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Differential passage of fluids and different-sized particles in
fistulated oxen (Bos primigenius f. taurus), muskoxen (Ovibos

moschatus), reindeer (Rangifer tarandus) and moose (Alces
alces): Rumen particle size discrimination is independent from

contents stratification

Abstract

Ruminant species differ in the degree that their rumen contents are stratified but are similar insofar that
only very fine particles are passed from the forestomach to the lower digestive tract. We investigated the
passage kinetics of fluid and particle markers (2, 10 and 20 mm) in fistulated cattle (Bos primigenius f.
taurus), muskoxen (Ovibos moschatus), reindeer (Rangifer tarandus) and moose (Alces alces) on
different diets. The distribution of dry matter in the rumen and the viscosity of rumen fluids suggested
that the rumen contents were more stratified in muskoxen than moose. Correspondingly, as in previous
studies, the species differed in the ratio of mean retention times of small particles to fluids in the
reticulorumen, which was highest in cattle (2.03) and muskoxen (1.97-1.98), intermediate in reindeer
(1.70) and lowest in moose (0.98-1.29). However, the ratio of large to small particle retention did not
differ between the species, indicating similarity in the efficiency of the particle sorting mechanism.
Passage kinetics of the two largest particle classes did not differ, indicating that particle retention is not
a continuous function of particle size but rather threshold-dependent. Overall, the results suggest that
fluid flow through the forestomach differs between ruminant species. A lower relative fluid passage,
such as in moose, might limit species to a browse-based dietary niche, whereas a higher relative fluid
passage broadens the dietary niche options and facilitates the inclusion of, or specialization on, grass.
The function of fluid flow in the ruminant forestomach should be further investigated.
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Abstract 25 

Ruminant species differ in the degree that their rumen contents are stratified but are similar 26 

insofar that only very fine particles are passed from the forestomach to the lower digestive 27 

tract. We investigated the passage kinetics of fluid and particle markers (2, 10 and 20 mm) in 28 

fistulated cattle (Bos primigenius f. taurus), muskoxen (Ovibos moschatus), reindeer 29 

(Rangifer tarandus) and moose (Alces alces) on different diets. The distribution of dry matter 30 

in the rumen and the viscosity of rumen fluids suggested that the rumen contents were more 31 

stratified in muskoxen than moose. Correspondingly, as in previous studies, the species 32 

differed in the ratio of mean retention times of small particles to fluids in the reticulorumen, 33 

which was highest in cattle (2.03) and muskoxen (1.97-1.98), intermediate in reindeer (1.70) 34 

and lowest in moose (0.98-1.29). However, the ratio of large to small particle retention did 35 
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not differ between the species, indicating similarity in the efficiency of the particle sorting 36 

mechanism. Passage kinetics of the two largest particle classes did not differ, indicating that 37 

particle retention is not a continuous function of particle size but rather threshold-dependent. 38 

Overall, the results suggest that fluid flow through the forestomach differs between ruminant 39 

species. A lower relative fluid passage, such as in moose, might limit species to a browse-40 

based dietary niche, whereas a higher relative fluid passage broadens the dietary niche options 41 

and facilitates the inclusion of, or specialization on, grass. The function of fluid flow in the 42 

ruminant forestomach should be further investigated. 43 
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 47 

Introduction 48 

Ruminants are peculiar among mammalian herbivores. They achieve exceptionally 49 

small ingesta particles due to the repeated mastication (rumination) of ingesta facilitated by a 50 

sorting mechanism in their reticulorumen (RR) (Fritz et al. 2009), and can therefore also 51 

achieve particularly high digestive coefficients at relatively high food intakes (Clauss et al. 52 

2009e; Schwarm et al. 2009b). The RR sorting mechanism has been well investigated in 53 

domestic ruminants (reviewed in Beaumont and Deswysen 1991; Lechner-Doll et al. 1991; 54 

Allen 1996; Hristov et al. 2003), and is generally described as linked to the stratification of 55 

the RR contents. In domestic ruminants, this stratification has been demonstrated repeatedly 56 

(reviewed in Hummel et al. 2009). 57 

In contrast, such a stratification of RR contents is not a consistent finding in wild 58 

ruminants. Hofmann (1973) stated that the RR contents of grazing wild ruminants were 59 

stratified, whereas those of browsing wild ruminants were not. Although the general validity 60 

of this broad statement remains to be tested, various lines of evidence support this concept. 61 

Visual inspections (Hofmann 1973; Nygren and Hofmann 1990; Renecker and Hudson 1990), 62 

ultrasonographical visualisation (Tschuor and Clauss 2008) as well as physical analyses 63 

(Clauss et al. 2009b; 2009c; Hummel et al. 2009) of the RR contents, the intraruminal 64 

papillation pattern (Clauss et al. 2009d), and comparative measurements of fluid and particle 65 

retention (Hummel et al. 2005; Clauss et al. 2006b) suggest that in browsing ruminants, the 66 

RR contents are stratified to a much lesser degree than in grazing ruminants. 67 

On the one hand, the absence or presence of such a stratification has been linked to 68 

several other morphological findings in ruminants of different feeding types (summarized in 69 
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Clauss et al. 2008), providing a general framework for many observations of Hofmann 70 

(1989). On the other hand, the question about the functional relevance of the stratification is 71 

raised anew by these observations. If browsers lack stratification of RR contents, does this 72 

translate into differences in RR function? A study on captive animals suggested that browsers 73 

excrete larger particles in their faeces than grazers (Clauss et al. 2002), and this was linked to 74 

a less efficient particle size reduction due to the absence of stratification and its retention-75 

facilitating function. However, such a difference in particle size was not evident if free-76 

ranging or naturally fed animals were compared (Renecker and Hudson 1990; Hummel et al. 77 

2008a; Clauss et al. 2009c); the evident conclusion was that the reported difference between 78 

browsers and grazers was more due to differences in the suitability of their dentitions to 79 

comminute diets offered to captive animals, rather than differences in RR physiology. 80 

In this study, we aimed to evaluate the retention kinetics of fluids and different-sized 81 

particles in ruminants with presumably different degrees of RR contents stratification. The 82 

differential retention of fluids and small particles (2 mm) is a well-known difference between 83 

ruminants of different feeding types, e.g. between moose (Alces alces) and cattle (Renecker 84 

and Hudson 1990). The differential retention of large (10 mm) and small (2 mm) particles is a 85 

characteristic that sets ruminants apart from nonruminant foregut fermenters (Schwarm et al. 86 

2008; 2009c), but has, so far, not been compared between ruminants of different feeding 87 

types. Differences in the retention of different large particle classes (e.g., 10 mm vs. 20 mm) 88 

have, so far, only rarely been investigated in ruminants. No difference in the retention of these 89 

particle classes had been evident in a wild cattle, the banteng (Bos javanicus), when both 90 

marked particles had been fed to the animals (Schwarm et al. 2009a). However, an effect of 91 

ingestive mastication on the different-sized marked particles could not be excluded. In this 92 

study, we therefore applied marked fluids and particles of 2, 10 and 20 mm to the animals 93 

through a rumen cannula. 94 

The marker system was first evaluated in domestic cattle, which are usually considered 95 

grazers, and in which the stratification of RR contents has been well described (Hummel et al. 96 

2009). Fistulated individuals of muskoxen (Ovibos moschatus), reindeer (Rangifer tarandus) 97 

and moose were available for the comparative evaluation. Various evidence has shown that 98 

the RR contents of moose, a strict browser (Schwartz 1992), are not stratified (Nygren and 99 

Hofmann 1990; Renecker and Hudson 1990; Tschuor and Clauss 2008; Clauss et al. 2009c; 100 

Clauss et al. 2009d). Although the reindeer is usually considered a mixed feeder (Hofmann 101 

1985), its rumen shows a very even papillation (Soveri and Nieminen 1995; Josefsen et al. 102 

1996; Mathiesen et al. 2000; Soveri and Nieminen 2007) and its RR contents are very 103 
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homogenous (Westerling 1970; Hobson et al. 1976). Muskoxen feed mainly on grasses and 104 

sedges but also include major proportions of browse in their diet (Klein and Bay 1990; 105 

Staaland and Olesen 1992; Larter and Nagy 1997). A variety of anatomical and physiological 106 

characteristics (reviewed in Clauss et al. 2009a) in this species have been interpreted to 107 

indicate a typical “grazer” strategy; however, although their intraruminal papillation pattern 108 

indicates a certain degree of RR contents stratification, it is not as distinctive as in other 109 

grazers such as cattle (Clauss et al. 2009a). 110 

We hypothesised that the differences in the excretion between fluids, small and large 111 

particles (measured as the ratio of the retention time of particles vs. that of fluids, and as the 112 

ratio of large vs. small particle retention time) would decrease from cattle, muskoxen and 113 

reindeer to moose. With respect to the differential excretion of the two large particle classes 114 

(10 and 20 mm), we expected that the results would resolve the question whether large 115 

particle retention is a continuous function of particle size (i.e., the longer a particle, the longer 116 

it is retained) or threshold-dependent (i.e., all particles above a certain size are retained for the 117 

same period of time). In order to corroborate assumptions concerning the presence or absence 118 

of RR contents stratification, several measurements on physical characteristics of the RR 119 

contents were performed. In order to control for effects of diet, the three wild ruminant 120 

species were fed a common diet readily accepted by all – mixed willow browse; additionally, 121 

cattle, muskoxen and moose received a grass-based diet (hay or silage), which was 122 

unfortunately rejected by the reindeer. 123 

 124 

Materials and Methods 125 

We used four adult, fistulated domestic oxen (mean 1238 kg ± 39 kg standard deviation) 126 

of the Institute of Animal Science of the University of Bonn, Germany, four fistulated, adult 127 

castrated male muskoxen (276 ± 23 kg) and four fistulated, adult female reindeer (96 ± 12 kg) 128 

of the Robert G. White Large Animal Research Station, Institute of Arctic Biology, 129 

University of Alaska Fairbanks, and two adult, fistulated female moose (345 ± 13 kg) of the 130 

Alaska Department of Fish and Game at the Palmer Research Center (Table 1). With the 131 

exception of one reindeer, all animals had received the rumen fistulas for other studies more 132 

than one year before this experiment. All animals were kept individually (wild ruminants in 133 

outdoor pens, oxen in a stable) with ad libitum access to water, shade, and their respective 134 

food. Adaptation periods to new diets lasted at least 14 days. Oxen received a diet of grass 135 

silage (n=4; trials in autumn 2007). Muskoxen received either a diet of mixed browse (n=4; 136 

Salix spp.) or grass hay (n=4; Bromus sp.); reindeer received either a diet of mixed browse 137 
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(n=4) or a pelleted compound feed (n=4; D Ration Complete Diet for Reindeer, Alaska 138 

Garden and Pet Supply, Anchorage, Alaska); reindeer and muskoxen were fed in a crossover 139 

design (two trials in June/July 2008). Moose received a diet of mixed browse (n=2; mostly 140 

Salix spp.) and a diet of grass silage (n=2; Bromus sp.) during June/Octobre 2008 ad libitum, 141 

and two diets of pre-harvested browse leaves (n=2, Salix alaxensis harvested in June; n=2, 142 

Populus balsamifera harvested in September) during winter 2009 in restricted amounts. It had 143 

been our intent to feed the reindeer on grass hay, too, but the reindeer rejected the available 144 

material. Browse was harvested on a daily basis for the respective animals, with the exception 145 

of winter trials in moose, in which case browse had been harvested in the preceding summer 146 

and stored frozen. Apart from the pelleted compound feed used for reindeer, all forages were 147 

fed whole (i.e. not chopped). Food intake and crude nutrient composition of the different diets 148 

are given in Table 2. 149 

Cobalt (Co) was used as fluid marker bound to EDTA. Chromium (Cr), cerium (Ce) and 150 

lanthanum (La) served as mordants for marking of different-sized particle fractions – 2-mm 151 

particles for Cr, 10-mm particles for Ce, and 20-mm particles for La. Co-EDTA and Cr-152 

mordanted fibres were prepared according to Udén et al. (1980). Ce- and La-mordanted fibres 153 

were prepared according to Schwarm et al. (2008; 2009a). The mordanted fibres contained 154 

36.9 ± 2.0 g Cr/kg DM, 26.5 ± 2.4 g Ce/kg DM, and 20.9 ± 2.3 g La/kg DM, respectively. We 155 

tested the fidelity of markers to their respective particulate fractions by vitro fermentation 156 

with standardized sheep rumen inoculum (as in the ‘Hohenheim gas test’, Menke et al. 1979) 157 

followed by treatment with hydrochloric acid and pespin to simulate gastric digestion. 158 

Recoveries of marker in the residual material after fermentation alone and after both 159 

fermentation and gastric digestion were 104 % and 109 % for Cr, 70 % and 65 % for Ce, and 160 

74 % and 71 % for La, respectively. High recoveries indicated that Cr was selectively bound 161 

to completely indigestible material whereas lower recoveries of Ce and La indicated lesser but 162 

satisfactory binding to digestible and indigestible components of the cell walls. 163 

Markers were applied as a pulse dose. In domestic oxen, the dissolved Co-EDTA (10 164 

g/animal) and the mordanted fibres (120 g/animal for each mordant) were placed by hand on 165 

top of the fibre mat in the middle of the rumen. In the wild ruminants, the smaller cannulae 166 

did not allow direct placement of the dose in the rumen. In these animals, Co-EDTA was 167 

dissolved in water and frozen in a plastic tube; the mordanted fibres were mixed, packed into 168 

plastic tubes with water, and frozen. Markers (2.25 g Co-EDTA and 27 g of each 169 

mordant/muskox, 0.8 and 9 g/reindeer, 3.33 and 40 g/moose) were dosed through the cannula 170 

into the rumen; in doing so, the frozen marker was pushed into the upper to middle layer of 171 
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the rumen contents in the central (neither cranial or caudal) region. A thawing test with frozen 172 

marker in a 38 °C water bath resulted in complete thawing after 80 seconds. All animals 173 

received the markers in the morning between 8 and 10 a.m. and received their morning feed 174 

directly afterwards. 175 

Three faecal samples taken from the animals prior to marker dosage were used for 176 

baseline values. After marker dosing, faeces were sampled at progressively increasing 177 

intervals: 4 hours (day 1-2), 6 hours (day 3), 8 hours (day 4-5), 12 hours (day 6-9) and 24 178 

hours (day 11-13); in doing so, all faeces defecated during the time period were collected, 179 

mixed, and a representative subsample (app. 10% of the total sample) taken. All samples were 180 

stored frozen at -20°C until analysis. On days 14 and 15 after marker sampling, rumen 181 

contents were sampled in the wild ruminants (in moose only during the summer browse 182 

period) using a device based on the design by Tafaj et al. (2001), but with a window that 183 

opened along the whole length of the sampling vial. Samples were taken from the dorsal 184 

rumen contents first (inserting the probe horizontally) and from the ventral rumen contents 185 

afterwards (inserting in a diagonal/vertical way). Following previous protocols (Clauss et al. 186 

2009b; 2009c; Hummel et al. 2009), we determined the dry matter (DM) content of the 187 

samples, the proportion and mean particle size (MPS) of floating and sedimenting particles, 188 

the MPS of the faeces, and the viscosity of the rumen fluid. For moose, these measurements 189 

were only available for the summer browse diet. 190 

A detailed description of the analysis of faecal samples for the markers is given in 191 

Lechner et al. (2009). Analyses were carried out using inductively coupled plasma mass 192 

spectrometry of the digested samples. Microwave-assisted, high-pressure digestion with 193 

HNO3 and H2O2 was used to dissolve the samples for the analysis. Limits of detection based 194 

on the calibration standards were 0.01 µg/L for Co, 0.05 µg/L for Cr, and 0.002 µg/L for Ce 195 

and La respectively. This corresponds to 0.06 (Co), 0.3 (Cr) and 0.012 (La, Ce) mg/kg dry 196 

mass for a typical sample digest, respectively. Detection limits were at least a factor of 50 197 

below the concentrations determined in faeces collected before dosing with markers. 198 

The MRT for the whole gastrointestinal tract (MRTGIT) was calculated according to 199 

Thielemans et al. (1978) as 200 

Σ ti Ci dti 
MRTGIT = 

Σ Ci dti 

 201 

With Ci = marker concentration in the faecal samples from the interval represented by time ti 202 

(hours after marker administration) and dti = the interval (hours) of the respective sample 203 



 7 

(ti+1-ti)+(ti-ti-1) 
dti    = 

2 

 204 

Liquid MRTs for the reticulorumen (MRTRR) were calculated as by Grovum and Williams 205 

(1973b); this calculation is based on the decrease of the faecal liquid marker concentration Ci 206 

with time according to the equation  207 

Ci = a e
-kti  or  lnCi = -k ti + b 208 

Liquid MRT in the RR then is k
-1

. Because markers can be assumed to move in parallel 209 

in the distal gastrointestinal tract of ruminants (empirically confirmed by Grovum and 210 

Williams 1973a; Kaske and Groth 1997; Mambrini and Peyraud 1997; Wylie et al. 2000), 211 

MRTRR for Cr, Ce and La were calculated by assuming that MRTdistalCo = MRTGITCo – 212 

MRTRRCo and MRTdistalCr/Ce/La = MRTdistalCo; hence MRTRRCr/Ce/La = MRTGITCr/Ce/La 213 

- MRTdistalCr/Ce/La. 214 

To express differences in the MRTGIT or MRTRR between the individual markers, 215 

‘selectivity factors’ (SF) were calculated according to Lechner-Doll et al. (1990); these 216 

represent the ratios of the MRTs of different markers, e.g. the SFGITCr/Co would be 217 

MRTGITCr/MRTGITCo. An SF of 1.00 thus indicates no difference in the retention of two 218 

markers; very high SF (e.g. 2.00 and higher) indicate distinct differences in the retention of 219 

two markers. 220 

Data are presented as means ± standard deviation (SD). Statistical tests were performed 221 

with SPSS 17.0 (SPSS Inc., Chicago, IL). Differences in excretion between markers (within a 222 

species, on a specific diet) were tested by Repeated Measurements ANOVA followed by 223 

paired t-tests with Dunn-Sidak adjustment for multiple testing. Differences in marker 224 

excretion in the same animals between different diets were tested by paried t-tests, as were 225 

differences in rumen contents characteristics in the same animals between the dorsal and the 226 

ventral rumen contents. Differences in marker excretion and rumen content characteristics 227 

between species on similar diets (i.e. muskox, reindeer and moose on browse; cattle, muskox 228 

and moose on grass) were tested by one-way ANOVA and subsequent post hoc tests with 229 

Sidak adjustment for multiple testing. The significance level was set to 0.05. 230 

 231 

Results 232 

General remarks 233 

All animals appeared to be in good health during the trials. Two muskoxen were 234 

particularly reluctant to accept the grass hay, leading to high standard deviation in food intake 235 
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(Table 2), and consequently in the retention parameters. Interestingly, the summer/autumn 236 

food intake of the moose hardly varied between the browse and the grass silage diet. 237 

Physical characteristics of RR content 238 

The viscosity of the centrifuged rumen fluid on the browse diet increased from 239 

muskoxen (1.29 ± 0.03 mPa s) to reindeer (1.55 ± 0.31 mPa s) and moose (1.76 ± 0.43 mPa 240 

s), with the difference between muskoxen and moose being significant (Fig. 1a). In 241 

muskoxen, where fluid viscosity was also measured on the grass hay diet, the difference 242 

between the two diets was not significant (1.29 ± 0.03 mPa s on browse vs. 1.34 ± 0.12 mPa s 243 

on grass hay). In a similar setup, the viscosity of fluid in domestic cattle had been between 244 

1.3-1.4 mPa s (Hummel et al. 2009). The average fluid viscosity in reindeer consuming the 245 

pelleted feed was much higher than the average viscosity for animals consuming browse  246 

(52.14 ± 65.23 mPa s vs. 1.55 ± 0.31 mPa s), but the difference was not significant due to the 247 

enormous standard deviation on the pelleted feed. 248 

In muskoxen and reindeer on browse diets, dorsal rumen contents had a higher dry 249 

matter concentration than ventral rumen contents; in moose, however, this difference was not 250 

significant, potentially due to the small sample size (Fig. 1b). For both rumen regions, the 251 

three species differed significantly in the dry matter concentration of the rumen content, with 252 

moose having the driest, and muskoxen the wettest contents (Fig. 1b). In muskoxen, 253 

differences in the DM concentration did not differ significantly between the browse and the 254 

grass hay diet (6.3 ± 1.4 % dorsal and 4.5 ± 0.7 ventral on browse vs. 6.3 ± 1.0 % dorsal and 255 

4.9 ± 1.0 ventral on grass hay). In reindeer on pellets, differences in DM concentration 256 

between the regions were not significant, and the DM concentrations were numerically but 257 

not significantly higher in both regions as compared to browse feeding (9.4 ± 1.5 % dorsal 258 

and 7.8 ± 0.8 ventral on browse vs. 14.5 ± 5.8 % dorsal and 15.1 ± 5.9 ventral on pellets). 259 

On browse, moose had a significantly higher proportion of floating particles in their RR 260 

contents than both muskoxen and reindeer (Fig. 1c). Muskoxen on grass had a significantly 261 

lower proportion of floating particles in the rumen (4.9 ± 2.5 %) than muskoxen on browse 262 

(29.9 ± 5.5 %). The proportion of floating particles did not differ significantly between 263 

reindeer on browse (32.3 ± 7.2 %) and reindeer on pellets (19.5 ± 18.4 %). 264 

In the three wild ruminant species, ruminal contents that floated in the floatation test 265 

(Clauss et al. 2009c; Hummel et al. 2009) had a higher mean particle size than those rumen 266 

contents that sedimented in the test (Fig. 1d), which again had a higher mean particle size than 267 

the faeces. Differences between the three fractions (dorsal and ventral rumen and faeces) were 268 

not significant in moose due to the low sample size. In muskoxen, differences were 269 
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significant apart from that between floating and sedimenting rumen contents on both diets. In 270 

reindeer on browse all differences were significant, but none on pellets. On the browse diets, 271 

there was no significant difference in the mean particle size of the floating rumen contents 272 

between the species (ANOVA p=0.083); the sedimenting fraction of the rumen contents 273 

differed (ANOVA p=0.035) only between muskoxen and reindeer (post hoc p=0.036), with 274 

smaller particles in reindeer. The faeces, again, did not differ in particle size between the 275 

species (ANOVA p=0.255).  276 

Marker excretion patterns 277 

The faecal marker patterns in the domestic oxen showed three different excretion 278 

curves, one for fluids and one for small particles (both well separated but of similar shape, 279 

with an immediate increase and a gradual decrease), and with one pattern for 10 and 20-mm 280 

particles, with a more gradual increase and a gradual decrease (Fig. 2). MRTCr was 281 

approximately 30 h longer than MRTCo, both in the total GIT (Table 3) or in the RR (Table 282 

4), and MRTCe and MRTLa were again approximately 20 h longer than the MRTCr. All 283 

differences in the MRTs of the different markers were significant in cattle, with the exception 284 

of the two large particle classes (Ce and La; Table 3 and 4). 285 

The faecal marker patterns of muskoxen looked similar to those of domestic cattle (Fig. 286 

3). Differences between the individual markers - again except for the two large particles 287 

classes -were significant on the browse diet, but not on the grass hay diet; on grass hay, there 288 

were very high standard deviations that most likely originated from the variations in food 289 

intake (Table 3 and 4). Notably, however, the standard deviations of the SF were not greater 290 

on grass hay than on browse, indicating that the relative difference between the individual 291 

markers within one animal remained consistent, regardless of absolute differences in MRT. 292 

On browse, MRTCo was significantly shorter, but MRTCr was not different from that on the 293 

grass hay diet (Table 3 and 4). SF ratios with MRTCo or MRTCr in the denominator were often 294 

significantly higher on the browse than on the grass hay diet. 295 

In reindeer, the different marker excretion peaks appeared to be closer together than in 296 

muskoxen (Fig. 4). On browse, differences in MRT between all three particle classes were not 297 

significant (Table 3 and 4). MRTCo were higher on browse than on pellets, as was MRTCrRR. 298 

Correspondingly, SF ratios with MRTCo or MRTCr in the denominator were often significantly 299 

lower on the browse than on the pelleted diet. 300 

In moose, the marker excretion peaks looked similar to the reindeer insofar as fluids and 301 

small particles were very similar in their excretion pattern (Fig. 5) and the SF Cr/Co was very 302 

low (Table 3 and 4). Comparing the two diets of similar ad libitum intake (summer browse 303 
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and grass silage), longer MRTs were measured on the grass diet, which were, however, only 304 

significant for the largest particles, probably due to the small sample size (Table 3 and 4). 305 

Similarly, differences between large particle and fluid MRT were evident, but only significant 306 

for the browse winter diets. The SF for small particles/fluids was higher on the summer 307 

browse than on the grass diet. 308 

Comparing the species that received a grass-based diet (cattle, muskoxen, moose), 309 

moose tended to have longer MRTCoGIT than cattle (p=0.079); this was not due to differences 310 

in the MRT RR but due to significantly longer MRTCoDIST in moose (Table 3). Generally, 311 

MRT DIST were longer in moose than in the other species. The SFCr/Co and SFCe/Co were 312 

similar in cattle and muskoxen, and significantly higher than in moose. The SFLa/Co was 313 

lowest in moose, intermediate in muskoxen, and highest in cattle (Table 3 and 4). The SFLa/Cr 314 

and SFLa/Ce were significantly lower in muskoxen than in the other species. 315 

Comparing the species that received a browse diet in summer (muskoxen, reindeer, 316 

moose), moose and reindeer had significantly shorter MRTs for the long particles than 317 

muskoxen (Table 3 and 4); moose also excreted small particles faster from the RR than the 318 

other species (Table 4). Moose tended to have a lower SFCr/CoGIT than muskoxen (Table 3), 319 

and muskoxen had higher SFCe/Co and SFLa/Co than the other species. Reindeer had lower 320 

SFCe/Cr and SFLa/Cr than muskoxen and moose, and the SFLa/Ce did not differ between the 321 

species (Table 3 and 4). There were also no differences in the MRT DIST between the species 322 

(Table 3). 323 

 324 

Discussion 325 

The physical characteristics of the RR contents in the wild ruminants of this study 326 

correspond to those reported earlier for these species or other species of similar feeding type 327 

(Clauss et al. 2009b; Clauss et al. 2009c; Hummel et al. 2009). They show that although 328 

ruminants might differ in the degree their RR contents are stratified, a separation according to 329 

buoyancy characteristics can occur in different forages; that regardless of the degree of 330 

stratification of RR contents, the RR sorting mechanism is of similar efficiency in different 331 

ruminant species, allowing only very fine particles to escape from the RR; that 332 

correspondingly the discrimination in the passage of small versus large particles is similar in 333 

different ruminant species; and that large particle passage is rather threshold-dependent than a 334 

continuous function of particle size. Following Clauss et al. (2001), this leaves us in the 335 

dilemma that we observe the rumen sorting mechanism, but without the contents stratification 336 

we are used to associate with this mechanism. With respect to the different physiologic 337 
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strategies of browsers and grazers, the results confirm that it is the ratio of small particle vs. 338 

fluid passage that is the major difference between different species and potentially different 339 

feeding types. 340 

Potential limitations of this study and methodological aspects 341 

The major limitation of this study is the variation in animal numbers and samples taken 342 

between species and treatments. Unfortunately, logistic reasons did not allow consistent 343 

sampling of rumen contents via the cannula of all animals on all diets, the use of four rather 344 

than two fistulated moose, and the provision of another grass source that would have been 345 

accepted by the reindeer. Additionally, the level of food intake was not kept constant in this 346 

study; animals were allowed to ingest as much food as they wanted, in order to better mimic 347 

natural feeding. In muskoxen, this led to relevant differences in the food intake between the 348 

grass hay and the browse diet (Table 2). 349 

While measurements on rumen fluid (such as viscosity) are probably not influenced by 350 

the sampling method used to collect the fluid - manual or probe sampling in fistulated animals 351 

(as performed in this study or in Hummel et al. 2009) versus dissections of the forestomachs 352 

of shot animals (Clauss et al. 2009b; Clauss et al. 2009c)-, the probe (but not the manual) 353 

sampling via cannula seriously influences results on the whole RR contents. Although, as 354 

compared to the rumen sampler of Tafaj et al. (2001), the opening of the rumen probe had 355 

been enlarged to a window of approximately 3 x 10 cm (considered the maximum possible 356 

without compromising the stability of the sampler), it was evident that during sampling, the 357 

very large particles present in the rumen did not enter the probe quantitatively. Therefore, 358 

samples taken were most likely biased towards fluids and small particles, making a 359 

comparison between the animals of this study feasible, but not with results gathered by other 360 

methods. 361 

With respect to the mordant markers used in this study, the results of the marker binding 362 

assays (see methods) showed that although loss occurred for the Ce- and La-mordants, 363 

recoveries after artificial digestion were still reasonably high. As some of the marker will 364 

have dissociated from the marked fibres and bound to other (including potentially smaller) 365 

particles (Hartnell and Satter 1979; Combs et al. 1990), the retention times of large particles 366 

might be somewhat underestimated in this study; however, because marker recovery was very 367 

similar for Ce and La, the absence of a difference in the retention of these two markers most 368 

likely is a true effect. Although the methods of marker application to feeds vary between 369 

studies (Hartnell and Satter 1979; Udén et al. 1980; Crooker et al. 1982; Combs et al. 1990; 370 

Bernard and Doreau 2000; Schwarm et al. 2008; 2009a), our findings encourage the further 371 
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use of rare-earth mordants as passage markers. In particular, the method of preparing Ce-372 

mordants of Schwarm et al. (2008) also used in this study appears to be preferable to the ones 373 

described by Udén et al. (1980), Crooker et al. (1982) or Combs et al. (1990). In contrast to 374 

the two latter studies, the method of Schwarm et al. (2008) follows the recommendations of 375 

Bernard and Doreau (2000) to use neutral detergent residue of forages rather than untreated 376 

forages as the material for mordanting. For researchers interested in the method, additional 377 

adjustments explained by Mambrini and Peyraud (1997) should be considered. 378 

Finally, it should be noted that differences in feeding selectivity, chewing and 379 

rumination intensity, forestomach volume and forestomach motility patterns could all have 380 

influenced the results reported here. Ideally, such measures should be taken in parallel in 381 

future studies. 382 

RR physiology 383 

Differences between fluid and small particle excretion appear to vary between 384 

ruminants. The SFCr/CoRR was in this study highest in cattle (2.03) and muskoxen (1.97-1.98), 385 

intermediate in reindeer (1.70) and lowest in moose (0.98-1.29), supporting previous results 386 

that this SF is lowest in browsing and highest in grazing ruminants (Clauss and Lechner-Doll 387 

2001; Hummel et al. 2005; Clauss et al. 2006b). When comparing published measurements of 388 

MRTCrRR and MRTCoRR (Fig. 6a), it is evident that in species usually associated with a 389 

higher proportion of grass in their natural diet, small particles are retained distinctively longer 390 

than fluids and/or fluids pass out of the RR distinctively faster than particles.  391 

Results of physical analyses of rumen contents in this and previous studies (Clauss et al. 392 

2009b; 2009c; Hummel et al. 2009) support the concept that large, grazing species, such as 393 

cattle, muskoxen, bison, or addax have a distinct difference in the moisture content between 394 

the dorsal and the ventral rumen, and generally a high ruminal moisture content. Browsers, 395 

such as moose or roe deer, have more homogenous ruminal digesta in terms of moisture 396 

concentration, and their ruminal contents are generally drier than those of grazers (Fig. 1b). 397 

Note that the moose of this study were more heterogenous in ruminal moisture concentration 398 

than shot and dissected individuals (Clauss et al. 2009c) but still had drier contents than the 399 

other species in this study. The higher moisture content in the larger, more grazing ruminants, 400 

seems to be associated with a lower rumen fluid viscosity (Fig. 1a), with a more distinct 401 

stratification of rumen contents (Tschuor and Clauss 2008; Clauss et al. 2009d), and with 402 

larger omasa for fluid re-absorption beyond the RR (Clauss et al. 2006a). 403 

The resulting question is what consequences these differences in fluid physiology have 404 

for the animals. Due to the common conception that the stratification of rumen contents is 405 
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important for the selective particle retention and sorting mechanism in the rumen (Poppi et al. 406 

2001; Faichney 2006), previous hypotheses linked differences in stratification of rumen 407 

contents with differences in the efficacy of particle sorting and the time available for particle 408 

digestion. For example, Iason and Van Wieren (1999) and Pérez-Barbería et al. (2004) found 409 

a higher fibre digestibility in grazing as compared to browsing ruminants, which corresponds 410 

to indications that grazing ruminants have longer particle retention times (Hummel et al. 411 

2006; Clauss et al. 2007a) also partially indicated in this study (Table 3 and 4). Another 412 

example was the observation by Clauss et al. (2002) that in a dataset of wild ruminants kept in 413 

zoos, large browsers had larger particles in their faeces than grazers, which was also linked to 414 

the absence of rumen contents stratification and the resulting particle sorting effect in these 415 

animals. However, in a subsequent study with aurox (Bos primigenus taurus) and giraffe 416 

(Giraffa camelopardalis), Hummel et al. (2008a) showed that this difference only occurred in 417 

zoo animals but not in free-ranging ones, hence indicating that the teeth of browsers are 418 

probably less suited for diets offered in captivity than those of grazers. If results of faecal 419 

particle sizes of browse-fed animals of this study are compared to those measured in zoo-fed 420 

individuals of the same species (Fig. 7), the pattern found by Hummel et al. (2008a) is 421 

supported. Differences in faecal particle size in captive browser and grazers might be due to 422 

general differences in dental design between the feeding types (Archer and Sanson 2002), and 423 

to differences in patterns of tooth wear between captive as compared to free-ranging browsers 424 

(Kaiser et al. 2009). Teeth of browsers might be morphologically less suited to the 425 

mastication of food traditionally offered in captivity, and their teeth show abrasion-induced 426 

wear in captivity that might further compromise their ability to efficiently masticate food. 427 

Together with the finding that faecal particle size did not differ significantly between the 428 

species of this study, and the dramatic decrease in particle size between the RR and the distal 429 

digestive tract in ruminants of any feeding type (Clauss et al. 2009b; 2009c), these results 430 

suggest that the RR particle sorting mechanism is equally efficient in different ruminant 431 

species, and hence not dependent on the presence of a rumen contents stratification that is 432 

reflected in papillation patterns or differential particle-fluid-outflow. 433 

This interpretation is corroborated by our findings on the differential particle retention 434 

in the RR. The difference between small and large particle excretion from the RR did not 435 

seem to be associated with feeding type. The SFCe/CrRR was in the range of 1.06-1.47 (Table 436 

4), and both extremes were measured in reindeer, with values of the other species in between. 437 

The SFLa/CrRR was in the range of 1.03-1.52, with extremes measured in reindeer and moose, 438 

and again with values of the other species in between. Comparative data are scarce. Lechner-439 
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Doll et al. (1990) measured the MRT RR of 2 mm and 20 mm particles in domestic cattle, 440 

sheep and goats. If our own data for 2 and 10 mm particles, or that for 2 and 20 mm particles 441 

combined with that study, are plotted in a way similar to Fig. 6a, it seems that there is no 442 

systematic difference between the ruminant species with respect to their differential retention 443 

of small and large particles (Fig. 6bc). Therefore, ruminants of all feeding types probably 444 

share the characteristic of an efficient sorting mechanism in their RR, irrespective of either 445 

feeding type or the presence of stratification of their RR contents. This sorting mechanism 446 

sets ruminants apart from non-ruminating foregut fermenters such as hippopotamus, 447 

peccaries, macropods or colobine monkeys (Schwarm et al. 2008; 2009c). One possible 448 

difference between the feeding types could be that the actual particle sorting takes place 449 

mainly in the reticulum in strict browsers, but is already prepared to a higher degree within 450 

the rumen in grazers (Clauss et al. 2009b; 2009c). This interpretation would conceptually 451 

allow for a larger ‘filter bed effect’ in which small particles are entangled  in the ruminal fibre 452 

mat (Faichney 2006) in grazers with an according longer delay of the small particles. Because 453 

grass particles, in general, can be fermented profitably for a longer time than browse particles 454 

(Hummel et al. 2006), such a mechanism could be adaptive and could explain why the small 455 

particles – which can leave the reticulum once they reach it – are retained longer in the 456 

grazing species, where they are partly entangled in the mat, than in the browsing species, 457 

where they move more or less with the fluid (Fig. 6a). 458 

Many studies have demonstrated that the functional density or gravity of particles, i.e. 459 

their tendency to float or sediment, is the major mechanism that determines their fate in the 460 

RR (Sutherland 1988; Beaumont and Deswysen 1991; Lechner-Doll et al. 1991; Dardillat and 461 

Baumont 1992; Kaske et al. 1992). Potential differences in the kinetics of density changes 462 

between different forages notwithstanding, this study (Fig. 1d) and the preceding ones (Clauss 463 

et al. 2009b; 2009c; Hummel et al. 2009) have shown consistently that fragments of different 464 

forages can be sorted by flotation/sedimentation according to their size. According to 465 

numerous studies, the threshold size of particles for passage out of the rumen is between 1 466 

and 4 mm (Poppi et al. 1980; Ulyatt et al. 1986; Shaver et al. 1988; Grenet 1989); however, 467 

an additional question is whether particles above this threshold are retained in proportion to 468 

their respective size, or if they are retained indiscriminately. The results of this study, as well 469 

as those of Kaske et al. (1992) and Schwarm et al. (2009a), indicate that above a large particle 470 

size threshold (~10 mm), particle size has no further influence on the selective retention or 471 

rumination of large particles. However, differences in the retention kinetics of particle size 472 
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classes below this threshold, e.g. between 4-mm, 2-mm and 0.5-mm particles, have been 473 

demonstrated (Spalinger and Robbins 1992). 474 

The differences in the shape of the excretion curves of fluids, small and large particles 475 

in cattle and muskoxen (Fig. 2-3) indicate that large particles undergo a different treatment in 476 

the rumen than fluids and small particles (cf. e.g. Bernard et al. 2000). The immediate, steep 477 

increase and gradual, smooth decrease in concentration typical for the fluid and small particle 478 

markers is typical for a single continuous-flow stirred-tank reactor (Martínez del Rio et al. 479 

1994; Jumars 2000). With respect to the RR, this means that both the fluid and the small 480 

particle marker represent a pool which is immediately ready for outflow from the RR, and 481 

outflow is only a function of fluid or small particle inflow and, in the case of particles, of 482 

mechanical delay due to the ‘filter bed effect’ of the ruminal fibre mat (Faichney 2006); this 483 

corresponds to the ‘age-independent’ pools described in domestic ruminants (reviewed in 484 

Ellis et al. 1999). In contrast, the excretion curves of the two large particle size classes with 485 

their more gradual increase and a similar decrease (cf. similar curves for the excretion of 486 

marker bound to whole hay in cattle from Mambrini and Peyraud 1997) are typical for a series 487 

of continuous-flow stirred-tank reactors (Martínez del Rio et al. 1994; Jumars 2000). In other 488 

words, the large particles do not pass through a single pool before leaving the RR but through 489 

a series of such pools (representing their different digestion and rumination stages; ‘age-490 

dependent pools’); such multiple particle pools have been included in models that represent 491 

particle passage through the rumen (Ellis et al. 1999; cf. Spalinger and Robbins 1992). In 492 

contrast to markers applied via rumen cannula, large particle markers ingested by another 493 

cattle species, the banteng (Schwarm et al. 2008; 2009a) showed an intermediate shape 494 

between those for the small and the large particles in this study, with a somewhat steeper 495 

increase than decrease. This is most likely the result of ingestive mastication that reduces a 496 

part of the labelled large particles in size and hence shifts it to the small particle pool directly 497 

ready for rumen outflow. In reindeer and moose, the excretion curve for the larger particles 498 

also has such an intermediate shape (Fig. 4-5). In comparison to cattle and muskoxen, this is 499 

most likely the consequence of proportionately smaller rumen volumes in these less grass-500 

adapted species (Clauss et al. 2003); less volume available for distribution of large particles 501 

probably results in a lower number of (conceptual) ‘pools’ through which these markers pass 502 

before outflow. Note that at low intakes in moose, these curves become more similar to the 503 

ones in cattle or muskox (Fig. 5c), indicating that, at lower throughput, more ‘serial particle 504 

pools’ may exist even in moose. 505 
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The influence of the food intake level on retention parameters, documented in 506 

ruminants and nonruminants alike (Clauss et al. 2007a; 2007b; Schwarm et al. 2009c), is also 507 

evident in this study (Fig. 8ab). In simple terms, a higher food intake will push ingesta 508 

through the gut faster (the effect will be modified by the capacity of the gut to distend). 509 

Differences in retention parameters between species must be considered with the respective 510 

food intake levels in mind. In this respect, the difference in ingesta retention in moose 511 

between the browse and the grass silage diet at comparable levels of intake is particularly 512 

striking. Although dry matter intake was nearly identical (Table 2), both fluids and particles 513 

were retained longer on the grass diet in moose, and the difference was even significant for 514 

the largest particles in spite of the low sample size (Table 3 and 4). While this difference is 515 

most likely ultimately adaptive in terms of the time required for fermentation of the respective 516 

forages (Hummel et al. 2006), the question arises what proximate mechanism causes this 517 

difference. In the lack of experimental data, we can only suggest that differences in the 518 

physical characteristics of browse and grass, including the tendency to form a fibre mat, are 519 

the underlying cause of this difference (Clauss et al. 2003). It should be noted, however, that 520 

the moose had a concomitant increase in fluid retention, and that their SF of small 521 

particles/fluids was still significantly lower than that achieved by muskoxen or cattle on grass 522 

diets (Table 3 and 4). Actually, the ratio of particle to fluid retention (SFparticle/fluid) remained 523 

comparatively constant across the food intake range in the animals of this study (Fig. 8c). 524 

Schwarm et al. (2009c) had noted, in a collection of literature data, that ruminants differ from 525 

non-ruminant foregut fermenters in that the SFparticle/fluid remains constant with food intake in 526 

ruminants. Our results support this observation.  527 

Conclusions 528 

The fact that the SFparticle/fluid is relatively constant and appears to be comparatively 529 

uninfluenced by the type of forage within a ruminant species might be a reason why ruminant 530 

species are limited to certain dietary niches. In this respect, observations on the botanical 531 

composition of ruminant diets appear to indicate a bias in niche flexibility when compared to 532 

morphophysiological adaptations (Van Wieren 1996; Clauss et al. 2003). While a cattle-type 533 

adaptation with a high SFparticle/fluid might also allow the use of browse material as long as 534 

secondary compounds are not problematic (consider not only the muskoxen, but also e.g. the 535 

diets of the wood bison Bison bison athabascae, the European bison Bison bonasus, the red 536 

forest buffalo Syncerus caffer nanus, or the anoa Bubalus depressicornis), a moose-type 537 

adaptation with a higher rumen fluid viscosity and a lower SFparticle/fluid might prevent a 538 

competitive use of grass-based diets. The moose-type adaptation might have been driven by 539 
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the need to produce salivary defences against secondary plant compounds, with 540 

correspondingly large salivary glands that potentially produce a less voluminous and more 541 

viscous saliva (Hofmann et al. 2008). Although potentially limited to the reticulum, the 542 

particle sorting mechanism is highly efficient also in this ruminant type. The cattle-type 543 

adaptation might have been driven by advantages provided by higher fluid throughput 544 

through the RR, namely an increased yield of microbial protein (as suggested by Hummel et 545 

al. 2008b), and, in addition to the sorting mechanism in the reticulum, a more pronounced 546 

stratification of contents with the associated ‘filter-bed effect’ for a pronounced small particle 547 

delay in the rumen. 548 
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 741 

 742 

Table 1. Animals used in this study, location, and measurements performed in each species. 743 

Species   Feeding type Location Diet n Time Measurements 

Cattle Bos prim. f. taurus (domestic) grazer Bonn, Germany Grass silage 4 Oct 2007 MRT 

Muskoxen Ovibos moschatus (wild) grazer 
Fairbanks, 

Alaska 

Browse 

Grass hay 

4 

4 
June/July 2008 

MRT, phys 

MRT, phys 

Reindeer Rangifer tarandus (wild) mixed feeder 
Fairbanks, 

Alaska 

Browse 

Grass hay 

4 

4 
June/July 2008 

MRT, phys 

MRT, phys 

Moose Alces alces (wild) browser Palmer, Alaska 

Browse 

Grass silage 

Browse 

Browse 

2 

2 

2 

2 

June 2008 

Oct 2008 

Feb 2009 

Mrch 2009 

MRT, phys 

MRT 

MRT 

MRT 

MRT=mean retention time measured by insertion of markers into rumen cannula 744 

phys=physical characteristics of rumen contents measured by sampling contents via cannula 745 

 746 

 747 

Table 2. Diets used and absolute and relative dry matter intake (DMI) during the feeding trials 748 

in domestic cattle, muskoxen, reindeer and moose. DM = dry matter (in % fresh weight), CP 749 

= crude protein, NDF = neutral detergent fibre, ADF = acid detergent fibre, ADL = acid 750 

detergent lignin (all in % DM with residual ash) 751 

Species Diet n DMI rDMI ------------------------------ Diet ------------------------------ 

   (kg/d) (g/kg
0.75

d) DM CP  NDF ADF ADL 

Cattle Grass silage 4 10.1 ± 1.9 48 ± 9 38.7 13.1 56.2 37.9 7.2 

Browse leaves 4 4.8 ± 0.5 70 ± 7 19.6 13.6 29.1 23.3 16.1 
Muskoxen 

Grass hay 4 2.9 ± 0.9 43 ± 12 87.9 5.0 59.6 38.0 7.4 

Browse leaves 4 2.1 ± 0.6 70 ± 19 19.6 13.6 29.1 23.3 16.1 
Reindeer 

Pellets 4 3.3 ± 1.5 124 ± 52 91.3 14.7 33.7 22.7 8.2 

Browse leaves 2 5.3 ± 0.2 66 ± 0 30.4 16.2 44.2 30.5 17.9 

Grass silage 2 5.6 ± 0.3 69 ± 6 33.7 14.4 59.2 31.8 2.3 Moose 

Browse (winter) 4 1.6 ± 0.4 20 ± 5 40.0 9.8 31.7 22.4 9.3 

 752 
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Table 3. Mean retention times (MRT) in the gastrointestinal tract (GIT) or the distal GIT (DIST) in cattle (Bos primigenius f. taurus; C), muskoxen 753 

(Ovibos moschatus; Mx), reindeer (Rangifer tarandus; R), and moose (Alces alces; Mo) for markers representing fluids (Co), 2-mm particles (Cr), 754 

10-mm particles (Ce), and 20-mm particles (La), and the respective selectivity factors (SF; representing ratios of the MRTs of different markers) on 755 

diets based on grass (GR), browse (BR) or pellets (Pell); MRT DIST is assumed to be equal for all markers (see text) 756 

Species Diet -------------------- MRT GIT (h) -------------------- -------------------------------------------------- SF GIT -------------------------------------------------- MRT DIST 

  Fluid 2mm 10mm 20mm 2mm/fluid 10mm/fluid 20mm/fluid 10/2mm 20/2mm 20/10mm  

  (Co) (Cr) (Ce) (La) (Cr/Co) (Ce/Co) (La/Co) (Ce/Cr) (La/Cr) (La/Ce)  

Cattle Grass silage 41 ± 3 73 ± 1 89 ± 2 90 ± 2 1.79 ± 0.10* 2.17 ± 0.12* 2.19 ± 0.12 1.22 ± 0.01* 1.23 ± 0.02* 1.01 ± 0.01 10 ± 1 

Muskoxen Browse leaves 34 ± 3 57 ± 6 77 ± 11 74 ± 8 1.68 ± 0.27* 2.27 ± 0.31* 2.18 ± 0.23* 1.35 ± 0.09* 1.30 ± 0.08* 0.96 ± 0.04 10 ± 2 

 Grass hay 49 ± 10 88 ± 28 101 ± 33 93 ± 27 1.77 ± 0.23 2.03 ± 0.25 1.88 ± 0.17 1.15 ± 0.07 1.06 ± 0.06 0.93 ± 0.04 10 ± 2 

Reindeer Browse leaves 38 ± 3 58 ± 8 60 ± 11 59 ± 9 1.52 ± 0.10* 1.58 ± 0.13* 1.56 ± 0.12* 1.05 ± 0.12 1.03 ± 0.11 0.98 ± 0.02 10 ± 2 

 Pellets 26 ± 3 38 ± 8 51 ± 11 51 ± 9 1.43 ± 0.26 1.91 ± 0.31 1.93 ± 0.23* 1.35 ± 0.12 1.37 ± 0.19 1.01 ± 0.08 10 ± 2 

Moose Browse leaves 33 ± 5 39 ± 5 52 ± 3 53 ± 2 1.19 ± 0.04 1.59 ± 0.15 1.62 ± 0.21 1.34 ± 0.08 1.37 ± 0.13 1.02 ± 0.03 12 ± 4 

 Grass silage 58 ± 0 64 ± 2 76 ± 1 76 ± 0 1.11 ± 0.04 1.32 ± 0.03 1.32 ± 0.01 1.19 ± 0.01 1.19 ± 0.03 1.00 ± 0.01 26 ± 1 

 Browse (winter) 74 ± 5 73 ± 3 90 ± 3 89 ± 3 0.99 ± 0.02 1.21 ± 0.03* 1.20 ± 0.03* 1.22 ± 0.02* 1.22 ± 0.02* 1.00 ± 0.00 23 ± 5 

C/Mx/Mo
1
 Grass (Mo > C) ns ns ns Mo < Mx/C Mo < Mx/C Mo < Mx < C ns Mx < (Mo)/C Mx < Mo/C Mo > C/Mx 

Mx/R/Mo
1
 Browse leaves ns ns Mo/(R) < Mx Mo/R < Mx (Mo < Mx) Mo/R < Mx Mo/R < Mx R < Mo/Mx R < Mo/Mx ns ns 

Muskoxen
2
 BR vs. GR BR < GR ns ns ns ns ns ns BR > GR BR > GR ns ns 

Reindeer
2
 BR vs. Pell BR > Pell ns ns ns ns (BR < Pell) BR < Pell BR < Pell (BR < Pell) ns ns 

Moose
2
 BR vs. GR ns ns ns BR < GR BR > GR ns ns ns ns ns ns 

*indicates that the difference in MRT between the respective markers was significant within the species on this diet (repeated measurements-ANOVA and subsequent paired t-757 

tests with Dunn-Sidak adjustment for mulitple testing) 758 
1
tested by one-way ANOVA and subsequent Sidak post hoc tests (brackets indicate differences that only tend towards significance [p between 0.05 and 0.08]) 759 

2
tested by paired t-tests (brackets indicate differences that only tend towards significance [p between 0.05 and 0.08]); in moose only summer/autumn diets were compared 760 

ns=not significant 761 

762 
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Table 4. Mean retention times (MRT) in the reticulorumen (RR) in cattle (Bos primigenius f. taurus; C), muskoxen (Ovibos moschatus; Mx), 762 

reindeer (Rangifer tarandus; R), and moose (Alces alces; Mo) for markers representing fluids (Co), 2-mm particles (Cr), 10-mm particles (Ce), and 763 

20-mm particles (La), and the respective selectivity factors (SF; representing ratios of the MRTs of different markers) on diets based on grass (GR), 764 

browse (BR) or pellets (Pell) 765 

Species Diet -------------------- MRT RR (h) -------------------- -------------------------------------------------- SF RR -------------------------------------------------- 

  Fluid 2mm 10mm 20mm 2mm/fluid 10mm/fluid 20mm/fluid 10/2mm 20/2mm 20/10mm 

  (Co) (Cr) (Ce) (La) (Cr/Co) (Ce/Co) (La/Co) (Ce/Cr) (La/Cr) (La/Ce) 

Cattle Grass silage 32 ± 2 64 ± 1 80 ± 2 80 ± 2 2.03 ± 0.12* 2.53 ± 0.14* 2.56 ± 0.14* 1.25 ± 0.02* 1.26 ± 0.03* 1.01 ± 0.01 

Muskoxen Browse leaves 24 ± 4 47 ± 6 68 ± 10 65 ± 7 1.98 ± 0.44* 2.81 ± 0.53* 2.68 ± 0.41* 1.43 ± 0.12* 1.37 ± 0.11* 0.96 ± 0.04 

 Grass hay 39 ± 11 78 ± 29 91 ± 33 83 ± 28 1.97 ± 0.22 2.30 ± 0.23 2.11 ± 0.16 1.17 ± 0.08 1.08 ± 0.08 0.92 ± 0.04 

Reindeer Browse leaves 28 ± 2 48 ± 7 50 ± 10 49 ± 8 1.70 ± 0.16* 1.77 ± 0.10* 1.74 ± 0.11* 1.06 ± 0.15 1.03 ± 0.13 0.98 ± 0.03 

 Pellets 17 ± 2 28 ± 7 41 ± 10 41 ± 8 1.70 ± 0.48 2.47 ± 0.59 2.48 ± 0.43* 1.47 ± 0.16 1.50 ± 0.25 1.02 ± 0.09 

Moose Browse leaves 21 ± 1 27 ± 1 40 ± 1 41 ± 2 1.29 ± 0.04 1.91 ± 0.14 1.96 ± 0.22 1.48 ± 0.07 1.52 ± 0.13 1.03 ± 0.04 

 Grass silage 32 ± 1 38 ± 3 50 ± 3 51 ± 2 1.21 ± 0.06 1.59 ± 0.03 1.59 ± 0.00 1.31 ± 0.04 1.32 ± 0.06 1.00 ± 0.02 

 Browse (winter) 52 ± 4 51 ± 3 67 ± 4 67 ± 4 0.98 ± 0.03 1.30 ± 0.04* 1.29 ± 0.03* 1.32 ± 0.01* 1.32 ± 0.01* 0.99 ± 0.00 

C/Mx/Mo
1
 Grass ns ns ns ns Mo < Mx/C Mo < Mx/C Mo < Mx < C ns Mx < Mo/C Mx < Mo/C 

Mx/R/Mo
1
 Browse leaves ns Mo < R/Mx Mo/R < Mx Mo/R < Mx ns R/(Mo) < Mx R/(Mo) < Mx R < Mo/Mx R < Mo/Mx ns 

Muskoxen
2
 BR vs. GR BR < GR ns ns ns ns ns (BR > GR) BR > GR BR > GR ns 

Reindeer
2
 BR vs. Pell BR > Pell BR > Pell ns ns ns (BR < Pell) BR < Pell BR < Pell (BR < Pell) ns 

Moose
2
 BR vs. GR ns ns ns BR < GR ns ns ns ns ns ns 

*indicates that the difference in MRT of between the respective markers was significant (repeated measurements-ANOVA and subsequent paired t-tests with Dunn-Sidak 766 

adjustment for mulitple testing) 767 
1
tested by one-way ANOVA and subsequent Sidak post hoc tests (brackets indicate differences that only tend towards significance [p between 0.05 and 0.08]) 768 

2
tested by paired t-tests (brackets indicate differences that only tend towards significance [p between 0.05 and 0.08]); in moose only summer/autumn diets were compared 769 

ns=not significant 770 

 771 
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Figure. 1. Mean ± SD of muskoxen (Ovibos moschatus, n=4), reindeer (Rangifer tarandus, 774 

n=4) and moose (Alces alces, n=2) of a) Viscosity of centrifuged rumen fluid on browse diets, 775 

with two measurements per individual. Differences between moose and muskoxen are 776 

significant. b) Dry matter concentration in the dorsal and ventral rumen contents on browse 777 

diets, with two measurements per individual. Differences between rumen regions are 778 

significant in muskoxen and reindeer only; differences between species are significant for 779 

both dorsal and ventral contents. c) Proportion of floating particles in the rumen (as a 780 

proportion of all particles) on browse diets. Differences between moose and 781 

muskoxen/reindeer are significant. d) Mean particle size in the floating and sedimenting 782 

rumen contents and the faeces on different experimental diets. 783 

 784 

785 
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 785 
Figure 2. Excretion pattern of markers (fluid: Co-EDTA, peak 351 mg/kg DM; 2-mm 786 

particles: Cr, peak 529 mg/kg DM; 10-mm particles: Ce, peak 242 mg/kg DM; 20-mm 787 

particles: La, peak 208 mg/kg DM) in an individual domestic ox fed grass silage ad libitum. 788 

Note the distinct differences in excretion between fluids, small and large particles, but the 789 

absence of difference between the two large particle classes, and the difference in the shape of 790 

the ascending part of the excretion curve. 791 

 792 
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Figure 3. Excretion pattern of markers (fluid: Co-EDTA; 2-mm particles: Cr; 10-mm 794 

particles: Ce; 20-mm particles: La) in an individual muskoxen (Ovibos moschatus) fed a) 795 

willow browse (peaks in mg/kg DM: Co 134, Cr 329, Ce 83, La 81) and b) brome grass hay 796 

(peaks in mg/kg DM: Co 125, Cr 282, Ce 176, La 151). Note the distinct differences in 797 

excretion between fluids, small and large particles, the general absence of difference between 798 

the two large particle classes (with a slightly earlier decrease in the excretion curve of the 799 

largest particles), and the difference in the shape of the ascending part of the excretion curve. 800 

 801 
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Figure 4. Excretion pattern of markers (fluid: Co-EDTA; 2-mm particles: Cr; 10-mm 803 

particles: Ce; 20-mm particles: La) in an individual reindeer (Rangifer tarandus) fed a) 804 

willow browse (peaks in mg/kg DM: Co 130, Cr 263, Ce 112, La 104) and b) a pelleted 805 

compound food (peaks in mg/kg DM: Co 160, Cr 315, Ce 80, La 82). Note the similar 806 

excretion of fluids and small particles, the absence of difference between the two large 807 

particle classes, and the difference in the shape of the ascending part of the excretion curve. 808 

809 
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Figure 5. Excretion pattern of markers (fluid: Co-EDTA; 2-mm particles: Cr; 10-mm 811 

particles: Ce; 20-mm particles: La) in an individual moose (Alces alces) fed a) willow browse 812 

in summer (peaks in mg/kg DM: Co 264, Cr 743, Ce 255, La 232), b) brome grass silage in 813 

autumn (peaks in mg/kg DM: Co 135, Cr 248, Ce 147, La 128) and c) various browse in 814 

limited amounts in winter (peaks in mg/kg DM: Co 05, Cr 350, Ce 174, La 153). Note the 815 

longer retention on grass silage as compared to willow browse in spite of similar food intake, 816 

the similar excretion of fluids and small particles, the absence of difference between the two 817 

large particle classes, and the difference in the shape of the ascending part of the excretion 818 

curve. 819 

820 



 27 

 820 
a 

 

 

b 

 
 

c 

 

Figure 6. Relationship of mean retention times (MRT, in h) in the reticulorumen (RR) of 821 

different ingesta fractions in wild ruminant species of different feeding type. a) fluids vs. 2-822 

mm particles (data collection from Flores-Miyamoto et al. 2005; Clauss et al. 2006b with 823 

additional data from ; Hummel et al. 2008b; Schwarm et al. 2008; and this study) - note the 824 

generally increased difference between small particles and fluid excretion in grazing 825 

ruminants; b) 2-mm vs. 10-mm particles (data from this study) – note the uniformity of the 826 

relationship across species; c) 2-mm vs. 20-mm particles (data from Lechner-Doll et al. 1990; 827 

and this study) – note again the uniformity of the relationship across species. Data from this 828 

study marked by *; black line denotes x=y. Species key: AA Alces alces, an Addax 829 

nasomaculatus, Bd Bubalus depressicornis, bj Bos javanicus, btd Bos taurus f. domesticus, 830 

CC Capreolus capreolus, Ce Cervus elaphus, Chd Capra hircus f. domesticus, Ci Capra ibex, 831 

GC Giraffa camelopardalis, oad Ovis ammon f. domesticus, oam Ovis ammon musimon, OJ 832 

Okapia johnstoni, om Ovisbos moschatus, Rt Rangifer tarandus.833 
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Figure 7. Comparison of mean particle size of faeces of free-ranging or naturally fed and zoo-835 

fed ruminants. Data from Hummel et al. (2008a; aurox Bos taurus and giraffe Giraffa 836 

camelopardalis), browse diets fed in this study and zoo data from Fritz et al. (2009; muskoxen 837 

Ovibos moschatus, reindeer Rangifer tarandus, moose Alces alces). Note the large difference 838 

in the two strictly browsing species. 839 
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Figure 8. Association of dry matter intake (DMI, in g/kg
0.75

 d) and the mean retention time 843 

(MRT) of a) fluid, b) 2-mm particles, and c) the ‘selectivity factor’ (SF) of the two in the 844 

reticulorumen (RR) of cattle (Bos taurus), muskoxen (Ovibos moschatus), reindeer (Rangifer 845 

tarandus), and moose (Alces alces). Note that both fluid and particle retention time decrease 846 

with increasing food intake, but that their quotient remains relatively constant. 847 




