w, the

volume element on 8, (p) and A (r) the area of 8, (p).
LeMMA 2). In geodesic polar coordinates around p, A has the form

& 1 dds
A=Etdmarar A

where A’ is the Laplace-Beltrami operator on S,(p).

Proof. Let the geodesic polar coordinates be denoted by r, 6,, ..., 8. Due to the fact
that the geodesics emanating from p are perpendicular to S,(p) the metric tensor must
have the form )

ds®=dr? +4,n;§1 gi; 40; d6;

and the Laplace-Beltrami operator is given by

& 1aVgo 123( . a)
N T AT T TR FTH LT

Since » and A are invariant under the subgroup of G that leaves p fixed, Ar is also invariant

under this subgroup which acts transitively on the geodesics emanating from p. Hence

1aVy
V; or

is a function of r alone so

log Vg =o(r)+ B0y, ..., On)
and 1/; = g% BB By 9}

On the other hand, the volume of 8, (p) is given by

V(r)=[Vgdrdb,, ..., d0n_,
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and thus we find for 4 (r)=dV/dr the formula
A(ry=[Vgdb,, ..., d8n_1=Ce*® (C=constant)

1aVg 1 dA
and g - T,
Vg or A(r) dr

The lemma now follows by observing that the induced metric on 8,(p) is given by

n—1
dS%= Z Gy dG, dB;
1,7=1

The next lemma, which also is proved by Ginther [16], is just a special case of the corollary
of Theorem 16. '

LemMa 22. Let feC™(M) and put F(p,q)=[M"f] (p) i} p,q€M, d(p, q) =r. Then
A F=A,F.

We shall now state and give a different proof for the extension of Asgeirsson’s theorem
to two-point homogeneous spaces. The proof is based on an ingenious method used in
Asgeirsson’s original proof ([1], p. 334).

THEOREM 17. Let M be a two-point homogeneous space and let u be a twice continuously

differentiable function on M x M which satisfies the equation

Aju=Au (4.10)
Then for each (xq, yo)EM X M
[ w@g)de @)= [ wiz,y)do @) (4.11)
8, (20) Sy (o) :

Proof. We assume first M is non-compact. From Theorem 3 we know that M is iso-
metric to a symmetric Riemannian space G/K. Adg(K) is transitive on the directions
in the tangent space to G/K at 7 (e), in particular G/K is irreducible. As we saw at the end
of the proof of Theorem 3, geodesic polar coordinates with origin at a point p € M are valid
on the entire M.

Now, suppose the function w satisfies (4.10) and let (z,, y,) be an arbitrary point in
M x M. Consider the function U defined by

Ulr, s) = [M1M3u](xy, yy) forr,s=0

We view U as a function on M X M by giving it the value U(r, s) on the set 8, (x5} % S;(y,)-
Since A commutes (1) with M" we obtain from (4.10) and Lemma 21

(1) Theorem 16 shows that A and M’ commute when applied to C*-functions. In the same way
it can be shown that they commute when applied to C*.functions.
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Z/

/]
v

o

U 1 ddoU &U 1 dA4aU

arr " A(r) dr or o9s®  A(s) ds ds

If we put F(r,s)=U(r, s)—U (s, r) we obtain the relations

&EF 1 d4AoF &F 1 dASF
o VA dr ar o8 A(s) ds s (4.12)

Fr, s)=—F (s, r).

After multiplication of (4.12) by 2 A (r)2F/9s and some manipulation we obtain

L0 [(eF\* oF 2 oFoF\ 24(r)dd ﬂ‘z__
_A(7)5:9[(—37) +(8s)]+28 (A()ar 83) A(s) ds (63) =0. (413)

Now consider the line MN with equation r + s = constant in the (r, s)-plane and form the
plane integral of (4.12) over the triangle OMN, (see figure), and use Green’s formula. If
0/0n denotes derivation in the direction of the outgoing normal and dl is the element of

arc length, we obtain

F\* (oF FaF 24(r)dA (oF
fl-ao [(5) + (GO | oot S G | [0 50 (5) araemo
OMN

, (4.14)

or oOs 1 1 oF ¢oF
On OM-(a‘n’ %)“(Vz’ _ﬁ)’ F(r,r)=0s0 — oy +E"O'

or 08 1 1
OHMN.(a—ﬁ! a—n)_(l/_é’ V;)

On ON: A(r)=0.

From (4.14) follows the relation

1 oF oF 2A4(r)dA(oF B
L et [ [AOLA( aramo e
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Now Lemma 3 shows that d 4/ds=0 for all s and (4.15) shows therefore that

which is the directional derivative of F in the direction MN, vanishes on MN. Consequently
F=0so0 U is symmetric. In particular U (r, 0) = U (0, r) and this is (4.11). If M is compact
the proof above fails since 4 (r) is no longer an increasing function of . To show that (4.11)
is valid even if the solution % is not analytic we resort again to Lemma 20 to approximate
u by analytic solutions. Since M is compact this requires only the Peter-Weyl theory and
not the theory of well-behaved vectors.

We recall now some facts from [4] about the behaviour of the geodesics on M = G/K.
Let p, == (e) and dim M = n. If M is non-compact Exp maps M, (= m) homeomorphically
onto M. If M is compact all geodesics are closed and have the same length 2¢. The mapping
Exp maps the ball 0 <@, (X, X) <¢® onto M and is one-to-one on the open ball 0 <@,
(X, X) <0®. Except for the real elliptic spaces, Exp becomes singular on the sphere @, (X,
X) =o? and thus the set §,(p,), which Cartan calls the antipodal variety associated to Po>
will in general have dimension inferior to » — 1. For the various n-dimensional two-point
homogeneous spaces the dimension of S,(p,) is given in [4] as 0, n — 1, n —2, n —4 for
the spheres, real elliptic spaces, hermitian elliptic spaces and quaternian elliptic spaces
respectively. For the Cayley elliptic plane S,(p,) has dimension 8.

The following theorem gives a generalization of the Poisson equation to two-point

homogeneous spaces. Consider the function

@(r) = f—1~dt where {a=¢ if M is real elliptic

4 a>0 if M is non-compact
At
® {0 <a<g¢ otherwise

a

We define the function ¥ by
Vi(p, @) =) if d(p,q) =r.

In view of Lemma 21, V" satisfies the equations A, ¥ = A, ¥ = 0 and as the following theo-

rem shows V" can be regarded as a fundamental solution.

THEOREM 18. Let f be a twice continuously differentiable function on M with compact

support. Then the function u given by (dq is the volume element on M)

w(p)=[1@)¥ (0, 9)dg
M
satisfies the ““ Poisson equation’

Au=f if M is non-compact (4.16)

Au=f—M°f if M is compact. (4.17)
18*} — 593805
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In the compact case the compensating term [M°f](p) is the average of f on the anti-
podal variety associated to p. In the case when M is a sphere, M°f =foA where 4 is the
antipodal mapping.

We first prove (4.16). Since ¢ (r)=0(»*"") as r—0 the integral ff(q)@p(p, g)dg

is convergent and

w(@)=[1@)¥ (0, )dg=[dr [ {@¥(p, 9)dew,(qg)
M

0 S, (0)

oo

- Of A @) (M fl(p)dr.
We apply A to this relation and make use of Lemma 22. Then we obtain
[Aw)(p)= Of @ () A [AM fl(p)dr= Oj @ (r) A (r) A (M f1(p))d .

Now we keep p fixed (and omit writing it in the formulas below) and use Lemma
21. Then

7 P M f 1 dAdoM'§f
Au—of(p(r)A(r){ oF T Am) ar or }dr

o0 0

. 0 . , O ..
=l:_r)r(1) [@(r)A(r)é;M’f] —l:_I:‘(l)f(p (r)A(r)%M fdr.

Since lim ¢ (e) A (¢)=0 and ¢’ (r)A(r)=1, the relation (4.16) follows.
&0
We next consider the case when M is compact. Here @ (r)—>co as r—o¢ (except
for the real elliptic space). Nevertheless 4 (r)p (r) is bounded as r—o¢ and the integral

ff(q)‘P'(p, g)dq exists. As before we obtain

[+2

w(p)=[ A ) [ M fl(p)dr.

0

Using Lemma 21 and 22 it follows that

2 15T 7
EMfF 1 @aMf}dr

Auz_’.‘p(”A("){ o " A(r) dr or

0
" c—& o—& .
:Jixnlo [qy(r)A(r)a]aWr f]_siigo (p'(r)A(r)aJaW fdr.

If M is real elliptic,
lim 4(r)#+0 and lim ¢ (r)=0
>0

=0
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due to the choice of a. If, on the other hand, M is not a real elliptic space

lim 4(r)=0 and lim ¢ (r)= co.

r—>C =0

Now ¢ (r) A (r)=1 and lim ¢(g) A (g)=0 as ¢ tends to 0. To determine lim ¢ (r) 4 (r)

as r converges to ¢ we observe that 4 (r) is given by the formula

A@r)= [ det (Ax)de, (X) 0=r<o, (4.18)
X]|=r
where Ax is the linear transformation (2.5). Since det (Ax) is invariant under the

group Adg(K) it is a function of r only and
A(r)=det (Ax)r" ' Q,

where (), is the surface area of the unit sphere in R*. We can use this last formula to continue
A(r) to an analytic function in an open interval containing » = ¢. Consequently A (r) has
the form A (r) = (r — )"k (r) in such an interval. Here m is an integer and % (v) is an analytic
funection, % (g) 0. This being established, the relation

lim ¢ (r)4(r)=0

r—=c

follows easily. We find therefore, whether M is real elliptic or not,

Aw=—Mf+M°f=f— M°}.

4. Decompeosition of a function into integrals over totally geodesic submanifolds

The formula of J. Radon determining a function on R” by means of its integrals over
hyperplanes has had considerable importance for partial differential equations, particularly
in G. Herglotz’ treatment of hyperbolic equations with constant coefficients (G. Herglotz
[26], F. John [27]). We give below an extension of Radon’s formula to spherical and

hyperbolic spaces. The proof seems to be new in the Euclidean case.

DEriniTION. Let 8 be a connected submanifold of a Riemannian manifold M.
8 is called totally geodesic if each geodesic in M which touches S lies entirely in S.

Let M be a simply connected Riemannian manifold of constant curvature » and dimen-
sion » > 1. Such a space is either a hyperbolic, Euclidean or a spherical space. It is well
known that for each integer d,0 <d <n there exist totally geodesic submanifolds of M
of dimension d. Using the notation from the end of Chapter II, M can be written

S0 (n+1)/80 (n), R"-80(1)/80 (), 80" (n+1)/S0 (n) (4.19)
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according as x is positive, 0 or negative. Let M, ;(p) denote the set of d-dimensional totally
geodesic submanifolds of M passing through some fixed point p. Since 0 (n) acts transi-
tively on the set of d-dimensional subspaces of R"* we see that M, ,(p) can be identified
with the coset space 0(n)/0(d) X0(n —d). In particular M, 4(p) has a unique nor-

malized measure invariant under the action of 0(n).

THEOREM 19. Let M be a simply connected Riemannian manifold of constant curvature

» and dimension n > 1. For d even, 0 <d <, let Q,(x) denote the polynomial
Qa@)=[x—xd—1)n—d)[t—x(d—3)(n—d+2)] ... [t—x-1(n—2)]

of degree d/2. For each function f€CX (M), let [1;f] (p) denote the average of the values of
the integrals of f over all d-dimensional totally geodesic submanifolds through p. Then

Qu(A) Luf =y f if M is non-compact
Qu(A) If =p(f +fo A) if M is compact.

In the latter case M =8" and A denotes the antipodal mapping. The constant y equals

n—d
°(3)
Proof. We consider first the non-compact case, M =G/K, K =80(n). In geodesic

polar coordinates which are valid on the entire M the metric is given by

(—4m)te.

sinh? (r V — %)

ds®=dr’+ e
(rV —2)?

r2do?

where dg® is the fundamental metric form on the unit sphere in R". Let p, = (e) and

choose g such that g-p, =p. If K is a fixed element in M, ;(p,) we consider the integral
Fy=[f(gk-q)dg k€K
E

where dgq denotes the volume element in E. If K is the subgroup of K that transforms #
into itself then F(kk,) = F (k) for kyeK,; consequently the average [I,f](p) = [ F(k)dk
K

where dk is the normalized Haar measure on K.

[Idf](p)=1£dkff(gk-q)dq

=£dq}!f(gk-q)dk#[M'f](p)dq
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where r =d(p,, q). Now we make use of the fact that E is totally geodesic. Let y be an
E-geodesic in E; let I" be an M-geodesic touching y at p. Then I'< F and due to the local
minimizing property of geodesics, I' =y. It follows immediately that F is complete and
thus two arbitrary points ¢;, ¢,€E can be joined by a minimizing E-geodesic arc yqgq,.
Let I'q, be an M-geodesic touching y,,, at g;. Then by the previous remark y,,, < T,
Since two arbitrary points in M can be joined by exactly one geodesic the same is true of
E and the distance between ¢, and g, is the same whether it is measured in the E-metrie
or the M-metric. In particular £ and M have the same constant sectional curvature .
Let 877 and S;~! be geodesic spheres in E and M respectively with radius . Their areas

are ol
Ag ()= [smh (ﬂ— x)] Q,
V—x

sinh (r I/_—_%)]n_lQ

a0=| =

From this we find [Lafl(p)= fAé (N[ M fl{p)ydr (4.20)
0

Now we apply A to both sides of (4.20) and make use of Lemma 22;

oo oo

[AL:f)(p)=[ Aa () [A M fl(p)dr=[ Ag(r) A, (M f](p)) dr.

0

We shall now keep p fixed and write F (r)=[M"f] (p).

LEMMA 23, Let m be an integer, 0 <m<n=dim M. Put A=V — . Then

fsinh'" ArA,Fdr=(—2)(n—m—1) [mf sinh™ ArF (r)dr+ (m— l)fsinh"“zlrF(r)dr] .
) o ]

If m=1 the term (m —1) f sinh™ 2 17 F (r)d r should be replaced by %F(O).
i)
Proof. Using Lemma 21 we have

r s 1m F < m & F 1 dAdF
fSlnh ).rA,Fdr~fs1nh }ﬂ‘(g;z—‘i'm—ﬂﬁ) r
0 0

and the result follows after repeated integration by parts. From Lemma 23 we see that
19 — 593805. Acta mathematica. 102. Imprimé le 16 décembre 1959
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[Ay + A2 (n—m—1)] | sinh™ 2 [} f] (p) dr
0
= (=) (m—m—1)(m—1) [sinh™ 2 ir [M" ] (p)dr.
0

Applying this repeatedly to (4.20) the first relation of Theorem 19 follows.
If M is compact it is a sphere and we can proceed in a similar way as in the non-
compact case, but here we have to observe that the geodesics emanating from p all intersect

at the antipodal point 4 (p). In geodesic polar coordinates the metric on M is given by
sin® (r V)
(rV =)?

where do? is the fundamental metric form on the unit sphere in R™. As in the non-compact

dst=dr*+ rdo?

case we prove the formula

v
el ()= Aa(r) (M fl(p)dr (4.21)
0
. —,1d-1
where Ag(r)= [ﬁ;—;@} Q.

For a fixed p, we put F(r) = [M"f](p). The analogue of Lemma 23 is here
LeEMMA 24, Let m be an integer satisfying 0 <m <n =dim M. We put 1 = Vx. Then

z
A

2
fsin’"/’LrA,Fdr=Zz(n—~m—l) [mf sin®Ar F (r)dr—(m—1) sin’"‘zlrF(r)dr:I.
0 [

O nia

1
If m=1, the term (m —1) J' sin™ 2 A+ F (r)dr should be replaced by Z{f (p)y+1(4 (p))}.
6
This is easily verified by using the formula

sin (r V;)]""Q
Vi "

Lemma 24 can be rewritten by using Lemma 22 and we obtain

T

A<r>=[

A
[Ay —mA2(n—m—1)] [ sin™ Ar[ M f](p)dr
0

k4

yA
= (=) (n—m—1)(m~1) [ sin™ > Ar[M" f](p)dr-
0

1f we apply this repeatedly to (4.21) the latter part of Theorem 19 follows.
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5. Wave equations on harmonic Lorentz spaces

In the following sections we shall show that certain mean value theorems connected
with the Laplace operator are not restricted to a positive definite metric as given in ordinary
potential theory. We extend the definition of the mean value operator M" to harmonic
Lorentz spaces and establish various relations between ] and M". The situation changes
considerably as we pass to Lorentzian metric. “Spheres’” are no longer compact and a
family of concentric spheres does not shrink to a point as the radius converges to 0. Also
the analyticity of the solution of Laplace’s equation is lost.

We consider the Lorentz spaces of constant curvature studied in Chapter II, § 4,
where the wave operator has a simple characterization (Theorem 12). Let M =G/H be
such a Lorentz space of dimension = > 1, carrying the metric tensor ¢. Here H =801 (n)
and @ is either G°=R"-80'(n), G~ =80%(n +1) or G* as defined in Chapter II, § 4.
Let sy be the geodesic symmetry of G/H with respect to the point p,. Then s, extends to
an isometry of G/H as we have seen in Chapter II. The mapping o : g—>s,98, is an in-
volutive automorphism of G which is identity on H. Let nt be the eigenspace for the
eigenvalue — 1 of the automorphism do of the Lie algebra g. If 1) denotes as before the Lie

algebra of H we have
g=0h+m, [m, m]<h [hmlem (4.22)

As before we identify m with M, and denote by C,, the light cone in M, at p,. The interior
of the cone C, has two components; the component that contains the timelike vectors
(—1,0,..,0), —X,,,, —iX,,; in the cases G°/H, G-/H, G* /H respectively we call the
retrograde cone in m at py. It will be denoted by D,,. The component of the hyperboloid
Q,,(X, X) =+* that lies in D, will be denoted by S,(p,) in agreement with previous ter-
minology. If p is any other point of M, we define the light cone C, in M, at p, and the
retrograde cone D, in M, at p as follows. We choose g€G such that 7(g) p, = p and put
C,=dz(g)-C,, D,=dr(g9)-D,. Due to the connectedness of H this is a valid definition.
Similarly the “sphere” S, (p) (the ball B, (p)) is the component of the hyperboloid ¢, (X, X)
=7 (0 <Q,(X, X) <) which lies in D,. Finally, if Exp is the Exponential mapping of
M, into M we put
D,=Exp D, C,=Exp C,

S: (p)=Exp S, (p) B, (p)=Exp B: (p)
C, and D, are called the light cone in M with vertex p and the retrograde cone in M with

vertex p. For the spaces G*/H we tacitly assume r <z in order that Exp will be one-to-

one.
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We wish now to study solutions of various equations involving [ inside the retrograde
cone D, for pe M. This emphasis on D, is in agreement with the physical and geometric
situation occurring in relativity theory and in Hadamard’s theory of hyperbolic equations.

Let d denote a two-sided invariant measure on the unimodular grounp H. Let p be
a point in M, and u a function defined in the retrograde cone D,. Let g€ 8, (p) (r > 0) and

consider the integral
[ulghg™ g dh
H

where g is an arbitrary element in G such that 7 (g) = p. The choice of g in the coset g H
and of g€ 8,(p) is immaterial due to the invariance of dh. The integral is thus an invariant

integral of % over 8,(p) and in analogy with the previous mean value we write

[ M ] (p) =Ju(ghg‘1-q)dh

Now $,(p) has a positive definite Riemannian metric induced by the Lorentzian metric
on M. Let dw, denote the volume element on S,(p). Then if K denotes the (compact)
subgroup of g Hg~! which leaves the point ¢ fixed, 8, (p) can be identified with coset space

gHg /K and
1
fu(ghg‘l-q)dh=A(r) f () dw:(q)

H 8, ()

where A4 (r) is a positive sealar depending on r only. We have thus dk =dw,dk/ 4 (r) where
dk is the normalized Haar measure on K. Now the Exponential mapping at p which maps
D, onto D, is length preserving on the geodesics through p and maps §,(p) onto 8,(p).
Consequently, if s€8,(p) and X denotes the vector ps in M, the ratio of the volume ele-
ments of 8,(p) and S,(p) at s is given by det (d Expy). By Lemma 8 and 13 this equals 1,
(sinhr/r)"1, (sin/r)*~!in the flat, negatively curved and positively curved case respectively.
It follows that A (r) = ¢r™ 1, ¢(sinh #)*-1, ¢(sin #)*~! in the three cases. Here ¢ is a constant
which depends on the choice of dh. We normalize dk in such a way that ¢ =1 and have
then the relation

(M ul(p)= [u(ghg™'-q)dh= [ wu(q)da(q) (4.23)
H 8,.(»

where do =1/A4 (r)d w,. Suppose now z,, ..., %, are coordinates in M, such that the cone
C, has equation 7 — 23 — - - - — a7 =0 and the axis in the retrograde cone D, is the negative
x,-axis. If 01, ..., 0,_, are geodesic polars on the unit sphere in R"-! we obtain coordinates
in D, by '
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2,= —recosh [ 0=f<oo, O<r<oo
2, =7 sinh { cos 0,
Zn=rsinh { sin 6, 8in 8,, ..., sin 0,_s.
The volume element on S; (p) is then given by
dw,=r""1sinh" 2¢didw™?

where d " is the volume element on the unit sphere in R"-1. Using the Exponential
mapping at p we can consider (r, {, 0, ..., 8,_,) as coordinates(!) on D,. Let  be a function
defined in B, (p,). We shall say u has order a if there exists a continuous (not necessarily
bounded) function C(r), (0 <r <ry) such that

| (woExp) ()| < C(r)e** for ¢ € By, (p,) (4.24)

in terms of the coordinates above.

For R? the following result has also been noted by Asgeirsson (letter to the author).

TrEOREM 20. Suppose w satisfies the equation [Ju =0 in B, (p,). We assume thatu

and its first and second order partial derivatives have order a >n — 2. Then

8
1
r —
[ ] (p,) ocfA ok
T
where o and 3 are constants.
ReMark. If 4 converges to 0 fast enough in an immediate neighborhood of the cone

C,, so that
[M" %] (py) = O ( (M)n_g)

7

then [M"u](p,) is constant. We get thus an analogue of the mean value theorem for har-
monic functions.

To prove the relation above we consider the integral

F(g)=[uh-q)dh.

H

The measure d » has been normalized such that

dh=sinh"2;d{dw" 2dk.

() We call these the geodesic polar coordinates on D,
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Due to the growth condition on u it is clear that the integral is convergent and the operator
(¢ can be applied to the integral by differentiating under the integral sign. Since ] is
invariant under H we obtain [JF = 0. We now need a lemma whose statement and proof

are entirely analogous to that of Lemma 21.
LemMA 25. In geodesic polarcoordinates on D, [] can be expressed

& 1 ddo

D=8—r2+A(r) dr or

where A’ 1s the Laplace- Beltrami operator on S,(p).
The minus sign is due to the circumstance that ¢ induces a negative definite metric
on 8,(p) whereas A’ is taken with respect to the positive definite metric.
The function F(g) is constant on each sphere 8,(p,). Due to Lemma 25, F(g) =
[M"u](p,) is & solution of the differential equation
d*v 1 dAddv
ar Ae) dr dr
and can therefore be written

1
[} (o) = f a0

r

where « and f are constants.

6. Generalized Riesz potentials

For two-point homogeneous spaces M" can be expressed as a power series in A when
applied to analytic functions. This does not hold for the operators M* and [] in a harmonic
Lorentz space; nevertheless we shall now establish various relations between M" and [].
For this purpose it is convenient to generalize certain facts concerning Riesz potentials
(M. Riesz [32]) to harmonic Lorentz spaces. These potentials, defined below, do not however
coincide with the generalization to arbitrary Lorentzian spaces given by Riesz himself in
[(32].

We consider first the case M = G~/H. Let f€C°(M). The integral

[f(@sinh* " r,,dq dg=drdo,
Dy
converges absolutely if the complex number A has real part >n.

We define (A fl(p)= 1 f(q) sinh* " r,, dg. (4.25)
H, (%)
D

»
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Here H, () =@ 2411 (g) r (l + Z—— n)

just as for the ordinary Riesz potentials. The right-hand side of (4.25) can be written

1
oy Df(f o Exp) (@) T Tos

smh r(,

2ra"dQ

which is of the form —1— fh(Q, A" dQ (4.26)
H, ()
Dy
where 2 (@, 1) as well as all its partial derivatives with respect to the first argument are
holomorphic in A and A(Q, 1) eC° (M) for each A. The methods of M. Riesz ([32], Ch. III,
1) can be applied to such integrals. We find in particular that (4.26), which by its definition
is holomorphic in the bhalf plane R 4 > n, admits an analytic continuation in the entire
plane and the value for 4 = 0 of this entire function is 2 (0, 0) = f(p). We denote the analytic
continuation of (4.25) by [I*f](p) and have then

I’f=f (4.27)
We can differentiate (4.25) with respect to p and carry out the differentiation under the

integral sign (for large 1), treating D, as a region independent of p. This can be seen ([32]
p. 68) by writing the integral (4.25) as [ f(q) K(p, g)dgq over a region F which properly
F

contains the intersection of the support of f and the closure of D,. K (p, ¢q) is defined as
sinh*=" rp, if g€ D, otherwise 0. We obtain thus

(DI (p)= T (z) ff(q ) Op sinh* ™" r,g d g.

Using Lemma 25 and the relation

1 d4 (n—l)coshr
Ar) (r) dr sinh
we find that

Op sinh* " 7, = Og sinh* " 1,y = (A —n) (A — 1) sinh* "7,
+(l—n) (A—2) sinh* "2y .
We also have H,(A)=(1—2)(A—n) H,(A—2) and therefore
OItf=(i—mn)(A—1) I*f+ I*2f.

On the other hand, we can use Green’s formula to express,

Dj (f(g) Oq (sinh™ " 1,,0) — sinh* " 1, [1 11 (¢)) dg
¥4
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as a surface integral stretching over a part of C, and a surface inside D, on which f and
its derivatives vanish. It is obvious that these surface integrals vanish (for large 1). This
proves the relations

O'f=I" Of=(A~n) (A—1) ILf+ "2} (4.28)

for all complex A with sufficiently large real part; due to the uniqueness of the analytic
continuation, (4.28) holds for all A. In particular we have I-%f = []f — nf. Thus our defini-
tion (4.25) differs from Riesz’ own generalized potential ([32], p. 190) which is suited to
obey the law I73f =[]f.

We consider next the case M = G*/H and define for feCZ(M)

NG 5 f (@) si*"rpqdg,
Dy

where dg = drdw,. In order to bypass the difficulties caused by the fact that the function
g —> sin rp, vanishes on the antipodal variety S,(p), we assume that the support of f is
disjoint from the antipodal variety 8,(p); this suffices for the present applications. We
ean then prove just as before
L@ =1
(O AP =[1L Dfip)= - A~n) A~ D L2 () + X1 (p). (4.29)

In the flat case M =G°/H we define

1 —-n (-]
wnw - g [ 1okt teoran.
Dy
Then, as proved by M. Riesz,
ORf=IOf=I1%,  I3f=f. (4.30)

THEOREM 21. For each of the spaces G°/H, G~ /H and G*/H [ and M’ com-

mute, i.e.
OMu=MDOu for w€CF (M)

(for G*/H we assume r<m).

Proof. We restrict ourselves to the case G*/H. When proving the relation [[]M"u] (p*)
= [M'[Ju](p*) for r <z we can assume without loss of generality that the support of «
is disjoint from the antipodal variety S, (p*). Now we have for RA >n

a
fu () sin* " ryqdq= f[M"u] (p) sin*~trdr
Dy Y
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where a is a constant as p varies in some neighborhood of p*. We now apply 3

and make use of (4.29). Then we obtain
a a
f[M’ O] (p) sin*'rdr= f (O M7« (p) sin* rdr.
] 0

In the same way one can prove

a a

f [M"Owu] (p)sin*ro(r)dr= f [OM u](p) sin* tro(r)dr

0 0

where @(r) is an arbitrary continuous function. It follows that [[JM"u](p) = [M"Ju](p)-
The following Corollary is obtained just as the Corollary of Theorem 16.

CoROLLARY (The Darboux equation). Let feCy (M) and put F(p, q) =[M"f](p) if

q€S,(p). Then
O, F=0,F.

7. Determination of a function in terms of its integrals over Lorentzian spheres

In a Riemannian manifold a function is determined in terms of its spherical mean

values by the simple relation v =lim M"u. We shall now consider the problem of expressing
-0

a function u in a harmonic Lorentz space by means of its mean values M« over Lorentzian
spheres. Here the situation is naturally quite different because the “spheres” §, do not
shrink to a point as r—>0. For this purpose we use the potentials I_, I, and I,defined above;
a similar method was used by I. Gelfand and M. Graev [13] in determining a function on
a complex classical group by means of the family of integrals Is over the conjugacy class
given by the diagonal matrix 6. Here I; is bounded as d—e whereas M"« is in general un-
bounded as r—>0. For another related problem see Harish-Chandra’s paper [23].

We consider first the negatively curved space M = G~/H and assume that » =dim M
is even. Let fe O (M). The potential I” f(p) can be expressed

[I* fl(p)= 1 fsinhl*lm(r) dr (4.31)

H, (/'L)D

4

where F(r) =[M"f](p). We use now the coordinates 2y, ..., x, from Chapter IV, § 5. Let
R be such that foExp vanishes outside the surface Btz +22=R*in M, It is
easy to see that in the integral

F(r)= H (foExp) (—rcosh{, rsinh { cosl,, ...,

rsinh ¢ sinf, ... sinf, ;) sinh" ?{d{do” 2
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the range of { is contained in the interval (0, {,) where r*cosh®(, + r®sinh®Z, = R®. If

n=+2 we see by the substitution y = r sinh { that the integral expression for F (r) behaves

¥ y %-2 1
f¢ ) (;) (r2+y2)*dy

where ¢ is bounded. If #=2 we see in the same way that F’(r) behaves for small
r like

for small r like

K
RN
f‘]’ (¥) ’ (72+y2)§dy-
0
Therefore, the limits
a= lim (sinh™ 27) F () (n$2) (4.32)
r—>0
b= lim (sinh ») F’ (r) (n=2) (4.33)
r—=>0

do exist. Consider now the first case n+2. We can rewrite (4.31) as

R
[I2f1(p)= 1 fsinh"‘sz(r)sinh’l'"“rdr

H,(4)

where F(R)=0. We now evaluate both sides for A=%n—2. Since H,(4) has a simple
pole for A=n—2 the same is true of the integral and the residue is

R
lim { sinh™ 27 F (r) (A—n+2) sinh* "' rdr.
lan-2 4

Here A can be restricted to be real and > n -~ 2 which is convenient since the integral above
is then absolutely convergent and we do not have to think of it as an implicitly given holo-

morphic extension. We split the integral into two parts
R R
f (sinh™ 27 F (r) —a) (A—n+2) sinh* "1 rdr+ a,f (A—n+2) sinh* "1 r dr.
1] 0
Concerning the last term we note that
R R
lim g | sinh* *rdr= lim [ 'dr=1.
#—0+ lu,d’. #—>0+ MJ
As for the first term, we can for each £>0 find a 8>0 such that

|(sinh" 27) F(r)—a| <e for 0<r<§
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If N=max|(sinh® 27) F (r)| we have for n—2<i<n—1 the estimates

R
|j(sinh"*2rF(r)—a) (A—n+2) sinh* "1 rdr|<2 (A—n+2) N (R—0)sinh* 8

8 P
|f sinh” 27 —a) (A—n -+ 2) sinh*~ ”+lrdr|<£(l n+2) fr’l_"“dr.
0 0

We conclude easily that

lim fsmh’1 Yy F(r)(A—n+2)dr= lim sinh" 27 F (r).
>0

2—>»(n-2)p

Taking into account the formula for H, (1) we obtain

! lim sinh"~2r M"{. (4.34)

In 2 4 %(2 n) - .
f= (&) T (A(n—2)) ra0

On the other hand, if we use the formula (4.28) recursively, we obtain for arbitrary u € C3° (M)
I"2Q(0)w) =u
QO =(0O+®—=3)2)(d +(n—5)4) ... . (O +1(n—2)).

We combine this with (4.34) and use on the right-hand side the commutativity of (] and
M'. This yields the desired formula

where

1
u= (47 *(2_")—‘———hm sinh”~? D (M u
(4m) TG n—2)rs r@(0.) ( )
a2 coshr d
where Or=g2™ (n—l)sinhr dr’

It remains to consider the case n=2. Here we have by (4.31)

I f= H21(2)Jsinhr1?(r)dr feo= (M)

where the integral converges absolutely. In fact F(r)< C|logr| for small ». We apply
this relation to the function f=ju where u is an arbitrary function in CZ (M).
We also make use of (4.28) and Theorem 21. It follows that
& Du=u=§jsinhrM’Dudr=% s1nhr(
o

m@ dMu d My
=11 —{si = —1 i —
2J‘ar(smhr i )dr, }Egl(smhr P )

0

d* coshrd
dr® ' sinh rd?‘M u)dr
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The spaces G*/H and G°/H can be treated in the same manner. The combined result is

as follows.

THEOREM 22. Let M be one of the spaces G°/H, G-/H, G*/H. Let » denote the curvature
of M (x=0, —1, +1) and assume n =dim M is even. We also put

Q@) =(@—-xn—3)2) (x—xm—5)4).... (x—x1(n—2)).

Then if w€CZ (M)

u=(4m)t&m™ lim »*~2 Q(O,) (M"u) (n=+=2)

_ 1
I' & (n—2)) r>0

and u=—31Hm ri M u. (n=2)
>0 d4r

8. Huygens’ principle

We consider now an arbitrary Lorentzian space M with metric tensor @ and dimension
n. Let U be an open subset of M with the property that arbitrary two points p, g€ U can
be joined by exactly one path segment contained in U. All considerations will now take
place inside U. The paths of zero length through a point pe U generate the light cone
C, in U with vertex p. A submanifold § of U is called spacelike if each tangent vector
to § is spacelike. Suppose now that a Cauchy problem is posed for the wave equation
Ju = 0 with initial data on a spacelike hypersurface S < U. From Hadamard’s theory it
is known that the value u(p) of the solution at p€ U only depends on the initial data on
the piece S* < § that lies inside the light cone C,. Huygens’ principle is said to hold for
[(Ju =0 if the value u(p) only depends on the initial data in an arbitrary small neigh-
borhood of the edge s of §*, s =0, N S. Hadamard has shown that Huygens’ principle
can never hold if n is odd. On the other hand the wave equation [Ju=0 in R"
(n even > 2) is of Huygens’ type. A long-standing conjecture, attributed(*) to Hadamard,
states that these are essentially the only hyperbolic equations of Huygens’ type. A counter-
example of the form [Ju +cu =0 was given by K. Stellmacher (Ein Beispiel einer
Huygenschen Differentialgleichung, Nachr. Akad. Wiss. Géttingen 1953) but for the
pure equation [Ju =0 the problem is, to my knowledge, unsettled. For harmonic
Lorentz spaces the problem is easily answered by using properties of these spaces obtained
in Chapter II.

(1) Courant-Hilbert, Methoden der mathematischen Physik, Vol. I, p. 438. An interesting discussion
and results concerning this problem are given in L. Asgeirsson, Some hints on Huygens’ principle
and Hadamard’s conjecture. Comm. Pure Appl. Math. IX (1956), 307-326.
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THEOREM 23. The wave equation [Ju =90 in a harmonic Lorentz space M satisfies
Huygens’ principle if and only iof M is flat and has even dimension > 2.

Proof. Since Huygens’ principle is a local property, we can, due to Theorem 9, assume
M =G-/H or M =G*/H. In either case we can find a solution of [Ju =0, valid in D,,

by solving the equation
P, 1 dado_
dr®  A(r) dr dr
and putting u (p) =v(r,,,). We find immediately a solution of the form

r

1
v(r)= f_—sinhn_lrdr it M=G~/H

r

v(r)= f—sin’}“lrdr’ it M=G*/H.

a

Due to Hadamard’s result already quoted we can assume n to be even. Under this assump-

tion it follows by easy computation that » can be written

v()= 4 Qu) logr, Q)40

where P and @ are regular functions. « is thus an elementary solution and since it contains
a non-vanishing logarithmic term, Huygens’ principle is absent (Hadamard [18] p. 236,
Courant-Hilbert, loc. cit., p. 438).
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