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I n t r o d u c t i o n .  Among all linear differential operators in Euclidean space R n, those 

tha t  have constant coefficients are characterized by  their invariance under the transitive 

group of all translations. The special role played by  Laplace's equation is par t ly  due to 

its invariance under all rigid motions. Another example of physical importance is the 

wave equation which can essentially be characterized by  its invariance under the Lorentz 

group. This implicit physical significance of the Lorentz group so far as electromagnetic 

phenomena is concerned is made explicit in Einstein's special theory of relativity. Here 

the Lorentz group is given an interpretation in terms of pure mechanics. 

In  the present paper a s tudy is made of differential operators on a manifold under the 

assumption tha t  these operators are invariant  under a transitive group G of "automor-  

phisms" of this manifold M. Let  p be a point of M, H the subgroup of G leaving p fixed 

and M r the tangent space to M at  p. I t  is easy to set up a linear correspondence between 

the set of invariant  differential operators on M and the set of all polynomials on Mp tha t  

are invariant  under the action of the isotropy group H at  p. However, the multiplicative 

properties of this correspondence are complicated and are bet ter  understood (at least in 

case G/H is reductive) by describing the differential operators by  means of the Lie algebras 

of G and H (Theorem 10). 

Our purpose is to s tudy various geometrical properties of solutions of differential 

equations involving these invariant  operators. We give now a summary  of the different 

chapters. 

Chapter I contains a general discussion of linear differential operators on manifolds. 

On pseudo-Riemannian manifolds there is always one differential operator, the Laplace- 
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Beltrami operator, which is invariant  under all isometrics but  under no other diffeomor- 

phisms. 

Chapter I I .  In  w 1 we recall some essentially known results on transit ive t ransformation 

groups and homogeneous spaces. Two-point homogeneous spaces admit  essentially only 

one invariant  differential operator, the Laplace-Beltrami operator. Potential  theory has a 

particularly explicit character. In  w 3 we prove some properties of these spaces which are 

used later, e.g., the symmet ry  of non-compact  two-point homogeneous spaces. A fairly 

direct proof of this fact  is possible, but  for the compact spaces such a proof seems to be 

unknown although the symmetry  can be verified by  means of Wang's  classification. In  

w 4 we investigate in some detail Lorentzian spaces of constant curvature and the behavior 

of the geodesics on these spaces. For the spaces of negative curvature (simply connected) 

the timelike geodesics through a given point are infinite and do not  intersect each other. 

The spaces of positive curvature tha t  we consider have infinite cyclic fundamental  group. 

Their timelike geodesics through a given point are all closed and do not intersect each 

other. 

Chapter I I I .  In  w 1 we represent the algebra D (G/H) of invariant  differential operators 

by  means of the symmetric invariants of the group A dG(H). Thus if H is semi-simple, 

D (G/H) has a finite system of generators. I f  G/K is a Riemannian symmetric space, 

D (G/K) is finitely generated and commutat ive (Gelfand [11], Selberg [36]). For Lorentz 

spaces of constant curvature (or two-point homogeneous spaces) D (G/H) is generated by  

the Laplace-Beltrami operator. 

Chapter IV. We consider in w 1 the mean value operators M x which in a natural  way 

generalize the operation M r of averaging over spheres in R n of fixed radius r. I t  is well 

known tha t  M r is formally a function (Bessel function) of the Laplacian A. The analogue 

holds for the space G/K if K is compact. In  fact M x is formally a function of the generators 

D 1, ..., D z of D(G/K). This has some applications, for example a generalization of the 

mean value theorem of ~sgeirsson. For two-point homogeneous spaces we obtain more 

explicit results, for example a simple geometric solution of Poisson's equation. In  w 4 is 

given for a l~iemannian space of constant curvature a decomposition of a function into 

integrals over total ly geodesic submanifolds. A somewhat analogous problem is t reated in 

w 7 for a Lorentzian space of constant curvature. Here a function is represented by  means 

of its integrals over Lorentzian spheres. We use here methods of analytic continuation 

introduced by  M. l~iesz in his t rea tment  of the wave equation. In  w 8 we verify tha t  Huygens '  

principle in Hadamard ' s  formulation is absent for non-flat harmonic Lorentz spaces.(1) 

(1) Th i s  conf i rms ,  in  a v e r y  special  case,  a we l l -known con jec tu re  a t t r i b u t e d  to  H a d a m a r d .  
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CHAPTER I 

Preliminary remarks on differential operators 

Let  M be a locally connected topological space with the p roper ty  t h a t  each connected 

component  of M is a differentiable manifold  of class C ~ and  d imens ion  n. We shall t hen  

say t ha t  M is a C%mani fo ld  of d imension n. We shall  only  be deal ing wi th  separable Coo- 

manifolds and  will s imply refer to t hem as manifolds.  If  p is a po in t  on the manifold  M, 

the  t angen t  space to M a t  p will be denoted  by  Mv. The set of real va lued  indef ini te ly  dif- 
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ferentiable functions on M consti tutes an  algebra C~(M)  over the real numbers  R, the  

mult ipl ication in C~(M)  being given b y  pointwise mult ipl icat ion of functions. T h e  func- 

t ions in C ~ (M) t h a t  have compact  suppor t  form a subalgebra C~ (M). We use the  topology  

on C$" (]I/) which is ~amiliar f rom the  theory  of distr ibutions (L. Schwartz  [33] I ,  p. 67), and  

is based on uniform convergence of sequences of functions and  their derivatives. The 

derivations ~) of the algebra Cr162 are the C~r fields on M;  each X E ~  leaves C~(M) 

invariant .  An  endomorphism of a vector  space V is a linear mapping  of V into itself. I f  

D is an endomorphism of C :r (M) and  ] E C ~ (M) then  [D]] (p) will a lways denote  the  value 

of D/a t  p e M .  I f  X e~), then  the linear funct ional  X~ on C ~ (M) defined by  X~ (1) = [X/] (p) 

for /E C ~ (M) is a t angent  vector(1) to  M at  p, t h a t  is X~ E M~. Le t  R n denote  the  Eucl idean 

n-space with a fixed coordinate system. I f  the  mapping  tF:x-->(xl . . . . .  Xn) ER n is a local 

coordinate  sys tem val id in an  open subset U c M,  we shall often write ]* for the composite 

funct ion ]otIP-1 defined on iF(U).  We also write D~ for the part ial  differentiation ~/~x~ 

and  if a = (a 1, . . . ,  an) is an  n-tuple of indices ~ ~> 0 we p u t  D = -- D~' . . .  D ~  and  I ~1 = al + 

" ' "  "[- ~n" 

D ~ N I ~ O ~ .  A cont inuous endomorphism D of C~(M)  is called a di//erential 

operator on M if it is of local character.  This means t h a t  whenever  U is an  open set in 

M a n d / c C ~  r (M) vanishes on U, then  D / v a n i s h e s  on U. 

P R O P O S I T I O ~  1. (=) Let D be an endomorphism o / C ~  (M) which has the/ollowing 

property, lVor each p E M and each open connected neighborhood U o/ p on which the local 

coordinate system tF : x ---> (x 1 . . . . .  xn) is valid there exists a / i n i t e  set o/ /unct ions a~ o/ 

class C :~ such that/or each / e  C~ (M) with support contained in U 

[D ]] (x) = ~ a~ (x) [D ~ ]*] (x 1 . . . . .  Xn) ]or x e U 

[O/] (x) = 0 /or x (~ U. 

Then D is a di//erential operator on M and each di//erential operator on M has the property 

above. 

Prop/. Let  E be a differential operator,  p, U and  tF as above. Le t  V be an  open subset 

of U whose closure V is compact  and contained in U. Le t  Cry(M) and  Cv(M) denote  the  

C ~162 the  set of functions /E ~ (M) with compact  support  conta ined in V and  V respectively.  

The  operator  E induces a continuous endomorphism of C~,(M). This implies t h a t  for each 

> 0 there exists an  integer m and  a real number  (~ > 0 such t h a t  

(1) We use here and often in the sequel the terminology of Chevalley [7]. 
(2) This proposition is attributed to L. Schwartz in A. Grothendieck, Sur les espaces de solutions 

d'uns classe ggngrale d'dquations aux dgrivdes partielles. J. Analyse Math. 2 (1953} 243-280. 
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I / / x l  I < for all x e F 

whenever [D~/*](xl . . . . .  x~) is in absolute value less than  (~ for all (xl, . . . ,  xn)E~z'(V) and 

all ~ satisfying ]~] ~< m. For a fixed point xE V we pu t  T(/*) = [E/](x) for a l l / e C v ( M ) .  

The linear functional ]*---> T (/*) is then a distribution on uL(V) of order ~< m in the sense 

of [33] I,  p. 25. From the local character of E it follows tha t  this distribution has support  

at  the point ~F(x). Due to Schwartz '  theorem on distributions with point supports (loc. 

cir. p. 99), T(/*) = [E/](x) can be writ ten as a finite sum 

[El] (x)= Z a~ (x) [D~/*] (x 1 . . . . .  xn) (1.1) 
lal<m 

where the coefficients a~ (x) are certain constants. Each constant a~ (x) varies differentiably 

with x as is easily seen by choosing / such tha t  D~'/* is constant in a neighborhood of 

~F(x). The representation (1.1) holds for all xE V and a l l /ECv(M) .  However, since U can 

be covered by a chain of open sets each of which has compact closure it  is easily seen tha t  

(1.1) is valid for all xE U and a l l / 6 C ~  (M) with support  contained in U. 

On the other hand, let D be an endomorphism of C~ (M) with the properties described 

in the proposition. D is obviously of local character. Also D is continuous on the subspaee 

of functions tha t  have support  inside a fixed coordinate neighborhood. Using the well- 

known technique of parti t ion of uni ty (see for example [7], p. 163), D is seen to be conti- 

nuous on the entire C~ (M). 

A differential operator on M can be extended to an endomorphism of C ~176 (M) such 

tha t  the condition of local character holds for all I E C ~ (M). This extension is unique. 

Let  dp be a homeomorphism of M onto itself such tha t  (I) and (p-1 are differentiable 

mappings. The mapping (I) is then called a diffeomorphism of M. I f  p E M, the differen- 

tial d (Pp maps Mp onto Me,p) in such a way tha t  d dpp (X~) [ = Xp (/o q)). For  each C ~ - 

vector field X on M we obtain a new vector field X e by  putt ing X r [ =  (X (/o(I)))oqb -1 

for [ E C ~ (M). I t  follows then tha t  (Xr = d (P~ (Xp) and we often write d(I). X instead 

of X e. I f  A is an endomorphism of C ~162 (M) we define the operator A r in accordance with 

the notation above by  A e (])= (A (]o (I)))o(I) -1. I f  D is a differential operator on M, 

then so is the operator D e. The transformation (I) is said to leave D invariant if D e = D. 

We sometimes w r i t e / r  for the composite function /o (I) -1. We have then the convenient 

rule A r / = (A / (I)-1) r 

Let  M be a connected manifold. A linear connection on M is a rule which assigns to 

each X C~ a linear operator Vx on ~ satisfying the following two conditions 

(i) Vrx+gr = ~ Vx + g V r  

(ii) Vx (/Y) = / Vx (Y) + (X / )  Y 
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fo r / ,  g E C ~ (M), X, Y 6 ~). The operator Vx is called covariant di//erentiation with respect 

to X. This definition of a linear connection is adopted in K. Nomizu [33], and we refer to 

this paper for a treatment of concepts in the theory of linear connections such as paral- 

lelism, curvature and torsion tensor. A curve in M is called a path if it has a parameter 

representation such that  all its tangent vectors are parallel. Let p be a point in M and 

X ~: 0 a vector in M~. There exists a unique parametrized path t-->yx (t) such that  7x(0) = p  

arid 7~ (t) = X. The parameter t is called the canonical parameter with respect to X. We 

put 70( t )=p.  The mapping X-->yx(1 ) is a one-to-one C~162 of a neighborhood of 

0 in Mp onto a neighborhood of p in M. This mapping is called Exp (the Exponential map- 

ping at p) and will often be used in the sequel. 

A pseudo-Riemannian metric Q on a connected manifold M is a rule which in a dif- 

ferentiable way assigns to each p c M  a non-singular symmetric real bilinear form Q~ on 

the tangent space M~. Since M is connected the signature of Qp is the same for all p. I f  the 

signature is + + �9 .. + we call M a Riemannian space; if the signature is + . . . . . .  we 

speak of a Lorentzian space, otherwise of a pseudo-Riemannian manifold. On a pseudo- 

Riemannian manifold there exists one and only one linear connection (the pseudo-Rie- 

mannian connection) satisfying the conditions: 1% The torsion is 0.2. ~ The parallel displace- 

ment preserves the inner product Qp on the tangent spaces. In  the case of a Riemannian 

space, arc length can be defined for all differentiable curves. The space can then be metrized 

by defining the distance between two points as the greatest lower bound of length of 

curves joining the two points. For a Lorentzian space where this procedure fails we adopt 

the following terminology from the theory of relativity. The cone Cp in the tangent space 

Mp given by Q~ (X, X) = 0 is called the null cone or the light cone in M~ with vertex p. A 

vector X 6M,  is called timelilce, isotropic, or spacelilce if Q~ (X, X) is positive, 0, or negative 

respectively. Similarly we use the terms timelike, isotropic, and spacelike for rays (oriented 

half lines) or unoriented straight lines in Mp. A timelike curve is a curve each of whose 

tangent vectors is timelike. Such curves have well-defined arc length. If  a path has timelike 

tangent vector at  a point, then all of its tangent vectors are timelike and the path is called 

a timelike path. A curve is said to have length 0 if all its tangent vectors are isotropic. 

A diffeomorphism qb of a pscudo-Riemannian manifold M is called an isometry if 

Q~ (x, y) = Qr (d r x ,  d r Y) 

for each p E M and each X, Y E M~. The group of all isometries of M will be denoted by 

I (M). Let U be an open neighborhood of p on which local coordinates x --> (x 1 . . . . .  xn) 

are valid. We put  
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and define the functions q~k (x), q (x) on U by 

qSk (x) qj~ (x) = ~ ,  q (x) = [det (q~j (x)) [, 
k 

~I being Kronecker deltas. For  each function /E C~ (M) we set 

1 8 ( ~  q~k 8/*] 

The expression on the right is invariant under coordinate changes due to the classical 

transformation formulas for the functions qis. I t  is easily seen that  A is a differential 

operator on M. I t  is called the Laplace-Beltrami operator. 

PROPOSITION 2. Let (I) be a di//eomorphism o] M. Then ~ leaves the Laplace-Bel- 

trami operator invariant i] and only i / i t  is an isometry. 

Proo/. Let  p E M and let U be a neighborhood of p on which local coordinates 

x--->(x 1 . . . . .  Xn) are given. Then (I) (U) is a neighborhood of the point q=(I) (p) and 

Y--->(Yl . . . . .  Yn) where y=~P(x), y~=x~ ( i = l ,  2 . . . . .  n) is a local coordinate system on 

(I) (U). We also have 

dr ~x, = ~  ( i=1,2 .... .  n). 

For each function ] E C~ (M) we have 

1 ( 8/*] 
E(AS)r '](x)=EA ) oy,/ (1.2) 

[AIO-1] (x) (1.3) 

Due to the choice of coordinates we have 

/* ~ ( /o r ~ / *  ~2 (f o r  
- -  - ( i ,  k = 1 ,  2 . . . . .  n ) ,  
a y~ ~x~ ' ~y~ay~ ~x~axk 

Now, if (I) is an isometry, then q~k (x) = qtk (Y) for all i,/c so the expressions (1.2) and 

(1.3) are the same and A ~ = A .  On the other hand, if (1.2)and (1.3)agree we obtain 

by equating coefficients, ql~ (z) = q~ (Y) for all i, k, which shows tha t  (I) is an isometry. 

For Lorentzian spaces the Laplace-Beltrami operator will always be denoted by [2. 
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CHAPTER I I  

H o m o g e n e o u s  spaces 

1. The analytic structure of a coset space 

Let  G be a separable Lie group and  H a closed subgroup. The ident i ty  element of a 

group will a lways be denoted by  e. Le t  L (g) and R (g) denote  the left and r ight  t ranslat ions 

of G onto itself given by  L(g).x = gx, R(g).x = xg -1. The system G/H of left cosets gH 

has a unique topology with the  proper ty  t h a t  the na tura l  projection ~ of G onto G/H is 

a continuous and  open mapping.  This is called the  natural topology of the coset space G/H. 

In  this topology G/H is a locally connected Hausdorf f  space. For  each x E G, the mapping  

T(x):gH-->xgH is a homeomorphism of G/H onto itself. The connected components  of 

G/H are all homeomorphic  to Go/G o fi H where G o is the ident i ty  component  of G. The 

point  ~ (e) will usually be denoted by  P0. For  later purposes we need L e m m a  1 below which 

gives a special local cross-section in G, considered as a fiber bundle  over G/H. The group 

H is a Lie group, regular ly imbedded in G and thus the  Lie algebra ~ ( - He) of H can be 

regarded as a subalgebra of the Lie algebra g ( = Ge) of G. We choose a fixed complementa ry  

subspace to ~ in g and  denote it by  m. Let  exp denote  the  usual exponential  mapping  of 

g into G and ~F its restriction to  In. 

LE~yIA 1. There exists a neighborhood U o/0 in m which is mapped homeomorphically 

under ~ and such that ~ maps ~ (U) homeomorphically onto a neighborhood o/Po in G/H. 

Proo]. Consider the  mapping  �9 : (X, Y)-->exp X . e x p  Y of the  p roduc t  space m • 

into G. We choose a basis X1, ..., Xr of fl such t h a t  the  first n elements form a basis of 

11t and the  r - n last elements form a basis of ~. Let  x I . . . .  , xr be a sys tem of canonical  

coordinates with respect to this basis, valid in a neighborhood V' of e in G. For  sufficiently 

small t~ the  element 

exp (t~ X1 + ... + tn X~) exp (t~+l X~+I + . . .  + tr Xr) 

belongs to V' and  its canonical coordinates are given by  x j=  ~ (tl . . . . .  t~) where ~ are 

analyt ic  functions in a neighborhood of 0 in g. The Jacob ian  de te rminan t  of the 

t ransformat ion  (t 1 . . . . .  t~) --> (x 1 . . . . .  x~) is ~= 0 in a ne ighborhood of 0 in g. There exists 

therefore a ne ighborhood of 0 in g of the form N I •  N 2 where N I ~  m, ~V2~ ~ which 

maps  homeomorphical ly  onto an open subset V" of V'. Choose a ne ighborhood V 

of e such t h a t  V -1.  V ~  V". Le t  U be a compac t  neighborhood of 0 in m contained 

in 0 -1 ( V ) t i n  1. Then  /F maps  U homeomorphica l ly  onto ~F(U). Also ~ maps  1F(U) 

in a one-to-one fashion because otherwise there exist  X1, X2 E U and  h E H, h 4 e such 
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that  exp X 1 = exp X~ h. I t  follows that  hE V" and there exists a Y 6 N~ such that  

h = exp Y, Y~=0. The elements (XI, 0) and (Xz, Y) belong to N x x N  2 and have the 

same image under (I) which is a contradiction. The set W(U), being compact, is 

mapped homeomorphically by g and the image zv (~F (U)) is a neighborhood of Po in G/H 

because z(~J'(U))=g(~J'(U)H), 1F(U)H is a neighborhood of e in G and ~ is an 

open mapping. 

TH]~OREM 1. The coset space G/ H has a unique analytic structure with the property that 

the mapping (x, gH)-->xgH is a di//erentiable mapping o/ the product mani/old G • G/H 

onto G/H. A eoset space G/H will always be given this analytic structure. 

Proo/. We use the terminology of Lemma 1 and introduce coordinates in G/H as 

follows. For each p E G/H we can find a g E G such that  z (g) = p; let N~ denote the interior 

of the set ~(g~F(U)). Then the mapping 

:~ (g exp (t~ X~ + ..- + tn X,~)) --+ (t~ . . . . .  t,~) 

is a system of coordinates valid on Nv. I t  is not difficult to show that  this procedure defines 

an analytic structure on G/H with the property that  the mapping (x, gH)--~xgH is an 

analytic mapping of G • G/H onto G/H (Chevalley [7], p. l l l ) .  The uniqueness statement 

is contained in the following theorem. 

THE OREM 2. Let G be a separable, transitive Lie group o/di/[eomorphisms o~ a mani/old 

M. Assume that the mapping (g, q)-->g.q o/G • M onto M is continuous. Let p be a point on 

M and Gp the subgroup o/G that leaves p/ixed. Then G, is closed and the mappingg.p-->gG~ 

is a di//eomorphism o / M  onto G/ Gp in the analytic structure defined above. 

1] M is connected, then Go, the identity component o/G, is transitive on M.  

Proo/. We first prove (following R. Arens, "Topologies for homeomorphism 

groups", Amer. J. Math. 68 (1946), 593-610) that  the coset space GIGs, in its 

natural topology, is homeomorphie to M. For this it suffices to prove that  the 

mapping (I):g--> g - p  of G onto M is an open mapping. Let V be a compact sym- 

metric neighborhood of e in G; then there exists a sequence (gn)6G such that  

G =  U qn V. Thus M = U g~ V . p  and it follows by a category argument that  at  least 
n n 

one of the summands has an inner point. Hence V . p  has an inner point, say h .p  

where hfi V. Then p is an inner point of h - i V . p c  V2.p so (I) is an open mapping. 

In  particular dim G/Gv= dim M. 

Consider now the interior B of the subset ~F(U) from Lemma 1. B is a sub- 

manifold of G because (t 1 . . . . .  tn) and (t I . . . . .  tr) are local coordinates of the points 
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e x p  (t 1 X 1 -~- . . .  + t n X n )  

and exp (t I X 1 + --. + t~ X~) exp (tn+l X=+I + .-- + tr X~) 

in B and G respectively and thus the injection i of B into G is regular. By the definition of 

the analytic structure of G/Gp, ~ is a differentiable transformation of B onto an open 

subset N of GIG,. Due to a theorem of S. Bochner and D. Montgomery ("Groups of dif- 

ferentiable and real or complex analytic transformations", Ann. o/Math. 46 (1945), 685- 

694), the continuous mapping (g, q)-->g.q is automatically differentiable. The mapping 

gG,-->g.p is a homeomorphism of N onto an open set in M and is differentiable since it 

is of the form (I)oi o ~-1. To show that  the inverse is differentiable we just have to show 

that  the Jacobian of (I) at g = e has rank equal to dim M. Let 6 and ~ denote the Lie algebras 

of G and G, respectively. We shall prove that  if X E 6 and X ~ ~ then (dq))e X =# 0, in other 

words the Jacobian of (I) at e has rank equal to dim 6 - dim ~ = dim M. Suppose to the 

contrary that  (dr = 0; then if/ECC~(M) we have 

l=xoI lor  I Iexp 

If  we use this relation on the function /* (g )=[  (exp s X.q) we obtain 

= d  /*(exptX 'p)}  ds dt t~o=d / (exp sX .p )  0 

which shows that  [ ( e x p s X - p )  is constant in s. Hence exp s X - p = p  and XE~). 

This shows that  M is diffeomorphic to GIGs. For the last statement of the theorem 

consider a sequence (x~)eG such that  G=  U Go x,. Each orbit Go xn" p is an open 
n 

subset of M ;  since M is connected we conclude that  G o is transitive on M. 

In general, if G is a group of diffeomorphisms of a manifold M, the isotropy group at 

p E M, G~, is the subgroup of G which leaves p fixed. The linear isotropy group at p is the 

group of linear transformations of Mp induced by Gp. 

Suppose now G is a connected Lie group with Lie algebra 6" Let g ~ A d  (g) denote the 

adjoint representation of G on 6 and X--->adX the adjoint representation of 6 on 6" Then 

ad X (Y) = [X, Y] and Ad (exp X) = e ~dx for X, Y e 6" Let H be a closed subgroup of G 

with Lie algebra ~. The eoset space G/H is called reductive (Nomizu [31]) if there exists 

a subspaee m of 6 complementary to ~) such that  Ad (h)m c m for all h C H. We shall only 

be dealing with reductive coset spaces. All spaces G/H where H i~ compact or connected 

and semi-simple are reductive. For reduetive coset spaces G/H, the mapping (d~)~ maps m 

isomorphically onto the tangent space to G/H at P0 such that  the action of Ad (h) on m 

corresponds to the action of dT(h) on the tangent space. I t  is customary to identify these 
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spaces. If  in a rcductive coset space the subspace m satisfies [m, m] c ~ we say that  G/H 

is in/initesimally symmetric. Suppose the group G has an involutive automorphism a such 

that  H lies between the group Ha of fixed points of ~ and the identity component of H~. 

The space G/H is then called a symmetric coset space. Such a space is infinitesimally sym- 

metric as is easily seen by taking n~ as the eigenspace for the eigenvalue - 1 of the auto- 

morphism da  of ~. 

Let G/H be an infinitesimally symmetric coset space. Here one has the relations 

g = D + m ,  Ad(h)l~cmforallh6H, [ m , m ] c ~ .  (2.1) 

On G/H we consider the canonical linear connection which is defined in Nomizu [31] and 

has the following properties. I t  is torsion free, invariant under G and the paths (that is 

the autoparallel curves) through P0 have the form t -+exp  tX.po where X 6m. This last 

property is usually expressed: paths in Q/H are orbits of one-parameter groups of trans- 

vections. In  terms of the Exponential mapping at P0 we can express this property by the 

relation 
Exp X = ~ o exp X for X E m. (2.2) 

In  particular G/H is complete in the sense that  each path can be extended in both directions 

to arbitrary large values of the canonical parameter. Now it is known that  the differential 

of the exponential mapping of the manifold g into G is given by 

1 - -  e - a d X  

d e x p x = d L ( e x p X )  o a d X  X s  (2.3) 

This is essentially equivalent to the formula of Cartan (proved in Chevalley [7]), which 

expresses the Maurer-Cartan forms in canonical coordinates. A different proof without 

the use of differential forms is given in Helgason [24]. To derive a similar formula for 

d Expx (XEm) we observe, as a consequence of (2.1), that  the linear mapping (ad X) 2 

maps minto  itself. Let Tx denote the restriction of (ad X) 2 to m. From the relation ~r o L (g) = 

z(g) o z and (2.2) we obtain for Y 6 m  

1 - e - a ~  x 
dExpx(Y)=dzodexpx(Y)=dxodL(expX)o adX (Y) 

(ad X) m 
=dr (exp X) o d ~  ( - 1 )  m (Y). 

o ( r e + l ) !  

From the relations (2.1) it follows that  

{( Tx) =(y)  i f m = 2 n  

d ~ o (ad X) m (Y) = 0 if m is odd. 
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We have then proved the desired formula 

T~ 
d Expx  = d ~ (exp X) o ~o (2 T 1)l 

which will be used presently. 

for X E nt (2.4) 

2. Spherical areas 

Let M be a Riemannian manifold such tha t  the group I (M) of all isometries of M is 

transitive on M. M is then called a Riemannian homogeneous space. The group I(M),  

endowed with the compact-open topology, is a Lie group (S. Myers and N. Steenrod [30]). 

Let  P0 be a point in M a n d / ~  the subgroup of I (M) tha t  leaves P0 fixed. I t  is well known 

tha t  /~ is compact. Now M, and consequently the group I(M),  are separable. By  the 

definition of the topology of I(M),  the mapping (I) : (g, p)-->g.p of I (M) • M onto M is 

continuous. Theorem 2 then implies tha t  I (M) / /~  is homeomorphie to M, in particular 

connected. The group /~, being compact,  has finitely m a n y  components and it  follows 

easily tha t  the same is true of I (M). Let  G denote the identi ty component of I (M) and let 

K = G f3/~. Then K is compact and due to Theorem 2 we can state 

LEMM), 2. A Riemannian homogeneous space M can (with respect to the di//erentiable 

structure) be identi/ied with the coset space G/K where G is thz identity component o/ I' (M) 

and K is compact. Here r (M) is any closed subgroup o/ I (M), transitive on M. 

On the other hand let G be a connected Lie group and H a closed subgroup. We 

assume tha t  the group Ada (H) consisting of all the linear transformations Ad (h), h EH, is 

compact. Then G/H is reductive and there exists a positive definite quadratic form on 

m invariant  under Ad a (H). This form gives by  translation a positive definite Riemannian 

metric on G/H which is invariant  under the action of G. Such a space we shall call a Rie- 

mannian coset space. 

L E ~ M,~ 3. Let G/H be a symmetric Riemannian coset space which is non-compact, simply 

connected and irreducible (that is, Ad~(H) acts irreducibly on m). Let A (r) denote the area 

o/a geodesic sphere in G/H o/radius r. Then A (r) is an increasing/unction o/ r. 

Proo/. We can assume tha t  G acts effectively on G/H because if N is a closed normal 

subgroup of G contained in H then the eoset space G*/H*,  where G* = G/N, H* = H / N  

satisfies all the conditions of the lemma. The G-invariant metric on G/H induces the 

canonical linear connection on G/H (K. Nomizu [31]), and the paths  are now geodesics. 

Since G/H is irreducible and non-compact  it has sectional curvature everywhere ~< 0 due 

to a theorem of E. Cartan [4]. (Another proof is given in [24]). Furthermore,  since G/H 

is simply connected and has negative curvature, a well-known result of J .  Hadamard  and 
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E. Car tan  ([5] and  [17]) states t h a t  the  mapping  E x p  is a one-to-one mapping  of 11t onto (1) 

G/H. Now, each T (x), x C G is an  i sometry  of G /H.  F r o m  (2.4) it follows therefore t h a t  the  

ratio of the  volume elements in G/H and  m is given by  the  de terminant  of the endomor-  

phism 

A - ~ Txn  (2.5) 
X - o ~ ( 2 n + l )  !" 

Fo r  the volume of a geodesic sphere in G/H with radius r we obta in  the  expression 

V( r ) - -  f det(Ax) dX. 
IlXll<r 

Here dX and  II [I denote  the  volume element and  norm respectively in the  space m. On 

differentiation with respect to r we obtain  

A (r) = f det  (Ax) d eor (X) (2.6) 
Hxll=r 

where d o t  is the Eucl idean surface element of the sphere [[XI1 = r in m. N o w  it is known 

t h a t  the  irreducibili ty of G/H implies t h a t  either g is semi-simple or [m, r~] = 0. ( A  proof 

can be found in K.  Nomizu [31] p. 56; observe the  slight difference in the  definit ion of ir- 

reducibility). I n  the case [m, m] = 0, L e m m a  3 is obvious so we shall now assume ~ semi- 

simple. I n  the proof of Theorem 2 in [24] it is shown t h a t  the Killing form B is no t  only 

non-degenerate  on g bu t  

B(X,X)>O for X4=0  in m (2.7) 

B(Y, Y ) < 0  for Y=~0 in ~. (2.8) 

Using the  invariance of the  Killing form we obta in  also 

B ({ad X} 2 Z , ,  Z2) = - B ([X, Z,], IX, Z2] ) = B (Z~, {ad X} 2 (Z1)) (2.9) 

which shows t h a t  for XEr~,  Tx is symmetr ic  with respect  to  B. Using (2.7), (2.8) and  

(2.9) for Z1 = Z~ we see also tha t  the  eigenvalues of Tx are all ~> 0. I f  we call these ~1 (X), 

.... ~n (X) and th row Tx into diagonal  form we obtain  the  formula 

det  (Ax)= I-I sinh (~, (Z)) t  (2.10) 
, = ~  (~ (x))~ 

The function sinh tit is increasing; it follows then from (2.6) that the function A (r) increases 

with r, in fact  faster than  r n-1. 

(1) Using the theory of symmetric spaces, the assumption in Lemma 3 could be reduced some- 
what. In fact, either G/H is a Euclidean space or G is semi-simple. In the latter case it can be proved 
directly, without using the simple eonnectedness (Cartan [3], Mostow [29]) that Exp is a homeomorphism 

of m onto G/H. 
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The example of a sphere shows tha t  the hypothesis in Lemma 3 tha t  G / H  is non- 

compact cannot be dropped. However, it seems very likely tha t  the conclusion of Lemma 3 

holds for every simply connected Riemannian manifold of negative curvature. The proof 

above shows (after decomposition) tha t  this is the case if the space is symmetric.  

3. Two-point homogeneous spaces 

DEFINITION.  A connected differentiable manifold M with a positive definite Rie- 

mannian metric of class C ~ is called a two-point homogeneous space if the group I (M) is 

transitive on the set of all equidistant point pairs of M. 

We shall now outline a proof of a theorem which will be of use later. This theorem is 

known through the classification of the two-point homogeneous spaces. We aim at  proving 

the theorem more directly. 

T H e O r e M  3. 

(i) A two-point homogeneous space M is isometric to a symmetric Riemannian coset 

space G / K  where G is the identity component o/ I (M) and K is compact. 

(if) I / M  has odd dimension it has constant sectional curvature. 

(iii) The non-compact spaces M are all simply connected, in /act homeomorphic to a 

Euclidean space. 

REMARK. Considerably more is known about  two-point homogeneous spaces even 

under less restrictive definition. A complete classification of the compact  two-point homo- 

geneous spaces was given by H. Wang [36]. He found tha t  these are the spherical spaces, 

real elliptic spaces, complex elliptic spaces, quaternian elliptic spaces and the Cayley 

elliptic plane. The dimensions of these spaces are respectively d, d § 1, 2d, 4d and 16 (d = 

1, 2 . . . .  ). These are known to be symmetric spaces, tha t  is the geodesic symmet ry  with 

respect to each point extends to a global isometry of the whole space. We indicate briefly 

how (i) follows in the compact case. 

Choose a fixed point poEM and let s o denote the geodesic symmet ry  around P0. In  

view of Lemma 2 we can identify M and G/K.  (Here K is the subgroup of G tha t  leaves 

P0 fixed). The mapping a :g--->SogS o is an automorphism of I (M) which maps the identi ty 

component G into itself. Also s o. k . s  o = lc since both sides are isometries which induce the 

same mapping on Mp,. I t  follows tha t  the involutive automorphism (da)~ of fi is identi ty 

on 3, the Lie algebra of K. On the other hand if (da)~X = X for some X in g then a - e x p X  = 

exp X and exp X.  P0 is a fixed point under s 0. Hence X E~. Thus t is the set of fixed points 

o f  (da)~ and it follows immediately tha t  G / K  is a symmetric  eoset space. 

The non-compact  two-point homogeneous spaces were classified by  J .  Tits [35]. In  
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the following we shall establish (i) more directly. When this is done Tits '  classification 

could be obtained from Cartan's  classification of non-compact  symmetric  spaces of rank 

1 ([4], p. 385). Using Cartan 's  terminology, the spaces tha t  occur are: A IV (the hermit ian 

hyperbolic spaces), BD I I  (the real hyperbolic spaces), C I I  (for q = 1) (the quaternian 

hyperbolic spaces) and F I I  (the hyperbolic analogue of the Cayley plane). 

Suppose now M is a two-point homogeneous space, P0 a fixed point in M a n d / ~  the 

subgroup of I (M) tha t  leaves P0 fixed. 

LEM~A 4. Let G be a closed, connected subgroup o/ I (M), and assume that G is transitive 

on equidistant point pairs o/ M. I /  G' is a closed connected normal subgroup o/ G (G':4: e) 

then G' is transitive on M. 

This lemma is essentially due to Wang and Tits. We give a proof for the reader 's  con- 

venience. Let p 6 M  and let H be the subgroup of G leaving p fixed. H is compact. The 

Lie algebra g of G can be written g = ~ + m where ~ is the Lie algebra of H and m is in- 

var iant  under Ada (H). From Lemma 2 it is clear tha t  M is isometric with the Riemannian 

coset space G/H and in can be identified with the tangent  space My. Now the group G, 

being a group of motions, acts effectively on M, so M' ,  the orbit  of p under G', does not  

consist of p alone. Due to S. Myers and N. Steenrod [30], we know tha t  this orbit is a regu- 

larly imbedded submanifold of M. We can choose a one-parameter  subgroup gt of G' 

which does not keep p fixed. Let  X be the tangent  vector to the curve gt'P at  t = 0. Then 

X # 0 .  In  fact, assume to the contrary tha t  X = 0. Then we have for each /EC~(M),  

X / = ~ t / ( g t . p )  = 0 .  Using this on the funetion /* given by  [*(q)=/(gu'q) we find 
t=O 

d 
~ [ ( g u . p ) = O  so gu'P =p  which is a contradiction. If  hEH the curve hgth-l .p  lies in 

M '  and has tangent vector Ad (h)X. But  the group Adz (H) acts transit ively on the di- 

rections in In. Therefore, if I denotes the imbedding of M '  into M, dI~ is an isomorphism 

of M~ onto My. Consequently some neighborhood of p in M lies in M'. By homogeneity 

this holds for each p 6 M '  and M '  is open in M. This proves tha t  each orbit  in M under G' 

is open. By the connectedness of M this is impossible unless M '  = M and the lemma is 

proved. 

L EMMA 5. Let G/H be a reduetive coset space (H ~= G) and let H o denote the identity compo- 

nent o /H.  Let 1!l be a subspaee o/ ~ (the Lie algebra o/G) such that g = m + ~ and Ad (h) m c m 

/or h 6 H. Here ~ is the Lie algebra o /H.  

(i) I /AdG (Ho) acts irreducibly on m, then ~ is a maximal proper subalgebra o/~. 

(ii) I] [m, nl] c ~ (that is G/H is in/initesimally symmetric), the converse o] (i) is true. 

This lemma which is undoubtedly known can be proved as follows. Suppose Ada(H0) 
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acts irreducibly on m and that  ~ is not maximal. Then there exists a subalgebra ~* of g 

such that  we have the proper inclusions ~ c ~* c g. The subspace m* = ~* N 11t satisfies 

[~, m*] c ~* f] m "= II1" so m* is invariant under Ada(H0). Hence m* = 0 or hi* = m. This 

last possibility is impossible because it implies ~* = 9" But the relation m* = 0 is also im- 

possible because if X belongs to the complement of I) in ~* we have X = Y + Z, where 

Ye~, z e r o  and Z4:0 .  But Z = X  - Ye~* so g e m  n ~* =0 .  This proves (i). In  order to 

prove (ii) assume n is a proper subspace of 1it, invariant under Adz(H0). The relation 

[m, m] c ~ shows that  ~ + n is a proper subalgebra of 9, which properly contains ~. 

We shall now indicate a proof of Theorem 3 in case M is non-compact. Let G be the 

identity component of I (M). We know that  M is isometric to G/K where K = G N/~. We 

can assume dim M > 1. Then a small geodesic sphere Sr around P0 is connected and 

acts transitively on St. From Theorem 2 we see that  K, having the same dimension as ~7, 

acts transitively on S~ and thus G acts transitively on equidistant point pairs of M. I f  

G is not semi-simple, G contains an abelian connected normal subgroup 4 = e which by Lemma 

4 acts transitively on M. M is then a vector space for which Theorem 3 is obvious. If  on 

the other hand G is semi-simple, we see from Lemma 5 that  3, the Lie algebra of K, is a 

maximal proper subalgebra of 9" Since maximal compact subgroups of connected semi- 

simple groups are connected, we conclude that  K is a maximal compact subgroup of G 

and G/K is a symmetric coset space. Due to a well-known theorem of Cartan on semi- 

simple groups, G/K is homeomorphic to a Euclidean space. In  our special case, this can 

be established as follows. Clearly G/K has an infinite geodesic and therefore all its geodesics 

are infinite. The mapping Exp of m into G/K has Jacobian determinant at  X given by 

(2.10) (the derivation of (2.10) did not use the simple eonnectedness of G/H). The expression 

(2.10) is always =~ 0 so Exp is everywhere regular. Since geodesics issuing from P0 intersect 

the geodesic spheres around P0 orthogonally we see that  geodesics issuing from P0 do not 

intersect again. Thus Exp is one-to-one and hence a homeomorphism. 

Part  (ii) of Theorem 3 which is due to Wang [36] depends on the fact tha t  if a linear 

group of motions acts transitively on an even-dimensional sphere then the action is transitive 

on equidistant point pairs. 

4. Harmonic Lorentz spaces 

Let M be a Lorentz space with metric tensor Q. Let P0 be an arbitrary but fixed point 

of M and let Exp be the Exponential mapping at P0 which maps a neighborhood U 0 of 0 

in M~o in a one-to-one manner onto a neighborhood U of Po in M. Let X 1 . . . . .  X n be any 

basis of M~. If  X = ~ x~X~ and x = Exp X the mapping x--> (Xl . . . . .  x~) is a system of 
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coordina tes  va l id  on U. Fo l lowing  H a d a m a r d  we consider  now the  d i s t ance  funct ion  

F (x) = Q~o(X, X)  def ined  for x = E x p  X in U. 

D E F I N I T I O N .  Suppose  M and  Q are  ana ly t ic .  M is ca l led  harmonic if for  each 

poEM t he re  exists  a ne ighborhood  of P0 in which [ ]  F is a funct ion of F only,  [ ]  F = / ( F ) .  

W e  shal l  now s t u d y  in some de ta i l  t h ree  tsrpes of ha rmonic  homogeneous  spaces.  These 

a re  deno ted  G~ G - / H  and  G+/H below. F o r  each in teger  n >~ 1 there  is one space o f  

each class wi th  d imens ion  n. I f  n = I ,  GO/H = G- /H .  I f  n ~ 2, G - / H  a n d  G+/H are  diffeo- 

morph ic  b u t  no t  isometric .  Otherwise  the  spaces are  a l l  d i f ferent  (even topological ly) .  

Due  to  Theorem 9 these  spaces exhaus t  t he  class of ha rmonic  Loren tz  spaces up  to  local  

i somet ry .  

Go/H. Flat Lorentz spaces. W e  consider  t he  Euc l i dean  space R ~ as  a man i fo ld  in t he  

usua l  w a y  t h a t  the  t a n g e n t  space a t  each p o i n t  is ident i f ied  wi th  R n unde r  t he  usual  ident i -  

f ica t ion of pa ra l l e l  vectors.  W e  define a Loren tz i an  met r i c  Q0 on R ~ b y  

QO ( y ,  y)  ~ ~ 2 
= yl - y2 . . . . .  yn 

if Y = (yl . . . . .  y~) is a vec tor  a t  p E R  ~. W e  have  t hen  ob ta ined  a Loren tz  space M.  Le t  

L~ denote  the  genera l  Loren tz  group,  t h a t  is the  group of a l l  l inear  homogeneous  t rans-  

fo rmat ions  h of R ~ such t h a t  Q ~  for a l l  X E R  n. E a c h  i somc t ry  

g E I ( M )  can be un ique ly  decomposed  g = th where  t is a t r ans l a t i on  a n d  hEL~. Hence  

I ( M )  = R~.L~. R ~ is a no rma l  subgroup  of I ( M ) .  I f  G o is the  i d e n t i t y  componen t  of I ( M )  

a n d  H is the  subgroup  of G o t h a t  leaves 0 f ixed,  t hen  M is d i f feomorphic  to  G~ a n d  H 

is connected.  G~ is a symmet r i c  coset  space under  t he  m a p p i n g  th-->t -1 h, t ER ~, h EH.  

The  group L~ acts  t r an s i t i ve ly  on t h e  set  of t ime l ike  r a y s  f rom 0; L n also ac ts  t rans i -  

t i ve ly  on the  set of spacel ike r ays  f rom 0. F u r t h e r m o r e  Ln acts  t r ans i t i ve ly  on the  p u n c t u r e d  

cone C0 - 0. Since [ ]  is i nva r i an t  under  L~, i t  follows in pa r t i cu l a r  t h a t  � 9  is a funct ion  

of F only; G~ is harmonic .  

G-/H.  Negatively curved harmonic Lorentz spaces. W e  consider  now the  quad ra t i c  form 

T(Y, Y,) ~ ~ = - y l + y ~ +  "'" +Y~+I Y =  (Yl . . . . .  Yn+l) 

a n d  le t  G-  deno te  the  i d e n t i t y  componen t  of the  group L~+ 1 which leaves  the  form T ( Y ,  Y) 

invar ian t .  Le t  H be the  subgroup  of G -  t h a t  leaves  t he  po in t  (0, 0 . . . .  , 1) f ixed.  I f  t he  

t r ans fo rma t ions  g E L n +  1 are r ep resen ted  in m a t r i x  form g = (g,j) t hen  g E G -  if a n d  on ly  if 

g n  > 0 a n d  de t  g = 1. F r o m  th is  wel l -known fac t  follows i m m e d i a t e l y  t h a t  H is connec ted  

a n d  a c t u a l l y  the  same as the  group H above.  The  coset space G - / H  can be ident i f ied  wi th  
2 

t h e  orb i t  of t he  po in t  (0, 0 . . . . .  1) under  G-.  This  is the  hype rbo lo id  - y~ § y~ + . . .  § Y~+I = 1 

which is homeomorph ic  to  S ~-1 • R (S ~ denotes  t he  m-dimens iona l  sphere).  I t  is clear  t h a t  

1 7 -  593805.  Acta mathematica. 102. I m p r l m 6  le 16 d~cernbre  1959 
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G- acts effectively on G-/H. Let ~- and ~) denote the Lie algebras of G-  and H respectively. 

I f  J denotes the matr ix  of the quadratic form T then a matr ix  A belongs to G-  if and only if 

t A J A  = J  (~A is the transpose of A). Using this on matrices of the form A = e x p X ,  

X E g -  we find tha t  a basis of g-  is given by 

X ~ = E I ~ + E ~ I  ( 2 ~ < i ~ < n + l ) , X ~ j = E ~ j - E j t  ( 2 ~ < i < ~ < n + l ) .  (2.11) 

Here E~j denotes as usual the matr ix  (akin) where all akm = 0 except a~j = 1. A basis of ~ is 

given by  
Y~=El~+Eil(2~i<~n), Y~j=E~s-Ej~ (2<~i<i<~n). 

Let B - ( X ,  X) denote the Killing form Tr (ad X ad X ) o n  g- .  

LEMMA 6. The Killing/orm g- is given by 

B - ( X , X ) = ( n - 1 ) T r ( X X ) = 2 ( n - 1 ) I  ~ x12- 2.~ x2~Jt 
2~<t~<n+l 2~<i<y~<n +1 J 

i/ X =  ~ x~ X~ + ~ x~j X~j. 
2 ~ i ~ n + l  2~<~<)'~n + 1 

Proo/. The complexification gc of g-  is the Lie algebra of complex linear transforma- 

tions which leave invariant  the form - z 2 + z~ § ... +z~+l. However  within the complex 

number  field the signature - § -4-... § is equivalent to the signature + §  + and 

thus ~c is isomorphic to the Lie algebra ~ (n + 1, C) which consists of all skew sym- 

metric complex matrices. The isomorphism X-->X' in question is given by  the mapping 

X~-->i ( E n -  EI~) and X~j----~X~j. Now the Killing form B'  on ~(n § 1, C) is well known 

to be B'(X' ,  X') = (n - 1)Tr(X'X') .  Since T r ( X X )  = T r ( X ' X ' )  and since Killing forms 

are preserved by isomorphisms we see tha t  the Killing form B ~ on ~c i given by  B ~ (X, X) = 

(n - 1) Tr(X,  X). Now the restriction of B e to g-  coincides with B -  and Lemma 6 follows. 

Let  s o be the linear transformation 

so: (Yl . . . . .  yn+l)  ---> ( - - y l ,  --Y2 . . . . .  --Yn, Yn+l). 

S o leaves the form T invariant  and the mapping a : g-->sogs o is an involutive automorphism 

of G-. The corresponding automorphism of g is da  : X-->soXs o and it is easy to see tha t  

is the set of all fixed points of da. Thus G-/H is a symmetric coset space. Let  p be the 

eigenspace for the eigenvalue - 1 of da. p is the subspace of g-  spanned by  the basis vectors 

Xn+l and Xt.n+ 1 (2 ~< i ~< n), and we have the relations 

g - = ~ + p ,  [ ~ , ~ ] c p ,  [ p , p ] c ~  (2.12) 

and since H is connected, Ad(h)p ~ p. As usual we identify p with the tangent space to 

G-/H at  P0. 
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Since the Killing form B-  is invariant under all Ad (g), g E G- we see that  the quadratic 

form Q- on p given by 

n n 

Q- (x,  X) = x~.l - ~ x~.~+~, X = Xn+l Xn+l ~- ~ X L n+ l  Xf,  n+ l  (2.13) 
2 2 

is invariant under the action of Ad(H) on p. The form Q- "extends" uniquely to a G-- 

invariant Lorentzian metric on G-/H which induces the canonical linear connection on 

G-/H (Nomizu [31]). We denote the metric tensor also by Q-. Consider now the action of 

the group I(G-/H). Let H* denote the corresponding linear isotropy group at P0 which 

consists of certain linear transformations leaving the form Q- invariant. 

LEMMA 7. H* acts transitively on 1 ~ The punctured cone C~. - 0; 2 ~ The set o/all time- 

like rays/tom 0; 3 ~ The set o/all spacelike rays/tom O. 

Proo/. H* contains the restriction of the group Ada-(H) to O which is isomorphic 

to H. H* contains also the symmetry X-+  - X. As remarked earlier L n acts transitively on 

the set 

M~=(XePIZ~=O, Q - ( X , X ) = c } .  

Here c is any real number. Due to Theorem 2, H acts transitively on each component of 

Me. If  (n, c) ~= (2, 0), Mc consists of one ~r two components, symmetric with respect to 0. 

If  we exclude for a moment the case (n, c) = (2, 0), H* acts transitively on Me, as stated in 

the lemma. If  n = 2, M 0 consists of four components which are the rays 

t ( X  3 -~- X23) ,  t ( X  3 - X23) ,  t ( - X 3 -~- X23) ,  t ( - X 3 - / 2 3 )  

where 0 < t < ~ .  H* will clearly be transitive on M 0 if we can prove that  the mapping 

A : x a X a + x2~ X2a -+ - x a X a + x2a X2a 

belongs to H*. The Killing form on g- is 

B -  (X,  X )  = 2 (x] + x~ - x~3), X = x~ X~ + x 3 X a + x2a X~s 

G- is the group leaving B-  invariant and H is the subgroup of G- which leaves the point 

(1, 0, 0) fixed. G-/H can thus be identified with the hyperboloid B-(X,  X ) = 2 .  Hence 

G-/H is isometrically imbedded in the flat Lorentz space ~- with metric B-. Now t h e  

transformation (x2, xa, x2a)-+(x~, - xa, x23 ) is an isometry of ~- which maps the hyperboloid 

onto itself and leaves the point (1, 0, 0) fixed. Hence A belongs to H*, as we wanted to prove. 

COROLLARY. G-/H is harmonic. 

In  fact [ ] F  is invariant under the isotropy subgroup of I(G-/H). Due to Lemma 7 

D F  is a function of F only. 
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LEMMA 8. The timelilce paths in G - / H  are in/inite and have no double points. 

Proo/. Consider the  vector  X~+ 1EO which lies inside the cone Q- (X ,  X) = 0. The p a t h  

with t angen t  vector  Xn+ 1 has the  form ~ o exp tX~+l, (t Eft). I f  we use the  matr ix  representa- 

t ion (2.11) we get  

exp t Xn+l = I + (cosh t - 1) (El l  ~- En+l, n+l) + (sinh t) Xn+l 

and  this one-parameter  subgroup intersects H only for t = 0. I t  follows easily t h a t  the pa th  

in question has no double points and  since I (G-/H) is t ransi t ive on the  timelike pa ths  the  

l emma follows. 

As before, let E xp  denote  the Exponent ia l  mapping  of p into G - / H  and  A x  the linear 

t ransformat ion  (2.5). 

L~MMA 9. 
~sinh (Q- (X, X)) t l~  1 

i/ Q- ( X ,  X)  > O. In  particular, E x p  is regular in the cone Q- (X, X)  > O. 

Proo/. Let  as before T x b e  the restriction of (adX) ~ to p. If  n = 1, T x  = 0 and  G - / H  = It; 

hence we assume n > 1. Suppose now Q- (X, X) > 0 and tha t  Y ~ 0 is an  eigenvector of 

Tx  with eigenvalue ~. There exists an element h E H  such t h a t  A d ( h ) X -  cX~+ 1 where 

c ~ = Q- (X, X). The relation Tx" Y = ~ Y implies 

y* -~ y* y* 
TXn+l = c ~- where = Ad  (h) Y. (2.14) 

n 
Y* = Y~+I X~+I + ~. yt, n+l Xi, n+l we find easily [X~+I,  Y*] = - ~ yi,~+l Xi and  

2 2 
Writ ing 

Y* = ~ y~,n+l X~. (2.15) Txn+l " 2 

F r o m  (2.14) and (2.15) we obta in  

(Yn+l in+l -~ ~ yi, n+X X~,n+l) = e2 ( ~  Y, ,n+l  i,,n+i). 
2 2 

This shows t h a t  either ~ = 0 (in which case Y is a non-zero multiple of X) or ~ = c 2 (in 

which case Y n + l -  0, Y~.~+I arbitrary).  This shows t h a t  the eigenvalues of Tx  are 0 and 

Q-  (X, X); the  lat ter  is an  (n - 1)-tuple eigenvalue. The lemma now follows f rom the  relation 

(2.10). 

Suppose now M is an  a rb i t ra ry  complete Lorentz  space with metric tensor Q. For  a 

given point  p E M  let St(p) be a "sphere"  in My of radius r and center p; t h a t  is St(p) is 
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one of the two components of the set of vectors (XIXEM~, Qp(X, X) = r~}. If  Exp is the 

Exponential mapping at  p we put  St(p) = Exp ST(p). For the present considerations it is 

convenient not to specify which of the two components is chosen. In  Chapter IV, w 5 we 

shall (for the special cases treated there) make such a choice in a continuous manner over 

the entire manifold. 

LE~MA 10. The timelike paths in G-/H issuing /rom Po intersect the mani]old St(p0) 

at a right angle (in the Lorentzian sense). 

Proo/. St(P0) is a manifold since Exp is regular in an open set containing Sr (P0). Let  

p be a point on S~(p0), X the vector PoP and Y a tangent vector to S~(po) at p. Clearly 

Q~ (X, Y) = 0. To prove the lemma we have to prove 

Q; (dExpx(X),  d E x p x ( Y ) ) = 0  ( q = E x p  X). (2.16) 

(Here we have considered X as a tangent vector to p at  p, parallel to POP.) Using 

(2.4) and the fact that  ~(g), gEG is an isometry of G-/H we see that  (2.16) 

amounts to 
B -  (Ax (X), Ax (Y)) = 0. 

This relation, however, is immediate from the invariance of B-.  

I t  is possible to extend Lemma 9 to arbitrary Lorentz spaces by using the structural 

equations for pseudo-Riemannian connections. We do not do this here since the proof in 

the special case above is much simpler. 

LEMMA 11. Let Z be a non-vanishing tangent vector to St(p0) at q. Then Q~ (Z, Z) < O. 

Proo/. I t  suffices to prove this when q = Exp X~+ 1 in which case 

Z=dExpxn+l (Y) with Y=~y~,n+lX~,~+l 
2 

To prove Q~ (Z, Z) < 0 we just have to prove 

Q- (Axn+l (Y), Ax~+l (Y))< 0. (2.17) 

This however is obvious since Tx~+l" Y = Y and Q-(Y, Y) <0. 

From Lemma 11 it follows that  St(P0) has at  each point a unique Lorentzian normal 

direction. Combining this with Lcmmas 8, 9, and 10 we obtain 

THE O R E M 4. The Exponential mapping at Po which maps p into G-/ H is a di// eomorphism 

o/ the interior o/C,~ into G-/H. (By the interior o/C~, we mean the set o/points pEM~~ such 

that PoP is timelike). 
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On the  manifold Sr (Po) the tensor - Q-  induces a positive definite Riemannian  metric. 

The same applies clearly to Sr (0) in the  flat Lorentz  space R n. 

T H ~ o R E M 5. Suppose the space G - / H  has dimension n > 2. With the metric induced by 

- Q - ,  S~ (Po) is a Riemannian  mani/old o/constant  negative curvature. The same statement 

holds/or S~ (0) in the fiat Lorentz space R n (n > 2). 

Proo/. Let  % = Exp  (rX~+l). The group H acts t ransi t ively on S~(P0) and  leaves in- 

var ian t  the  positive definite metric on S~(P0). Let  H 1 be the subgroup of H leaving qo 

fixed. H 1 is connected since S~(Po) is s imply connected. The group AdH(H1) is the group of 

all proper  rotat ions in the tangent  space to Sr (Po) at  qo. I n  particular,  AdH(H1) acts  transi- 

t ively on the set of two-dimensional  subspaces th rough  %. Thus  S~ (P0) has constant  sec- 

t ional  curvature  at  qo and, due to the  homogenei ty,  a t  all points. Since S~ (Po) is non- 

compact  the curvature  is non-positive. I f  n = 2, S~ (Pc) is flat, bu t  for n > 2 we see from 

L e m m a  6 t h a t  H is semi-simple (actually simple), and S~(Po) cannot  be fiat. 

Le t  M be a connected manifold with a ]inear connection X-->Vx. The curvature  

tensor R of this connection is a mapping  of ~) x ~) into the  space of l inear mappings  of 

into itself given by  (X, Y)-->R(X,  Y)  where 

R ( X ,  Y ) =  V x  V r -  Vr  V x -  ~TEx. Yj. 

Here [X, Y] is the usual Poisson bracket  of vector  fields. I f  x-->(x I . . . .  , x~) is a system of 

coordinates valid in an  open subset of M the  coefficients Rl~jk of R are defined by  

R ~ 

Suppose the  connection X--->Vx is the connection induced by  a pseudo-Riemannian  metric 

Q on M. I f  qu is defined as in Chapter  I, the coefficients Rz~jk are given by  

Fk~z ~ FJ~l + ~ (F~tm F m _ P m k l F~fm j z) Rz~Jk ~ xj 8 xk 

where Fik are the Christoffel symbols 

As usual, we pu t  R~j~z = ~ qj~ Rj~kz. 
rn 

The pseudo-Riemannian  manifold is said to have constant curvature x if the relat ion 

R~jkz = u (q~k q~l -- q~k qjz) (2.18) 
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holds on M. For a Riemannian manifold (with positive definite metric) the relation (2.18) 

is a necessary and sufficient condition for the manifold to have constant sectional curvature 

in the ordinary sense. 

THEOREM 6. The space G - / H  (n > 1) has constant curvature x = - 1. 

Proo/. The G--invariant Lorentzian metric induces the canonical linear connection on 

the symmetric space G - / H .  The curvature tensor at Po is given by R ( X ,  Y ) . Z  = -  [[X, 

Y], Z] for X ,  Y,  ZEO; see e .g.K.  Nomizu [31]. We choose coordinates x 1 . . . . .  x~ in a neigh- 

borhood of Po such that  

At P0 we have q11= l ,  q~2 . . . . .  q n ~ = - 1 .  The coefficients of the curvature tensor at  

P0 can be found by routine computation. The result is 

- u~ ~ l  - ~ k  v l  ( 2  ~< i, ], Ic, l <~ n). 
R m j  = - R~11s = R~m = - RI~jl = - ~ J 

All other coefficients vanish. I t  is immediate to verify that  (2.18) holds with x = -  1. 

Since the validity of (2.18) is independent of the choice of coordinates and since G - / H  is 

homogeneous, the theorem follows. 

G+ / H .  Posit ively curved harmonic Lorentz space. Still maintaining the notation from 

above, we consider the complexification gc of the Lie algebra 6-" If  we consider gc as a 

real Lie algebra, it is clear that  fi+ = ~ § ip is a real subspace, and in fact a real subalgebra 

due to the relations (2.12). Let G + denote the corresponding real analytic subgroup of the 

general linear group 6} L (n + 1, C), considered as a real group. H is then a closed subgroup 

of G + and we shall now investigate the space G+/H of left cosets gH.  A basis for 6 + is given 

by 

X~ ( 2 < i < n ) ,  X ,  (2~<i<]~<n), i X , + l ,  i X i .  n+l (2~<?'<n). 

and the bracket operation in 6 + is the ordinary matrix bracket [A, B] = A  B - B A .  

The relations 

g + = ~ + i p ,  [ ~ , i p ] e i p ,  [ip, i p ] c ~  (2.19) 

are obvious from (2.12) and, since H is connected, Ado+(h)ip c i p  for each h e l l .  Thus 

G+/H is an infinitesimally symmetric coset space. To see that  G+/H is a symmetric coset 

space, let s o denote the linear transformation 

So : ( Y l  . . . . .  Y ~ ,  Y ~ + I ) - - > (  - Y l ,  - Y2  . . . . .  - Y ~ ,  Y ~ + I ) .  
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I t  is easy to  see t h a t  the mapping  a:g--> So gS o is an involut ive  au tomorph i sm of 

G + and  ~ is the  set of fixed points  of d a. 

Lv.MMA 12. The Killing/orm on ~+ is given by 

B + ( X , X ) = ( n - 1 ) T r ( X X ) = 2 ( n  1){<~< 2 - -  X ~ - -  
2 n 

in terms o/the basis above. 

X2.+ - -  X2n +1 -~- ~ X 2./, n + l  '1 

Proo/. Let  B ~ denote  the Killing form on the complex Lie algebra go. The forms 

B + and  B -  are the restrictions of B c to  g+ and ~- respectively.  I f  we write X =  Y + Z ,  

YE~, Z E p  we have 

n + ( X , X ) = B c ( X , X ) = 2 i B  - ( Y , Z ) + B -  (Y, Y ) - B -  (Z,Z) 

= ( n -  I) Tr  ( Y + i Z )  ( Y + i Z )  

Due to the invariance of the Kill ing form the  quadrat ic  form on i p given by  

n 

Q+(X,X)=x~+l - ~ xj,~+l,2 X=Xn+l (iXn+l)~_~Xt, n+l(iXi, n+l) 
2 2 

is invar iant  under  the  act ion of Ada+ (H) on ip. The tangent  space to G+/H at  P0 can be 

identified with the subspace ip of g+. As before Q+ extends to a G+-invariant  Lorentz ian  

metric on G+/H. I f  n = 1, G+/H can be identified with S 1. I f  n > 1, G + is semi-simple and  

from the signature of B +, (�89 (n 2 - 3 n  + 4) minus signs), one knows t h a t  G + has a maximal  

compact  subgroup of dimension �89 (n e - 3 n + 4). This group is generated by  X~j (2 ~< i < ] ~< n) 

and iXn+ 1. The vectors Xij  (2 ~< i < ] ~ n) generate a maximal  compact  subgroup of H.  

F rom this it can be concluded t h a t  G+/H is homeomorphic  to S 1 • R n-1 (also for n = 1) bu t  

we shall no t  need this fact. L e m m a  7 extends easily to the  space G+/H, and G+/H is a 

harmonic Lorentz  space. Note  t h a t  for n = 2, G+/H and G-/H are diffeomorphic to a hyper-  

boloid F :  - y ~  + y~ + y~ = 1 such tha t  Q~, = -  Q~ if p~ and  p~. correspond to the  same 

pEF. 

L]~MMA 13. All the timelike paths issuing/rom Po are closed and have length 2~. 

Proo/. We consider the one parameter  subgroup of G + generated b y  the timelike vector  

i Xn+ 1. We  find 

exp t i X~+I = I + (cos t - 1) (E n + E~+I, n+l) + (sin t) (i X~+I). 

The pa th  in G+/H with t angen t  vector  iXn+ 1 at Po has the  form n o exp tiXn+ 1 and  this is 

clearly a closed pa th  of length 27~. (The matr ix  I -  2(Ell ~-En+l.n+l) does no t  belong to 

H). Since Ada+ (H) acts t ransi t ively on the  set of timelike lines th rough  P0, the  l emma 

follows. 
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LEM~A 14. 

det (Az) = t sin_ (Q+ (Z, Z))�89 
/ (Q+ (Z, Z))t J 

/or all ZEip  that lie in the cone Q+ (Z, Z) > 0. From (6) it/ollows that Exp is regular in the 

set 0 < Q+ (Z, Z) < xe ~. 

The proof is entirely analogous to tha t  of Lemma 8 and will be omitted. Jus t  as before 

it can also be proved tha t  Q+(Z, Z) < 0 if Z is a non-vanishing tangent  vector at  q to S~ (Po), 

(r < z), and Lemma 10 remains valid here if r < 7e. Combining these results we have 

TUEOREM 7. The Exponential mapping at Po which maps ip  into G+/H is a di/leomor- 

phism o/the open set 0 < Q+ (Z, Z) < ~2 into G+/H. 

The situation is thus somewhat analogous to the sphere in Euclidean space. The 

following question arises. Do the timelike paths issuing from P0 all meet  a t  the point 

p* = ~ ( I -  2 (E~I + E~+~, =+~)) 

in G+/H which corresponds to the antipodal point on the sphere? The answer is no and 

the timelike paths behave more like geodesics in a real elliptic space. 

LEMMA 15. Two di//erent timelike paths issuing/tom Po have no other point in common. 

Proo/. We can assume tha t  one of the paths is tT>~(ex p tiX~+l). The other then has 

the form t-->7~ (exp t Ad (h) iXn+l) with h EH. By Theorem 7 it is clear tha t  the only possible 

point of intersection other than Po would be the point p* above, occurring for t = g. Then 

there exists h I EH such tha t  

(E n + E ,  +1. n+l) hi = h (E n + En+i, n+l) h -1- 

W e  can represent hl, h and h -1 in the form 

h 1 =En+l,n+l + ~ aijE~j 
~, j=l  

h =En+l , , ,+ l+  ~ bisE~s 
t , ]= l  

h -l=En+l,n+l+ ~ c~tE~j. 
t,j=l 

Then the relation above implies 

bzl c l j  = als 

b u clj = 0 

( l ~ < i 4 n )  

( l < i ~ < n , l ~ < ~ < n ) .  
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~ C  2 - -  Also c~1- , 1 -  1 so ell=k0 and therefore b a = 0 for 1 < i ~<n. On the other hand, 
1 

bll blj - ~ b a b,j = 0 (1 < ]) 

SO blj = 0 .  H e n c e  h : E l l  § En+l, n+l  § ~ b~j E~j 
L ] - 2  

which obviously commutes with iXn+l; this implies that  the paths coincide, contrary to 

assumption. 

THEOREM 8. The space G+/H has constant curvature ~ = § 1. 

The proof is entirely analogous to that  of Theorem 6 and will be omitted. 

Now let M be an arbitrary harmonic Lorentz space. An important theorem of A. 

Lichnerowicz and A. G. Walker [28] states that  such a space has constant curvature in 

the sense of the relation (2.18). Using a similarity transformation (i.e. a multiplication of 

Q by a positive constant) we can assume that  the curvature g is 0, 1 or - 1. In  particular, 

the covariant derivatives of the curvature tensor all vanish, Vx R = 0 for all X E ~). A tor- 

sion-free linear connection with this last property is uniquely determined in a suitable 

neighborhood Up of a given point p, by the value R~ (see e.g. [31]). Furthermore, a diffeo- 

morphism (I) leaving invariant a pseudo-Riemannian connection is an isometry if (ddp)~ is 

an isometry for some point p. From the quoted result of Lichnerowicz and Walker follows 

THEOREM 9. The spaces G~ G - / H  and G+/H exhaust the class o] harmonic 

Lorentz spaces up to local isometry. 

I t  is customary to denote by S0  h (n) the identity component of the group of 

h 

non-singular real n • n matrices that  leave invariant the quadratic form - ~ x~ § ~ x 2. 
1 h + l  

S 0  ~ (n) is the usual rotation group S 0 (n). In  this terminology we have 

G~ = R n. S 01 (n)/S 01 (n), G - / H  = S 01 (n § 1)/S 01 (n). 

CHAPTER III 

I n v a r i a n t  d i f f e r e n t i a l  o p e r a t o r s  

1. A general representation theorem 

To begin with we introduce some notation which will be used in the rest of the paper. 

Let G/H be a reductive coset space with a fixed decomposition g = ~ § lu, where Ad (h) m c 

m for all h EH. We shall in this chapter study the set D (G/H) of differential operators on 
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G/H t h a t  are invar ian t  under  the  act ion of G; a differential  opera tor  D on G/H belongs 

to D (G/H) if and  only if D ~(a) = D for all g E G. We shall wri te D (G) ins tead of D (G/e). 

Let  L (g) and  R (g) denote  the  left  and  r ight  t ransla t ions  of G onto itself g iven b y  L (g). x = gx, 

R(g).x = xg -1. For  e a c h / E C  ~r (G/H) we pu t  jr = / o  ~. Then  f E C  ~ (G) and  [ i s  cons tan t  on 

each coset gH. The set  of all such funct ions will be denoted  b y  C~ r (G). F ina l ly  let  D0(G ) 

denote  the  subset  of D (G) consisting of opera tors  t h a t  are invar ian t  under  r ight  t rans la t ions  

b y  H,  t h a t  is DEDo(G ) if and  only if D L(g) = D and D R(h) = D for all gEG and all hEH. 

Each  D E Do (G) leaves the  space C~ (G) invar iant .  

LV, MMA 16. The algebra D (G/H) is isomorphic with the algebra o t restrictions o] 

D O (G) to Cg r (G). 

Proo]. The mapp ing  / - > / o  ~ is an  i somorphism of C ~ (G/H) onto C~ (G). Le t  

D O E D O (G); we define D e D (G/H) b y  the  r equ i remen t  (D/)~ = D O ] for all / E C r162 G/H). 

This gives a mapp ing  ~F: D O -+ D of the  a lgebra  of res t r ic t ion of D O (G) to C~ r (G) 

into D (G/H). I t  is easy  to see t h a t  ~I e is one-to-one,  l inear and  preserves  mult ipl ica-  

tion. To see t h a t  the image  of ~F is all of D (G/H), let D ' e  D (G/H). We choose a 

basis X1 . . . .  ,Xn  of m ;  L e m m a  1 shows t h a t  for small  t, exp (t~X l + . . - + t n X n )  is a 

local cross section in G over  a ne ighborhood N of Po in G/H and  the  m a p p i n g  

(exp (t 1 X1 + ... + t~ X~)) --> (h . . . .  , t~) 

defines a local coordinate  sys tem on G/H val id  in hr. There  exists b y  Propos i t ion  1 

a po lynomia l  P in n var iables  such t h a t  

[D' ,] (Po)=  [ P  ( ~ ,  . . . ,  ~ )  ] (exp (t 1 X1 + ... + t~ X~))] t=o (3.1) 

for /EC ~162 (G/H). Using (D') ~(g) = D '  we find easily t h a t  if g.po=p 

[ ( ~  ~ ) ] (gexp( t lX l+ . . .+ t~X~) )  ] (3.2) [D ' / ]  (p) = P . . . .  , ~  t~o" 

I f  X~+I . . . . .  X~ is a basis of ~, the  m a p p i n g  

g exp (t~ X~ + ... + # Xr) --> (t~ . . . . .  t~) 

is a coordinate  sys tem val id  in a ne ighborhood of g E G and  the  opera to r  Do defi- 

ned by  

[D; F]  (g) = [. \0 tl . . . .  ~ F (g exp (tl X~ + . - -  + # X~)) t=, (3.3) 

for .PEC ~ (O), is a differential  opera tor  on G. Now if hE H we know (D' )~(h)=D'  so 

for / E Cr 
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[D'/] (Po) = [D'/~(h-,)] (P0) 

= [P ( ~ l ,  ... , ~-~n) ] (h exp (tl Xl + "" + tnXn) h-1)] t=o 

= [P (~1  ' " "  s  ] (exp Ad (h)('1 X1-~ . . .-~ tn Xn))] 
t=0  

which in view of (3.1) implies 

P (X1 . . . . .  Xn) = P (Ad (h). X1 . . . . .  Ad (h). Xn) for all h e H, 

that  is, P is invariant under H. I t  follows quickly that  Do is invariant under all 

R (h), h E H. Similarly, if x E G 

[(Do) L (x) F] (g) = [Do F L(x-')] (X -1 g) 

= [ P ( ~  . . . .  , ~n) FL(x-~) (x-l g exp (ti Xl + ... + tr Xr))]t=o= [DoF] (g) 

so DoE D o (G). The relations (3.2) and (3.3) imply tha t  

(D'/)-  = Do ] for / e C :r (G/H) 

so the image of ~I ~ is all of D (G/H). 
Now each X E fl defines uniquely a left invariant vector field on G. This vector 

field is a differential operator on G (again denoted X) satisfying X L(~ = X for all g E G. 

I t  follows easily that  

[X /](g)= [ d /(g exptX)]t=o f~ /EC~C (G)" (3.4) 

This mapping of g into D (G) sends the Lie algebra element [X, Y] in the operator 

X .  Y - Y . X  and extends uniquely to a homomorphism ~ of U(g), the universal en- 

veloping algebra of g, into D(G). More crucially, ~ is an isomorphism of U(g) onto D (G). 

(See Harish-Chandra [22]). On the other hand, let X 1 . . . . .  Xr be a basis of fl and S(fl) the 

symmetric algebra over g, that  is the set of polynomials over R in the letters X1, ..., Xr. 
Harish-Chandra's version [19] of the Poincard-Birkhoff-Witt theorem gives a one-to-one 

linear mapping ~ of S (g) onto D (G) with the property that  for arbitrary elements Y1 . . . .  Y~ 

2 (Y1 Y2 ... Y~)=~.T ~ Y~(1)" Yo(2)... Y~(p) (3.5) 

where ~ runs over the symmetric group on p letters. (Note the difference in the notation 

for multiplication in S(g) and D (G).) We shall refer to a mapping with the property (3.5) 

as "symmetrization". 
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For each g E G, Ad (g) is an automorphism of G and extends uniquely to an automor- 

phism of U (g) which combined with ~ gives an automorphism of D (G). Denoting this auto- 

morphism again by Ad (g) we have 

Ad ( g ) . D = D  R(g) for D E D  (G). (3.6) 

In  fact, since D--->D R(g) is an automorphism of D(G) it suffices, due to the uniqueness 

mentioned, to prove (3.6) when D is a vector field X. But Ad(g) .X =X(XL(~)) R(g) = X R(g). 

Now if ] is analytic in a neighborhood of g E G, (3.4) implies that  

t n 

/ (g exp t X )  = ~ ~ IX ~ ]] (g) (3.7) 
o 

for sufficiently small t. Using the fact that  D ED (G) has analytic coefficients we 

obtain from (3.4) and (3.7) 

D . X = X . D  if and only if D R(exptz)=D for all t. (3.8) 

Let Z (G) denote the center of D (G); from (3.6) and (3.8) we see (1) that  D E Z (G) if and only 

if Ad (g). D = D for all g E G. 

If  V is a finite dimensional vector space over R, X z . . . . .  Xz a basis of V, S (V) shall 

denote the symmetric algebra over V, that  is the algebra of polynomials over R in the 

letters X 1 . . . . .  Xl. Let A be an endomorphism of V. A induces a homomorphism of S(V) ,  

say P-->A .P where (A-P) (Xi, Xz . . . .  , Xl) = P ( A X  1, A X z  . . . .  , AXz) .  Using (3.5) it follows 

that  /~-I(Z (G)) is the subset I(g) of S(g) consisting of all polynomials that  are invariant 

under Ad (G). In  the same manner we obtain 

LEMMA 17. ~-~(Do(G)) is the set o/ polynomials PES(~)  such that Ad(h)P = P / o r  all 

hEH.  

LEMMA 18. D(G)=  D(G)~ § where the sum is a direct sum o/ vector spaces. 

(Here D (G) ~ denotes the le/t ideal in D (G) generated by ~). 

Proo/. To begin with we shall prove by induction that  for each P E S(g) there 

exists Q E S (111) such that  2 (P-Q) E D (G) ~. This is obvious if P has degree 1 and we 

assume it true for all P ES(fl) of degree <d .  To prove it for P of degree d we can 

assume P has the form X~' . . .X~r,  e t § 2 4 7  where X 1 . . . . .  Xr is a basis of g 

such that  X~Em for l< . i< .n  and X~E~ for n + l < . j < ~ r .  If  en+l . . . . .  e~=0 there is 

nothing to prove; otherwise ~ (P) is a linear combination of terms of the form 

(1) Equivalent result is given in Harish-Chandra [20] Cor. of Lemma 11 and in I. Gelfand [12]. 
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X ~ - X ~ . . . .  X=d where for some i, X ~ E ~ .  Le t  Se (g) denote  the set of homogeneous  

d 
polynomials  in S (g) of degree e and pu t  Da (G) = 2  (~.. Se (g)). Then  

0 

(X=-  X, ,  ... �9 X~,) - (X,, ... �9 X~,_~ �9 X=,+~ ... X=, X~,) E l)d-x (G). 

Therefore, there is an  element DEDa_I(G) such t h a t  

2 (P)=--D mod (D (G) ~). 

Using the induct ive  assumpt ion  we obtain  a Q E S (lit) such t h a t  2 ( P -  Q ) E D  (G)~ as 

desired. To prove the uniqueness we note  first t h a t  if P ES fg), / EC~ (G) 

[2 (P) /] (e) = [P (-~-t~l . . . . .  s  / (exp (tl Xl  + ... + tr X~) )] t_ o. (3.9) 

I n  fact,  if / is analyt ic  on a neighborhood of e in G, (3 .7)shows t h a t  for sufficiently 

small t, 

~r 1 
f ( exp  (t 1 X 1 ~ - - ' -  -~ t r i t )  ) = ~0 ~ [(tl  x l  - ~ " "  A[_ tr X r )  m 1] (e) 

oo 1 M !  
= E 0  ~ !  Y- t~ ' . . ,  t m, [2 (X~n' ... X~',) 1] (e). 

- m~+..-+mr=m g/tl ! . . .  mr  ! 

Comparison with the usual  Taylor  formula  yields (3.9). Now, b y  L e m m a  1, exp 

(tl X1 + "'" + tn Xn) defines for small t~ a local cross section in G over a ne ighborhood 

N of /9 0 and (t I . . . . .  t,) are local coordinates on N. I f  PES( r t t ) ,  P=#0  we can choose 

1" = 1 "  (t 1 . . . . .  tn) of class C ~* such t h a t  

and  there exists a funct ion /E  C~ (G) such t h a t  

/ (exp (t 1 X 1 + . . .  + t~ X~)) = 1" (tl . . . . .  t~) 

for sufficiently small ti. F r o m  (3.9) we have  

, ... , ~n)  f (exp (tl Xl  + "" + tr Xr))]t=o 

. . . . .  ~ / ( exp  ( t l X l + . . .  +t~X~)) ~0.  
t=O 

Since each operator  in D (G) ~) annihilates all of C~ (G) we see t h a t  2 (S (rrt)) N D (G) I} = 0. 

This proves L e m m a  18. 
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L E M M A 19. Each P E S (~) which is invariant under Ada (H) is congruent mod 2-1 ( D (G) ~ ) 

to a polynomial in S(m) invariant under Ado(H). 

Proo/. By Lemma 18, P =Q +Qo where QES(m) and 2(Q0)eD(G)~. For each h E H  

we obtain P = Ad(h).Q + Ad(h)'Q 0 and by (3.5) and (3.6), 2(Ad(h).Qo)=2(Qo) R(h). Now 

the mapping D-->D R(h) is an automorphism of D(G) leaving ~ invariant. Hence it leaves 

D (G) ~ invariant and 2 (Ad (h). Q0) E D (G) 5. On the other hand Ad (h) Qo E S (m) and Lemma 

19 follows from the uniqueness statement in Lemma 18. 

Let I (g /~)  denote the set of polynomials in S(m) tha t  are invariant under Ada(H). 

We define a mapping of I (~ /~)  into D(G/H)  as follows. If P E I ( g / ~ ) ,  then 2(P)ED0(G ) 

and the restriction of 2(P) to C~ (G) gives by Lemma 16 rise to a well-defined operator 

De E D (G/H). This mapping P-~ De is linear. I t  maps I (~/~) onto D (G/H) because Lemma 

19 shows that  if PES(g)  is invariant under Ado(H) there exists a QEI(g/f])  such that  

2 (P) and 2 (Q) have the same restrictions to C~ (G). Finally the mapping P-> De is one-to- 

one. In fact, let P E I (~/~), P =~ 0. As shown in the proof of Lemma 18 there exists a function 

E C~ (G) such that  [2 (P)]] (e)4 0. The following theorem gives the desired representation 

of D (G/H). 

THEOREM 10. Let G / H  be a reductive coset space, g = ~ +I~t, A d ( h ) ( m c m / o r  hEH.  

Let X 1 . . . .  , X n be a basis o / m ,  and let [ = / o ~ ]or / eC ~ (G/H). There is a one.to-one linear 

correspondence Q---> DQ between I (.q/~) and D (G/H) such that 

[D,/]  (p)= [Q ( ~ ,  ... , s  exp (t 1 X l + - - - + t ~  X~))] 
t=0 

where p = ~ (g). DQ is obtained / tom Q (X  I . . . . .  X~) by symmetrization (/ollowed by the 

mapping vtz /rom Lemma 16). 

REMARK. If P = X ~ ' . . .  "X~" then (3.5) shows easily tha t  

~t (P) = X~' Z~' ... �9 X~, + 2 (Q) 

where Q is of lower degree than P. I t  follows tha t  if P~, P~ e I (~/~) then De,e, = De, De, + D 

where the order of D is less than the sum of the degrees of P1 and P2. 

COROLLARY I /  I (g/~) has a / in i te  system o/generators, say P1 . . . . .  Pt, and we put  

D~ =De~, then each D can be written 

D =  ~ o~ ...... D~' ... D~ where ~ ..... nz E R. 

In fact, suppose D = D e  where P E I ( ~ / ~ ) .  Then P can be written 

P = 2 f l  ...... ,P~' . . .P '~ ' ,  fl,,..n, e R .  
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I f  fl P~ '  ... P~t  is t he  t e rm  of h ighes t  degree,  t he  p reced ing  r e m a r k  shows t h a t  

D - fi~' ... �9 D~ v~ 

is of lower o rder  t h a n  D a n d  the  corol la ry  follows b y  induc t ion .  

2. Invariant  differential operators on two-point  h o m o g e n e o u s  spaces and on 

harmonic  Lorentz  spaces 

T ~ E O R E M  11. Let M be a two-point homogeneous space. The only di //erential operators 

on M that are invariant under all isometrics o] M are the polynomials in the Laplace-Beltrami 

operator A. 

Proo/. I f  d im M = 1, M is i sometr ic  to the  rea l  l ine or to  a circle a n d  in bo th  cases 

Theorem l l  i s  obvious.  W e  can  therefore  assume t h a t  d im  M > 1. F r o m  Chap te r  I I ,  w 3 

we know t h a t  M is i sometr ic  to a homogeneous  space GfK where  K is compact ,  G is a 

connected  Lie group of i sometr ics  which is pai rwise  t r ans i t i ve  on GfK. The Lie  a lgebra  

g of G can be wr i t t en  ,q = ~ + ilt where  ~ is the  Lie a lgebra  of K ,  t he  group  Ada  (K) leaves  

m inva r i an t  and  ac ts  t r an s i t i ve ly  on the  d i rec t ions  in 11t. A d a  (K) leaves  i nva r i an t  a pos i t ive  

def ini te  inner  p roduc t  on m; le t  X1, . . . ,  X~ be an  o r t h o n o r m a l  basis  wi th  respec t  to  th is  

inner  p roduc t .  E a c h  DED(G/K) has  b y  Theorem 10 t h e  fo rm DR where PEI(~f~). Ex-  

= r~ . X~ ~ and  consider  t he  corresponding p o l y n o m i a l  pl ic i t ly ,  we wr i te  P S a t  . . . . . .  X 1. . .  

funct ion P*  on m given b y  P*(X) = ~  arl...r,," Xlrl . . . . x r .  if X =5xiX~. Since PEI(g/~) 

we have  P*(Ad(k)X) = P * ( X )  for a l l  kEK, a n d  i t  follows t h a t  P*  is cons tan t  on each 

sphere a round  the  origin in m. Thus  P*  can be wr i t t en  

N 

= x 2 ~k where  a~ E R P * ( X )  ~ a k ( x ~ + ' " +  ~, 
1 

N 

and  P = ~ a~ (X~ + ~ k �9 .. + X~) . 
1 

L e t  A deno te  the  m e m b e r  of D (G/K) t h a t  cor responds  to  the  i n v a r i a n t  po lynomia l  
N 

X~ + ... + X~. F r o m  the  r e m a r k  following Theorem 10 we know t h a t  D p -  ~ ak A ~ = DQ 
1 

where Q belongs to  I (~//k) and  has  degree lower t h a n  P .  Theorem 11 now follows b y  

a s imple induc t ion .  

I t  is to  be expec ted  in view of Theorem 11 t h a t  p o t e n t i a l  t h e o r y  on two-po in t  homo- 

geneous spaces para l le l s  po t en t i a l  t h e o r y  in Euc l i dean  spaces v e r y  closely. This  agrees also 

wi th  t he  fac t  t h a t  two-po in t  homogeneous  spaces are  ha rmon ic  spaces and  as Wi l lmore  
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[37] has shown, harmonic spaces can be characterized by the fact tha t  the usual mean value 

theorem for solutions of Laplace's equation Au  = 0 remains valid. 

We shall next  consider the case of a harmonic Lorentz space M with metric tensor Q. 

THEOREM 12. The algebras D(G~ D (G-/H and D (G+/H) consist o/all polyno- 

mials in the Laplace-Beltrami operator []. 

I t  is easy to adapt  the proof of Theorem 11 to the present case. The essential point 

is tha t  Ada(H), (G=GO, G- or G+), acts transit ively on each component  of the set 

{X e m i X  =4= 0, Q (x ,  x )  = c}. Here Q is the quadratic form on m invariant  under Ada (H). 

3. The  case  o f  a s y m m e t r i c  cose t  space  

The assumption tha t  M is symmetric also has important  consequences as Theorem 

13 shows. This theorem is essentially known from Gelfand's paper  [11], and in [34] A. Sel- 

berg gave a very direct and t ransparent  proof. 

THEOREM 13. Let G/K be a symmetric coset space, K compact. Then D ( G / K ) i s  com- 

mutative. 

In  the special case when G is a complex semi-simple Lie group and K is a maximal  

compact subgroup, the algebra D (G/K) can be described more explicitly. I t  is known tha t  

K is connected and the Lie algebra g of G is the complexification of 3, the Lie algebra of 

K. We express this by  the relation g = ~ + i ~ where g and ~ are considered as Lie algebras 

over R. As is well known G/K is a symmetric coset space and thus D (G/K) is commutat ive.  

Let  I(~) denote the set of polynomials in S (3) tha t  are invariant  under the adjoint group 

of K. Then it is easy to see tha t  the mapping i X - + X  of i ~ onto ~ induces an isomorphism 

of I (g  3/) onto I(3). The algebra 1(3) has significance in topological s tudy of the group K 

(see e.g.C.  Chevalley [8]) during which the following results have been proved. Let  1 be 

the rank of K (dimension of the maximal  tori) and let p~ be the indices occurring in the 

Hopf-splitting of the Poincard polynomial of K 

Then I(~) is generated by  

grees �89 (p, + 1), i = 1 . . . . .  1. 

generators of D (G/K). 

| 

~ Bvt ~= I-I (1 + tv~). 
t = l  

1 algebraically independent polynomials Px . . . . .  Pz of de- 

The corresponding operators Dp . . . . . .  Dp~ form a system of 

18 -- 593805. Acta  mathematica.  102. I m p r i m ~  le 16 d6eembre  1959 
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CHAPTER I V  

Mean value theorems 

1. The mean value operator 

Suppose  now t h a t  G is a connec ted  Lie group a n d  K a compac t  subgroup.  W e  fix a 

G- invar ian t  R i e m a n n i a n  met r ic  tensor  Q on G/K, a n d  deno te  the  d i s tance  func t ion  b y  d. 

There  exis ts  in th is  case a f ini te  sys tem D 1 . . . . .  D z of generators(1) for D (G/K). Le t  d k deno te  

a no rmal i zed  i n v a r i a n t  measure  on K.  I f  ~ is the  n a t u r a l  p ro jec t ion  of G on to  G/K we 

p u t  as before [ = / o x  for e a c h / E C  r162 (G/K). Le t  x be a f ixed e lement  of G. The  func t ion  

g- fl(gkx)dk 
K 

is cons t an t  on each coset  g K a n d  de te rmines  a C~- func t ion  on G / K  which  we call  

M z / .  M x is therefore  the  l inear  ope ra to r  on C ~ (G/K) given b y  

[M ~/] (p) = f ] (g ]c x) d/c if x (g) = p .  
K 

The set  {~(gkx) i kEK } is t he  orb i t  of the  po in t  xe(gx) unde r  the  group gKg -1 and  lies on 

a sphere in G/K with  center  g (g). [MX/] (p) is the  average  of the  va lues  of / on this  orbi t .  

I n  the  case t h a t  G is pai rwise  t r ans i t ive  on G/K, M ~ is t he  opera t ion  of averag ing  over  a 

sphere of f ixed  rad ius  equa l  to  d (~ (e), g (x)). N e x t  t heo rem shows t h a t  M * can be r ep resen ted  

as  a func t ion  of t he  opera to rs  D 1 . . . . .  D z. This  was p roved  b y  Berezin and  Gel fand  in [2] 

for the  case when G/K is symmet r i c .  Thei r  proof,  which  does no t  seem to general ize  to  

t he  non - symmet r i c  case, is d i f ferent  f rom ours, which was found  independen t ly .  

THEOREM 14. Let p E G / K  and let U be a neighborhood o/ p. Suppose X Eg is so small 

that U contains the sphere with center p and radius d(x(e) ,  ~ ( e x p  X)).  Then there exists a 

neighborhood V o/p,  V c U, and certain polynomials without constant term, say p~, such that 

[MeXpx /] (q) = / (q) + E [P, ( D1 . . . . .  D') /] (q) 
n 

/or each / analytic on U and each q E V. 

Proo/. Choose goEG such t h a t  g(g0) = P, a n d  le t  x = exp  X.  Then  ~(gokx) E U for all 

kEK,  and  the re  exis ts  a ne ighborhood  U* of go in G such t h a t  x(gkx)E U for a l l  gE U* 

and  al l  k E K .  P u t  V = ~ ( U * ) .  Now suppose  / is a n a l y t i c  in U a n d  qE V. Select  gEG such 

t h a t  x (g) = q. Then  

(1) This is also proved in [34]. 
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[M x/] (q) = f [(g k x k -1) d k = f [(g exp Ad (k) X)  dk 
K K 

which by  (3.4) is equal to 

1 t ( A  d (k) f / ( g )  d k 
0 m .  

K 

Let  X 1 . . . . .  X~ be an orthonormal basis of ~3~ and write 

2 1 r 2 = Q~, (X, X) and ~ k~ = . Pu t  

/* (t 1 . . . .  t~) =T(g exp ( t l X l +  ... -~tnX~). 
Then by  (3.9) 

(4.1) 

n 

A d (k) = r ~  k~ X~ where 
1 

and (4.1) is just the ordinary Taylor series fo r /*  (rk 1 ...  rkn). Thus the series (4.1) converges 

uniformly in k so the summation and integration can be interchanged; also (Ad(k)X) m= 

Ad (k). X m and the operator fAd  (k)-X m dk belongs to D o (G). By  Lemma 16 this corresponds 

to an operator DInE D (G/K) which can be written pm (D 1 . . . . .  D z) as we have seen, and the 

theorem follows. 

We shall now generalize the well-known mean value theorem of ~sgeirsson [I] for 

solutions of the ultrahyperbolie equation 

~2 u ~2 u ~2 u ~2 u 
+ : + - + "'" + 

which states tha t  each solution u (x 1 . . . . .  xn ; Yl . . . . .  yn) = u (X, Y) satisfies the relation 

f u (X,  Yo) d t a r ( X ) =  f u ( Z  0, Y) dtor(Y) 
Sr (X0) Sr (Yo) 

for every X0, Yo E Rn. Here d tot stands for the Euclidean area element of the sphere S ,  

DEFINITION.  Let  u be a function in C:r • G/K). We say u is of slow growth if 

Dlu  and D~u are bounded for each D E D (G/K). 

THEOREM 15. Let u be a /unction on G /K  • G / K  which is either o/ slow growth or ana- 

lytic. Suppose u satis/ies the di//erential equations 

D l u = D ~ u  for all D e D ( G / K )  (4.2) 

Then M~ u = M~ u for all x E G. (4.3) 

(Here the subscripts 1, 2 on an operator indicate that it operates on the first and second variable 

respectively.) Conversely, i/ (4.3) holds/or a/unction o/ class C ~, then (4.2)/ollows. 

1 8 "  -- 593805 
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Proo/. We first prove the theorem under the assumption that  u is analytic (but not 

necessarily bounded). If  (4.2) holds, it follows from Theorem 14 that  (4.3) is valid at  least 

if x lies in a suitable neighborhood of e in G. Since however both sides of (4.3) are analytic 

in x, (4.3) holds for all x. On the other hand, if u belongs to C r162 ( G / K  • G / K )  and fi is 

defined by ~(g, g') = u(~e(g), ~(g')) then ~6C  ~ (G • G) and the relation (4.3) can be written 

f ~(gkx, g')dk=f ~(g, g'kx)dk. (4.4) 
K K 

We take now an operator T 6 Do (g) and apply to both sides of (4.4) considered as functions 

of x, and put  x = e. I t  follows that  

[T14] (g, g') = [T2~ ] (g, g') 

which is equivalent to (4.2). 

Let us consider the case when u is constant in the second argument, i.e., 4(g,  g') = 

4(g, e) and put  ~(g)=~(g,  e). The algebra D ( G / K )  always contains an elliptic operator, 

e.g., the Laplace-Beltrami operator with respect to the G-invariant metric. By S. Bernstein's 

theorem, a function v that  satisfies the equation 

D v  = 0 (4.5) 

for all D that  annihilate constants, is automatically analytic. Using (4.3) we see that  each 

solution of (4.5) is characterized by the mean value relation 

M~v = v for all xEG.  

This result was proved somewhat differently by Godement [15]. I t  generalizes the mean 

value theorem for harmonic functions in R n. Earlier Feller [10] had extended this theorem 

to certain non-Euclidean spaces in connection with mean value theorems for more general 

elliptic equations. Whereas the assumption of analyticity is no restriction in Godement's 

theorem, this is not so in Theorem 15 where the most interesting solutions are the non- 

analytic ones. 

Let dg denote a left invariant Haar  measure on G. The convolution fl~]~ of two 

functions/1 and/2  on G is defined by 

/1~/2 (~) = f/1 (y)/2 (y-1 x) d y 
G 

whenever this integral exists. We shall use the following lemma to prove Theorem 15 in 

full generality. 

L E M ~ A 20. Let / be a bounded cont inuous/unct ion  on G, ~ a number > 0 and C a compact 

~ubset of G. Then  there exists a / u n c t i o n  q~ on G such that 
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9~->e/ is analytic (4.6) 

] (~o-~/) (x) -- / (x)] < ~ for all x 6 C. (4.7) 

Proo/. If  G is compact  the  l emma is an  easy consequence of the  Peter -Weyl  theory  

and it can also be proved direct ly for a commuta t ive  Lie group. The general case is handled 

by  using the  fact  t h a t  as a manifold G is analyt ical ly  isomorphic to  a p roduc t  manifold 

K x iV where K is a compact  subgroup of G and  N is a submanifold of G analyt ica l ly  

isomorphic to  a Eucl idean space. 

An  analogous procedure is followed in t ta r i sh-Chandra ' s  theory  of well-behaved 

vectors (see Har ish-Chandra  [20] a nd  the  generalization given by  Cart ier-Dixmier  [6]). 

As we shall indicate, L e m m a  20 is essentially contained in the theorem which states t h a t  

the  well-behaved vectors  are dense in the representat ion space. 

Le t  ~ denote the  left regular representat ion of G on the Banach  space L i (G) of func- 

t ions on G tha t  are integrable with respect  to left invar iant  H a a r  measure,  t h a t  is [~ (x) h] (y) 

= h(x- iy)  for heLl(G).  I f  h is a well-behaved vector  in LI(G) then  so is z ( x ) h  and  f rom 

L e m m a  18 in [20] i t  follows t h a t  if / is bounded  and  continuous on G, the  funct ion 

x - > f  / (y) [~ (x) hi (y) d y 
G 

is analyt ic  on G and  the  funct ion h~e/likewise. Now to  prove L e m m a  20 we select a conti- 

nuous  funct ion ? on G of compact  support  such tha t  

I~,~-/(x)-/(x)l< ~ for xec; 

next  we select a sequence (9?,) of well-behaved vectors converging to ?. Then  the  sequence 

(~n-x-/) (g) converges to (?* / )  (g) uniformly on G and  a suitable ~N satisfies (4.6) and  (4.7). 

Now we can finish the  proof of Theorem 15. Le t  u be a solution of (4.2) of slow growth.  

The  function ~ on G x G int roduced earlier satisfies 

T i ~ = T ~  for each T E D o (G). 

I f  ~ belongs to C ~ (G x G) and  L i (G x G) the convolut ion 

(~-)r (xi, x2) = f 9? (Yi, Y2) ~ (y~lxl  ' y~l x2 ) dy  1 dy  2 
G •  

exists, and since u is of slow growth  

T 1 (9~ ~ - u )  = 99~eTi 

T 2 (~-x-~) = 9~eT~ 
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and therefore 

The function ~ 0 ~ ,  

v e C a (GIg • G/.K) 

and 
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T 1 ( ~ - ~ )  = T 2 ( ~ )  for all T E D  o (G). (4.8) 

being constant on left cosets mod (K x K) determines a function 

such that  

v (~ (g), ~ ~g')) = ( ~ )  (g, g') 

n I v = D 2 v for all D E D (G/K). 

If  we choose ~ in accordance with Lemma 20, v is an analytic solution of (4.2), and a suitable 

sequence of such solutions approximates u uniformly on compact subsets of G/K and (4.3) 

follows. 

R~MAR~:. The relation MXv = v which characterizes the solutions of (4.5) can be writ- 

ten differently. Let h have compact support on G and satisfy the conditions: 

(i) h (x It) = h (x) for all x E G and all k E K 

(if) f h(x-1)dx =1. 
G 

The relation MXv = v for all x is then equivalent to 

~ h = ~  

for every h with the properties (i) and (if). This is easily proved by using the integration 

theory on homogeneous spaces and shows how the operators in D (G/K) appear as infinite- 

simal generators for the convolution operators [ ~  ] ~ h  considered as operators on C ~ (G/K). 

2. The Darboux equation in a~symmetrlc space 

We shall now suppose G/K is a symmetric coset space and K compact. Here the 

algebra D (G/K) is commutative; we shall give certain consequences of this fact. 

T ~ o ~ M  16. For each x EG, M x commutes with all the operators in D (G/K). 

Proo]. I t  is clear from Theorems 13 and 14 that  if / is analytic on G/K and D E D (G/K), 

then 
D M x /  = M ~ D /  (4.9) 

if x is sufficiently close to e in G. However / and D/are analytic so (4.9) holds for all xEG. 

Let T be the operator in D0(G ) that  corresponds to D according to Lemma 16, and N x 

the operator on C a (G) given by 

[N~ F] (g)= f F(gkx)  dlc. 
K 
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We shall now prove (4.9) for /E C~ (G/K) and fixed x E G. The arguments  used in the proof 

of Lemma 20 show tha t  there exists a sequence ~n of functions on G such tha t  T~*[,  

cf,~-)eT.N :~] and T~-)eT] are all analytic functions on G and the sequences ( T ~ ] ) ,  

(cfn~ TNx[), (cpn-~ T D converge to the functions ~, T~Vx[ and T[  uniformly on G. Using 

the obvious relations 

w ~ T f =  T(W~f), 

(4.9) follows easily for each ]EC~(G/K). Finally, to prove (4.9) for e a c h / E C ~ ( G / K ) ,  one 

just has to observe tha t  for each compact  subset M of G/K there exists a func t ion /~EC~ 

(G/K) which agrees with / on an open set containing M. 

The following corollary is proved in [2] in a different way. 

COROLLARY. Let / E C ~ (G/K) and put 

V (x, g)= / /(g ~x)dk. 
k 

Then V satis/ies the "Darboux Equation" 

T 1 V = T  2V for e a c h T E D  o(G). 

In  fact, write T ] = F .  Then 

[T 1 V] (x, q) = f F (r k x) d k = IN * T [] (g) = IT N x [] (r = IT 2 V] (x, g). 
k 

The zonal spherical functions ~ on G/K introduced by  E. Cartan and I. Gelfand are 

by definition the (analytic) eigenfunctions of all D E D (G/K) which are invariant  under 

K, tha t  is ~(k) = ~ for all k EK. Since M x (for x near e in G) is a power series in the generators 

D 1 . . . . .  D z, M ~ =P(D 1 . . . . .  DZ), it is clear tha t  ~ is an eigenfunction of M ~, M ~  = 2 ~ .  

I t  follows tha t  if ~ is not identically 0, then ~ (z (e))~= 0 so we assume the zonal spherical 

functions normalized by ~ (~ (e)) = 1. These functions then satisfy the functional equation 

M ~ q = ~ (7~ (x)) q. 

On the other hand, there exist constants 21 . . . . .  21 such tha t  D~q~=2~cf. Hence 

M~ef=P(), 1 . . . . .  2z)~ so 

(~ (x)) = / '  (21 . . . . .  2). 

This shows tha t  ~ is determined by the ordered system (21, ..., 2 l) of eigenvalues. Formal ly  

M x is a zonal spherical function of the operators D 1, ..., D(  
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3. Invariant differential equations on two-point homogeneous spaces 

We shall now combine the previous group theoretic methods with special geometric 

properties of two-point homogeneous spaces. This leads natural ly to more explicit results. 

We shall now assume tha t  M is a two-point homogeneous space, and we exclude in 

advance the trivial case when M has dimension 1. Let  G be the connected component of e 

in the group of all isometrics of M. Then M can be represented G//K where K is compact  

and G is pairwise transitive on M. D (G/K) consists of all polynomials in the Laplace- 

Beltrami operator A. We see also tha t  the mean value operators M x and M y are the same 

if d(ze(e), 7t(x)) = d(zt(e), 7~(y)) and consequently we write M r instead of M z if r = d(~(e), 

~(x)). Let  p be a point in M, St(p) the geodesic sphere around p with radius r, dwr the 

volume element on Sr (p) and A (r) the area of Sr (p). 

L~MMA 21. In geodesic polar coordinates around p, A has the /orm 

~ 1 d A 

A =  ~r~ + A(r )  dr ~r  + A '  

where A' is the Laplace-Beltrami operator on St(p). 

Proo/. Let the geodesic polar coordinates be denoted by  r, 01 . . . . .  0n-l- Due to the fact  

tha t  the geodesics emanating from p are perpendicular to St(p) the metric tensor must  

have the form 
n - 1  

dsZ=dr2 + ~ gtj dOt dO~ 
t , i=1 

and the Laplace-Beltrami operator is given by  

A = ~ r ~ +  Vg c3r a r - t  l/~ g ~ [ ~ g  vg~o~J" 

Since r and A are invariant  under the subgroup of G tha t  leaves p fixed, Ar  is also invariant  

under this subgroup which acts transit ively on the geodesics emanating from p. Hence 

is a function of r alone so 

log Vg = a (r) + fl (01 . . . . .  0n-l) 

and ~ = e ~ (r) e ~ (0, ..... o._1). 

On the other hand, the volume of Sr (p) is given by  
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and thus  we find for A (r)= d V / d r  the  formula  

and 

A (r) = f  ~ggd01 . . . . .  dO.-1 = Ce ~(r) ( C =  constant)  

1 0]/~= 1 d A  

The lemma now follows by  observing t h a t  the induced metric on Sr (p) is given by  

n - 1  

d s ~ =  ~ g~jdO~dOj. 
4,i=1 

The next  lemma, which also is proved b y  Giinther [16], is just  a special case of the  corollary 

of Theorem 16. 

L]~MMA 22. Let ]EC~(M) and put F(p,  q) =[MT]] (p) if p, qEM, d(p, q) =r.  Then 

A I F  = A 2 F .  

We shall now state  and  give a different proof for the  extension of .~sgeirsson's theorem 

to two-point  homogeneous spaces. The proof is based on an ingenious method  used in 

Asgeirsson's original proof ([1], p. 334). 

THEOREM 17. Let M be a two-point homogeneous space and let u be a twice continuously 

differentiable /unction on M z M which satisfies the equation 

Alu  = A2u (4.10) 

Then/or  each (Xo, Yo) e M • M 

f u(x, yo)dmr(X)= f U(Xo,Y)dt~r(y ). (4.11) 
S r (x0) s~ (u~ 

Proof. We assume first M is non-compact .  F rom Theorem 3 we know t h a t  M is iso- 

metric to a symmetr ic  Riemannian  space G/K. Ada(K)  is t ransi t ive on the  directions 

in the tangent  space to G/K  at  z (e), in part icular  G / K  is irreducible. As we saw at  the  end 

of the proof of Theorem 3, geodesic polar coordinates with origin at  a point  p EM are valid 

on the  entire M. 

Now, suppose the funct ion u satisfies (4.10) and  let (x0, Yo) be an  a rb i t ra ry  point  in 

M • M.  Consider the funct ion U defined by  

U (r, s) = [M~ M~u](xo, Yo) for r, s ~> 0 

We view U as a funct ion on M • M b y  giving it  the  value U (r, s) on the  set Sr (xo) • S~ (Yo). 

Since A commutes  (1) with M r we obtain  from (4.10) and  L e m m a  21 

(1) Theorem 16 shows that A and M r commute when applied to C~-functions. In the same way 

it can be shown that they commute when applied to C2-functions. 
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s #  

\ 
N 

O 
r 

02U 1 d A O U  02U 1 d A O U  

Or 2 + A (r) dr O-~ = Os - ~  + A (s--) de as 

If  we put F(r,  s)= U(r, s ) - U ( s ,  r) we obtain the relations 

O ~F 1 d A O F  02F 1 d A O F  
Or ~ + A (r) dr Or Os 2 A (s) ds as 0 (4.12) 

F (r, s) = - F (s, r). 

After multiplication of (4.12) by 2 A(r)OF/Os and some manipulation we obtain 

L\~-r] + \O~s] J +2Or  (r)~ ~s] A(s) ds \Ts] =0.  (4.13) 

Now consider the line MN with equation r + s = constant in the (r, s)-plane and form the 

plane integral of (4.12) over the triangle OMN, (see figure), and use Green's formula. I f  

0 /0n  denotes derivation in the direction of the outgoing normal and dl is the element of 

are length, we obtain 

Lt~Ti t 77 / j  ~ § 2 A (r) 
O M N  

Or as On d l - j j  A(s)  ds \ ~ r ]  d r d s = O .  
O M N  

O n O M : t a n  a n  = , - , F ( r , r ) = 0 s o ~ + ~ = 0 .  

O n M N : \ a n  ~n = ' " 

(4.14)  

O n  ON:  A (r) = 0.  

~rom (4.14) follows the relation 

f f2Au)dA 
+ 3,J ~ i i ~  ds \ - ~ ]  d r d s = O .  

O M N  

(4.15) 
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Now Lemma 3 shows that  dA/ds>=O for all s and (4.15) shows therefore that  

~ F  ~ F  

~r ~s ' 

which is the directional derivative of 2' in the direction MN, vanishes on MN. Consequently 

F--~0 so U is symmetric. In  particular U(r, 0) = U(0, r) and this is (4.11). If  M is compact 

the proof above fails since A (r) is no longer an increasing function of r. To show that  (4.11) 

is valid even if the solution u is not analytic we resort again to Lemma 20 to approximate 

u by analytic solutions. Since M is compact this requires only the Peter-Weyl theory and 

not the theory of well-behaved vectors. 

We recall now some facts from [4] about the behaviour of the geodesics on M = G/K. 

Let P0 = 7~ (e) and dim M = n. If  M is non-compact Exp maps M~0 ( = r~) homeomorphieally 

onto M. If M is compact all geodesics are closed and have the same length 2a. The mapping 

Exp maps the ball 0 ~< Qp,(X, X) ~< a 2 onto M and is one-to-one on the open ball 0 ~< Q~~ 

(X, X) < a s. Except for the real elliptic spaces, Exp becomes singular on the sphere Q~, (X, 

X) = a s, and thus 'the set Sz(p0), which Cartan calls the antipodal variety associated to Po, 

will in general have dimension inferior to n - 1. For the various n-dimensional two-point 

homogeneous spaces the dimension of Sa(P0) is given in [4] as 0, n -  1, n -  2, n -  4 for 

the spheres, real elliptic spaces, hermitian elliptic spaces and quaternian elliptic spaces 

respectively. For the Cayley elliptic plane S~(p0) has dimension 8. 

The following theorem gives a generalization of the Poisson equation to two-point 

homogeneous spaces. Consider the function 

" 1  t :  > 0  if M is non-compact 

(r) = | ~ d t  where ~ = ( ~  if M is real elliptic 
J 
a [0 < a < a otherwise 

We define the function ~F by 

~F (p, q) = ~ (r) if d (p, q) = r. 

In  view of Lemma 21, 1F satisfies the equations A11F = A2~F = 0 and as the following theo- 

rem shows ~F can be regarded as a fundamental solution. 

T RE ORE M 18. Let ] be a twice continuously di]]erentiable ]unction on M with compact 

support. Then the ]unction u given by (dq is the volume element on M) 

u (p) = f t (q) V~" (p, q) d q 
M 

satisfies the "Poisson equation" 

Au  = ] i / M  is non-compact (4.16) 

Au = ] - M  ~] i / M  is compact. (4.17) 

1 8 "  t -- 593805 
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I n  the  compac t  ease the  compensa t ing  t e r m  [M~/] (p) is the  average  of ] on the  anti-  

podal  va r i e ty  associated to  p. I n  the  case when  M is a sphere, M ~ / = / o A  where A is the  

an t ipoda l  mapping .  

We  first  p rove  (4.16). Since q~(r)=O(r ~-~) as r-->0 the  in tegral  f J (q)~(p ,  q)dq 

is convergent  and  

u(p)= f / (q) ~F (p, q)dq= f dr f / (q) ~F (p, qldoa, (q) 
M 0 S r (p) 

oQ  

= f A (r) q~ (r) [M ~/] (p) d r. 
0 

We app ly  A to this re lat ion and  m a k e  use of L e m m a  22. Then  we ob ta in  

[A u] (p) = f q~ (r) A (r) [ A M  r/] (p) d r = f 7) (r) A (r) A r ([M r/]  (p)) d r. 
0 0 

Now we keep p f ixed (and omi t  wri t ing it  in the  formulas  below) and  use L e m m a  

21. Then  

, , [0  M / l d A  
A u = f c f ( r )  A t r ) t ~ r  ~ + A(r)~dr ~r ) 

0 

=lim[~(r)A(r)~---rMr/]-lim(q~'(r)A(r)~---rMr/dr'~o ~o 3 

Since lim ~ ( e ) A ( e ) = 0  and  ~' (r) A (r)= l, the  relat ion (4.16) follows. 

We  nex t  consider the  case when M is compact .  Here  ~0 (r)---~oo as r - + a  (except  

for  the  real elliptic space). Never the less  A (r)q~ (r) is bounded  as r - + a  and  the  in tegra l  

fJ(q)~F(p, q)dq exists. As before we ob ta in  

u (p) = .I A (r) ~ (r) [M ~/] (p) d r. 
0 

Using L e m m a  21 and  22 i t  follows t h a t  

G 

f fa~M'l I dAOMr/td r 
A u = . cf (r) A (r) (--~-r2 + A (r) d r 0 r ) 

0 

= lim ~v (r) A (r - l im ~ '  (r) A (r d r. 

81 r 

I f  M is real elliptic, 

l im A (r) =~ 0 and  l im ~ (r) = 0 
~'--)Cr r--~O" 
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due to the choice of a. If, on the  other  hand, M is no t  a real elliptic space 

lim A (r) = 0 and lira ~ (r) = oo. 

Now ~ '  (r) A (r) = 1 and lim ~ (el) A (el) = 0 as ~1 tends to 0. To determine lim ~ (r) A (r) 

as r converges to a we observe tha t  ,4 (r) is given by  the formula 

A ( r ) =  / d e t ( A z ) d o ~ r ( X )  0__<r<o, (4.18) 
Hxll=r 

where A x  is the linear t ransformat ion  (2.5). Since det  ( A x ) i s  invar iant  under  the 

group A dG(K) it is a funct ion of r only and  

A (r) = det  (Ax) r n-1 ~n 

where ~n is the surface area of the uni t  sphere in R n. We can use this last formula  to continue 

A (r) to an  analyt ic  funct ion in an  open interval  containing r = o. Consequently A (r) has 

the  form A (r) = (r - o)mh (r) in such an  interval.  Here m is an  integer and h (r) is an  analyt ic  

function, h (0)g= 0. This being established, the  relation 

lim ~ (r) A (r) = 0 
r - ~  

follows easily. We find therefore, whether  M is real elliptic or not,  

A u  = - M " / +  M ~  l - M~'/. 

4. Decomposition of a function into integrals over totally geodesic submanifolds 

The formula of J.  R a d o n  determining a funct ion on R n by  means of its integrals over 

hyperplanes  has had  considerable impor tance  for part ial  differential equations,  par t icular ly  

in G. Herglotz '  t r ea tment  of hyperbolic  equations with constant  coefficients (G. Herglotz  

[26], F. J o h n  [27]). We give below an extension of Radon ' s  formula to  spherical and 

hyperbolic  spaces. The proof seems to be new in the Eucl idean case. 

DEFINITION. Let  S be a connected submanifold of a Riemannian  manifold M.  

S is called totally geodesic if each geodesic in M which touches S lies entirely in S. 

Le t  M be a simply connected Riemannian  manifold of constant  curvature  u and  dimen- 

sion n > 1. Such a space is either a hyperbolic,  Eucl idean or a spherical space. I t  is well 

known tha t  for each integer d, 0 < d < n there exist to ta l ly  geodesic submanifolds of M 

of dimension d. Using the  nota t ion  f rom the  end of Chapter  I I ,  M can be wri t ten 

S0 (n + l ) /S0  (~/.), R n- S0 (n)/S0 (Tb), S01 (n + 1)/S0 (n) (4.19) 
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according as  u is posi t ive,  0 or nega t ive .  Le t  Mn.a(p) deno te  the  set  of d -d imens iona l  t o t a l l y  

geodesic submani fo lds  of M pass ing  t h r o u g h  some f ixed po in t  p. Since 0 (n) acts  t rans i -  

t i ve ly  on the  set  of d -d imens iona l  subspaces  of R n we see t h a t  Mr.. a(P) can be iden t i f i ed  

wi th  the  coset  space 0 ( n ) / 0 ( d ) x 0 ( n - d ) .  I n  pa r t i cu l a r  Mn.a(p) has  a un ique  nor-  

mal ized  measure  i nva r i an t  under  t he  ac t ion  of 0 (n). 

T H E 0 R • M 19. Let M be a simply connected Riemannian mani/old o/constant curvature 

and dimension n > 1. For d even, 0 < d < n, let Qa (x) denote the polynomial 

Qd (x) = [x - u (d - 1) (n - d)] [x - u (d - 3) (n - d § 2)] . . . .  [x - x" 1 (n - 2)] 

o/ degree d/2. For each /unction / eC~ (M), let [I~/] (p) denote the average o/ the values o/ 

the integrals o / /over  all d-dimensional totally geodesic submani/olds through p. Then 

Qd(A) Id/ = ~/ i / M  is non-compact 

Q~ (A) I d / =  ~, ( / §  / o A) i / M  is compact. 

In  the latter case M = S n and A denotes the antipodal mapping. The constant y equals 

Proo/. W e  consider  f irst  t he  non -compac t  case, M = G/K,  K = S 0 ( n ) .  I n  geodesic 

po la r  coord ina tes  which are  va l id  on the  ent i re  M the  met r ic  is g iven b y  

d 8  2 = d r  2 ~ sinh 2 (r ~ -  •) r 2 d a  2 

(r V -  ~)2 

where da 2 is t he  f u n d a m e n t a l  me t r i c  form on the  un i t  sphere  in R n. Le t  Po = ~ (e) a n d  

choose g such t h a t  g'Po = P. I f  E is a f ixed e lement  in l~In.d (P0) we consider  t he  in teg ra l  

F(]c)=f  / (g]c.q)dq k e K  
E 

where  dq denotes  the  vo lume e lemen t  in E .  I f  K 0 is the  subgroup  of K t h a t  t r ans fo rms  E 

in to  i tself  t hen  F(]C]Co) = F(]C) for ]c o EKo; consequen t ly  the  average  [ld/] (p) = S F(k)d]c 
K 

where  d]c is t he  normal i zed  H a a r  measure  on K.  

EId/] (p) = / d k f / (g ]C. q) d q 
K E 

= f dq f / (g]c. q) d k =  f [ M r / / ( p ) d q  
E K E 
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where r = d (P0, q). Now we make use of the fact that E is totally geodesic. Let y be an 

E-geodesic in E; let r be an M-geodesic touching y at p. Then F c E and due to the local 

minimizing property of geodesics, F = 7. It follows immediately that E is complete and 

thus two arbitrary points ql, q2 E E can be joined by a minimizing E-geodesic arc 7q,q. 

Let Pq, be an M-geodesic touching yq,q~ at qr Then by the previous remark 7q,q~ c I~QL. 

Since two arbitrary points in M can be joined by exactly one geodesic the same is true of 

E and the distance between ql and qs is the same whether it is measured in the E-metric 

or the M-metric. In particular E and M have the same constant sectional curvature x. 

Let S~ -I and S~ ~-z be geodesic spheres in E and M respectively with radius r. Their areas 

are 

[s inh  (r I/~)1 ~-1 
-4-d(r)= L ~/~-~ j ad 

[sinh (r n-1 
A (r)= L V---~ J a,. 

o o  

F r o m  this  we f ind [Ia/] (p) = f A~ (r) [M~/] (p) dr  (4.20) 
0 

Now we a p p l y  A to bo th  sides of (4.20) a n d  m a k e  use of L e m m a  22; 

co oo 

[AId/]  (p) = f Aa (r) [A M ~/] (p) d r = f Aa (r) A~ ([M r/] (p)) d r. 
0 0 

W e  shall  now keep p f ixed  and  wri te  F (r) = [M r/] (p). 

LEMMA 23. Let m be an integer, 0 <  m <  n = dim M.  Put  ~ = ~ - ~ .  Then 

f s inh m ~ r A r F d r = ( - ;t e ) (n - m - 1) m sinh "~ ~ r E (r) d r + (m - 1 ) / s inh m-~ }t r F (r) d r . 
0 0 

7 I[ m =  1 the term ( m - 1 )  s inhm-2,~rF(r)dr  should be replaced by ~ F ( 0 ) .  
o 

Pro@ Using L e m m a  2I  we have  

oo oo 

s i n h m ' ~ r A r F d r =  s inhmxr  d r  f §  dr  ~ r  dr  
0 0 

and  the  resu l t  follows a f te r  r e p e a t e d  in t eg ra t ion  b y  pa r t s .  F r o m  L e m m a  23 we see t h a t  

1 9 -  593805.  A c t a  m a t h e m a t i c a .  102, I m p r i m 6  le 16 d d c e m b r e  1959 
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co 

[Ap + ~2 m (n -- ra -- 1)] f sinh m ~ r [M r 1] (p) d r 
0 

co 

= ( -Z*)  (n - m -  1 ) ( m -  1 ) f  sinh~-2 Z r [M r/] (p)d r. 
0 

Applying this r epea ted ly  to  (4.20) the  first  re lat ion of Theorem 19 follows. 

I f  M is compac t  it  is a sphere and  we can proceed in a similar w a y  as in the  non- 

compac t  case, bu t  here we have  to observe t h a t  the  geodesics emana t ing  f rom p all in tersect  

a t  the  an t ipoda l  po in t  A (p). I n  geodesic polar  coordinates  the  met r ic  on M is given b y  

d s 2 = d r 2 + sins ( r 17~ ) r2 d a 2 

(r ]/ ;~)2 

where da  2 is the  fundamen ta l  metr ic  form on the  uni t  sphere in R n. As in the  non-compac t  

case we p rove  the  formula  

V~ 

[I~/]  (p) = f A a  (r) [Mr / ]  ( p ) d r  (4.21) 
0 

where  
(r d - 1  N 

A~ ( r ) =  I :-in G ]  L 

For  a f ixed p, we pu t  F (r) = [Mr]] (p). The analogue of L e m m a  23 is here 

LEMMA 24. Let  m be an  integer sa t i s /y ing  0 < m < n = dim M .  W e  p u t  ~, = g~. T h e n  

! s i n m ~ . r A r F d r = , ~ . 2 ( n - m - 1 )  m s i n m ~ . r F ( r ) d r - ( m - 1 )  f s i n m - ~ . r F ( r ) d r  . 
0 

5 'l } I [ m  = 1, the term (m - 1) sin m-3 ~, r F (r) d r should  be replaced by -~ / (p) + / (A  (p)) . 

0 

This is easily verif ied b y  using the  fo rmula  

A (r) = p i n  ~ ] ~ . ( r  ~ )  ~-1 

L e m m a  24 can be rewri t ten  by  using L e m m a  22 and  we ob ta in  

[Ap -- m ~2 (n -- m -- 1)] f sin m ~ r [M r 1] (P) d r 
0 

= ( _  ~ 2 ) ( n - - m -  1 ) ( m -  1 ) f  sinm-2 ~ r [Mr / ]  ( p ) d r .  
0 

I f  we app ly  this repea ted ly  to  (4.21) the  la t ter  p a r t  of Theorem 19 follows. 
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5. W a v e  equations on  harmonic  Lorentz  spaces 

I n  the  following sections we shall show t h a t  certain mean  value theorems connected 

with the Laplace operator  are no t  restricted to a positive definite metric as given in ordinary  

potent ia l  theory.  We extend the  definition of the  mean  value operator  M r to harmonic  

Lorentz  spaces and  establish various relations between [ ]  and  M r. The si tuat ion changes 

considerably as we pass to Lorentz ian  metric. "Spheres"  are no longer compact  and  a 

family  of concentric spheres does no t  shrink to a point  as the  radius converges to  0. Also 

the analy t ic i ty  of the solution of Laplace 's  equat ion is lost. 

We consider the Lorentz  spaces of constant  curva ture  studied in Chapter  I I ,  w 4, 

where the wave operator  has a simple characterizat ion (Theorem 12). Le t  M = G/H be 

such a Lorentz  space of dimension n > 1, carrying the metric tensor Q. Here H = S 01 (n) 

and G is either G ~  G - = S 0 1 ( n  + 1 )  or G* as defined in Chapter  I I ,  w 4. 

Let  s o be the  geodesic s y m m e t r y  of G/H with respect to the  point  Po. Then s o extends to 

an  i sometry  of G/H as we have seen in Chapter  I I .  The mapping  a : g-+SogS o is an  in- 

volut ive au tomorphism of G which is ident i ty  on H. Let  In be the  eigenspace for the  

eigenvalue - 1 of the au tomorph i sm da  of the  Lie algebra ~. I f  ~) denotes as before the  Lie 

algebra of H we have 

= ~ + ~ ,  Ira, n~] c ~, [~, nt] c n~ (4.22) 

As before we identify m with Mr, and  denote by  Cv. the light cone in My. at  P0. The interior 

of the cone Cv. has two components;  the component  t h a t  contains the timelike vectors  

( - 1, 0, ..., 0), - Xn+ 1, - iXn+ 1 in the  cases G~ G-/H, G+/H respectively we call the  

retrograde cone in m at  P0. I t  will be denoted by  Dr~ The component  of the  hyperboloid  

Qv.(X, X) = r 2 t ha t  lies in Dr. will be denoted by  Sr(Po) in agreement  with previous ter-  

minology. I f  p is a ny  other  point  of M, we define the  light cone Cv in M v a t  p, and  t h e  

re t rograde cone Dp in M v at  p as follows. We choose g E G such t h a t  ~ (g)'Po =P and  p u t  

Cp = dr(g).Cr. Dp = d~(g).DDo. Due to the connectedness of H this is a valid definition. 

Similarly the "sphere"  Sr (p) (the ball Br (p)) is the  component  of the hyperboloid Qv (X, X)  

= r 2 (0 < Qv (X, X) < r 2) which lies in Dp. Finally,  if Exp  is the Exponent ia l  mapping  of 

M v into M we pu t  

Dv = E xp  Dp Cp = E x p  Cv 

S~ (p) = E xp  Sr (p) B~ (p) = E x p  B~ (p) 

Cv and Dv are called the light cone in M with ver tex  p and  the retrograde cone in M with 

ver tex p. For  the  spaces G§ we tac i t ly  assume r < z in order  t h a t  E x p  will be one-to- 

one. 
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We wish now to study solutions of various equations involving []  inside the retrograde 

cone Dp for p E M. This emphasis on Dp is in agreement with the physical and geometric 

situation occurring in relativity theory and in t tadamard 's  theory of hyperbolic equations. 

Let dh denote a two-sided invariant measure on the unimodu]ar group H. Let p be 

a point in M, and u a function defined in the retrograde cone Dp. Let q E S~ (p) (r > 0) and 

consider the integral 

f u(ghg-~.q)dh 
H 

where g is an arbitrary element in G such that  7~(g) = p .  The choice of g in the coset gH 

and of q C St (p) is immaterial due to the invariance of dh. The integral is thus an invariant 

integral of u over S~ (p) and in analogy with the previous mean value we write 

[M" u] (p) = f u (ghg -1. q)dh 
H 

Now Sr (p) has a positive definite Riemannian metric induced by the Lorentzian metric 

on M. Let d r  or denote the volume element on St(p). Then if K denotes the (compact) 

subgroup of gHg -1 which leaves the point q fixed, S~ (p) can be identified with coset space 

gHg-1/K and 

�9 u (q) d r (q) 
(r) 

H S r (p) 

where .4 (r) is a positive scalar depending on r only. We have thus dh =dtordk/A (r) where 

dk is the normalized Haar measure on K. Now the Exponential mapping at p which maps 

Dp onto D r is length preserving on the geodesics through p and maps S,(p) onto St(p). 

Consequently, if s E S~ (p) and X denotes the vector p-~ in Mp, the ratio of the volume ele- 

ments of S~(p) and St(p) at s is given by det (d Expx). By Lemma 8 and 13 this equals 1, 

(sinh r/r) n-l, (sin r/r) n-1 in the flat, negatively curved and positively curved case respectively. 

I t  follows that  A (r) = cr n-l, c (sinh r) n-l, c(sin r) ~-1 in the three cases. Here c is a constant 

which depends on the choice of dh. We normalize dh in such a way that  c = 1 and have 

then the relation 

[M~ u](p)= / u (ghg- l .q )dh  = f u(q)d(r(q) (4.23) 

H St(v) 

where da  = 1/A(r)dtor. Suppose now x 1 . . . . .  x n are coordinates in M v such that  the cone 

C, has equation x~ - x~ . . . . .  x~ = 0 and the axis in the retrograde cone D~ is the negative 

Xl-axis. If  01 . . . . .  0n-2 are geodesic polars on the unit sphere in R n-1 we obtain coordinates 

in D, by 
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Xl=  - - r  cosh ~ 0__<~< c~, 0 < r <  c~ 

x 2 = r sinh ~ cos 01 

xn = r s i n h  ~ sin 01 sin 02 . . . . .  sin 0n-~ .  

The  volume element on Sr (p) is then  given b y  

dtor= r ~-1 sinhn-2 ~ d~ deo ~-2 

where d w n-~ is the  volume element on the  uni t  sphere in R n-1. Using the  Exponent ia l  

mapping  a t  p we can consider (r, ~, 01 . . . . .  0n-s) as coordinates(1) on D~. Le t  u be a funct ion 

defined in Bro(p0). We shall say  u has order a if there exists a continuous (not necessarily 

bounded) funct ion C (r), (0 < r < to) such t h a t  

I ( u o E x p ) ( q ) l < C ( r ) e  -a~ for qeBr , (po)  (4.24) 

in terms of the  coordinates above. 

For  R 2 the  following result  has also been noted  by/i~sgeirsson (letter to the  author).  

T H E 0 R E M 20. Suppose u satisfies the equation [] u = 0 in  Br0 (P0)- We assume that u 

and its first and second order partial derivatives have order a > n - 2. Then  

[M r u ] ( p 0 ) = ~  ~ d r  

r 

where ~ and fl are constants. 

I~EMARK. I f  U converges to 0 fast  enough in an  immedia te  neighborhood of the cone 

C~, so tha t  

) 
then [Mru] (P0) is constant .  We  get  thus an  analogue of the mean  value theorem for har- 

monic functions. 

To prove the relation above we consider the  integral  

F ( q ) = f  u ( h . q / d h .  
H 

The measure d h has been normalized such t h a t  

d h =  sinh~-~ ~ d~ deon-~ dk .  

(1) We call these the geodesic polar coordinaf~s on D v. 
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Due to the growth condition on u it is clear that  the integral is convergent and the operator 

[]q can be applied to the integral by differentiating under the integral sign. Since [ ]  is 

invariant under H we obtain [ ]  F = 0. We now need a Iemma whose statement and proof 

are entirely analogous to that  of Lemma 21. 

LEMMA 25. In  geodesic polarcoordinates on Dr, [] can be expressed 

~2 1 d A 
[] - -  ~ / V  

- ~ r ~ +  A (r) dr  ~r 

where A' is the Laplace-Beltrami operator on St(p). 

The minus sign is due to the circumstance that  Q induces a negative definite metric 

on St(p) whereas A' is taken with respect to the positive definite metric. 

The function F(q) is constant on each sphere St(P0). Due to Lemma 25, F ( q ) =  

[ Mru]  (P0) is a solution of the differential equation 

d2v 1 d A  dv 
drr2+ A(r)  dr  dr  - 0  

and can therefore be written 

where a and /5 are constants. 

[1 

[ M t u ] ( p o ) = ~ f A l ( r ) d  r 
t 

6. Generalized Riesz potentials 

For two-point homogeneous spaces M r can be expressed as a power series in A when 

applied to analytic functions. This does not hold for the operators M t and []  in a harmonic 

Lorentz space; nevertheless we shall now establish various relations between M t and [ ] .  

For this purpose it is convenient to generalize certain facts concerning Riesz potentials 

(M. 1%iesz [32]) to harmonic Lorentz spaces. These potentials, defined below, do not however 

coincide with the generalization to arbitrary Lorentzian spaces given by Riesz himself in 

[32]. 

We consider first the case M = G-/H.  Let /E C~ r (M). The integral 

/ ] (q) sinh a- ~ rpq d q d q = d r d tot 
Dp 

converges absolutely if the complex number 2 has real part  /> n. 

We define [I~-/] (P) = Ha (~'-~) [ (q) sinh~-n r~q d q. (4.25) 

Dp 
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Here  H ,  (2) = ~e�89 (~)  F ( ~ + 2 - n  ) 

jus t  as for the  ord inary  Riesz potent ials .  The  r igh t -hand  side of (4.25) can be wr i t ten  

1 ~ sinh a - 1 ro ~ ~- n 
H , ( 2 ) "  j ( / ~  ~ roQ d O  

D~ 

1 
h (Q, 2) r0Z5" d Q (4.26) which is of the  fo rm Hn (2)" 

i /  

Dp 

where h (Q, 2) as well as all  i ts par t i a l  der iva t ives  with respect  to the  first  a rgumen t  are 

holomorphie  in 2 and  h(Q, 2)EC~(M~) for each 2. The  methods  of M. Riesz ([32], Ch. I I I ,  

IiI) can be appl ied  to  such integrals.  We find in par t icu lar  t h a t  (4.26), which b y  its definit ion 

is holomorphic  in the  half  p lane ~ 2 > n, admi t s  an  ana ly t ic  cont inuat ion  in the  entire 

plane and  the  va lue  for 2 = 0 of this entire funct ion is h (0, 0) = / (p). We denote  the  analy t ic  

cont inuat ion of (4.25) b y  [I~]] (p) and  have  then  

I ~ ] = / (4.27) 

W e  can different iate  (4.25) wi th  respect  to p and  car ry  out  the  different ia t ion under  the  

in tegral  sign (for large 2), t rea t ing  D v as a region independent  of p. This can be seen ([32] 

p. 68) b y  writ ing the  in tegral  (4.25) as j"/(q) K(p, q)dq over  a region F which p roper ly  
F 

contains the  intersect ion of the  suppor t  of / and  the  closure of D v. K(p,  q) is defined as 

sinh a - "  r~q if q EDp, otherwise 0. We obta in  thus  

[[] Ia-]] (P) = H,  (2~ ] (q) 
Dp 

Using L e m m a  25 and the  relat ion 

we find t h a t  

V]v sinh ~-n rpq dq. 

1 d A  ( n - 1 ) e o s h r  

A (r) d r sinh r 

[:]p sinh a~n r~q = r~q sinh g-n rpq = (4 - n) (4 - 1) sinh ~-n rpq 

+ (4 - n) (2 - 2) sinh a -" -2  rpq. 

We also have  Hn (4) = (2 - 2) (2 - n) Hn (2 - 2) and  therefore  

[] I a - / =  (2 - n) (2 - 1) I~[ + I~ -2/. 

On the other  hand,  we can use  Green 's  fo rmula  to express,  

f (/(q) [Sa ( sinh~-n r,q) - sinh ~-~ r,q [[2] ]] (q)) dq 
Dp 
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as a surface integral stretching over a par t  of (~ and a surface inside Dv on which / and 

its derivatives vanish. I t  is obvious that  these surface integrals vanish (for large 2). This 

proves the relations 

C3X~[=I~ ~ [ =  ( ~ -  n) (Z - l) I~_ / + ~_-~ t (4.28) 

for all complex 2 with sufficiently large real part; due to the uniqueness of the analytic 

continuation, (4.28) holds for all ~. In particular we have I-2[ = [ ~ / -  n/.  Thus our defini- 

tion (4.25) differs from Riesz' own generalized potential  ([32], p. 190) which is suited to 

obey the law I - ~ / =  [~/. 

We consider next  the case M = G+/H and define for [ E C~(M) 

1 f f(q) sina_nrpqdq ' [I~+/] (P) = Hn (~) " 
Dp 

where dq = drdr In  order to bypass the difficulties caused by the fact tha t  the function 

q--> sin r~q vanishes on the antipodal variety S= (p), we assume tha t  the support of / is 

disjoint from the antipodal variety S=(p); this suffices for the present applications. We 

can then prove just as before 

[I~ 1] (P) = f (P) 

= - [I+ f] (p) + [I~+ -2 ] (p). (4.29) 

In the flat case M =  G~ we define 

[I~ (P) = Hn (~t) [(q)r~-q~dq' f e C~ (M). 

Dp 

Then, as proved by M. Riesz, 

~gf=I~0 D/=g-~[, I~1=t. (4.30) 

T~EOREM 21. For each o[ the spaces G~ G - / H  and G+//H [] and M r com- 

mute, i.e. 
[] M r u =  M r [] u /or u E C~ (M) 

(for G+//H we assume r < ~ ) .  

Proo/. We restrict ourselves to the case G+/H. When proving the relation [ []Mru] (p*) 

= [MrDu] (p*) for r < z  we can assume without loss of generality tha t  the support of u 

is disjoint from the antipodal variety S. (p*). Now we have for ~ 2  > n 

f u (q) sin ~-n r~qdq= f [Jlr u] (p) sin~-X r dr  
Dp 0 
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where  a is a cons t an t  as  p var ies  in  some ne ighborhood  of p*. W e  now a p p l y  [] 

a n d  make  use of (4.29). Then  we ob t a in  

a a 

f [Mrau](p) sin~-lrdr = f [[]Mru](p) sin ~ lrdr. 
0 0 

I n  the  same w a y  one can p rove  

a a 

f [M r [] u] (p) sin ~- 1 r ~ (r) d r = f [ [] M r u] (p) sin a- 1 r ~ (r) d r 
0 0 

where  ~ (r) is an  a r b i t r a r y  cont inuous  funct ion .  I t  follows t h a t  [ f - ]Mru]  (p) = [Mr[~u] (p). 

The following Corol lary  is ob ta ined  jus t  as  t he  Corol la ry  of Theorem 16. 

COROLLARY (The Darboux equation). Let / e O ~ ( M )  and put F(p,  q)=[Mr/](p) i/ 

q E Sr (p). Then 
E]I P = D~ F. 

7. Determinat ion o f  a funct ion  in terms o f  its integrals over Lorentz ian spheres 

I n  a R i e m a n n i a n  man i fo ld  a funct ion  is d e t e r m i n e d  in  t e rms  of i ts  spher ica l  m e a n  

va lues  b y  the  s imple r e l a t ion  u = l im Mru. W e  shal l  now consider  the  p rob l e m of express ing 

a funct ion  u in a ha rmonic  Loren tz  space b y  means  of i ts  mean  va lues  Mru over  Loren tz i an  

spheres.  Here  t he  s i tua t ion  is n a t u r a l l y  qui te  d i f ferent  because  t he  " spheres"  Sr do n o t  

shr ink  to  a po in t  as r -+0 .  F o r  th is  pu rpose  we use t he  po ten t i a l s  I_ ,  I +  a n d  I o def ined  above;  

a s imilar  m e t h o d  was used b y  I .  Gel fand  and  M. Graev  [13] in de te rmin ing  a func t ion  on 

a complex  classical  g roup  b y  means  of the  f ami ly  of in tegra ls  I~ over  the  con jugacy  class 

given b y  the  d iagona l  m a t r i x  & Here  I~ is bounded as ~-~e whereas  Mru is in genera l  un-  

bounded  as  r -~0 .  F o r  ano the r  r e l a t ed  p rob lem see H a r i s h - C h a n d r a ' s  p a p e r  [23]. 

W e  consider  f irst  t he  nega t i ve ly  curved  space M = G- /H  a n d  assume t h a t  n = d im M 

is even. Le t  /E  C2 r (M). The  p o t e n t i a l  1 ~_ / (p)  can be expressed  

1 fsinh~_lrF(r)dr (4.31) 
[I~-/] (P) = H n - ~  

Dp 

where  F(r) = [Mr/]  (p). W e  use now the  coord ina tes  x I . . . . .  xn f rom Chap te r  IV,  w 5. L e t  

2 2 R be such t h a t  / o E x p  vanishes  outs ide  t he  surface xl  + x 2  § ... + x ~  = R 2 in M, .  I t  is 

easy  to  see t h a t  in t he  in teg ra l  

F (r) = f f  (/o Exp)  ( - r cosh $, r s inh ~ cos 01 . . . . .  

r s inh ~ sin 01 . . .  sin On-2) sinh ~-2 ~ d ~ deo n-~ 



294 S I G U R ] ~ U R  H E L G A S O I ~  

the range of ~ is contained in the  interval  (0, r where r=cosh=~o +r2sinh=$o = R ~. I f  

n ~e 2 we see by  the subst i tut ion y = r sinh ~ t h a t  the  integral  expression for F (r) behaves 

for small r like 
K 

o 

where ~o is bounded.  I f  n = 2  we see in the  same way  t h a t  F ' ( r )  behaves for small 

r like 
K 

0 

Therefore, the limits 

a= lim (sinh~-2r)F(r) (n~:2)  (4.32) 
r-->0 

b = lim (sinh r) F '  (r) (n = 2) (4.33) 
r-->0 

do exist. Consider now the  first case n 4 2 .  We can rewrite (4.31) as 

R 

1 f sinh~_~rF(r) sinh~_~+lrdr [ I~- l] (P) = H,~ (~) 
0 

where F(R)=O. We now evaluate  bo th  sides for 2 = n - 2 .  Since H,(2) has a simple 

pole for ~. = n - 2  the same is t rue  of the integral and  the  residue is 

R 

lim ! sinh n-2 rF  (r) (~-  n+ 2) sinh ~-n+l rdr. 
2 - ~ n - 2  

Here ~ can be restr icted to  be real  and  > n - 2 which is convenient  since the  integral  above 

is then  absolutely convergent  and  we do no t  have to  th ink  of it as an  implicit ly given holo- 

morphic extension. We  split the integral  into two par ts  

R R 

f (sinhn-2rtV(r) -a )  (~ - n + 2 )  sinh ~-n+l r d r §  ()~- n § 2) sinh a-n+1 r dr. 
0 0 

Concerning the last t e rm we note  t h a t  

R R 

]iom + ~ J s i n h ' - I  r dr= p-~olim+ ~ o f r~-I d r=l .  

As for the  first term,  we can for  each s > 0 f ind a ~ > 0  such t h a t  

I(sinhn-2r)F(r)-al < e  for 0 < r < ~  



D I F F E R E N T I A L  OPERATORS ON H O M O G E N E O U S  SPACES 295 

I f  N = m a x  [ (sinh ~-2 r) _~ (r) ] we have  for n -  2 < 2 < n -  1 t he  e s t ima tes  

o~ (sinh n-2 r F (r) - a) (2 - n + 2) s inh ~-n+l r d r _<- 2 (2 - n + 2)/V (R - (~) s inh -1 (~ 

6 6 

~o (sinh~-~r F(r ) -a )  ( 2 - n  + 2) sinhX-n+lrdr <=e ( ~ - n  + 2) f rX-n+l dr. 
o 

W e  conclude easi ly  t h a t  

l im / s inh ~-1 r F (r) (2 - n + 2) d r = l ira s inh ~-2 r F (r). 
~--~(n-2) 0 x--}0 

Tak ing  in to  account  t he  fo rmula  for  H~ (2) we ob t a in  

1 
In_ - ~ / = (4 ~) �89 (2- n) l im sinh n - 2 r M y ]. 

F (1 ( n -  2)) ~-,o 
(4.34) 

On the  o the r  hand ,  if we use t he  fo rmula  (4.28) recurs ively ,  we ob t a in  for  a r b i t r a r y  u E C~ r (M) 

P-2(Q([~)u) =u 
where  

Q([B) = ( D  + ( n - 3 ) 2 ) ( [ ]  + ( n - 5 ) 4 )  . . . .  ( [ ]  + l ( n - 2 ) ) .  

W e  combine  this  wi th  (4.34) a n d  use on the  r i g h t - h a n d  side t he  c o m m u t a t i v i t y  of [ ]  and  

M r . This  y ie lds  the  des i red  fo rmula  

1 
l im s inh ~-2 r Q ( [~)  (M~u) (4  7~)�89 (2-n)  F (1 ( n  - -  2 ) ) r -+0  U 

d 2 cosh r d 
where  [~r= ~rr 2i- ( n -  1)s in h r dr" 

I t  r ema ins  to  consider  t he  case n = 2 .  Here  we have  b y  (4.31) 

l; 
I~- / = / - / 2  (2) s inh r F (r) d r [ E C~' (M) 

0 

where  t he  in tegra l  converges abso lu te ly .  I n  fac t  F(r)< C[log  r I for small  r. W e  a p p l y  

th i s  re la t ion  to  the  func t ion  [ =  B u where  u is an  a r b i t r a r y  func t ion  in C~ (M). 

W e  also m a k e  use of (4.28) a n d  Theorem 21. I t  follows t h a t  

I~_[]u=u=~ s i n h r M ~ u d r = ~  s i n h r  -~r~q s-~n~-r~-r M u dr 
0 0 

_ 1  s m h r ~  d r =  l i ra  s i n h r  
--2 J ~-r ~--)o dr ] 

0 
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The spaces G+/H and GO/H can be t rea ted  in the  same manner .  The combined result  is 

as follows. 

THEOREM 22. Let M be one o/ the spaces G~ G-~H, G+ /H.  Let ~ denote the curvature 

o / M  (u = 0, -- 1, + 1) and assume n = dim M is even. We also put 

Q (x) = (x - u (n - 3) 2) ( x -  u (n - 5) 4) . . . .  (x - u 1 (n - 2)). 

Then i/ u E C~ (M) 

u= (4~) ~(2-n) 1 
l imr"-2Q([]r)(Mru) (n~=2) 

r (�89 ( n -  2)) r~0 

and u =  - �89  rdrMrU. ( n = 2 )  
r--)4) 

8. Huygens' principle 

We consider now an arb i t rary  Lorentz ian  space M with metric tensor Q and  dimension 

n. Let  U be an open subset of M with the  p roper ty  t h a t  a rb i t ra ry  two points  p, q E U can 

be joined by  exact ly  one pa th  segment  contained in U. All considerations will now take  

place inside U. The pa ths  of zero length th rough  a point  p E U generate  the light cone 

(~p in U with ver tex  p. A submanifold S of U is called spacelike if each t angen t  vector  

to  S is spacelike. Suppose now tha t  a Cauchy problem is posed for the  wave equat ion 

D u  = 0 with initial da ta  on a spacelike hypersurface S c U. F r o m  H a d a m a r d ' s  theory  it 

is known tha t  the  value u (p) of the solution at  p E U only depends on the initial da ta  on 

the piece S* ~ S tha t  lies inside the  light cone Cp. Huygens '  principle is said to  hold for 

D u = 0 if the  value u (p) only depends on the  initial da ta  in an  a rb i t ra ry  small neigh- 

borhood of the edge s of S*, s = Cp N S. H a d a m a r d  has shown t h a t  Huygens '  principle 

can never hold if n is odd. On the other  hand  the  wave  equat ion D u = 0  in R n 

(n even > 2) is of Huygens '  type.  A long-standing conjecture,  attributed(1) to H a d a m a r d ,  

states t ha t  these are essentially the  only hyperbolic equat ions of Huygens '  type.  A counter-  

example of the  form [~u §  = 0  was given by  K. Stel lmacher (Ein Beispiel einer 

Huygenschen  Differentialgleichung, Nachr. Akad. Wiss. GSttingen 1953) bu t  for the  

pure equat ion D n = 0 the  problem is, to  m y  knowledge, unsett led.  For  harmonic  

Lorentz  spaces the  problem is easily answered by  using properties of these spaces obtained 

in Chapter  I I .  

(1) Courant-I-Iilbert, Methoden der mathematischen Physik ,  Vol. II ,  p. 438. An interesting discussion 

and results concerning this problem are given in L. ~sgeirsson, Some hints  on i u y g e n s '  principle 

and i a d a m a r d ' s  conjecture. Comm. Pure Appl .  Math. I X  (1956), 307-326. 
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THEOREM 23. The wave equation E]u = 0 in a harmonic Lorentz space M satisfies 

Huygens' principle i / and  only i / M  is fiat and has even dimension > 2. 

Proo/. Since H u y g e n s '  pr inc ip le  is a local  p rope r ty ,  we can,  due  to  Theorem 9, assume 

M = G - / H  or M = G§ I n  e i ther  case we can f ind  a so lu t ion  of [ ]  u = 0, va l id  in D~,, 

b y  solving the  equa t ion  

d2v 1 d A  dv  
0 

dr  2 A (r) d r  dr  

a n d  p u t t i n g  u (p) = v ( r~ ) .  W e  f ind  i m m e d i a t e l y  a solut ion of the  form 

1 dr  
v (r) = s inh ~- 1~ 

a 

if M =  G - / H  

r 

v ( r ) =  ( ~ d r ,  
d sin r 
a 

if M =  G+/H. 

Due to H a d a m a r d ' s  resu l t  a l r e a d y  quo ted  we can assume n to  be even. U n d e r  th is  assump-  

t ion i t  follows b y  easy  c o m p u t a t i o n  t h a t  v can be wr i t t en  

v (r) = ~ + Q (r) log r, Q ( 0 ) + 0  

where P a n d  Q are  regula r  funct ions ,  u is t hus  an  e l e m e n t a r y  solut ion and  since i t  con ta ins  

a non-vanish ing  logar i thmic  te rm,  H u y g e n s '  pr inc ip le  is absen t  ( H a d a m a r d  [18] p. 236, 

Couran t - t t i l be r t ,  loc. cit., p. 438). 
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