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Differential Operators with Non Dense Domain

G. DA PRATO - E. SINESTRARI

Introduction and Notation

The aim of this paper is the study of the initial value problem in the
Banach space E:

where A : DA C E -&#x3E; E is a closed linear operator, f : [0, T ] -; E and uo C E
are given.

This problem has been extensively studied in the case in which A is the
generator of a semigroup and the Hille-Yosida theorem givers the necessary and
sufficient conditions in order that this occurs: among these conditions there is
the density of DA in E. In this paper we show that this is not necessary (in a
certain sense) to solve problem (o.1 ): in other words, if we assume the Hille-
Yosida conditions with the exception of the density of DA in E, then we can
obtain for problem (0.1) existence and uniqueness results which are even more
general than those known in the case DA = E (for a more detailed comparison
with the classical theory see remark 8.5).

The paper is divided into three parts: in the first one the case mentioned
before, which is called the hyperbolic case (because of the applications to

the partial differential equations of this type), is studied; in the second part we
consider the more particular situation in which A generates an analytic semigroup
not necessarily strongly continuous at the origin (because DA C E): this is called
the parabolic case (for reasons analogous to those of the previous situation).
Finally we give several examples of differential operators with non dense domain
satisfying the Hille-Yosida estimates and we make some applications to the study
of partial differential equations of hyperbolic and ultraparabolic type, ending
with an equation arising from the stochastic control theory.

Let us introduce some notations which will be used in this paper.

Pervenuto alla Redazione il 27 maggio 1986.



286

We consider a Banach space E with norm 11 - II and A a closed linear
operator in E with domain DA, which will be endowed with the graph norm

= L(E) is the Banach space of the continuous linear operators
from E to E with the uniform norm; A E C belongs to p(A) if (a - A)-1 E L (E)
and we set (A - = R(A, A). If El and E2 are Banach spaces, El ~ E2
means that El is continuously embedded in E2; if also E2 ’-+ El we write

E2. To state our results we need to introduce some notations about spaces
of functions with values in E:

{ u : [0, T ] -~ E; u is Bochner measurable is inte-

u is bounded} with

, u is continuous} with 

The elements of hQ(O, T; E) are called little Hölder functions and it can
be proved that the closure of in Ca(o, T; E) is hQ(O,T;E) (see [ 11 ]
theorem 5.3).

We will also need the E-valued Sobolev spaces

If X(O, T; E) denotes one of the spaces just introduced we set:
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and we also set

If Q eRn is an open and bounded set with regular boundary r we will use
spaces of functions from Q (or SZ) to R noted as C(.Q), CO!(Q), W "P(cl)
defined in a way similar to the corresponding spaces previously introduced. We
also set

and similarly for 
When the space E is made of functions of the variable xED (a subset of

R n) and we are given a function u(t, x) from [0, T] x D into R, then a function
u : [0, T ) -~ E, t --~ u(t) can be defined by setting

The use of the same symbol u for both functions originates no confusion
because the variables on which they depend are different.

Hyperbolic case

1. - The Hille-Yosida conditions

In the first part of the paper we will suppose that a linear operator
A : DA C E --+ E is given in the Banach space E (with norm I I - 11) such that all
the conditions of the Hille-Yosida theorem ([15], Ch. IX, 7) are satisfied with
the exception of the density of DA in E. Hence A satisfies the property:

We are interested in solving the problem

where f : [0, T ~ --&#x3E; E and uo G E are given.

When DA = E, a classical procedure to solve it is to consider first (1.2)
with f = 0, and A substituted by its Yosida approximation An = nAR(n, A);
then, we have to prove that the solution of this approximate problem converges
to a function u(t, uo) which is a semigroup of linear operators in E and, for
fixed uo E DA, is a solution of (1.2) with f = 0. After that, the inhomogeneous
problem (1.2) can be solved by means of the classical method of the constant’s
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variation when uo E DA and f E C1 (0, T;_F) (Phillips theoren; see [8] Ch. IX,
5). This procedure cannot be used when DA fl E since in this case the solution
of the above mentioned approximating problem converges mly for uo E DA :
so, this method cannot be applied when DA (see also Remark 8.5). The
method .used in the first part of this paper to solve (1.2) when DA Q E employs
the Yosida approximations of the time derivative, considered as an operator in
the Banach space Lp(0, T; E): this method lets us find a strict solution for each
uo E DA and such that (note that this last
condition is necessary to get a solution of (1.2) up to t = 0): when DA = E
this result gives a generalization of the Phillips theorem. In this first part we
introduce also two other types of solutions i.e. the F-solution (or the solution
in the sense of Friedrichs) and the integral solution: we prove their existence for
each f and uo E DA, and in addition we show that they coincide
and reduce to the mild solution (as defined e.g. in 2.3 of [10]) when DA = E.
Let us observe that the reduction of the Hille-Yosida conditions is illusory when
E is reflexive: in fact we have the following result due to Kato [7]:

PROPOSITION 1.1. Let A : DA C E -~ E be a linear operator in the
reflexive Banach space E such that there exist w, M &#x3E; 0 verifying the property:

then DA = E.

PROOF. Let us fix u in E: as the sequence lInR(n, A)ull, n n &#x3E; w is

bounded, there exists a subsequence A)u} converging weakly to some
v E E: hence A)u} converges Weakly to v - u. As R(nk, A)u --+ 0 we
have u = v because A is weakly closed, so u is in the weak closure of DA and
the conclusion follows. 

,

Finally let us observe that condition ( 1.1 ) can be replaced by the following:

with no real difference in the results with the exception of some estimates: for
more details see Appendix at the end of the paper.

2. - F-Solutions and strict solutions

Let A : DA C E -~ E be a closed linear operator in the Banach space
E and choose f E T; E) (1 1  p  oo) and uo c E : a strict solution
in LP of
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is a n LP(O, T; DA) verifying (2.1 ).
A function u E LP(O, T; E) is called an F-solution in LP of (2.1 ) if, for each

there is ~k E W’,P(O, T; E) n LP(O, T; DA) such that by setting

we have

Let us suppose now that f E C(0, T; E) and uo E E : a strict solution in
C of

is a function u E C’(0, T; E) n C(0, T; DA) verifying (2.4).
A function u E C(0, T; E) is called an F-solution in C of (2.4) if for each

kEN there exists uk E C’(0, T; E) n C(0, T; DA) such that by setting

we have

From this it follows that u(O) = uo.
Let us observe that a strict solution in C of (2.4) is also a strict solution

in LP and the same is true for the F-solutions. Moreover a strict solution is also
an F-solution. The converse is not true in general: however we will show that
an F-solution in LP of (2.1) is continuous and that it verifies u(O) = uo. Finally
let us observe that uo E DA is a necessary condition for the existence of any
kind of solution.
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3. - Yosida Approximations of the Time-Derivative

Set Xp = LP(O, T; E), 1  p  oo and let B : DB C Xp - Xp be the
linear operator defined as

For each A E C there exists (A - B)- ~ I = R(A, B) E C(Xp) and we have
for each u E Xp

From Young’s inequality we get

Analogously in the Banach space Xoo = C(0, T; E) we define the linear
operator B : DB C Xoo as

For each A E C there exists
hold.

PROPOSITION 3.1. Let us consider the Yosida approximations of B:

We have. and

PROOF. If v E DB we get from i
I.. -.. - _

we conclude that

we can set v = Bu in (3.7) and obtain
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Conversely, if this is true for some u E DB, then Bu E DB because in
this case Bnu E DB.

As DB Q Xp if and only if p = oo we deduce the following
COROLLARY 3.2. We have

if and only if p  oo.

REMARK 3.3. It can be checked that proposition 3.1 is true if B : DB C
E --· E is any linear operator in a Banach space E such that

In the following sections we want to prove first the existence of an F-
solution in LP : according to its definition this requires the proof of the existence
of a strict solution of a suitable approximating problem: this will be done in
the next section; in the subsequent one we will see that for appropriate f and
uo the solutions of this approximating problem satisfy condition (2.3) and in
this way we obtain the F-solutions in LP.

4. - Approximating problem

We will consider now (2.1) as a functional equation of type

with f E Xp. If we want to replace this problem with another one in which
B is substituted by its Yosida approximation in we must also take
into account the initial condition u(O) = 0 contained in the definition of DB;
for this reason Bu will be replaced by Bn(u - uo). We shall prove that the
approximating problem obtained in this way has a solution for each f E Xp
and uo E E and satisfies an estimate which is very important in the proof of
the convergence of all the methods employed in the sequel.

THEOREM 4.1. Given f E LP(O, T; E) and uo E E there exists for each
n E N a unique vn E LP(O, T; DA) verifying

and the following estimates hold
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If in addition
each t E [0, T] and we get

Finally if f E W 1,P(O, T; E) then vn E W 1,P(O, T; DA).

PROOF. As Bn - n2R(n, B) - n and (3.2) holds we can write equation
(4.1 ) in an equivalent way as follows:

If there exists a solution vn E T; DA) of this equation, by applying
R(n, A) to both sides we deduce

Setting

we have wn E W ,P(0, T; DA) and

If we substitute vn(t) with the right-hand side of (4.6) by using (4.7) we
get a differential equation satisfied by wn:

we deduce that



293

By virtue of ( 1.1 ) we get the following estimate for 0  s  t

Now (4.6) can be written (by using (4.7)) as

and therefore from the uniqueness of a solution wn in W 1,P(O, T; DA) of (4.9)
we deduce the uniqueness of a solution vn in T; DA) of (4.5). By using
(4.12), (4.10), (4.11) and ( 1.1 ) we get for t E [0,T] a.e.

so (4.2) is proved; from (4.2) and the Schwarz-H61der inequality we deduce

hence (4.3).
Let us prove now that there exists a solution vn of (4.5) for each

f E Lp(0, T; E) and uo E E. If we define wn by means of (4.10) we have
wn E W 1,P(O, T; DA) and equation (4.9) is verified: hence setting

we deduce (4.7) so (4.9) implies (4.6) by using (4.14) and (4.7): by applying
n - A to both sides of (4.6) we get (4.5) which (as a consequence) has a
unique solution in From (4.6) we see that if f E 
then vn E W ,P(0, T; DA) and if f E 0(0, T; E) then Vn E 0(0, T; DA), in this
latter case (4.2) is true for each t E [0, T] ] and (4.4) follows.

Let us end this section with a property of the solutions vn of (4.1): they
approach (in LP(O, T; E)) each possible F-solution in LP of (2.1 ) which therefore
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is unique. This uniqueness result will be proved also later (see theorem 5.1 ) in
an independent way.

THEOREM 4.2. Given f E V(O, T; E) and uo E E let vn be the solution of
the approximating problem (4.1 ). If u is an F-solution in LP of (2.1 ) we have

PROOF. Let u be an F-solution in LP of (2.1 ) and let uk verify (2.2)-(2.3).
By using (2.2) and (4.1 ) we have for k, n e N

and therefore from (4.3)

Given 6- &#x3E; 0 , let verify (see (2.3))

so that for each n E N we have

As uok - uk E DB we deduce from (3.9) that lim Bn(u0k - uk) = uk inn-oo k

T; E): from this and the last estimate we get (4. 14).

5. - An a priori estimate

In this section we will show that an F-solution in V is a continuous
function with values in DA and verifies the initial condition in the usual sense;
then we will prove an a priori estimate which will be useful to get the existence
results of section 7.

THEOREM 5.1. If u is an F-solution in LP of (2.1 ) then u E

C(0, T; E) , u(t) E DA for each t E [0, T], u(0) = uo and
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so the F-solution in LP is unique. In addition, if Uk verify (2.2)-(2.3) then

PROOF. If u is also a strict solution in LP of (2.1 ), then u is a function
in T; E) n LP(O, T; DA), and for each n E N

so, from (4.2):

As u - uo E DB, from (3.9) we have in LP(O, T; E)

in LP(O, T; E), hence there is a subsequence Ink) such that

and therefore, from (5.4) we get (5.1 ) for t E [0, T] a.e.; but as both sides of (5.1 )
are continuous functions, we deduce that (5.1 ) is true for all t E [0, T]. Suppose
now that uk verifies (2.2)-(2.3): in particular uk is in W 1,p(0, T : E)nLP(O, T : DA)
and it is an F-solution in LP of (2.2); from the estimate just proved we get for
h,keN

v

thus from (2.3) we deduce that converges also in 0(0, T; E) to u: in

particular - u(0) hence u(O) = uo. Moreover as E DA for t E [0, T]
we have u(t) E DA for t E [0,r].

From the first part of the proof we get for k E N and t E [0, T]:

so for k - oo we have (5.1 ).
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6. - Integral solutions

In this section we will give another definition of the solution of (2.1),
which is suggested by the formal integration of both sides of (2.1) and is very
useful to prove some regularity results. Given f E L~(0,T;E) and uo E E we
say that u : [0, T] - E is an integral solution of (2.1 ) if

In other words u C C(O, T; E) is an integral solution of (2.1 ) if and only
t

if v(t) = f u(s)ds, t E [0, T] is a strict solution in C of
"

Let us remark that an integral solution has values in DA because from
t+h 

_

(6.1 ) and (6.2) we get u(t) = lim 4 f u(s)ds E DA. From this we deduce that
t

if an integral solution of (2.1 ) exists then necessarily uo E DA because from

(6.3) we obtain u(O) = uo.

THEOREM 6.1. The integral solution is unique.

t

PROOF. Let u verify (6.1 ) (6.3) with uo = 0 and f - 0; then v(t) = f u(s)ds
0

is a strict solution in C of (6.4) with uo = f = 0; from (5.1 ) we deduce that
v-0 and also u-0.

THEOREM 6.2. If u is an F-solution in LP of (2.1 ) then it is also an

integral solution (the converse will be proved in Corollary 7.3).
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PROOF. Let uk verify (2.2)-(2.3). For t E [0, T] we get

hence from (5.2) we deduce the existence of

As A is closed we obtain (6.2)-(6.3); (6.1 ) is a consequence of Theorem
5.1.

Now we prove that an integral solution is a strict solution if it is sufficiently
regular. This result will be used later (see lemma 7.1 ).

THEOREM 6.3. Let f E Lp(o, T; E) and uo E E. If u is an integral solution
of (2.1 ) belonging to W T; E) or to LP(O, T; DA) then u is a strict solution
in LP of (2.1 ).

Let f E 0(0, T; E) and uo E E. If u is an integral solution of (2.4)
belonging to C’(0, T; E) or to 0(0, T; DA) then u is a strict solution in C of
(2.4).

PROOF. Let u be an integral solution of (2.1 ) and u E for

t, t + h E [0,T] ] with h =t 0 we have

and from (6.3) and the fact that u E W 1,P(O, T; E) we deduce also the existence
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of

As A is closed we obtain u(t) E DA and Au(t) = u’(t) - ,f (t), t E [0, T]
a.e., so u is a strict solution in LP of (2.1 ).

If u E LP(0, T ; DA ) we get from (6.3)

this implies (2.1) and again u is a strict solution in LP. The second part of the
theorem is a consequence of the first part.

7. - Existence of F-solutions in LP

In this section we shall prove that the solutions of the approximating
problem of section 4 can be used to obtain an F-solution (which is even strict)
of (2.4) when uo = 0 and f is very regular and vanishes at t = 0 with its
derivates: this result will be sufficient to obtain an F-splution in LP in the

general case. Also now the main tool of the proofs is the estimate of theorem
4.1.

LEMMA 7.1. If f C C~(0,r;E),/(0) = f’(0) = f"(0) = 0 and uo = 0 then
(2.4) has a strict solution in C.

PROOF. From theorem 4.1 we deduce the existence, for each n EN, of a
unique vn c C(O, T; DA) verifying

hence (see (4.6))
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By applying n - A to both sides we obtain (using (3.5)),

Hence we can use (4.4) and, as vn E DB~, we get

Now from (7.1 ) we have for n, m e N

and from this, by virtue of (4.4),

but from ( 1.1 )

hence there exists u E C(0, T; E) such that

Let us first prove that u is an F-solution in C of (2.4) with uo = 0 by
showing that (2.5)-(2.6) are true when uk = Vk and uo = 0. In fact by using (7.1)
and (7.5) we have

and therefore

As vn E and vn(0) = 0 from (7.6) and (7.7) we
deduce that u is an F-solution in C of (2.4) when uo = 0.

As f, E C2(o, T; E) and f ’(0) = f"(0) = 0 we can proceed as above to
prove for each n E N the existence of Wn E C(0, T; DA) verifying
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and also the existence of w E C(0, T; E) such that

Now from (7.2) we get (as vn(O) = 0)

hence

From the uniqueness of the solution of (7.8) (see theorem 4.1 ) we have

Now (7.6), (7.9) and (7.10) imply that u E C’(0,T;E) and the conclusion
follows from theorem 6.2 and 6.3.

We are now in the position to prove the existence of an F-solution in LP
of (2.1) as we can construct {/jk} approximating f in LP and such that (2.2)
can be solved with the aid of the preceding lemma: the convergence of uk to
u will be a consequence of the a priori estimate proved in Section 5

THEOREM 7.2. Problem (2.1) has a unique F-solution in LP for each
f E LP(0, T; E) and uo E DA. ,

PROOF. Let uok E DA be such that lim uoll = 0. There exists
k-wo

fk C C3 (0, T ; E) verifying f k (0) = 0 , f k (0) = 0 and

From the previous lemma we deduce the existence of vk C C’(0, T; E) n
C(0, T; DA) such that

Setting uk(t) = vk(t) + we have and

I

hence, from estimate (5 .1 ), we have for and t E [0,T] ]
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and therefore

This and (7.11) imply the existence of u E 0(0, T; E) such that

and u is an F-solution in LP of (2.1 ) by virtue of (7.11), (7.12), (7.13) and

k-&#x3E;00

COROLLARY 7.3. Given f E LP(O, T; E) and uo c DA, there exists a unique
integral solution of (2.1 ) which coincides with the F-solution in LP of (2.1 ).

PROOF. Given f E LP(O, T; E) and uo E DA, problem (2.1 ) has an F-
solution in LP given by the preceding theorem; this is also an integral solution
of (2.1) by virtue of Theorem 6.2 and it is unique (see Theorem 6.1.).

8. - Existence of strict solutions

We prove now our main result: the existence of a strict solution in C of

problem (2.1) for each uo E DA and f sufficiently regular, provided a necessary
compatibility condition is verified (see remarks 8.2 and 8.4). This result is
obtained as a consequence of the existence of the F-solutions in LP and the

properties of the integral solutions proved in theorem 6.3. Our first result is of
temporal regularity i.e. f is assumed to belong to W 1,P(O, T; E) for some p &#x3E; 1.

THEOREM 8.1.

Then there exists a unique I verifying

Moreover v = u’ is an F-solution in LP of the pf oblem
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Hence we have, for each t E [0, T ], u’(t) E DA and

v

PROOF. By virtue of Theorem 7.2 there exists an F-solution in LP of

problem 
.

As v is also an integral solution (see Theorem 6.2.) we have for t E [0, T]

t

Setting u(t) = E [0,T] we deduce u E 
o

C(O, T; DA) and u’ = v : hence (8.7) shows that u is a strict solution of (8.2)
and u’ is an F-solution in LP of (8.6) so that (8.4)-(8.5) are a consequence of
(5.1).

REMARK 8.2. Condition (8.1) is a necessary compatibility condition
between f and uo: in other words if there exists a strict solution in C of (8.2)
then Auo + f (0) E DA because Auo + f (0) = u’(0) = lim t-l(u(t) - u(0)) E DA.

t-oo

Our next result is of spatial regularity i.e. f (t) is supposed to belong to
DA for t E [0,T] ] a.e. to be integrable in [0, T].

THEOREM 8.3. Let f E T; DA), uo c DA and Auo E DA. Then there
exists a unique u E T; E) n C(O, T; DA) such that

Moreover v = Au is an F-solution in LP of the problem
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Hence we have fof- each t E [0, T], Au(t) E DA and

If in addition f E V(O, T; DA) fl 0(0, T; E) then we have also u E

C’(0, T; E) n C(0, T; DA) and (8.8), 1 holds for every t E [0, T].

PROOF. From Theorem 7.2 we deduce the existence of an F-solution in

LP of

As w is also an integral solution (see Theorem 6.2) we have

hence

Setting u(t) = (A - we deduce that u E tV’’P(0,T;E) n
C(0, T; DA), u(0) = uo and, for t E [0, T],

hence for t E [0, T] a.e.

i.e. u verifies (8.9). If, in addition, f C 0(0, T; E), (8.14) implies also

u E C’(0,T;E) and (8.15) holds for each t E [0, T].
Finally we have that v = w + u is an F-solution in LP of (8.9) and (8.10),

(8.11 ) are consequence of (5.1).
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REMARK 8.4. Concerning the condition Auo e DA, we must observe that
this is necessary in order to have such a solution under the assumptions of the
theorem. In fact we have Au(t) E DA for each t E [0, T].

REMARK 8.5. When A verifies condition ( 1.1 ) but DA fl E, it is interesting
to examine what can be deduced from the application of the classical theorems
of Hille-Yosida and Phillips to the part of A in DA. To this purpose let us
define the Banach space Eo and the linear operator Ao : D An C Eo - Eo as
follows:

Now Ao : DAn C Eo - Eo verifies all the Hille-Yosida conditions (the
density of the domain included), so we can apply the usual theory to the study
of:

But this problem can replace problem (1.2) only if uo, f (t) c DA, t E
[0, T]. This was the case considered in theorem 8.3, but even in this case, if

we want to apply only the classical results for (8.17) (see e.g. [10] theorem 2.9
pag. 109), we need to impose on f the condition f (t) E DA,,, t E [0,_T) a.e.

and not only f (t) E DA, as in theorem 8.3. Also in the particular case DA = E
some of our results (e.g. Theorem 8.1 ) give a generalization of the classical
theory (see [10] pag. 107).

9. - Existence of F-solutions in C

We can prove now the existence of F-solutions in C of problem (2.4) with
the aid of the strict solutions in LP of problem (2.1) obtained in the previous
section. 

"

THEOREM 9.1. There exists a unique F-solution in C of (2.4) for each
uo E DA and f E C(0, T; E).

PROOF. As we proved in Section 3, we have lim nR(n, A)x = x for each
_ 

n-ioo

x E DA, so if we set
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we have

Moreover E DA and + n2R(n,A)[uo-
R(l, A)f (0)] - f (o) + ( 1 - A)-I/(O) and therefore we deduce

By virtue of theorem 8.1 there exists un E C’(0, T; E)nC(O, T; DA) solution

and from (8.4) we get for t E [0, T] ] and n, m E N

Therefore (un) converges in 0(0, T; E) to a function u: in particular
u(O) = lim lim u% = uo by virtue of (9.1 ). In conclusion u is an

n-oo 

F-solution in C of (2.4).
We will consider now the following problem

and we will say that u : [0, T] --&#x3E; E is an F-solution or a strict solution of (9.4)
in LP or in C if there exists uo E E such that u is a solution of the same type
of

The results relative to problem (9.5) together with Remark 8.5 let us give
an existence and uniqueness theorem for each kind of solutions of (9.4)

THEOREM 9.2. Let A verify condition ( 1.1 ) and let exp(Aot) be the

semigroup generated by Ao in Eo (see definition 8.16). Under the assumptions
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(i) if f E LP(O, T; E) there exists a unique F-solution in LP of (9.4),
(ii) if f E 0(0, T; E) there exists a unique F-solution in C of (9.4),
(iii) if f E LP(O, T; DA) there exists a unique u E W 1,p(O, T; E) n 0(0, T; DA)

solution of (9.4) a.e. in [0, T], .

(iv) if f E LP(O, T; DA) n 0(0, T; E) there exists a unique strict solution in C
of (9.4),

(v) if f E T; E) there exists a unique strict solution in C of (9.4).

PROOF. To prove the uniqueness let us suppose that there exists uo E DA
such that u is an F-solution in LP of

verifying

Then we must have

because t -~ exp(Aot)uo is an F-solution in C of (9.7): in fact as uo E DA we
can choose DAo such that lim = 0: setting uk (t) = exp(Aot)UOk

k-oo
we have uk E and klim Iluk - 0. (9.8)

-+00

implies ( 1 - exp(AOT))uo = 0 so uo = 0 by virtue of (9.6), therefore u = 0 and
the uniqueness for problem (9.4) is proved.

To prove existence let us begin with case (i): from theorem 7.2 we know
that there exists an F-solution in LP of

As v(T) E DA (see Theorem 5.1 ) we can define

and deduce as above that t -&#x3E; exp(Aot)uo is an F-solution in LP of (9.7). Hence

is an F-solution in LP of (9.5) and verifies (9.8), i.e., by definition, u is an
F-solution in LP of (9.4). Case (ii) can be treated in the same way by using
theorem 9.1 I instead of theorem 7.2. In case (iii) problem (9.10) has a solution
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verifying (9.10)1 a.e. in [0, T] and such that Av(T) E DA (see theorem 8.3),
hence v(T) E D Au. This implies that uo, defined by (9.11), is also in D Au. In
fact as for x E DAo

we deduce

hence

is in DA~ . This implies that t -~ exp(Aot)uo is a strict solution in C, of (9.7):
therefore u defined by (9.12) verifies the conditions of (iii). Case (iv) is proved
in the same way and similarly is case (v) for which theorem 8.1 can be used.

We will consider in the next part of this paper the case in which A
verifies a more restrictive spectral property (but DA is again not necessarily
dense in E): with this property we can construct a semigroup of operators in
E (in contrast with the previous situation) and this fact lets us write an explicit
formula for the possible solutions.

Parabolic case

10. - Analytic semigroups

In what follows we shall consider again problem

where A : DA C E - E is a linear operator in a Banach space E with not

(necessarily) dense domain DA and verifies the condition:

When A has this property, (10.1) is called a parabolic abstract evolution
equation. We will show that condition (10.2) is stronger than (1.1) (see Theorem
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10.4) and lets us define a semigroup eAt E C(E), t &#x3E; 0, in the usual way (see
[8] p. 487):

where +C is a suitable oriented path in the complex plane. We will say that
eAt is the semigroup generated by A: later it will be shown that eAt cannot be
generated (in this way) by another operator (see theorem 10.3). Many of the
properties of the classical analytic semigroups still hold:

(10.5) given A: e N there is Mk (depending also on M and Ø) such that

( 10.6) for each k G N and t &#x3E; 0 there exists wd t - eAt can be(10.6) for each kEN = -+ eAt 
extended analytically in a sector containing the positive real semiaxis,

The main difference with the usual analytic semigroups is in the behavior
of eAtx when t approaches 0:

THEOREM 10.1. When A verifies (10.2), the following properties hold:

. Conversely if there exists

1 and

for each

Conversely if there exists then and

PROOF. See Proposition 1.2 of [ 12].
We will extend to our situation a classical result which refers to the

Laplace transform of eAt.
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THEOREM 10.2. For each and we have

PROOF. From (10.5) we get
with ReA &#x3E; 0

hence for

v

is well defined.

By using ( 10.6) and (10.9) we get for each y E DA:

Setting y = R(A, A)x, with x arbitrarily chosen in E, we have

from which we deduce R(A)z = R(A, A)x.
As first consequence we can prove that there is a one-to-one

correspondence between the semigroup eAt and its generator also in the case of
non dense domain.

THEOREM 10.3. Let A : DA C E -~ E and B : DB C E - E verify
(10.2) and let eAt and eBt the semigroups generated by them thraugh ( 10.3). If

then DA = DB and Ax = Bx for x E DA = DB.

PROOF. If e At = eBt we get from ( 10.12) that R(A, A)x = R(A, B)x, x E E
and A &#x3E; 0 hence DA = R(A, A)E = R(A, B)E. In addition, if x E DA,
setting y = Ax we have x = R(A, A)(Ax - y) = R(A, B)(Az - y) and therefore
(A - B)x = i.e. Ax = Bx.

Another consequence of theorem 10.2 is the proof that condition (10.2)
is more stringent than (10.1)

THEOREM 10.4. If A ver-ifies (10.2) then also ( 1.1 ) is true with M = Mo.

PROOF. From ( 10.12) we deduce the existence for ReA &#x3E; 0 of (a - A)- ~ E
~(E) and also for each 
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hence from (10.5)

and ( 1.1 ) is true with M = Afo.

11. - Intermediate spaces

To state necessary and sufficient conditions for the regularity of the
solutions of (10.1) we must introduce two families of intermediate spaces
between DA and E. The proofs of the results are given in Section 1.3 of

[12].

DEFINITION 11.1. For each 0 E]0, 1 [ we define the Banach space

with norm

DEFINITION 11.2. For each we define the Banach space

with norm

We have DA(0) c oo) because t -~ eAt is bounded. More generally
we have for 0  81  92  1

and DA(O) can be characterized as the closure of DA in DA(9, oo). Other
characterizations which are important in the study of evolution equations are
given by:
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A very important property of these spaces is given by the fact that they
depend only on A and E (in contrast with the fractional powers of - A)

THEOREM 11.3. Let A :

Moreover if M, 1 &#x3E; 0 E ]~, 7(’[ such that if z E C and arg z ::; 4&#x3E;
(z - B)-1 E .C(E); 

for each x E DA = DB

then there exists such that for each x E DA(a, oo) = DB(a, oo)

PROOF. The result could be deduced from proposition 1.15 of [12] but
we give here a simpler proof (due to G. Di Blasio).

We can suppose that (10.2) is verified by A and B with the same constants
M and 0. Moreover as A and B are closed, DA = DB implies DA = DB, so
there exists 1 &#x3E; 0 such that (11.5) is true. In addition we know that there exists
Mk(k = 0, 1, 2) depending on M and 0 such that

Let us suppose that x E DB(a, oo) and set

Fix t E ]0, 1 [ and consider the function defined as

0 is continuous in

and therefore, we get
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with

where

Letting we get

we conclude that with

If we change A with B in the preceding proof we get 
DB(a, oo) and ( 11.6). As DA(a) is the closure of DA in DA(a, oo), it coincides

with the closure of DB in DB(a, oo) i.e. with DB(a).

12. - Mild and classical solutions

When condition ( 1.1 ) is verified and DA = E then A generates a

semigroup by virtue of the Hille-Yosida theorem. The same is true when
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(10.2) holds as we showed in Section 10. In these cases the classical variation
of constant formula suggests another definition of solution of problem

DEFINITION 12.1. Let A generate the semigroup eAt , f E L’ (0, T; E) and
uo G DA. The continuous function defined by

is called the mild solution of problem ( 12.1 ) (see e.g. [ 10] page 106).
When A generates an analytic semigroup one can define another type

of solution which is the abstract version of the solution of a parabolic partial
differential equation when the initial datum is not regular: in this case the

equation is not required to be satisfied for t = 0 (see [8] pag. 491).

DEFINITION 12.2. Let A verify (10.2), f E LP(0,T;E) and uo E DA. A
function u E C(0, T; E) nW’,P(0+, T; E) T; DA) when verifies

is called a classical solution in LP of (12.3).
When, in addition, f E C(O, T; E), a function u E 0(0, T; E) n

C’ (0+, T; E) n C(0+, T; DA) verifying

is called a classical solution in C of (12.4). 
_

Note that if u is a classical solution in LP then u(t) E DA, Vt C [0, T].
A strict solution in C (in LP) is also a classical solution in C (in LP) and a
classical solution in C is also a classical solution in LP for each p &#x3E; 1.

PROPOSITION 12.3. Let A generate the semigroup eAt and let f E
Lp(o, T; E), uo E DA. Then the mild solution of (12.1) coincides with the
F-solution.

PROOF. We will first prove that a classical solution in LP of (12.3) is

necessarily a mild solution: in particular it is unique. The proof can be easily
adapted from the analogous proof of the case DA = E. Let u be a classical
solution in LP of (12.3): given t E ]0,T] and e E ]0, ~ [ let us consider the
function
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By virtue of (10.6) and (12.3) we have for s 

Moreover, from

we deduce

As u(t) E DA for each t E [0, T], letting - -i 0+ we obtain (12.2) for
t c ]o, T ]; for t = 0 (12.2) is true by definition of classical solution and so u
is the mild solution. Suppose now that u is an F-solution in LP of (12.3): by
definition there exists uk, strict solution in LP of (2.2), such that (2.3) holds;
from what proved above are mild solutions of (2.2) and so

From (2.3) we deduce that uk converges in 0(0, T; E) necessarily to u:
therefore (12.2) is true and u is the mild solution of (12.3).

By using the existence result of the F-solutions in LP (theorem 7.2) and
the uniqueness of the mild solution one deduces that a mild solution is also an
F-solution.

The previous result together with Corollary 7.3 proves that the mild
solution is equivalent to the integral solution. But it can be interesting to prove
this without the existence theorem used in the pro,of of the preceding proposition.

PROPOSITION 12.4. Let A generate the semigroup eAt and let f E
uo E DA. Then the mild solution of ( 12.1 ) coincides with the

integral solution.

PROOF. Denoting by u the mild solution of (12.1) and integrating both
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sides of (12.2) from 0 to r E [0,T] ] we get

T 

°

Now, by using (10.10) we E DA and
o

This shows that u is an integral solution.
Conversely let us assume that u is an integral solution of (12.1). This

means that 

is a strict solution in C of

where

u

From Proposition 12.3 we get

As uoi DA, g C W le(0, T; E) and g(O) = 0 we deduce that the right-hand
side is differentiable in [0, T] and

i.e. (12.2) and therefore u is the mild solution of (12.1).
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13. - Existence, uniqueness, and maximal regularity results

In this section we want to collect the results about the existence of
solutions of problem ( 12.1 ) in the parabolic case. For the sake of conciseness
we will consider only the solutions in C and refer the reader to [5] for the
result in LP. Therefore we will assume that f is at least continuous from [0, T]
to E.

Let us remark that the mild solution is for t &#x3E; 0 more than continuous
with values in E.

THEOREM 13.1. Let (10.2) hold. Given f E C(0, T; E) and uo E DA, the
mild solution u of ( 12.1 ) given by (12.2) belongs to Ca(0+, T; DA( 1 - a)) for
each a E ]0, 1 [.

The proof is given in [12], theorem 3.4.
We state now two theorems which give conditions for the existence of a

classical or a strict solution of ( 12.1 ).

THEOREM 13.2. Let ( 10.2) hold. Given f E ca(o, T; E) and uo E DA there
exists a unique classical solution u in C of ( 12.1 ) and u’ E n

B(0+, T; DA(cx_, oo)). This solution is also strict if and only if uo E DA and
Auo + f (0) E DA .

For a proof see [ 12] theorems 4.4 and 4.5.

THEOREM 13.3. Let ( 10.2) hold. Given f cz C(0, T; E) n B(0, T; DA(a, oo))
and uo E DA there exists a unique classical solution u in C of (12.1) and
Au E T; E) fl B(O+, T; DA(a, oo)). This solution is also str-ict if and only
if Uo E DA and Auo E DA.

The proof is given in [ 12], theorems 5.4 and 5.5.
For the parabolic equation ( 12.1 ) the maximal regularity property can be

defined as follows:

DEFINITION 13.4. Let X be a subset of C(O, T; E). There is the maximal
regularity property for problem ( 12.1 ) in X if for each f E X there exists a
unique strict solution in C of ( 12.1 ) such that u’ and Au belong to X (provided
uo satisfies a necessary compatibility condition with f ).

THEOREM 13.5. Let ( 10.2) hold. The maximal regularity property for (1.2)
holds in
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The proofs of these results are given in [12], theorems 4.5 and 5.5.

REMARK 13.6. In general X = C 1 (o, T; E) cannot be considered a space
t

of maximal regularity. In fact for each f E C(0, T; E) set g(t) = f f (s)ds and
~ 

o
consider problem

As g G C’(0, T; E) and = 0 there exists a strict solution in C (see
t t

Theorem 13.2) given by v(t) = / and we have v’(t) = / 
o . 0

If also v’ e C’(0, T; E) then the mild solution of

belongs to C 1 (o, T; E) and therefore it is a strict solution in C (see theorem 6.3
and proposition 12.3); but this is not possible for every f E 0(0, T; E) when E
is a general Banach space (see [1]).

Applications

14. - Differential operators with non dense domain

We will consider some examples of operators A with non dense domain
verifying the Hille-Yosida estimates ( 1.1 ); it is well known that it is easier to
check the more restrictive condition

and this will be done in this section.

Let us begin with the differentiation operator in a one-dimensional compact
interval of the x-axis.

EXAMPLE 14.1. Setting



318

we have Moreover for each

hence

which implies ( 14.1 ).

EXAMPLE 14.2. Let us set for some a C ]o,1 [:

We have DA = 1 ) Q E and for each A &#x3E; 0 and v E E, (14.5) holds:
hence from (14.6) we get .

and for (using the fact that v(0) = 0):

which gives
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In the previous example C8(0,1) cannot be replaced by 1 ) in the
definition of E because the Hille-Yosida estimates are not true in this case as
the next proposition shows.

This result is analogous to that found by Von Wahl for the second

derivative with Dirichlet boundary conditions (see [14])

PROPOSITION 14.3. Set E = C«(0,1 ), Au = -u’ and DA = CJ+O!(O, 1).
Then there exist no constants M, w &#x3E; 0 such that

PROOF. Also in this case (14.5) is true for each A &#x3E; w and v E E: choosing
v(x) -= 1 we get 

1

and if A &#x3E; 1 we obtain also

If (14.12) holds we deduce for A &#x3E; w and A &#x3E; 1:

and so ; which, for A - +oo, yields a contradiction.
Let us consider now the simplest cases of generators of analytic semigroups

with non dense domain obtained from the Laplace operator with homogeneous
Dirichlet boundary conditions in spaces of continuous functions. We shall begin
with the one-dimensional case

EXAMPLE 14.4. Set

then (10.2) is true with each 0 E ]~, 7r[ and M = (cos~/2) ~. For a proof see
Section 8.1 of [2]. In this case we have

EXAMPLE 14.5. Let Q be a bounded open set with regular boundary
r and define
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here A is the Laplacian in the sense of distributions on SZ. In this case we have
DA = and it has been proved in [13] that (10.2) is true for each
fixed § in ] Í, 7r[. As mentioned before, estimate (10.2) does not hold if 
is replaced by CI(Q) (see [14]).
We shall prove here a result needed in the sequel:

( 14.18), then A generates a contraction analytic semigroup

and

PROOF. For each let us define

in the distribution sense (Ap must not be confused with the iterated Laplacian)
and 

-

It is known that A E p(A) n p(Ap) if A is not negative real; moreover for
each u E 0(0) we have (A - = hence for t &#x3E; 0 we get from
(10.3):

It is also known that

but eAt u E C(Q) hence we obtain (14.19) for p  +oo.

Estimate (14.20) is a consequence of (14.19) and the representation formula
(10.12).

We study now the heat-operator considered as acting on functions of time
and space: estimate (14.1) will be proved with the aid of the existence theorem
8.1 for the strict solution in L’.

EXAMPLE 14.7. Let us consider the Banach space of functions u : [0, T] -
C(S2) defined as
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and the heat-operator

(hence with domain

where DA is defined by (14.18). It can be shown that

Let us prove that ( 14.1 ) holds. Given
must find u E DA verifying

and

Setting u(t) = eatu(t) and = e),tv(t), we have
(14.24) becomes

and

As 5(0) = 0 by virtue of (14.20) and Theorem 8.1, this problem has
a unique solution U E C ~ (0, T; C(Q)) n Co(O, T; DA); hence there is a unique
solution u E DA of (14.24) and from (8.4), (8.5) we get
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From Young’s inequality we deduce

Analogously we have

hence

which proves (14.1).
In the next example we study the same heat-operator but in a different

space: in this case we need the maximal regularity results of theorem 13.5 to
get the resolvent estimate (14.1).

EXAMPLE 14.8. Let us define the space of function u :

and the heat-operator

with domain

We have DA = E. 
_

If we consider the resolvent equation (14.24) with v E Cg(0, T; C(Q)) and
A &#x3E; 0 and perform the transformation which leads to (14.25) we can use (i) of
theorem 13.5 and get a solution 11 C Cö(O, T; Do) n CI+O(O, T; C(L2)): hence
there exists a unique solution u E DA of (14.24) given by

By virtue of (14.19) we deduce
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and for

hence

"

From (14.33) and (14.34) we get

which is ( 14.1 ). 
_

As in example 14.2 we cannot choose CI(O, T; as space E because
the Hille-Yosida estimates are not satisfied. In fact the following theorem holds:

PROPOSITION 14.9. Let E = C’(0, T; C(Q)), Au = Au - u’ and DA =
T; DA) n T; C(Q». Then there exist no constants M, w &#x3E; 0 such

that

PROOF. We can repeat the arguments of example 14.8 and prove that for
A &#x3E; 0, (A - A)-I E f(E) and u = (A - A)-Iv is given by formula (14.32). Let
us choose an element y E Dð(a,oo), then v(t) = e~t y, t E [0, T] ] belongs to

(see ( 11.3)) and we deduce from (14.32)

Now suppose that ( 14.36) holds: then for A &#x3E; w and A &#x3E; T we have

hence, setting c = -L, we get
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and therefore lim = 0: this implies y = 0 (see (10.9)) and we have a
£-+0+ 

_

contradiction because oo) = (see [9])
Let us consider now the periodic versions of examples 14.7 and 14.8:

EXAMPLE 14.10. Consider again a space of functions u : [0, T] - C(s2)

and the heat operator

with domain

which is not dense in E because we have

To show that 14.1 holds in this case too we will use the results of theorem
9.2. 

Given v E and A &#x3E; 0, let us consider problem

or, setting

problem

From example 14.5 we deduce (see Appendix) that B verifies ( 1.1 ) and

where Eo = with the sup-norm and Bo is the part of B in Eo, according
to definition (8.16); from (14.44) we get (9.6) with Ao = Bo. Therefore we can
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use theorem 9.2, case (v) to get a solution
(14.43). As v(O) = v(T) we have

so uEDA.
To prove estimate (14.1) let us observe that from (14.43) we deduce by

virtue of Theorem A.2 of the Appendix, for each t E [0, T]

and

From (14.46) with t = T we get

and therefore, from (14.46),

with
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Hence

Analogously (14.47) implies

The two last estimates give (14.1).
Now we change the space E and use the parabolic theory to get the

resolvent estimate ( 14.1 ).

EXAMPLE 14.11. Setting

we have and

To prove this we could use the method of the previous example, but we
prefer to use a different one. Given v E 0:(0, T; E) let us denote by v the
periodic extension of v to ] - oo, T ]. We have for t), t2 E ] - oo, T]:

(because there exists E [0,T] ] such that V(tl) = V(t2) = v(t’) and
~ t; -  ~2 - Let e°t be the analytic semigroup generated by 0 (see
example 14.5) and set, for t E [0, T], -

(fur each we set
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For t E [0, T] ] we have

As v E T; E) we get (by using theorem 13.2) u E C(0+, T; E) and

Moreover we have u(o) = u(T) because

and therefore u(O) = u(T) E D!1. From this and (14.53) we get

From theorem 13.12 we deduce that u E C1(o, T; 0(0» n 0(0, T; DA)
and (14.52) holds also for t = 0: from this it follows that u E DA.

From the estimate

which holds for each t E [0, T], we get the uniqueness of the solution of

(14.54). We also have for 0  t ~  t2  T
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thus, by using also (14.54), we deduce

and (14.50) follows.
Let us end this section with a very simple example in a space of functions

defined in the whole real axis. 
’

EXAMPLE 14.12. Setting

u is absolutely continuous and

we have DA Q E and

In fact, as DA is contained in the set of bounded and continuous functions
on R, we have DA Q E. For each A &#x3E; 0 and v E it is easy to see that

satisfies the resolvent equation

Moreover u E DA and for each x E R

hence

Conversely if u E DA satisfies (14.58) for each ~ E R we have
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As u is absolutely continuous, integrating from a E R to ~ we get

for a - - oo we obtain

and therefore (14.57) is the unique solution in DA of (14.58).
In the following sections we will see some of the possible applications

of the abstract existence theorems and the examples just considered.
For the sake of conciseness we will consider only the strict solutions.

15. - Linear partial differential equations of the first order

We want to apply our abstract methods to a very simple partial differential
equation: we will show how to obtain the classical solution as an easy application
of Theorem 8.1.

THEOREM 15.1. Let f : [o, T]2 -~ Rand u2 : [o, T] ~ R be functions
verifying the following properties:

such that setting
and we have

. Then there exists a unique u E C1 ([0, T ]2) .such that

- Let us remark that ( 15.2)-( 15.4) are necessary conditions for the existence
of* a solution belonging to C 1 ([0, T]2).

PROOF. We can suppose that
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otherwise we substitute f 1 and f2 with

which satisfy again (15.1) and (15.4).
Let us first consider the case in which

If we define

then, setting v(t)(x) = v(t, x) and 11 (t)(x) = 11 (t, x), problem

can be written as

From ( 15.1 ) we have f 1 E from (15.2) and (15.7) we get
UI E DA and from (15.6) we deduce Au +/i(0) E DA = Co(0,1): hence theorem
8.1 gives a solution v E n 0(0, T; D A), so v(t, x) belongs to

C ’ ( [0, T] ~ ) . Analogously problem 
°

can be written as

after setting w(x)(t) = w(t, x) and f2(x)(t) = f2(t, x) and proceeding as above we
find a solution w(t, x) in C ~ ([o, T ]2). By adding ( 15.9) and ( 15.10) we obtain a
solution u = v + w of (15.5) in C~([0,r~].
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Let us consider the case in which (15.7) is not true. Setting

we can use the result just obtained to deduce the existence of u E C 1 ([0, T]2)
solution of

We can check that u(t, x) = ii(t, x) + u 1 (o) is the solution of problem
(15.5). Its uniqueness is a consequence of the fact that_ the only function

n C(0, T; DA) which verifies

is zero (see Theorem 8.1 ).

REMARK 15.2. Let us remark that to solve (15.5) with the aid of the
usual semigroup theory we must suppose f (t, x) = 0 for all t E [0, T] or for all
x E [0, T] ] because we need to substitute in definition (15.8) E = C(O, T) with
E = and DA = Co(0, T) with DA = { u E C’ (0, T); = u’(0) = 0 } in
order to verify property DA = E.,

Obviously, problem (15.5) can be solved by the characteristics methods,
although its justification under the above conditions on f is not straightforward:
moreover with the abstract methods we can find weaker solutions under very
mild conditions on f, u l and U2-

16. - Ultraparabolic partial differential equations

We will consider in this section an initial value problem for an

ultraparabolic equation. In the last years a sufficiently large amount of papers
have been devoted to this subject but under assumptions different from ours
(see e.g. [6] and references therein).

The problem could be treated by using either the abstract hyperbolic theory
or the parabolic one. Let us begin with the first method:

THEOREM 16.1. Let Q be a bounded open set of R n with regular boundary
F, T &#x3E; 0 and let f (t, -r, x), and such that setting
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we have

and also

Then there exists a unique u(t, T, x) such that:

ut, uT, Au are continuous in

and verify

PROOF. Let us first consider problem

with v, such that

This problem can be solved by using the results of example 14.5. In fact,
setting
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can be written as a problem in the Banach space C(S2):

We can use Theorem 8.1 because (16.1) implies

thus there exists

(see (14.18) for the definition of solution of (16.12).
To solve problem (16.9) we can use the results of example 14.7 by setting

and write (16.9) as an initial value problem in E

The assumptions of Theorem 8.1 are verified. In fact vi E ,DA by virtue
of (16.14) and ( 16.1 ); moreover Av 1 + h(o) = 0 and h E hence
there exists a solution

of (16.16) and therefore u(t, T, x) = u(t)(T, x) is a solution of (16.9).
Analogously we can consider problem
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where V2(t, x) is solution of

This problem can be solved by setting

and writing (16.9) as an abstract equation in the Banach space C(Q):

From ( 16.1 ) we deduce

so Theorem 8.1 implies the existence of

solution of ( 16.21 ).
Let us examine problem (16.18): set as in the example 14.7

and write (16.18) as an initial value problem in E

Also in this case we can check that the assumptions of Theorem 8.1
are verified because v2 E DA by virtue of ( 16.19) and because ( 16.1 ) implies
w E 1 (0, T; C(i2)); moreover AV2 + w = 0 and therefore there exists a solution
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of (16.25): hence u(t, T, x) = U(T)(t, x) is a solution of ( 16.18).
Let us set now for t, T E [0, T] ] and x E S2

and

From (16.3), (16.10)2 and (16.19)2 we deduce

whereas (16.5) and ( 16.10) imply

As (16.14) gives

setting

we obtain:

In the same way we get

and

If we set for t, T E [0, T] ] and

condition (16.6) can be written as
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From (16.12)2 and (16.21)2 we deduce

hence

Let us observe that (16.2), (16.14) and (16.23) imply

and so for

Finally let us consider problem

Setting

(16.41) can be written as a first-order partial differential equation with values
in the Banach space 

As A generates an analytic semigroup in O(Q) (see example 14.5) we
easily obtain a formula for the possible solution

, u

This definition is consistent for t = T by virtue of (16.29). Let us prove
that u(t, T) verify (16.43). By’using (16.32), (16.39) and ( 16.40) we deduce the
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existence of

and of

which are consistent for t = T by virtue of (16.38). In addition by using (10.10)
we get

From (16.45)-(16.47) we derive (16.43). In addition from (16.34), (16.39)
and ( 16.40) we deduce that (t, T) -~ ut (t, T), T), Au(t, T) are continuous from
[0, T]2 to C(i2); the same property is satisfied by the solutions of (16.9) and
(16.18). In conclusion the sum of the solutions of (16.9), (16.18) and (16.41) is
a solution of (16.8) and satisfies (16.7). The uniqueness of this kind of solution
is easily proved because if u verifies (16.7) and (16.8) with f = u 1 - u2 - 0
then necessarily u is given by (16.44) with w.l = W2 = 1 = 0 and therefore u = 0.

REMARK 16.2. It can be checked that if (16.1) holds and there exists a
solution u of (16.8) with property (16.7) then (16.2)-(16.6) must be necessarily
satisfied.

We can study problem (16.8) by means of the parabolic theory without
supposing the differentiability of f : in this case u is differentiable only along
the characteristics thus the left-hand side of (16.8) must be interpreted as the
derivative of u along their direction: this has a physical meaning in some

biological problems arising in the study of age-structured populations (see [4]).

THEOREM 16.3. Let Q be a bounded open set of R n with regular boundary
r, T &#x3E; 0 and let f (t, T, x), ul(T, x) and such that, setting

we have Moreover assume that
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for some Then, if

and

(where DA is defined in ( 14.18)), there exists a unique u(t, T, x) continuous in
[0, T]2 X Q .such that u(t, T, -) E Do for (t, T) E [0, TJ2 and verifies

where

PROOF. Setting

and using (16.48) we can write (16.52) as a problem in the Banach space C(S2)

If there exists a solution (in the sense specified above) choosing (to, TO) E
[0, T]2 with to = 0 or To = 0, there exists To &#x3E; 0 such that if h E [0, TO], then
(to + h, To + h) E [0,7’]~; hence, setting

we deduce from (16.55) (with t = to + h and T = to + h) that u(.) satisfies

where uo = t~ - 0 and uo = U2(tO) if To = 0. From the results of
section 12 we deduce the uniqueness of the solution: to prove its existence
we can use Theorem 13.2 with E = and A = A. In fact, for each (to, To)
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we have f (.) E C(K)) by virtue of (16.49) whereas (16.50) implies
uo c DA and from (16.51) we deduce Du~ + f (0_) - E DA
when to = 0 and Auo + f (0) = Du2(to) + f(tO, 0) c DA when To = 0. Therefore
problem (16.57) has a solution u E C’ (0, TO; C(-Q)) n C(O, To; DA). Now defining
u(t, T, x) by means of ( 16.54) we obtain a solution of (16.52): in fact for each
given (t, T) E [0, T]2 we can if t &#x3E; T and

to = 0, To = T - t, h = t if t  T. In this way (16.57) reduces to (16.55) which
in turn implies (16.52) because u(t, T) E DA- 

’

In the next example we want to exhibit a situation in which the hyperbolic
theory (with non dense domain) seems to be the unique way of studying the
evolution problem.

17. - Generalized Laplacian in infinite dimensional spaces

The problem which will be introduced here arises in the theory of
stochastic control: we only sketch the proofs and refer the reader to [3] for

more details and motivations.
Let H be a separable Hilbert space with inner product  ’,’ &#x3E; and a

complete orthonormal set 
Let E be the Banach space of functions 4&#x3E;, uniformly continuous and

bounded .from H to R, endowed with the sup-norm.
For each let us define the linear operators Dk and Ak as follows:

there exists uniformly for

Ak generates an analytic semigroup in E given by

Let S’ be a positive nuclear operator in H such that
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00

with ’À-k &#x3E; 0 verifying - Ak  + oo. The generalized Laplacian in E
I

(corresponding to S’) is the operator

(here 0’ and 0" are the Fréchet-derivatives).
It can be proved that the closure of A coincides with the generator

of the strongly continuous semigroup in E defined by

Finally, let us suppose that

is the generator of a strongly continuous semigroup eBt in H and consider the
problem

where f : [0, T] x H --~ R and uo : ~ 2013~ R are given. To write it as an evolution
problem in E let us introduce the operator

Now if and only if there exists

uniformly for the mapping r -
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 0’(x) &#x3E; can be extended to E. In conclusion we can write the abstract
version in E of ( 17.9) as follows:

where we have set u(t)(x) = u(t, x) and f (t)(x) = f (t, x). If B is unbounded then
B verifies estimate ( 14.1 ) but D(B ) ~ E; moreover it can be proved that A + B
with domain D(A) n D(B) is closable in E and if A &#x3E; 0 then A E + B)
and 

~,

This lets us apply the hyperbolic theory to problem ( 17.12) and to get
solutions of (17.9) by using the existence theorems of sections 7-9 (see [3]).

Appendix

In many applications it is important to consider operators B such that
A = B - wI satisfies ( 1.1 ) for some w E R. The extension of the previous theory
to this situation is very simple but it will be useful to write explicitly some
less obvious results (as the estimates for the solutions).
Let us suppose that

is a linear operator such that there exists w E R verifying

If we consider problem

where g : [0, T] - E and vo E E are given, we can define in an obvious way
all the types of solutions introduced for problem (1.2).

If we set
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then A verifies ( 1.1 ) and it can be checked that to each solution u of problem

corresponds a solution v (of the same type) of (A.2) given by

and conversely.
From theorems 5.1, 7.2 and 9.1 we deduce directly:

THEOREM A. I. Let (A.1 ) hold. Problem (A.2) has a unique F-solution v
in LP for each g E LP(O, T; E) and uo E DB; this solution verifies the estimate

If in addition f E C(0, T; E) then v is an F-solution also in C.
About the strict solutions we have the following result

THEOREM A.2. Let (A.1 ) hold and let g E vo E DB and Bvo+
g(O) E DB : then there exists a unique solution v E C ~ (0, T; E) n C(0, T; DB)
of (A.2). Moreover we have v’(t) E D(A) and

as w = v’ is an F-solution in LP of

PROOF. We can proceed as in the proof of Theorem 8.1 by showing that
if w is the integral solution of

then v(t) = vo + f w(s)ds is a strict solution in C of (A.2).
0 

Estimate (A.7) is a consequence of the fact that w is an F-solution of

(A.8) and therefore (A.6) can be used.
We end with an existence result in the case in which 9 has values in DB:

its proof is similar to that of Theorem 8.3:
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THEOREM A.3. Let (A.1 ) hold, g E vo E DB and Bvo E DB.
Then there exists a unique v E T; E) fl 0(0, T; DB) such that (A.2)
holds a.e. in [0, T] and the following estimate is true

Moreover w = Bv is F-solution in LP of

and therefore Bw(t) E D(A) for t E [0, T].
If in addition g E LP(O, T; DB) n 0(0, T; E) then we have also

v E n 0(0, T; DB) and (A.2) holds for each t E [0, T].
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