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DIFFERENTIAL OPERATORS ON NONCOMMUTATIVE RINGS

VALERY A. LUNTS* AND ALEXANDER L. ROSENBERG

0. Introduction

Let k be a commutative ring and R an associative k-algebra. In this paper we de-
fine the ring D(R) of k-linear differential operators on R. In case R is commutative
this, of course, coincides with Grothendieck’s definition ([G]).

Given left R-modules L, N we define the differential operators Diff(L, N) from
L to N as the differential part of the R-bimodule Hom(L,N). Thus our main
definition is the differential part Mg, s of an arbitrary R-bimodule M. This is an R-
subbimodule of M. In case R is commutative, My;y is the part of M supported on
the diagonal of SpecR x SpecR. Building on this analogy for general R, we can think
of the R-bimodule R as the “structure sheaf of the diagonal in SpecR x SpecR”.
The differential part Mg,y is defined by using the bimodule R.

The main property of classical differential operators is their compatibility with
localizations of R. We prove that if R is a domain and R — R’ is an Ore localization,
then there is a natural ring homomorphism D(R) — D(R') (Theorem 1.2.1). We
show that if the enveloping algebra U(g) of a Lie algebra g acts on R as a Hopf
algebra, then it acts by differential operators (1.3). This implies (in case R is a
domain) that such an action extends to Ore localizations of R. :

This work arose as part of our project to find a localization construction for
quantum enveloping algebras (quantum groups), which would be the quantized
analogue of the Beilinson-Bernstein localization for reductive Lie algebras. Our
localization construction is described in [LR1]. It was one of our first conclusions
that quantum groups live naturally in the universe of Q-graded objects (Q is the
root lattice). This led us to the notion of quantum (or ¢-) differential operators
D4(R) when the ring R is graded by an abelian group I'. The ring D (R) includes
the “grading” action of I'. We show the compatibility of Dg(R) with localizations
(Theorem 3.3.2) and prove that if a quantum group acts on R as a Hopf algebra,
then it acts by quantum differential operators (3.3). In particular, such an action
of a quantum group extends to localizations of R (theorem 3.4.1).

The intermediate notion between D(R) and Dy(R) is that of graded (or §-)
differential operators Dg(R), where 8 :T' x I' — k* is the fixed bicharacter. Recall
that the ring D(R) is defined using the R-bimodule R. Similarly, the ring Dg(R)
(resp. D4(R)) is defined by using the (bigger) bimodule Rr (resp. still bigger
bimodule R{).
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2 VALERY LUNTS AND ALEXANDER ROSENBERG

The paper consists of three parts, very similar in structure. The first part con-
cerns with D(R), the second, with Ds(R), the third, with D,(R). We compute
the algebra Dg(R) in case R is a skew polynomial ring (2.3). Holonomic modules
over Dy(R) are discussed in 3.5. In section 4 we discuss differential operators in
the category language.

This paper is written in the language of rings and modules and therefore deals
with the “affine case”. We treat the general case of abelian categories in [LR3],
where the picture is in some sense more natural. The 8- and g¢-differential operators
appear naturally in the context of braided monoidal categories ([LR4]).

1. Differential operators on noncommutative rings
1.0. Differential calculus on commutative rings

First we recall shortly the differential calculus on commutative rings and schemes
following [BB].

Fix a commutative ring k. If not specified otherwise, ® means ®i. Let R be a
commutative k-algebra; and let M be an R-bimodule such that, for any z € M and
any A € k, A-z = z-X. The bimodule M can be regarded as an R® R-module. For
any r € R, define the endomorphism ad; of the bimodule M (- the adjoint action
of r) by ad,(2) =r-2—2-r forall 2 € M.

An increasing filtration {M; |7 > —1} on M is called a D-filtration if M_; =0
and ad,(M;) C M;_; for all » € R and ¢ > 0. There is the largest (with respect to
the inclusion) D-filtration M on M defined by M: ={z € M|ad.(z) € Mi"__1 for
all € R}, ¢ > 0. The subbimodule M1 := Uiso M;r is called the differential part

of M. And M is called a differential bimodule if M' coincides with M.

This allows us to define k-linear differential operators Diff(L, N) between left R-
modules L, N. Namely, note that Hom(L, N) is naturally an R-bimodule and put
Diff(L, N) := Homi(L, N)!. Thus differential operators Diff(L, N) have a natural
filtration by the degree Diff(L, N) = J;5, Diff(L, N);, where f € Diff(L, N); if
[Fit1,[riy---[r1, f]-..]] = O for any r1,...,riy1 € R considered as operators on L and
N. We denote D(R) := Diff(R, R), D'(R) := Diff(R, R);. Then D'(R)D/(R) C
D*I(R), hence D(R) is a filtered ring. We have the canonical ring homomorphism
R — D(R).

Let A be a k-algebra equipped with an k-algebra homomorphism i : R — A.
An increasing ring filtration A. = {A; | ¢ > —1} is called a D-ring filtration if it is
a D-filtration of the R-bimodule 4 such that i(R) C Ay and i(R) lies in the center
of the associated graded algebra. One can observe that the largest D-filtration A'
on A is a D-ring filtration. And i : R — A is called an R-differential algebra if
A = A" i.e. when A is a differential R-bimodule. An example of an R-differential
algebra is the ring D(R).

Note that, if we regard a bimodule M as an R ® R-module, Mz-1 ={z€ M|
I't1z = 0}, where I is the kernel of the multiplication m : R ® R —R. It follows
from this description that the canonical D-filtration is compatible with localizations:
for any t € R, there are natural isomorphisms (Mif)t -~ (Mt)f o~ Rt®RM: o~ M!@R
R;. Here M, denotes the localization of M at ¢, i.e. M; := R ®r M ®r R;. This
compatibility with localizations allows us to globalize the notion of a differential
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bimodule. Namely, we can repeat above definitions with the ring R replaced by the
structure sheaf Ox of a scheme X, and L, N being quasicoherent O x-modules.

1.1. Differential calculus on noncommutative rings

1.1.1 Reformulation. If we consider the same setup with a noncommutative k-
algebra R, the above definition is no good. For example, in M = N = R, then
operators of left multiplication by elements of R will not necessarily be differential
operators. Let us propose a reformulation which carries over to the noncommutative
case. Namely, in the notation of 1.0, define MJ by induction on ¢ as the largest

subbimodule of M, such that the bimodule M} /M]_| is a quotient of a direct sum
of copies of the bimodule R. It turns out that this reformulation gives a good theory
in the noncommutative case.

1.1.2 Fix an associative unital algebra R over a commutative ring k. If not specified
otherwise, ® means ®;. We identify R-bimodules with R® := R ® R°-modules.
1.1.2.1. Definition. An R‘-module M is differential iff it has an increasing
filtration by submodules

0=McMcMc.., |JM=M,

such that M;y1/M; is a quotient of a direct sum of copies of the R*-module R.

1.1.2.2 Definition. Given an R-bimodule M, its center is the k-submodule
3(M):={z € M|rz = 2r forall r € R}. We call M central if M = R*3(M).
Notice that for a central R*-module M we have M = R3(M) = 3(M)R.

1.1.2.3. Note that for an R*-module M we have an isomorphism of k-modules
Homp:(R, M) ~ 3(M).

Any R-module M has a canonical chain of submodules {3;M}, which satisfies the
condition of 1.1.2.1. Namely, define 3; M by induction as follows:

30M := R*3(M),

3iM/3i1 M := R*3(M/3i-1 M).

Clearly, this is the maximal filtration satisfying the condition in 1.1.2.1. Thus M
is differential iff | J3:.M = M.

1.1.2.4 Lemma. Any R¢-module M contains the biggest differential submodule
Myiss, called the differential part of M. The correspondence M +— M5 is func-
torial: for any Rt-module morphism ¢ : M — M', o(Maiss) C My;fs.

Proof. Indeed, put Myiss :=J3: M

1.1.2.5 Definition. Let L, N be left R-modules. Consider Homy(L,N) as a left
R*-module and call Diff(L, N) = Diffy(L, N) := Homi(L, N)aiss the (k-linear) dif-
ferential operators from L to N. The Rf-submodule Diff"(L, N) := 3, Diff(L, N) C
Diff(L, N) consists of differential operators of order n.
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1.1.2.6 Definition. Given a homomorphism of k-algebras R — B, we call B a
differential R-algebra if B is a differential R*-module.

1.1.2.7 Proposition. a) If M, M' are differential R*-modules, then the R¢-module
M ®@gr M' is also differential.

b) For any homomorphism of k-algebras R — B, the differential part of the R*-
module B is a subring of B, i.e. Byiss is a differential R-algebra. More precisely,
3B -3;B C3it;B. '

c) For any left R-module L, the R*-module Diffy(L, L) is a differential R-algebra.

Proof. a) If z € 3(M), z' € 3(M'), then 2 ® z' € 3(M ®gr M"). This implies that
the image of 3; M ® 3, M' in M ®r M' is contained in 3;4+;(M ®gr M'). This proves

a).

b) The multiplication map B ® B — B factors through the morphism of R-
modules B ® g B — B. The argument in a) (and the functoriality of the filtration
3.) imply that 3;B ®g 3;B — 3i4+;B. Thus Byisy is a subring.

c) Given a left R-module L, we have the canonical map of R*-modules

a: R - 3Homi(L,L), rw— (Il—rl).

Clearly, @« : R — Homy(L,L) is a ring homomorphism, and note that the R*-
module structure on Hom(L, L) coincides with the one induced by this homomor-
phism. Hence, by b) above, Diffy(L, L) is a differential R-algebra.

1.1.2.8. We write D¢(R), or simply D(R), instead of Diffx(R, R) and call it the
algebra of (k-linear) differential operators on R. The canonical algebra homo-
morphism ¢ : B — D(R) (1.1.2.7c) makes D(R) a differential R-algebra. Put
D'(R) := 3;D(R), i > 0. Then D'(R)D’(R) C D**¥(R) (1.1.2.7b), i.e. D(R) is a
filtered algebra by the “order of differential operators”. We have i(R) C D°(R).

1.1.2.9 Definition. A derivation d of R is a k-linear map d : R — R, such that
d(ab) = d(a)b + ad(b). Denote by Der(R) the k-module of derivations of R.

1.1.2.10 Proposition. a) The center 3(Hom(R, R)) of the R*-module Homy(R, R)
consists of right multiplications by elements of R. In particular, the subring D°(R)
is generated by left and right multiplications by elements of R.

b) The R¢-module D'(R) contains Der(R).

Proof. All assertions are straightforward.

1.2 Localization of differential operators.

1.2.0 Assumption. Let R — R’ be a homomorphism of k-algebras such that R’
is the localization of R with respect to a left and right Ore set S C R.

1.2.1 Theorem. Assume that R is a domain. Given a left D(R)-module L, its
localization R' @p L is also canonically a D(R)-module. In particular, there ezists
a canonical ring homomorphism D(R) — D(R') (preserving the filtration D"), i.e.
differential operators on R eztend to R'.

We need a lemma.



DIFFERENTIAL OPERATORS 5
1.2.1.1 Lemma. The canonical map of (R', R)-modules
R' ®r D(R) — R' Qg D(R) QR R

is an isomorphism.

Proof. 1) Injectivity. Since R’ is a flat right R-module, it suffices to show that the
natural map

D(R) —» D(R)®r R’
is injective. Denote by Q(R) the skew field of fractions of R. Obviously, D(R) is a

torsion free left R-module. Hence the natural map
D(R) — Q(R) ®r D(R)
is injective. Thus it suffices to show that the natural map
Q(R) ®r D(R) = Q(R) ®r D(R) ®r R’

is injective, or equivalently, that the right R-module Q(R) ®r D(R) has no torsion.
The canonical filtration by R¢-modules

0 = DY(R) c D°(R) c D'(R)... = D(R)
induces the filtration by (Q(R), R)-submodules
P 'cP’cP!'c..=Q(R)®r D(R),

where P" := Q(R) ®r D*(R).

Assume that there exists 0 # d € Q(R) ®r D(R), 0 # s € R, such that ds =
0. Let n be such that d € P® and d ¢ P™"!. Recall that the left R-module
D™(R)/D"'(R) is generated by central elements. Hence there exists a collection
of elements {d;}; C D™(R), which are central modulo D" 1(R) and such that the
image in P"/P"! of the set {1 ® di} is a basis of the left Q(R)-vector space
Pn/P"" 1. Choose one such collection.

We can write (uniquely)

d=%Yb;®d; + d

for some b; € Q(R), d € P*. By our assumption b; # 0 for some i. We have
0=ds =3%b; @d;s + ds =Xbs®d; + cil

for some dy € P"~!. Thus Tb;s®d; € P*~. But b;s # 0 if b; # 0, which implies a
contradiction with the linear independence of the set {1 ® d;} modulo P*~'. Thus
we proved the injectivity.

2) Surjectivity. Consider the canonical filtration

0 c D°(R) C D*(R) C ... = D(R).
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Recall that for each n there exists a surjection of R*-modules
@&R — D"(R)/D""!(R).

The functors R'®p- and R’ @r-Q@rR' are exact and commute with direct Limits.
Therefore, it suffices to prove the surjectivity of the canonical map

R @rM - R @rM®r R

for an R*®-module M for which there exists a surjection of R*-modules ®R — M.
But this follows from the surjectivity of the map

R®@rR—- R ®rR®rR'.

Proof of Theorem 1.2.1. Let L, N be left R-modules, M be an R¢-module. We

have a canonical isomorphism of k-bimodules
Homp«(M,Homy(L,N)) ~ Homgr(M ®g L, N).
Given a left D(R)-module L, we have a map of R¢- modules
D(R) — Homy(L,L)
and therefore the corresponding map of left R-modules
D(R)®r L — L.
This induces a map of left R'-modules
(*) R'®r D(R)®r L — R' ®r L.
We want to have a map of R'® := R' @ R'°-modules
R ®pr D(R)®r R' — Hom(R' ®r L,R' ®g L),
or, equivalently, a map of left R'-modules
(**) (R ®r D(R)®r R')®r (R ®r L) — R’ ®R’L.
By Lemma 1.2.1.1 the canonical map of (R', R)-modules
R' ®r D(R) - R' ®r D(R) @g R’

is an isomorphism. Hence the desired map (**) is equal to (*). This defines the
action of D(R) on R' ®gr L.

Note that for a differential R*-module M, the R'*-module R' g M ®gr R’ is
also differential. Therefore, given a left D(R)-module L the ring D(R) acts on
the R'-module R’ @ g L again by differential operators. In particular, we have the
canonical ring homomorphism D(R) — D(R').
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1.3 Relation with enveloping algebras.

1.3.0 Let k be a field. Let g be a Lie algebra over k, and U(g) its enveloping
algebra. It is known that U(g) is a Hopf algebra with the comultiplication

A:U(g) - U(g) ®U(g)

defined by g — ¢g®14+1® g for g € g C U(g). Let R be a k-algebra and a
left U(g)-module. We say that U(g) acts on R as a Hopf algebra or that R is a
U(g)-ring if

u(ab) = u(r)(a)u(z)(b),
where a,b € R, u € U(g) and Au = u(y) @ u(py := Eiuzl) ® ué2). Since the algebra
U(g) is generated by g this is equivalent to saying that

g(ab) = g(a)b + ag(b)

for all a,b € R, g € g, i.e. that g acts by derivations. Hence a U(g)-ring structure
on R induces a homomorphism of filtered rings

U(g) — D(R)

(prop. 1.1.2.10b)).

1.3.1 Theorem Let R be a U(g)-ring. Assume that R is a domain and R — R’ is
a localization of R by a left and right Ore set. Let L be a left D(R)-module (hence
a left U(g)-module). Then R' ®pg L is naturally a U(g)-module. In particular, R’ is
canonically a U(g)-module. Moreover the U(g)-action on R' makes it a U(g)-ring.

Proof. All statements except the last one follow immediately from Theorem 1.2.1.
It remains to prove that the Lie algebra g C U(g) acts on R' by derivations.

Let g € g. Consider g as an element in D(R). Since g acts on R as a derivation,
for each r € R, we have the following relation in D(R):

gr —rg = g(r).

Let s~'a € R', where s,a € R. Then

g(a) = g(ss™'a) = sg(s™"a) + g(s)s ™ a,

hence
g(s7'a) = s7'(g(a) — g(s)s " a).
One checks directly (see also [Dix], Prop.3.6.18) that this last formula defines a
derivation of R'.
2. Graded (or j-) differential operators

2.1.0 Let k be a commutative ring and I be an abelian group. We want to change
our world from k-modules and k-linear differential operators to k[I']-modules and
differential operators which take into account the I'-action. More precisely, fix a
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bicharacter 8 : I' x I' — k*, where k* is the group of units of k. Note that if

M = ®aerM, is a I'-graded k-module, then we have a natural homomorphism
om : ' — Aut(M) defined by the formula

om(¥)|m, = B(v,a)idm,, ~v,a€T.

We call this action of I" the grading action.
Let R = @qer R, be a I'-graded k-algebra. Then I' acts by k-algebra automor-
phisms of R by the grading action ¢ = og. Denote by

Rr = k[T|#R = @®ucrRa

the corresponding crossed product algebra, i.e. in Rr we have

yr=0(y)(r)y =B(v,a)ry, r € Ra, y€T.

This is a I'-graded algebra with deg(ra) = deg(r)+a. In particular, we may consider
Rr as a graded R*-module.

We are going to consider categories of left (I-) graded R- and R*-modules. Mor-
phisms Hompg(+,-) and Hompge(-,-) in these categories preserve the grading of mod-
ules.

Given graded R-modules L, N, we denote by grHom(L, N) the k-submodule of
Homy (L, N) spanned by homogeneous elements. Clearly, grHom(L, N) is a graded
R*-module.

The sections 2.1.1 - 2.2.2 below essentially reproduce the material in 1.1, 1.2,
but adjusted to the graded case.

2.1.1 Definition. Let M be a graded R*-module. We call M a (-differential
module if it has a filtration by graded R*®-submodules

0=M_,CMyCMC.. UM,-:M,
such that, for each ¢, the graded R*-module M;/M;_, is a quotient of a direct sum

of copies of Rr.

2.1.2 Deflnition. Let M = @,erM, be a graded Rf-module. We define its
B-center 33(M) as the k-span of homogeneous elements m € M, such that

mr = f(y,a)yrm, forall r € R,.

We call M -central if M = R*33(M).
Notice that for a f-central graded R*-module M, we have M = R33(M) =
3s(M)R.

2.1.3. Note that for a graded R*-module M we have an isomorphism of graded

k-modules
Hompge(Rr,M) ~ 33(M).

Any R¢-module M has a canonical chain of graded submodules {34,M}, which
satisfies the condition of 2.1.2. Namely, define 33;M by induction as follows:

3p0M := R*35(M),
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3iM/38i-1M = R*33(M/3pi-1 M).

Clearly, this is the maximal filtration satisfying the condition in 2.1.2. Thus, M is
B-differential iff | J35:M = M.

2.1.4 Lemma. Any graded R‘-module M contains the biggest (-differential sub-
module Mg_giss, called the B-differential part of M. The correspondence M

Mg_giss 18 functorial: for any graded R*-module morphism o : M — M', p(Mpg_aifs) C

Mg _digs-
Proof. Indeed, put Mg_qifs :=J3s:M.

2.1.5 Definition. Let L, N be graded left R-modules. Consider grHom(L,N)
as a left graded R°-module and call Diffg(L,N) := grHom(L,N)g—aifs the (k-
linear) B-differential operators from L, to N. The R‘- submodule Diffg(L, N) :=
3. Diffg(L, N') of Diffg(L, N) consists of 3-differential operators of order n.

2.1.6 Definition. Given a homomorphism of graded k-algebras R — B, we call B
a B-differential R-algebra if B is a §-differential R*-module.

2.1.7 Proposition. a) If M, M' are graded 3-differential R*-modules, then the
graded R*-module M Q@p M' is also (3-differential.

b) For any homomorphism of graded k-algebras R — B, the (3-differential part of
the R*-module B is a graded subring of B, i.e. Bs_qiss is a differential R-algebra.
More precisely, 33:B - 33;B C 3pi+;B-

¢) For any graded left R-module L, the graded R‘-module Diffg(L, L) is a f3-
differential R-algebra.

Proof. a)If z € 35(M), z' € 33(M'), then z® 2z’ € 35(M ®r M'). This implies
that the image of 35;M ®34,;(M') in M @ g M' is contained in 34;4;(M ® M'). This
proves a).

b) The multiplication map B ® B — B factors through the morphism of R*-
modules B ® g B — B. The argument in a) (and the functoriality of the filtration
3s.) imply that 33;B @r 35;B — 3pi+;B. Thus Bg_qiff 1s a subring.

¢) Given a left graded R-module L, we have the canonical map of graded R*-
modules

a: R — 3pgrtHom(L,L), r— (I rl).

Clearly, o : R — grHom(L,L) is a ring homomorphism, and note that the R‘-
module structure on grHom(L, L) coincides with the one induced by this homo-
morphism. Hence, by b) above, Diffs(L, L) is a §-differential R-algebra.

2.1.8. We write Dg(R) instead of Diff3(R, R) and call it the algebra of (k-linear)
B-differential operators on R. The canonical homomorphism of graded algebras
i : R — Dg(R) (2.1.7c) makes Dg(R) a p-differential R-algebra. Put Dy(R) :=
38iD(R), i > 0. Then Di(R)D%(R) C D§"(R) (2.1.7b), i.e. Dg(R) is a filtered
algebra by the “order of differential operators”. We have i(R) C D}(R).

2.1.9. Let d be a k-linear map d : R — R of degree deg(d) =y €T'. We call d a
left B-derivation if forr € Ry, ' € R

d(rr') = d(r)r' + B(7y,a)rd(r').
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Denote by Deri,(R) the k-module of left 3-derivations of R. Similarly, we define
the k-module Derp(R) of right 8-derivations d by the formula

d(rr') = d(r)r' B(v, ) + rd(+')
if deg(d) = ~, deg(r') = b.

2.1.10 Let M be a graded R‘-module and r € R,. The following operators from
Mto M

m — mfB(r) := f(a,y)mr, for m € M,,
and
m — B(r)m := B(y,a)rm, for m € M,

are called the right and left 3-multiplication by r.
Note that
38(M) = {m € M|mr = B(r)m for all r € R}.

2.1.11 Proposition. a) The -center 3g(grHom(R, R)) of the graded R*-module
grHom(R, R) is the k-span of right 3-multiplications by homogeneous elements of
R. Hence the subring D%(R) C Dg(R) is generated by left multiplication in R and
right B-multiplication in R. ’

b) The R*-module D}(R) contains Derls(R).

Proof. All assertions are straightforward.

2.1.12 Remark. Note that if a I'-graded R*-module M is trivially graded, i.e.
M = My, then 35(M) = 3(M). In particular, if R is trivially graded, then Dg(R) =
D(R).

2.2. Localization of §-differential operators

2.2.0 Assumption. Let R — R' be a homomorphism of I'-graded k-algebras such
that R’ is the localization of R with respect to a left and right Ore set S C R
consisting of homogeneous elements.

Denote R'* := R' ® R"°.

2.2.1 Remarks. 1. The algebra R' is also I'-graded. Let
r:=k[[)#R = ®serR'a

be the corresponding crossed product algebra (cf. 2.1.0). The natural map of
(R, R)-modules
R' ®r Rr —» Ry, r'®rawr'ra

is an isomorphism. Hence R’ ® g Rr has a natural structure of a right R'-module
(which commutes with the left R'-module structure) and therefore the natural map

R' ®rRr - R'"®rRr @r R'
is an isomorphism. Thus also

R'I‘ ~R ®gr Rr ®r R
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2. If M is a j-differential R*-module, then the R'*-module R’ ®rRM @r R is
also B-differential. Indeed, the functor R' @ - ®g R' is exact and by the previous
remark it takes Rr to Rp.

2.2.2 Theorem. Assume that R is a domain. Given a left graded Ds(R)-module
L, its localization R' @ L is also canonically a graded D3(R)-module. In particu-
lar, there ezists a canonical ring homomorphism Dy(R) — Ds(R') (preserving the
filtration D7 ), i.e. 3-differential operators on R eztend to R'.

The proof is identical to the proof of Theorem 1.2.1 (using Remarks 2.2.1) and
we omit it.

2.3 Example: skew polynomial ring R.

2.3.0. Let k be a field of characteristic 0. Let q=(¢;;) be an n x n-matrix with

entries in k*, such that ¢;; = qj—il and ¢;; = 1. Let T' = Z™ with the free generators
Y1,y ¥n. The matrix q defines the bicharacter 3 : T' x I' — k* by the formula

B(vi,v5) = gij.
Notice that 3(a,b) = 3(b,a)™!.

The same matrix defines also a skew polynomial ring R in n variables. Namely,
let R be a k algebra with generators z1,...,z, and the only relations

.7:,'.7:]' = qijT;T;.

The algebra R is I'-graded in the obvious way (degz; = v;) and the corresponding
grading action ¢ of I on R is defined by the formula

o(yi)(25) = qije;.
Remarks. 1. For r € R,, ' € Ry we have
rr’ = 3(a.b)r'r.

Thus the ring R is 3-commutative. in the sense that the right J-multiplication by
7 € R is equal to the left multiplication by r. This implies that the 3-central
Rf-module R is equal to its J-center (2.1.11a). Hence any j3-central R¢-module is
equal to its 3-center.

2. The p-center of the graded R‘-module grHom(R, R) coincides with left multi-
plications by elements of R (see 2.1.11a)) and therefore the R*-module Dg consists
of left multiplications by elements of R. This means that the ring D%(R) coincides
with the subring R C Ds(R).

2.3.1 Lemma. The k-module Deri,(R) is a left R-module.

Proof. Let d € DerIB(R) be a left g-derivation d : R — R of degree v € I'. By
definition, for r € R,, r' € R we have

d(rr') = d(r)r' + B(y,a)rd(r").
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Let t € Ry. Then
td(rr') = td(r)r' + B(y + b, a)rtd(r').
This implies that td is a left 3-derivation of degree v + b.

2.3.2 Lemma. For each t = 1,...,n the map
di(zj) = 6ij, Gi(1)=0

eztends uniquely to a left B-derivation 0; of R (of degree —v; € T') which satisfies
the relation

a,'(.T]'T‘) = (5,']'1“ + qjil'jai(r).

Proof. Straightforward.

2.3.3 Lemma. The left R-module DerIﬂ(R) (2.3.1) is a free module with the basis
{O1,...,0n} defined in the last lemma.

Proof. It is clear that j3-derivations 0y, ...,d, are linearly independent over R. On

the other hand, any 3-derivation maps 1 to 0 and is uniquely determined by its
values on z1,...,2,. This implies that

%;R0O; = Derly(R).

2.3.4 Theorem. The k-algebra D3(R) is generated by R (acting by left multipli-
cations) and by the 3-derivations 0y, ...,0p.

Proof. Step 1. Let f.g € grHom(R,R) be homogeneous elements of degrees
deg(f) = a, deg(g) = b. Define their 3-commutator as

[f.9lp = fg — 8(a,b)gf.

It follows from the remarks in 2.3.0 that in this case we can give the classical
definition of J-differential operators as in 1.0 replacing the commutators by 3-

commutators. Namely, notice that D3(R) consists of elements f € grHomi(R, R),
such that

[7'1. [7'-_), ...[rn+],f]d, ]J]J =0

for any 71, ...7h+1 € R.
Step 2. Let R, C R denote the k-span of monomials in 2y, ...,2, of degree < s.

Claim. Let D € D}(R) be such that D|g, =0. Then D =0.

Proof. The claim is true for s = 0 (2.3.0). Assume that we proved it for s < 7 and
fix D € ng(R) of degree a such that D|g; = 0 for some j > :. It suffices to prove
that D|g;,, = 0. Let x;c € Rj41, where ¢ € R;. Then

D(z¢c) = D(z¢c) — Bla,ve)zeDe + Bla,vi)xeDe = —B(a, v¢)[ze, D)gc + 0.

Clearly, [z, D] is a 3-differential operator of order ¢—1 such that {z,, D]g|gr,_, = 0.
Hence by induction hypothesis [z, D]g = 0. This proves the claim.
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Step 3. Let A C Dg(R) be the k-subalgebra generated by R and by #-derivations
O1y..ey On.

Claim. R is a simple A-module.

Proof. It suffices to notice that for each n > 0 the map

@ai : R, = &R,

is injective (we use the fact that 8;(z{) = sz{™' and that k has characteristic 0).
Hence for every r € R there exists d € A such that 0 # d(r) € k. This proves the
claim.
Step 4. Now the Jacobson’s density theorem together with steps 2 and 3 finish the
proof of the theorem. Namely, fix D € D3(R). Then by the density theorem we
can find d € A such that

d|r, = D|g,.

Clearly, we may assume that d is a polynomial in 9;’s of degree < s, i.e. d € Dg(R).
But then by step 2, d = D.

3. Quantum (or ¢-) differential operators

3.1.0. We keep the assumptions and notations of 2.1.0. For a I'-graded k-module
M and v €T, define the shifted module M[v] as

Mv]a := Mot~

In particular this defines the action of I by autoequivalences on the categories of
graded R-modules and R°-modules.
Consider the graded R*-module

R{ := @yerRr[y].

We are going to define the quantum differential operators exactly in the same way as
we defined the S-differential operators, but using the graded R*-module R{. instead
of Rr. For the reader’s convenience we give the details.

3.1.1 Definition. Let M be a graded R*-module. We call M a g¢-differential
module if it has a filtration by graded R*-submodules

O=MCMyCM C.., | JMi=M,

such that for each ¢ the graded R*-module M;/M;_, is a quotient of a direct sum
of copies of RY.

3.1.2 Definition. Let M = @®.erM, be a graded R-module. We define its ¢-
center 3,(M) as the k-span of homogeneous elements m € M, for which there
exists b € I such that

mr = B(y + b,a)rm, for all r € R,.
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We call M g-central if M = R*3,(M).
Notice that for a g-central graded R‘-module M we have M = R3,(M) =
3,(M)R.

3.1.2.1 Remark. Obviously, 335(M) C 3,(M) (also, 3(M) C 3,(M)).

3.1.3. Note that for a graded R*-module M we have an isomorphism of graded
k-modules

Hompe(RL, M) ~ 3,(M).

Any R*-module M has a canonical chain of graded submodules {3,;M}, which
satisfies the condition of 3.1.2. Namely, define 3,; M by induction as follows:

3q0M = RCBq(M),

3qiM[3qi-1 M = R*34(M/34i-1 M).

Clearly, this is the maximal filtration satisfying the condition in 3.1.2. Thus, M is
differential iff | J; 3¢i M = M.

3.1.4 Lemma. Any graded R‘-module M contains the biggest q-differential sub-
module My_qifs, called the q-differential part of M. The correspondence M +—
M, _4ify is functorial: for any graded R*-module morphism o : M — M', o(Mq_aiff) C

é—diff'
Proof. Indeed, put My_qifs := U, 34 M

3.1.5 Definition. Let L, N be graded left R-modules. Consider grHom(L, N)
as a left graded R*-module and call Diffy(L, N) := grHom(L,N),—aiss the (k-
linear) g-differential operators from L to N. The R*- submodule Diffy (L, N) :=
3qnDiffa(L, N) of Diffy(L, N) consists of ¢-differential operators of order n.

3.1.6 Definition. Given a homomorphism of graded k-algebras R — B, we call B
a g-differential R-algebra if B is a g-differential R*-module. ‘

3.1.7 Proposition. a) If M, M' are graded g-differential R*-modules, then the
graded R*-module M ®p M’ is also g-differential.

b) For any homomorphism of graded k-algebras R — B, the q-differential part of
the R¢-module B is a graded subring of B, i.e. By_gifs 15 a differential R-algebra.
More precisely, 34iB - 3¢4; B C 34(i+5)B-

¢) For any graded left R-module L the graded R°-module Diff,(L,L) 1is a q-
differential R-algebra.

Proof. The proof is identical to the proof of 2.1.7 except one should use the g-center
instead of the #-center.

3.1.8. We write D,(R) instead of Diff;(R, R) and call it the algebra of (k-linear)
quantum (or g-) differential operators on R. The canonical homomorphism of
graded algebras i : R — Dy(R) (2.1.7c) makes D,(R) a g-differential R-algebra.
Put D:(R) := 34:D(R), ¢ 2 0. Then Di(R)Di(R) C D;*7(R) (2.1.7b), i.e. Dy(R)
is a filtered algebra by the “order of differential operators”. We have i(R) C DJ(R).
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3.1.9 Remark. Let L be a graded left R-module. Consider the graded R¢-module

grHom(L,L). For any v € TI', the operator or(y) (of degree 0) belongs to the
g-center 3,grHom(L, L). Moreover,

(1) 3qgtHom(L,L) = 3ggrHom(L, L)o(T).
Hence, Diffo(L, L) = Diff3(L, L)o(T). In general, Diffy(L, L) D Diffg(L, L)o(T),
and so Diff,(L, L) D Diffg(L, L)or(T).

3.1.10 Proposition. a) The g-center 3,(grHom(R, R)) of the R*-module grHom(R, R)
is the k-span of products of right multiplications by elements of R and operators
a(y) for v € T. Therefore the subring Dg(R) of Dy(R) ts generated by left and
right multiplications in R and by operators o(T').

b) The R*-module D;(R) contains Der'ﬂ(R) and Derg(R). (2.1.9)

Proof. Part a) follows from 2.1.11a) and formula (1) in the previous remark. In

part b) the fact that Dy (R) contains Derf(,(R) follows from 2.1.11b). Let d : R — R
be a right 3-derivation of degree v € I'. Then by definition

d(rry) = d(r)r1 B(%, ) + rd(r1)

forr € R, 7y € Rp. Thus
d(rr1) = d(r)o(y)(r1) + rd(r1).
Hence in End(R) we have the relation
dr —rd = d(r)o(y).

Since the RHS belongs to DJ(R) by part a), then d € D;(R). This proves the
proposition.

3.1.11 Remark. Assume that R is trivially graded, i.e. R = Ro. Then for any
graded R*-module M we have 34(M) = 3(M). In particular, D,(R) = D(R).

3.2. Localization of quantum differential operators

3.2.0 Assumption. Let R — R' be a homomorphism of I'- graded k-algebras
such that R’ is the localization of R with respect to a left and right Ore set S C R
consisting of homogeneous elements. Denote R'* := R' ® R".

3.2.1 Remarks. 1. The algebra R’ is also I'-graded. Let
r:= k[[]#R' = @aerR'a

be the corresponding crossed product algebra. In Remark 2.2.1,1 we discussed the
natural isomorphisms

R @r Rr~~ R' ®g Rr ®r R/,

R'I«—Q'ﬁ R ®gr Rr ®r R'.
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Hence we obtain natural isomorphisms
R @r RL=~ R'®r Rl ®r R,

R}?L R ®gr qu\ ®r R'.

2. If M is a g¢-differential R*-module, then the R'*-module R' ® r M Qg R’ is
also ¢-differential. Indeed, the functor R’ ®r - ®g R’ is exact and by the previous
remark it takes R% to Rf.

3.2.2 Theorem. Assume that R is a domain. Given a left graded Dy (R)-module
L, its localization R' @ L is also canonically a graded Dy(R)-module. In particu-
lar, there ezists a canonical ring homomorphism Dy(R) — Dy (R') (preserving the
filtration D7 ), i.e. g-differential operators on R eztend to R'.

The proof is identical to the proof of Theorem 1.2.1 (using Remarks 3.2.1) and
we omit i1t.
3.3 Relation with quantum groups.

3.3.0 The quantum group U,. Let ¢ be an indeterminate.

Let (a:j)i j=1,..,» be a Cartan matrix of finite type (i.e. the corresponding Lie
algebra g is finite dimensional) and choose d; € {1,2,3} such that (dia;;) is sym-
metric. Consider the Q(g)-algebra U, with generators

- —1 o
E,F,K;,K;", i1=1,...,n

and relations
KK; =K;K;, K;K[' =1, 1,j=1,...,n

K,’EjI{i_l = qd.-a,-,- E;, I\’,'Fj[&"i—l = q_d‘a‘ij, ,7=1,...,p

K- K .
E;FJ—F]E;=61]T—‘_1—‘!, l,]:].,...,n
q P - q ]

> 0| EEE =0, i#]
r+s=1—ay; - Jd;

> || mRE-o i
r+s=1—a;j - 4 d;
In the last two relations we have used brackets to denote Gaussian binomial

coeficients. specifically, we have for m € Z,d,t € N,
qmd _ q—md
[m]a = T [tla! = [tlalt — 1]a- - [2]al1}4

and

[m] _ [mlafm =1]a---[m —t+1]4
tla [t]a! '
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In fact U, is a Hopf algebra with the comultiplication A, the coidentity ¢, and
the antipode S defined as follows:
AE)=E;®1+K,QE;, A(F)=F. @K '+1QF;
AK)=K;®K;, 1=1,...,n
e(E)=0=¢(F), e(Ki)=1,1=1,...,n
S(E;)=-K'E;, S(F))= -F.K;, S(K;)=K!
The algebra U, has a triangular decomposition. Namely, let U, ,Ug and U}

be the subalgebras of U, generated by F; (resp. K,-,I\;’z-_l, resp. E;),i1=1,...,n.
Then the multiplicaiton map defines the isomorphism

U U U = U,

3.3.1. Choose a Cartan and a Borel subalgebras h C b C g. Let ay,...,an be the
corresponding set of simple roots. Put @ := ®Za; - the corresponding root lattice.
Put (ai|aj) := diaij. This defines a symmetric bilinear form (-|-) on @ and the
bicharacter

8':QxQ— Qg)*, Ba,b):=ql.

We have an isomorphism of k-algebras
T k[Q] =5 U(?, a; — K.
Notice that the quantum group Uy is @-graded with
deg(K;) =0, deg(Ei) = a;, deg(Fi)= —ai,

and the corresponding grading action ¢ : @ — Aut(U,) (2.1.0) is the adjoint action
of Ug on Uy:
o(a)u = (a)ur(a)™?.
We assume that @ is a subgroup of an abelian group I and A’ is the restriction
to Q@ x @ of a bicharacter 8 : T' x I' — k*, where k is a field, which contains Q(g).

If k¥ # Q(q), then we consider U, as the k-algebra by extending the scalars from
Q(q) to k. Since U, is Q-graded, it is also I'-graded.

3.3.2. Let R be a I'-graded k-algebra and a left Uj-module so that the action
p : U; = Endi(R) is a homomorphism of graded algebras. We say that U, acts on
R as a Hopf algebra or that R is a Ug-algebra, if

u(rr') = uyrugyr', wel,, rr €R,
(1)7(2) q

where A(u) = U(1) ® U(z) = Ziuzl) ® U22).

3.3.3. Let R be a I'-graded k-algebra and a left U;-module with the action p :
U, — Endi(R). Let or : T — Aut(R) be the grading action of I' on R. We say
that the Uj-action on R is compatible with the grading if

orlg=p - 7:Q — Aut(R).
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3.3.4 Lemma. Assume that R is a I'-graded k-algebra and a U;-module, so that
the U,-action on R is compatible with the grading. Then the following are equivalent
a) R is a Uy-algebra,
b) elements E;, F; € Uy act by left and right (3-derivations respectively.

Proof. The compatibility of the action with the grading implies that the reletion
in 3.3.2 is satisfied for v = K;. Hence R is a Ug-algebra iff the same relation is
satisfied for E; and F;. But this relation for E; (resp. for F;) exactly means (using
the compatibility of the action with the grading) that E; (resp. F;) acts by a left
(resp. right) B-derivation.

3.3.5 Corollary. Under the equivalent conditions of the previous lemma the quan-
tum group U, acts on the ring R by quantum differential operators, i.e. we have a
homomorphism of k-algebras Uy — D,(R).

Proof. This follows immediately from Proposition 3.1.10. .

3.4.0 Let R — R' be a homomorphism of I'-graded k-algebras such that R' is
the localization of R with respect to a left and right Ore set S C R, consisting of
homogeneous elements.

3.4.1 Theorem. Assume that R is a domain. Assume that the quantum group U,
acts on R by the action which is compatible with the grading and which makes R
a U,-algebra. Then this Ug-action extends canonically to an action on R', which
makes R' a U,-algebra. Moreover, such an eztension is unique and is compatible
with the grading of R'.

Proof. By Corollary 3.3.5 U, acts on R by quantum differential operators. That
is, we have the ring homomorphism U; — D,(R). On the other hand, we have the
canonical ring homomorphism Dy(R) — Dy(R') (Theorem 3.2.1). Composing the
two we get the first assertion of the theorem.

It is clear that the U,-action on R' is compatible with the grading. Hence,
by Lemma 3.3.4 it suffices to prove that elements E;, F; act on R' by left and
right S-derivations respectively. Consider, for example, E;. It acts on R by a left
B-derivation. Hence in Dy(R) we have the following relation

Eir — B(a;,a)rE; = Ei(r), for r € R,.

Let s~1r € R', wherer € R, s € R,. Then

Ei(r) = Ei(ss7'r) = Ei(s)s™'r + B(ai,a)sEi(s7'r),

hence

Eifs7'r) = B(ai,a) s (Ei(r) — Ei(s)s™'r).

One checks directly that this formula defines a left §-derivation of R'. Similarly for
F;. The uniqueness assertion is also clear from the last formula.
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3.5 Example: quantum differential operators on the skew polynomial
ring. '

3.5.0. Let k be a field of characteristic 0. Let q= (¢ij) be an n x n matrix with
entries in k*, such that ¢;; = qj",-l. Let I' = Z" with the free generators -, ..., vn.
The matrix q defines the bicharacter #: T x I' — k* by the formula,

B(vi,75) = gij-

The same matrix defines also a skew polynomial ring R in n variables. Namely,
let R be a k-algebra with generators z1,...,z, and the only relations

TiT; = Qi T, U F g

The algebra R is I'-graded with deg(z;) = 7; and the corresponding grading action
o of I on R is defined by the formula

o(vi)(zj) = gijz;.

In case ¢;; = 1 we computed the algebra Dg(R) of 8- differential operators on R
(2.3.4). Here we want to discuss a more interesting case: g¢;; is not necessarily 1. In
this general case we did not succeed in writing down the algebra D,(R) (or Dg(R))
in terms of generators and relations. However, we can prove that Bernstein’s the-
orem holds for D,(R): for any Dy(R)-module M # 0 its GK-dimension is at least
n. This allows us to define the category of holonomic Dy(R)-modules M, i.e. such
that GK(M) = n. An example of a holonomic D,(R)-module is M = R.

3.5.1 Lemma. For each ¢t =1,...,n the map
9i(z;) = 8ij, Gi(1)=0

eztends uniquely to a left 3-derivation O; of R (of degree —v; € T') which satisfies
the relation
a,'(:L‘jT) = (5,'j7' + qj,'.rja,’(r).

Proof. Straightforward.

3.5.2. By Proposition 3.1.10 and theorem 2.3.4 the algebra D,(R) contains 1, ..., £,
(acting by left multiplication), the 3-derivations i, ..., 0, and the automorphisms
01 := 0(71)y-,0n = 0(7n) (and their inverses). Let A be the k-subalgebra of
D,(R) generated by z;, 8;, 0i, 0;'. One easily checks the following relations

(1) T = qijTiTi, 0;0; = ¢i;0;0;, 1 # j;
(2) 0i0; = 0,04, oioTt = 0'1-_10’,' =1;

1

(3) Oizj = ¢;iz;0i + &, qijzio; = o5z, Oioj = qjio;0;.
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Let W be the k-algebra generated by z;, 8;, 0;, o; ! with the set of defining
relations (1)-(3) above. Thus A is a homomorphic image of W. We studied the
algebra W in [LR2]. We showed that W is an example of the so-called hyperbolic
algebra, and deduced Bernstein’s theorem (in case g¢;; are generic) for W from a
more precise Kashiwara theorem for hyperbolic algebras (which is proved in [LR2]).
That is we proved that if M # 0 is a left W-module, then the Gelfand-Kirillov
dimension GK (M) is at least n. The same assertion therefore holds for the algebra
A instead of W. Since A is the k-subalgebra of Dy(R) we obtain the following

theorem .
3.5.3 Theorem. Let 0 # M be a left D,(R)-module. Then GK(M) > n.

3.5.4. A counterexample. Here is an example, which shows that the above
theorem is a subtle property.

Let n = 1 (that is we consider a “quantum line”) and put ¢11 = ¢, 1 = =,
0 =08,0, =0. Thus A=k < z,8,0,0”! >. Assume that ¢ # 1. Consider the
k-subalgebra B := k < 2,0 >C A. Put £ := (¢”! — 1)z0 + 1. We have

ot = g€z, 0 =q7'€0.

Hence £ generates a two-sided ideal (£) in B and the algebra B/(£) is commutative.
This shows that B has infinitely many modules which are finite dimensional over k
(hence of GK -dimension 0). The point is that { = o~ !. Hence B=k < 2,080,071 >
and passing from B to A means destroying the two-sided ideal (£).

4. Extension of differential endofunctors to localizations

4.0. We are going to give a categorical interpretation of the localization theorems
1.2.1, 2.2.2 and 3.2.2. More precisely, we are going to explain the meaning of the
statement 4.0.1 below which is the essential part of the above mentioned theorems.

4.0.1 Statement. Let R be a k-algebra (resp. a k-algebra graded by an abelian
group T'). Assume that R is a domain. Let R — R’ be a localization with respect to
a left and right Ore set (resp. consisting of homogeneous elements). Let D(R) be
the ring of differential operators (resp. f- or q-differential) operators on R. Then
the canonical map of (R', R)-modules

R' @r D(R) — R ®r D(R) ®@r R

is an isomorphism.

Proof. In the case of ordinary differential operators, this is a restatement of Lemma
1.2.1.1. In the case of 8- or ¢-differential operators the proof repeats that of Lemma
1.2.1.1 using Remarks 2.2.1,1 and 3.2.1,1.

4.1. Let A be an abelian category with a thick subcategory T C A, so that the

corresponding exact localization functor Q* : A — A/T has a fully faithful right
adjoint Q, : A/T — A (see [GZ], 4.1). Let

n:lda— Q«Q*
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be the adjunction morphism. Denote by L7 the class of morphisms s of A such
that Ker(s) and Coker(s) are objects of T'. Or, equivalently,

Lr={s € HomA|Qs is invertible}
Let G : A — A be an endofunctor. By the universal property of Q" : 4 — A/T,
there exists an endofunctor G : A/T — A/T such that GQ* ~ Q*G, if and only

if G(S1) C Br. If G exists, it is unique. Define the endofunctor G' := Q*GQ, :
A/T — A/T and consider the canonical morphism of functors

n'=Q*G(n): Q*G - G'Q".

4.1.0 Lemma. The following conditions are equivalent.

a)n' is an isomorphism.

b) There exists a functor G : A/T — A/T such that Q*G ~ GQ*.
Proof. a) = b). Put G := G'. Then

77, . Q*Gl} éQ*

is the desired isomorphism.

b) = a). Since Q. is fully faithful, the adjunction morphism

€:Q*Q. — Id
is an isomorphism. Hence ‘
Q*(n): Q" — Q" Q.Q"

is an isomorphism. This implies that for every M € ObA the morphism n(M) :

M — Q.Q*(M) is in Tp. By our assumptions then G(n(M)) € Er. Hence
n'(M) = Q*G(n(M)) is an isomorphism.

4.2. We keep the notations and assumptions of statement 4.0.1 above. Let A, A’ be
the abelian categories of left R- and R'-modules (resp. graded modules). Then A’
is the localization of A in the sense of 4.1. The localization functor is @* = R' ®r -,
and its right adjoint Q. is the restriction of scalars from R' to R. Consider D(R)
as an R-bimodule and define the endofunctor

G:=DR)®r: A— A

4.2.1 Proposition.  There ezists a (unique) functor G : A' — A' such that
GQ* ~ Q*G
Proof. By Lemma 4.1.0 the assertion is equivalent to the functorial morphism

n: Q"G - Q*GQ.Q*
being an isomorphism. And this in turn translates into the assertion that the
natural map of (R', R)-modules

R @r D(R) - R'®r D(R) ®r R'
is an isomorphism. So the proposition is equivalent to statement 4.0.1 above.

4.3 Remarks. 1. The endofunctor D(R) ®g - : A — A is an example of a
differential endofunctor. This is the main object of study in [LR3},[LR4].

2. Proposition 4.2.1 is used in [LR1]. As its consequence we show that the
cohomology of a D-module on the quantum flag variety can be computed either in
the category of D-modules or “quasicoherent sheaves”.
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