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ABSTRACT

Triple negative breast cancer (TNBC) is a group of cancers whose heterogeneity 

and shortage of effective drug therapies has prompted efforts to divide these cancers 

into molecular subtypes. Our computational platform, entitled GenEx-TNBC, applies 

concepts in systems biology and polypharmacology to prioritize thousands of approved 

and experimental drugs for therapeutic potential against each molecular subtype of 

TNBC. Using patient-based and cell line-based gene expression data, we constructed 

networks to describe the biological perturbation associated with each TNBC subtype 

at multiple levels of biological action. These networks were analyzed for statistical 

coincidence with drug action networks stemming from known drug-protein targets, 

while accounting for the direction of disease modulation for coinciding entities. GenEx-

TNBC successfully designated drugs, and drug classes, that were previously shown 

to be broadly effective or subtype-specific against TNBC, as well as novel agents. 

We further performed biological validation of the platform by testing the relative 

sensitivities of three cell lines, representing three distinct TNBC subtypes, to several 

small molecules according to the degree of predicted biological coincidence with 

each subtype. GenEx-TNBC is the first computational platform to associate drugs to 

diseases based on inverse relationships with multi-scale disease mechanisms mapped 

from global gene expression of a disease. This method may be useful for directing 

current efforts in preclinical drug development surrounding TNBC, and may offer 

insights into the targetable mechanisms of each TNBC subtype.

INTRODUCTION

Breast cancer is classified into multiple molecular 

subtypes that have been studied in association with a 

range of biological and clinical features, including tumor 

initiation, maintenance, progression, metastasis, and 

response to therapy. Of the major established subtypes 

based on hormone and growth factor receptor expression 

[1], triple negative breast cancer (TNBC) represents an 

aggressive subtype with the worst prognosis [2]. Due to 

lack of classical hormone receptor expression (ER, PR) or 

HER2 amplification, targeted therapies directed at these 

receptors are ineffective for TNBC, and current treatment 

options rely on traditional chemotherapeutics, radiotherapy 

and surgery [3]. Understanding the molecular features 

underpinning TNBC is a critical unmet need for drug 

discovery. Lehmann et al performed a seminal molecular 

subtyping study of TNBC using an aggregation of public 
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mRNA expression datasets, identifying six subtypes 

which include two basal-like subtypes (basal-like 1 and 

basal-like 2), a luminal androgen receptor subtype, an 

immunomodulatory subtype, and two mesenchymal-like 

subtypes (mesenchymal-like and mesenchymal stem-like) 

[4]. The gene expression-based identification of TNBC 

subtypes has been confirmed and extended since the 

original study by Lehmann et al [5–8], and these TNBC 

subtypes exhibit reproducible and actionable differences 

in categories such as ontology, pathological complete 

response (pCR) in the clinic, and drug sensitivities [9–11].

Computational methods in drug development have 

yet to effectively integrate molecular subtyping with 

targeted approaches to therapy. Targeted therapies have 

transformed the treatment of receptor-positive breast 

cancers and many other tumors types, such as papillary 

thymic carcinoma treated with kinase inhibitors [12, 

13]. However, the success of most targeted therapies is 

predicated upon the patient’s tumor exhibiting a specific 

targetable genomic lesion, for example V600E B-Raf 

in melanoma, or ERBB2 (HER2) gene amplification in 

breast cancer, both of which lead to increased downstream 

signaling and tumorigenic activity. An alternative 

approach is to target one or more pathways that are 

aberrantly activated downstream of the genomic lesion, 

e.g. PI3K [14, 15]. This strategy relies on large-scale 

omics technologies, predominantly gene expression data, 

to characterize a disease more globally. The Connectivity 

Map (CMap) is one well-established holistic method 

[16–18] based on the principle of “inverse associations,” 

where drugs that induce gene expression changes that are 

in opposition to those of a specific disease state are more 

strongly predicted to have therapeutic benefit. By applying 

this principle of “inverse associations” to targeted 

therapy in the context of TNBC, a computational drug 

development platform may overcome its heterogeneity 

and the difficulty of identifying suitable drug targets for 

this aggressive breast cancer subtype.

Here, we present a novel drug discovery and 

repurposing platform entitled GenEx-TNBC that 

capitalizes on TNBC subtyping modeled after Lehmann 

et al. Our platform uses gene expression data for six 

different TNBC subtypes, drawn from both TNBC 

clinical specimens and established cell lines, and finds 

drugs with the greatest capability to simultaneously i. 

inhibit the overrepresented biological components and 

ii. activate the underrepresented biological components. 

This is done by harnessing the experimentally determined 

drug-protein target association space from publically 

accessible databases, and expanding this space to higher 

order biological entities that map onto our disease models. 

Specifically, drug-TNBC subtype inverse associations 

are performed using systems biology analytics at four 

biologically important tiers that include direct gene 

products (proteins), protein-protein interactions, pathways, 

and molecular functions. To our knowledge, GenEx-

TNBC is the first drug discovery platform of its kind that 

performs global inverse associations at multiple biological 

tiers. GenEx-TNBC was subsequently validated by its 

ability to predict the efficacy of known and novel drugs 

for different TNBC molecular subtypes.

RESULTS AND DISCUSSION

The GenEx-TNBC platform was used to create 

a prioritization rank list of 8,020 FDA-approved and 

experimental drugs against each of six TNBC subtypes. 

Following a computational workflow that serves to build 

drug and disease biological integrative networks (Figure 

1), each drug was given an overall Z-score that was used 

for ranking. For a given subtype, the drug with the highest 

Z-score was ranked first and predicted very likely to be 

efficacious, and the drug with the lowest Z-score was 

ranked last and predicted to have the least therapeutic 

likelihood. GenEx-TNBC was applied using disease 

networks built from both TNBC patient (The Cancer 

Genome Atlas (TCGA) [20]) and cell line subtyped gene 

expression data (Neve et al, [19], Figure 2). This allows 

us to assess the extent to which cell line models might 

recapitulate our patient-based drug prioritization, and 

serves as a rationale for pursuing cell line-based biological 

validation of select predictions of our model. In assessing 

the distribution of annotated drugs, we considered the 

Top 100 drug-ranked for each subtype (Supplementary 

Figures 1, 2). Some drugs are predicted to be subtype-

specific, while others are predicted to be broadly effective 

in multiple TNBC subtypes (Supplementary Table 1). 

Many of these drugs have been tested clinically in TNBC 

globally, as evident from the literature (Supplementary 

Table 2), while many others are novel candidates that 

warrant future preclinical, and ultimately clinical, study.

Application of GenEx-TNBC to TCGA data

Basal-like subtypes

The basal-like 1 (BL1) and basal-like 2 (BL2) 

subtypes, both of a basal-like nature, exhibit distinct gene 

ontologies. From our patient-based analysis we confirmed 

previous findings [4] that in the BL1 subtype genes 

relating to the cell cycle and cell division, proliferation, 

and DNA damage response pathways and functions are 

significantly overrepresented (Supplementary Table 

3). Essential to these functions are the Aurora kinases, 

which serve primarily to regulate chromatid segregation 

during mitosis. Aurora kinase inhibitors such as Alisertib, 

AMG900, AZD1152, and PF-03814735, were uniquely 

found to be in the top 100 drugs assigned to the BL1 

subtype (Figures 3A, 4). Inhibitors of the poly (ADP-

ribose) polymerase (PARP) family of enzymes were also 

predicted to target BL1 TNBCs (Figure 4), consistent 

with the dysfunction of DNA damage repair mechanisms 
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associated with this subtype [27]. The BL2 subtype of 

TNBC is characterized by the overexpression of genes 

involved in growth factor signaling, glycolysis, and 

gluconeogenesis [4]. We specifically found angiogenic 

factors to be highly enriched in the BL2 subtype, and 

therefore inhibitors of vascular endothelial growth 

factor receptors (VEGFRs), platelet-derived growth 

factor receptors (PDGFRs), and fibroblast growth factor 

receptors (FGFRs) were prioritized as top drugs against 

BL2 (Figure 4). Orantinib, an anti-angiogenic agent that 

targets all three of the aforementioned receptors, has 

shown prior efficacy in combination with docetaxel in 

patients with anthracycline-resistant metastatic breast 

cancer [28]. GenEx-TNBC predicted Orantinib to be 

strongly associated with and highly specific to the 

BL2 subtype (Figure 3A). We also found the integrin 

family of cell adhesion receptors, important to both the 

angiogenesis and metastatic progression of solid tumors, 

to be both differentially expressed and having pathways 

overrepresented in the gene set corresponding to the BL2 

subtype (Supplementary Table 3). This feature of the 

BL2 network produced statistical coincidence with drugs 

interacting with integrins, such as vitaxin and cilengitide 

(Figure 4), both of which have been investigated as 

anti-angiogenic agents against breast cancers [29]. The 

prominence of metastatic and angiogenic mechanisms is 

in accordance with previous findings that the BL2 subtype 

exhibits the lowest pCR following standard neoadjuvant 

chemotherapy (0%), even when correcting for multiple 

clinical factors [9].

Immunomodulatory subtype

The immunomodulatory (IM) subtype of TNBC 

expresses a robust profile of immune cell responses, 

a fact which has brought into question whether this 

activity derives from immune cell infiltrates, the tumor 

cells themselves, or both – in response to this, some 

modifications of the TNBC molecular classification 

schema now exclude the IM subtype [4, 5, 7]. Regardless 

of the precise source of immune activation, immunological 

infiltration is an important pathological indicator in 

TNBC, being suggestive of high tumor grade but relatively 

Figure 1: GenEx-TNBC workflow. (1) Gene expression data obtained for cell line (Neve et al [19]) and patient-based (TCGA [20]) 

TNBC samples. (2) Molecular subtyping of TNBC samples performed for cell line (Lehmann et al [4]) and patient-based (TNBCtype 

[21]) data. (3) Significantly differentially up-regulated and down-regulated genes found for a given subtype, compared to samples of all 

other subtypes. (4) Multi-scale disease perturbation signature created by overrepresentation analysis of up- and down-regulated gene sets, 

separately, for associated functions (DAVID [22]) and pathways (ConsensuspathDB [23]). (5) Drug-protein target binding interaction 

data curated for FDA-approved and experimental drugs from DGIdb [24] and CTD [25]. (6) Multi-scale drug action signature created by 

annotation of pathways and functions associated with drug targets. (7) Directionality algorithm implemented to match drug action network 

to disease perturbation network based on opposite directional effect on biological entities, and irrespective of directionality at the level 

of targeted PPIs (STRING [26]) of disease-modulated gene products. (8) Hypergeometric test used to calculate statistical significance of 

resulting coincidence between drug and disease networks, separately at each scale of biological action. (9) Significance values normalized, 

log-transformed, and summated with weights for each level of biological action to produce drug-TNBC subtype association. (10) Drugs 

ranked against a given TNBC subtype based on descending drug-disease association score. (11) GenEx-TNBC findings validated based on 

literature findings and cell viability testing for drugs of interest against a subtyped cell line model.
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good prognosis [30]. Our disease network model and 

subsequent drug prioritization for the IM subtype may 

serve to illuminate ways in which modification of the 

immunological microenvironment in TNBC can improve 

drug sensitivities or pathological response [31, 32]. 

GenEx-TNBC prioritized drug classes that reflect two 

distinct approaches in cancer immunotherapy: targeting 

immune inhibitory checkpoints such as programmed 

cell death protein 1 (PD-1) or cytotoxic T-lymphocyte-

associated protein 4 (CTLA-4) in order to attenuate cancer 

Figure 2: Graphical representation of GenEx-TNBC. (A) From the left side, patient or cell line TNBC gene expression data 

are subtyped and differentially expressed genes are found for one subtype relative to all other subtypes. Up- and down-regulated genes 

are separately enriched for subtype-associated pathways and functions, and connected to indirect proteins interacting with those gene 

products. Drug-protein interactions with a known directional effect are matched to oppositely-regulated genes, pathways, and functions, 

while those with unknown effect are matched to disease-associated indirect proteins and biological entities regulated in either direction. (B) 

The hypergeometric test uses a hypergeometric distribution to determine the statistical significance of having x drug hits in a sample of δ 
subtype-associated biological entities. The legend describes the example case of gene level coincidence. Log-transformed p-values for each 

level of biological activity are summated to produce a drug-disease association score.
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evasion; or targeting macrophages themselves to reduce 

angiogenesis-promoting cytokine secretion and promote 

immunosurveillance [33, 34]. Indeed, drugs belonging 

to both categories were uniquely prioritized in IM by 

GenEx-TNBC. CLTA-4 is a T-cell inhibitory receptor 

whose blockage may serve as a viable immunotherapeutic 

strategy against non-immunogenic breast cancers [35]. 

Our model calculated Belatacept, a CTLA-4 inhibitor, to 

be significantly associated with the IM subtype at multiple 

levels of biological activity. Drugs interacting with 

cytokine receptors were also prevalent in the IM subtype 

rank list (Figure 4), a therapeutic approach that has 

garnered attention in TNBC [36]. The anti-CD25 antibody 

daclizumab, for example, is significantly and specifically 

associated with IM at every level of biological activity as 

predicted by GenEx-TNBC (Figure 3A). Daclizumab has 

previously exhibited potential as a therapeutic modulator 

of T regulatory cell response in patients with metastatic 

breast cancer [37].

Luminal androgen receptor subtype

Despite the overall strong concordance between 

TNBC and basal-like PAM50 intrinsic breast cancer 

subtype, the luminal androgen receptor (LAR) subtype of 

TNBC is the only subtype that is not majority basal-like 

[9]. In fact, most LAR tumors express genes that typically 

cluster in the luminal and HER2 intrinsic subtypes, and 

are dominated by hormone- and growth factor receptor-

regulated pathways [4], consistent with the assignment 

of CI-1033 (Canertinib), a pan ErbB family inhibitor, 

as a highly-ranked drug in this subtype. As has been 

established by previous groups [4, 10], we found that the 

androgen receptor (AR) and its associated signaling and 

downstream effectors are overrepresented in the LAR 

subtype. It has been demonstrated that LAR subtypes, in 

turn, are sensitive to drugs which modulate AR signaling 

or target AR directly [4], a fact that was recapitulated by 

GenEx-TNBC using network-based prioritization of the 

retinoid X receptor (RXR) agonist Bexarotene; RXR 

has been shown to inhibit AR signaling (Figure 4) [38]. 

Given the wide array of metabolic gene ontologies that 

characterize the LAR subtype [4], it is unsurprising that 

LAR has the widest variety of drug class distribution in 

our model (Figure 4).

Mesenchymal- and mesenchymal stem-like subtypes

The mesenchymal-like subtypes of TNBC, which 

include mesenchymal-like (ML) and mesenchymal stem-

like (MSL), exhibit characteristics typical of the epithelial–

mesenchymal transition (EMT), closely linked to 

aberrations in the Wnt/β-catenin pathway and augmented 
expression of growth factors such as transforming growth 

factor β (TGF-β) [39]. One critical difference between ML 
and MSL lies in the reduced expression of proliferation-

associated genes in MSL vs. ML (Supplementary Table 

3). The PI3K/AKT/mTOR pathway has been proposed 

Figure 3: Prioritization of drugs by TNBC subtype. (A) Statistical confidence coverage for selected drugs and TNBC subtype 

analyses. Color scale represents the hierarchical nature of mapped drug-subtype associations from the level of direct genes to associated 

proteins, pathways, and functions. For a given drug-disease pair, the width of each colored ring is proportional to the significance 

(hypergeometric test) to which the biological signature of the drug coincides with the patient-derived TNBC subtype signature. Each circle 

therefore designates the multi-scale statistical “coverage” of coincidence between the drug and TNBC subtype. (B) Prioritization of drugs 

that are of clinical interest for the treatment of TNBC, comparing analyses of disease networks deriving from patient and cell line gene 

expression data.
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as a targetable pathway in mesenchymal-like TNBC 

[4, 40]. Significantly, PI3K inhibitors such as Alpelisib 

(BYL719) and Voxtalisib (XL765) were matched to the 

MSL subtype by GenEx-TNBC (Figures 3A, 4), while 

mTOR inhibitors such as temsirolimus and the dual PI3K/

mTOR inhibitors NVP-BEZ235 and PF-04691502 were 

prioritized in the ML subtype (Figures 3A, 4). The mTOR 

inhibitor everolimus exhibited multi-level significance 

of coincidence with mesenchymal-like TNBC disease 

networks, particularly in the ML subtype. This finding 

is validated by known effectiveness against TNBC cell 

models via inhibition of the PI3K/Akt pathway [41] 

and everolimus is currently being evaluated for clinical 

effectiveness in TNBC [40]. We would therefore posit that 

everolimus should be more effective against the subset of 

mesenchymal-like TNBCs.

Application of GenEx-TNBC to TNBC cell line 

gene expression data from Neve et al

Having prioritized expected drugs for TNBC 

subtypes based on the biological activity uniquely 

regulated by that subtype in patient data, we next 

implemented GenEx-TNBC using TNBC cell line gene 

expression data [19]. We found general concordance 

between patient and cell line TNBC subtype analyses, 

Figure 4: Drug classes matched to TNBC subtypes. Each circle represents one drug from the top 100 drugs ranked against the 

subtype shown, wherein the diameter of the circle corresponds to rank position (better-ranked drugs have larger diameters) and the color 

of the circle indicates a drug class listed in the legend on the right. Drug classes with at least 4 drugs in the top 100 are depicted radially. 

Dark grey non-radial clusters represent drugs with classes not highlighted for the given subtype, and may contain drug classes listed in the 

legend. Drug class data were derived from the FDA NDC directory and by manual designation using GenEx-TNBC drug target profiles.
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confirming the applicability of our model to cell line-based 

predictions and supporting the use of cell proliferation 

testing as a means to validate GenEx-TNBC predicted 

drug sensitivities (Figure 3B). Because immortalized cell 

lines models are farther removed from an in vivo state than 

primary cell cultures, we expect GenEx-TNBC predictions 

to differ somewhat for clinical vs. cell line data. Moreover, 

the cell line approach considers a single sample as most 

representative of each subtype, instead of multiple 

tumor samples. This will necessarily skew the disease 

network toward features that are specific to the cell line in 

question. For these reasons, we expect the patient-based 

approach to potentially be more accurate in reflecting the 

true therapeutic potentials of drugs against subtypes of 

TNBC. Nevertheless, as is shown in Figure 3B, there are 

clear similarities between each approach in the relative 

distribution among TNBC subtypes of drugs that are of 

current interest for the treatment of TNBC. Drugs assigned 

broadly (to many subtypes) tend to be so in both patient- 

and cell line-based analyses, and the same is generally true 

for more subtype-specific drugs.

In silico validation of drug prioritization  

results

Initial validation of predicted drug-TNBC 

subtype associations was performed using published 

pharmacological data from cell line viability studies 

obtained from Lawrence et al, who utilized quantitative 

mass spectroscopy to comprehensively characterize the 

TNBC proteome [8] and demonstrate drug sensitivity 

using ATP-dependent cell viability assays. We predicted 

several drugs confirmed by Lawrence et al to be 

effective against the majority of TNBC subtypes, such 

as staurosporine (a pan-kinase inhibitor), paclitaxel 

(a microtubule stabilizer), and bevacizumab (an anti-

VEGF monoclonal antibody). These results highlight 

the concept that regardless of subtype, tumors exhibit, 

to an extent, a dependency on redundant pro-growth 

and maintenance biological processes such as protein 

turnover, cytoskeleton stability, and others. Furthermore, 

our predictions concur with experimental findings from 

Lawrence et al [8] for subtype-specific drugs, such as 

GSK-1120212 (Trametinib), a MEK inhibitor found to 

be effective against the DU4475 and MDA-MB-231 

cell lines, which correlate most closely [4] to the IM and 

MSL subtypes, respectfully. GenEx-TNBC also found 

Trametinib to be in the top 100 drugs for IM and MSL 

subtypes (Supplementary Table 1).

There are, however, discrepancies between the cell 

line viability data published by Lawrence et al and our 

prediction method using patient data. Some drugs were 

found to be effective against TNBC subtype cell lines 

while our method did not predict them to be. For example, 

cell lines belonging to the BL1 and MSL subtypes were 

sensitive to methotrexate in vitro but our method did 

not predict methotrexate sensitivity for the BL1 subtype 

(Figure 3B). Tumor heterogeneity captured by GenEx-

TNBC (but not the in vitro studies) may explain such a 

discrepancy, as could the potential of these drugs to affect 

non-protein entities such as DNA, which has been shown 

for methotrexate [42, 43]. There is potential in the current 

model for incorporation of drug-DNA interactions, as this 

mode of action can have pathway-specific and general 

physical affects that are potentially therapeutic. According 

to Lawrence et al, in most cases drug sensitivity was 

directly correlated to the level of expression of the 

drug’s target protein [8]. This is particularly pronounced 

for Tretinoin (all-trans retinoic acid, ATRA) against the 

cell line HCC1806 (corresponding to the BL2 subtype) 

where drug sensitivity was strongly correlated with the 

expression of the ATRA target RXRB.

Our method also predicted drugs for TNBC 

subtypes in which the in vitro assays from Lawrence 

et al did not indicate drug sensitivity. For example, 

GenEx-TNBC predicted the BL2 subtype to be sensitive 

to vandetanib, but Lawrence et al did not find the BL2 

cell lines they tested to be vandetanib responsive at sub-

micromolar concentrations [8]. While at first glance this 

may be interpreted as a false positive, some experimental 

and pharmacological considerations may explain these 

outcomes. Lawrence et al employed quantitation of ATP 

to estimate cell viability following drug exposure, whereas 

our usage of gene expression-derived disease modelling 

may not strongly predict the level of metabolic activity. In 

addition, failures of our model to capture known biological 

effect may occur because the drug in question may have 

low binding affinity to the drug’s intended targets. We 

acknowledge that major limitations in our current platform 

include lack of pharmacokinetic and binding affinity data. 

Such pharmacological data is important, as mechanism of 

action is highly dependent on the drug reaching its target 

and strength of binding to the drug targets, especially 

that drug-target signatures cannot be necessarily reduced 

to binary interactions given their complexity. The next 

iteration of our method will include these parameters to 

refine our predictions.

Laboratory validation of drug prioritization 

results

While many targeted therapy approaches seek to 

inhibit important oncogenic drivers, these alterations 

may be poor drug targets. One alternative strategy is to 

broadly inhibit gene networks and molecular functions 

downstream of these oncogenic drivers, a focus of our 

method. Ryall et al have previously predicted multiple 

kinase dependencies for different TNBC cell lines, and 

found that the cell line that had the greatest dependency 

on resulted in the greatest inhibition [44]. It logically 

follows that inhibiting the downstream effectors of the 

dependent kinase could result in similar efficacy. The 
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unique strength of GenEx-TNBC is that it takes into 

account these downstream effectors while simultaneously 

considering the regulator, which dictates the expression of 

other proteins, as a potential target.

As a proof-of-concept, we assessed the growth-

inhibitory potential of four compounds in cell lines 

that best represent three distinct TNBC subtypes – 

HCC1937 (BL1), BT549 (ML) and MDA-MB-453 

(LAR, Supplementary Table 1). Crystal violet assays (a 

proxy for cell number) were selected over luminescent 

or colorimetric cell viability assays that measure ATP or 

NAD(P)H, respectively, for multiple reasons. A number 

of small molecules, particularly kinase inhibitors, directly 

inhibit the firefly (Photinus pyralis) luciferase used in 

ATP-dependent assay readouts that are wholly independent 

of their effects on the target protein kinase [45]. Assay 

readouts that depend upon NAD(P)H, such as MTT 

(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide), are designed to measure cellular metabolism, 

not cell proliferation. MTT is also widely reported to be 

subject to reduction directly by test compounds [46–48], 

including some of those we selected for validation.

Mecamylamine

Mecamylamine is an orally-active, non-

competitive, and non-selective nicotinic acetylcholine 

receptor (nAChR) antagonist originally used as an 

anti-hypertension drug that is also used as an anti-

addictive drug for smokers [49]. GenEx- TNBC ranked 

Mecamylamine as 16/100 in the patient-based analysis of 

LAR subtype, but it is absent from the Top 100-ranked 

drugs for BL1 or ML subtypes. While mecamylamine 

has minimal activity at low doses, MDA-MB-453 (LAR) 

cells are significantly growth-inhibited by the highest dose 

tested (20 μM), while BT549 (ML) and HCC1937 (BL1) 
cells remain nonresponsive (Figure 5A). Several nAchRs 

have been implicated in oncogenesis [50], and the alpha 9 

nAChR has been specifically associated with poor breast 

cancer-specific survival, particularly in estrogen receptor-

positive (ER+) luminal breast cancer [51], potentially 

consistent with the luminal gene expression profile of 

LAR TNBC. Moreover, nAChR signaling in non-small-

cell lung cancer, an epidermal growth factor receptor 

(EGFR)-dependent malignancy, promotes resistance to 

an EGFR inhibitor [52]. We therefore propose that further 

study of the nAChR antagonist mecamylamine in LAR 

TNBC is warranted, potentially in combination with an 

EGFR inhibitor such as Canertinib (see below).

Canertinib

Canertinib is an orally-active, irreversible pan-ErbB 

family inhibitor (targets EGFR, ErbB2/HER2, HER3, 

and HER4) that has anti-tumor and radiation- sensitizing 

effects [53]. Canertinib has previously undergone phase II 

clinical trials for metastatic breast cancer (NCT00051051), 

although these studies were not specific to TNBC. Our 

model highly ranked Canertinib for the LAR subtype in 

both cell line- (2/100) and patient-derived data (19/100). 

Canertinib is also ranked in the Top 100 for the ML 

subtype patient-derived and cell line analyses (83/100 and 

56/100, respectively), but is absent from the Top 100 for 

the BL1 subtype. MDA-MB-453 cells (LAR) were in fact 

significantly more responsive than either BT549 (ML) or 

HCC1937 (BL1) cells to the lowest dose of Canertinib 

tested (2.5 μM), but at higher concentrations the BL1 cells 
were just as responsive as LAR cells (Figure 5B). This 

may be due in part to the significant enrichment of Protein 

Kinase Inhibitors identified by GenEx-TNBC in the BL1 

subtype (Figure 4).

Bortezomib

Bortezomib is a proteasome inhibitor used to 

successfully treat multiple myeloma and mantle cell 

lymphoma [54] that is currently undergoing preclinical 

studies in TNBC and has been shown to enhance the 

efficacy of Fulvestrant in hormone receptor-positive 

metastatic breast cancer that is resistant to aromatase 

inhibitors [55]. GenEx-TNBC ranked Bortezomib as 

17/100 for BL1 in the cell-derived analysis. It is also 

ranked 80/100 for patient-derived analysis of LAR. Cell 

growth assays confirm that the BL1 and LAR cell lines are 

significantly more responsive to Bortezomib than the ML 

cell line (Figure 5C).

Tretinoin

Tretinoin, also known as all trans retinoic acid, has 

been used to treat acne [54] as well as acute promyelocytic 

leukemia [54]. In combination with doxorubicin and the 

histone deacetylase inhibitor entinostat, it has efficacy in 

MDA-MB-231 TNBC cells, representative of the MSL 

subtype [56] GenEx-TNBC ranked Tretinoin as the top 

drug for BL1 in our cell-line derived analysis. However, 

all 3 cell lines tested responded similarly to Tretinoin, 

with growth inhibition occurring only at the highest 

concentration tested and no statistically significant 

difference between cell lines (20 μM, Figure 5D).

AMG900 efficacy in BL1 vs. BL2 TNBC cell  

lines

We next sought to investigate whether GenEx-

TNBC could predict relative drug sensitivities in vitro 

between the two most highly related TNBC subtypes, BL1 

and BL2. GenEx-TNBC ranked AMG900, a pan-Aurora 

kinase inhibitor, in the Top 100 for the BL1, but not 

BL2, subtype, where it is in the Top 500. Within the BL1 

subtype, AMG900 is ranked 11/100 in patient- and 72/100 

in cell line-derived analysis, and AMG900 targeted four 
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Figure 5: Validation of selected GenEx-TNBC predictions in TNBC cell lines of multiple molecular subtypes. Crystal 

violet staining of HCC1937 (BL1), BT549 (ML), and MDA-MB-453 (LAR) cells grown in the presence of the indicated concentrations 

of Mecamylamine (A), Canertinib (B), Bortezomib (C), and Tretinoin (D) for seven (7) days. Data for each cell line were normalized to 

the appropriate solvent control (ethanol for Mecamylamine, DMSO for all others). Data were analyzed by two-way ANOVA with Tukey 

post hoc multiple comparisons test (asterisks indicate per-dose comparisons) and are presented as the mean +/- standard deviation (S.D.) 

for a single experiment performed with 6 technical replicates that is representative of at least two independent experiments (biological 

replicates).

Figure 6: Testing of the pan Aurora kinase inhibitor AMG900 in basal-like TNBC cells. Crystal violet staining of MCF10A 

(non-cancer), HCC1937 (BL1), and HCC1806 (BL2) cells grown in the presence of the indicated concentrations of AMG900 for seven 

(7) days. Data for each cell line were normalized to the appropriate DMSO control. Two-way ANOVA with Bonferroni post hoc multiple 

comparisons test (asterisks indicate per-dose comparison of HCC1806 or HCC1937 to MCF10A). Data are presented as the mean +/- 

standard deviation (S.D.) for a single experiment performed with 6 technical replicates that is representative of at least two independent 

experiments (biological replicates).
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BL1-specific differentially expressed gene products in 

our model, including G1/S-specific cyclin-E1 (CCNE1), 

a CDK-regulating protein, aurora kinase A (AURKA), 

aurora kinase B (AURKB), and the Myc proto-oncogene 

protein (MYC), a transcription factor that plays a key role 

in cell cycle progression.

Given the differential rankings between the two 

basal-like subtypes, we predicted that AMG900 would be 

efficacious against these subtypes and further hypothesized 

that BL1 may be more sensitive to AMG900 than BL2. 

AMG900 has previously been studied in breast cancer 

cell lines [44], where its potency is associated with p53 

dysfunction, a central feature of TNBC [57]. To validate 

our GenEx-TNBC prediction, we tested AMG900’s effect 

on cell proliferation in HCC1806 (BL2 subtype, p53 null) 

and HCC1937 (BL1 subtype, p53 null and BRCA1 mutant) 

TNBC cell lines versus the non-transformed mammary 

epithelial cell line MCF10A (Figure 6). At sub-nanomolar 

concentrations, both HCC1806 and HCC1937 cells are 

significantly more responsive to growth inhibition by 

AMG900 than MCF10A (two-way ANOVA Interaction 

p<0.0001 with post hoc Bonferroni multiple comparison).

Because AMG900 was similarly potent with respect to 

growth inhibition in the BL1 (HCC1937) and BL2 (HCC1806) 

cell lines at sub-nanomolar concentration, we asked whether 

there were differences in specific biological effector tiers 

predicted to be affected by AMG900 via our method. We 

found that for BL1, AMG900 was statistically significantly 

predicted to exert its effects at all four tiers (gene/protein, 

PPI, pathway and function) whereas for BL2, AMG900 had 

significant associations at only the PPI and function levels 

(Supplementary Table 4). These findings suggest that direct 

interaction of drugs with the relevant gene products (proteins) 

may be more likely to drive therapeutic benefit than targeting 

of higher-order processes such as cellular pathways, functions, 

and proteins that interact with disease-associated proteins. In 

comparing our biological testing and computational modeling 

results, we substantiate further evidence of previous findings 

[8] that drug sensitivity is not only conferred by increased 

expression of the drug’s direct target, but also by the global 

cellular effects of that drug.

MATERIALS AND METHODS

Database preparation of experimentally 

validated drug-target signatures and higher-

order biological associations

A master database of experimentally validated 

drug-protein associations, also referred to as drug-

target signatures, was curated from the following 

publicly accessible databases: (1) Drug Gene Interaction 

Database (DGIdb) [23] (accessed April 20, 2016), and 

(2) Comparative Toxicogenomics Database (CTD) 

[24] (accessed March 4, 2016). Within the CTD, only 

interactions with a “binder” designation were used to 

establish associations. Also included were any known 

effects on protein targets, such as enzyme activation/

inhibition, protein agonism/antagonism, and so forth. 

It is thought the combination of DGIdb and CTD, each 

containing extensively manually curated drug-gene 

interactions extracted from multiple other databases such 

as DrugBank [58], ChEMBL [59], PubChem [60], and 

others, serves a comprehensive dataset of interactions to 

date. This curation resulted in a total of 21,819 protein 

associations for 8,020 drugs.

From this master database of associations, sub-

datasets were created to match the gene universe (e.g. 

set of all genes studied) of the microarray platform 

being used. This method has been previously described 

in our previous study Issa et al [61]. Thus, for each 

unique platform used in a study, the sub-dataset included 

only targets whose genes had probes in that microarray 

platform. This step is critical as proper statistical analysis 

can only be conducted if the gene universe encompassing 

the drug-target signatures and that of the disease signature 

under study are exactly the same.

Drugs were also associated with biological 

pathways and functions through their direct protein targets 

if an annotation existed. Annotations were retrieved from 

DAVID Functional Annotation Tool [21] for functions 

and ConsensusPathDB [22] for biological pathways. 

These collectively allowed for the most comprehensive 

and up to date annotation dataset to be used. Integrated 

pathway databases include BioCarta [62], Edinburgh 

Human Metabolic Network [63], HumanCyc [64], 

INOH [65], KEGG [66], PharmGKB [67], NCI Pathway 

Interaction Database [68], Reactome [69], SMPDB [70], 

and WikiPathways [71]. Functions were obtained from the 

Gene Ontology [72].

Differential gene expression of TNBC subtype-

specific genes and higher-order biological 

analytics

Patient-derived TNBC gene expression (RNAseq) 

data for primary tumors were obtained from The Cancer 

Genome Atlas (TCGA) [20] via extraction from the 

UCSC Cancer Genome Browser [73]. For each patient 

sample, the TNBCtype webtool [20] was used to classify 

that sample into the subtype according to Lehmann et 

al [4]. Differential gene expression analysis (DGEA) 

was performed in R [74] where one TNBC patient 

subtype group was compared to the others collectively. 

For example, if the subtype in question was BL1, then 

it was compared against BL2, IM, LAR, ML, and MSL 

as a single collective group (Figure 1). Up- and down-

regulated genes with two-tailed t-test p-value < 0.05 

were considered statistically significantly associated with 

the TNBC subtype in question. If the list of differential 

genes was very large, then only the top 1,500 up-regulated 

and top 1,500 down-regulated genes based on absolute 
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fold change were chosen for further analysis as DAVID 

imposes a limitation on gene list size (maximum of 3000 

genes). In the case of cell line samples, we obtained breast 

cancer cell line gene expression profiling data from Neve 

et al [19], assigning all TNBC cell lines to subtypes 

according to subtyping performed by Lehmann et al [4]. A 

single cell line was chosen to best represent each subtype, 

that which is most closely correlated in Lehmann et al 

with the subtype in question and also present in the Neve 

et al gene expression data. These were HCC1937 for BL1, 

SUM149PT for BL2, HCC1187 for IM, MDA-MB-453 

for LAR, BT549 for ML, and HS578T for MSL. We 

calculated standard scores (z-values) for each gene being 

measured, comparing the expression for these individual 

cell lines to TNBC cell lines of all other subtypes as a 

group. The top 1,500 up-regulated and top 1,500 down-

regulated genes based on z-value were utilized.

Protein-protein interactions (PPIs) for differentially 

expressed genes were obtained from the STRING 

database using a high confidence score cutoff of >0.7 [26]. 

Similar to the drug-target signature database, PPIs were 

filtered into sub-datasets according to the gene universe 

of the microarray platform in question. DAVID and 

ConsensusPathDB were also used to annotate pathways 

and functions for differentially expressed genes using 

P-value < 0.05 for discovery purposes.

Causal analysis algorithm for directionality in 

comparing drug and disease networks

The statistical significance of drug-disease 

association was determined at the level of genes (direct 

protein targets), PPIs, pathways, and functions. Lamb et al 

previously demonstrated using cancer cell lines that drugs 

causing gene expression signatures that are inversely 

correlated to the gene expression signature of the disease 

state were likely to be therapeutic [16]. In GenEx-TNBC, 

inverse associations between specific drug actions and 

TNBC subtype-related biological mediators are obtained 

by quantifying the ability of the drug to: (1) inhibit the 

activated biological mediators, and (2) activate the 

inhibited mediators in a given TNBC subtype. Drugs with 

the potentiality to perform both tasks simultaneously and 

to the greatest extent are considered to have the greatest 

therapeutic potential and prioritized for testing.

In calculating the inverse statistical significance 

between drug and TNBC subtype at each level of 

biological activity, activating drug interactions were 

considered a “hit” when matched with down-regulated 

genes, while deactivating drug interactions were 

considered a “hit” when matched with up-regulated 

genes. Unknown interactions in terms of directionality 

were considered a “hit” when the gene was significantly 

regulated in either direction, thus providing an agnostic 

term. A schematic of this approach is shown in Figure 2A. 

This theme was carried through to the PPI, pathway and 

function levels.

The drug-disease network matching process 

is mathematically represented in Equations 1-6 

corresponding to each biological tier:
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where N
g
(i,k), N

p
(i,k), N

f
  (i,k), and P(i,k) are 

functions representing the total number of k gene 

products, pathways, functions, and PPIs targeted by drug 

i, respectively, with respect to a given TNBC subtype. 

X̂
i
 represents the set of all agonistic drug-gene product, 

pathway and function interactions, and D̂
k
 represents 

the set of all down-regulated gene products, pathways, 

and functions as it pertains to the relevant function  

N. ∩X D ˆ ˆ
i k

 represents the cardinality of the intersection 

between sets X̂
i
 and D̂

k
, thus quantifying the total number 

of biological elements, with respect to function N, that 

are down-regulated in the TNBC subtype and could 

have an agonistic relationship with drug i. Similarly, 

X̂ i  and D̂k  represent the set of all antagonistic drug-

biological mediator interactions and the set of all up-

regulated biological mediators of the relevant function  

N. X D ˆ ˆ
i k∩  is the cardinality of the intersection between 

sets X̂ i  and D̂k representing the total number of biological 

elements up-regulated in the TNBC subtype that could 

have an antagonistic relationship with drug i. As many 

drug associations obtained from the available databases 

do not indicate directionality, which is represented by the 

set X i, a direction-agnostic term was also included. Thus, 

X D D ˆ ˆ
i k

k∩ ∪






 is the cardinality of the intersection of all 

drug-biological mediator direction-agnostic interactions 

with the union of all down- and up-regulated biological 

elements. With respect to protein-protein interactions, 

information was extracted as agnostic to directionality as 

well. Thus, P(i, k) could only be expressed as an agnostic 

term. X X X D Dˆ ˆ ˆ ˆ
i

i
i y

y∪ ∪






∩ ∪

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
 therefore represents the 

cardinality of the intersection between all drug-biological 

mediator interactions (the union of agonistic, antagonistic 

and agnostic interactions) and all proteins interacting 
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with all gene products associated with the TNBC subtype 

in question (the union of down- and up-regulated gene 

products).

To determine whether a statistically significant 

association existed between each drug and the TNBC 

subtype at each biological tier, the hypergeometric test 

was performed in R (Figure 2B). Input values for the 

hypergeometric test were obtained from each function N 

noted above. The hypergeometric test is mathematically 

represented by the following equation:
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where, for each tier, P
i
(N = x) represents the 

hypergeometric test function for drug i, n is the total 

number biological elements in the given universe space, δ 
is the total number of TNBC subtype-associated biological 

elements, γ is the total number of drug-biological element 
interactions, and x is the number of hits for drug i as 

obtained from the relevant function N noted above. Drugs 

with p≤0.05 had their P-values log-transformed then 
normalized against the value of the most significantly-

associated drug, resulting in values on the 0-1 unit range. 

All non-significant P-values (p>0.05) were normalized to 

the value of 0.

Lastly, each drug’s Z-score (Z
i
), which represents 

the final quantification of the drug-TNBC subtype 

association, is calculated for ranking using the following 

equation:

( )= + + +Z aA bB cC dD 6
i

where A, B, C, and D correspond to the normalized 

hypergeometric test P-values for drug-gene product, −
pathway, −function, and –PPI associations, respectively. a, 

b, c, and d represent coefficient values of 2, 1, 1, and 1 with 

respect to each biological tier. As previously described 

in Issa et al [59], coefficient values were determined to 

best prioritize direct drug-gene product interactions over 

indirect interactions at higher-order biological tiers while 

also allowing for the prioritization of drugs that do not 

necessarily have direct interactions but may be therapeutic 

through indirect mechanisms. Using the final calculated 

Z-score, drugs are ranked in descending order (e.g. the 

drug with the highest Z-score is considered the number 

one top-ranked drug for a particular TNBC subtype). Thus, 

a high Z-score indicates a drug’s polypharmacological and 

multi-tiered potential to serve as a therapeutic for a given 

TNBC subtype.

Cell culture

The Lombardi Comprehensive Cancer Center 

(LCCC) Tissue Culture Shared Resource provided 

MCF10A non-transformed mammary epithelial cells 

as well as MDA-MB-231, BT549 and HCC1937 

breast cancer cells. HCC1806 breast cancer cells 

were purchased from ATCC (Manassas, VA). MDA-

MB-453 cells were kindly provided by Dr. Anna Riegel 

(LCCC). Cells routinely tested negative for Mycoplasma 

spp. contamination, and were authenticated by short 

tandem repeat (STR) profiling for 9 standard loci and Y 

chromosome-specific amelogenin by the LCCC Tissue 

Culture Shared Resource to verify their authenticity, 

most recently in March 2017. Cells were maintained in 

a humidified incubator with 95% air: 5% carbon dioxide. 

HCC1806, HCC1937, MDA-MB-453 and MDA-

MB-231 cells were grown in improved minimal essential 

media (IMEM; Life Technologies, Grand Island, NY) 

supplemented with 10% heat-inactivated fetal bovine 

serum (FBS, purchased from the LCCC Tissue Culture 

Shared Resource). BT549 cells were grown in improved 

minimal essential media (IMEM; Life Technologies, 

Grand Island, NY) supplemented with 0.023 IU/mL 

insulin (Life Technologies) and 10% FBS. MCF10A cells 

were grown in a 1:1 mixture of Ham’s F12: Dulbecco’s 

modified essential media (DMEM, Life Technologies) 

supplemented with 20 ng/ml epidermal growth factor 

(EGF), 10 μg/ml insulin, 0.5 μg/ml hydrocortisone, 100 
ng/ml cholera toxin, and 5% horse serum (purchased from 

either the LCCC Tissue Culture Shared Resource or Sigma 

Aldrich, St. Louis, MO).

Compounds

Mecamylamine (Sigma Aldrich), Canertinib (AK 

Scientific, Union City, CA), Bortezomib (AK Scientific), 

Tretinoin (AK Scientific), and AMG900 (Selleckchem, 

Houston, TX) were resuspended in dimethyl sulfoxide (DMSO 

– Canertinib, Bortezomib, Tretinoin, AMG900) or 200 proof 

ethanol (EtOH – Mecamylamine) at a concentration of 10 mM, 

stored at -20°C, and used at the indicated concentrations.

Cell proliferation assays

Cells were seeded into 96-well plastic tissue culture 

dishes at 2,000 (MCF10A and HCC1806), 5,000 (MDA-

MB-453 and HCC1937), or 7,500 (BT549) cells per 

well on day 0. On day 1, each plate was treated with a 

range of concentrations of the following compounds and 

the appropriate solvent control: CI-1033 (Canertinib), 

Tretinoin, Bortezomib, or Mecamylamine (2.5 to 20 uM); 
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or AMG900 (1 pM to 1000 nM). Plates were re-dosed on 

day 3 or 4 and stained on day 7. Prior to staining, each 

plate was rinsed once with 1X Phosphate-Buffered Saline 

(PBS), and MDA-MB-453 and BT549 cells were first 

fixed with 50 μl/well of 3.2% paraformaldehyde (Electron 
Microscopy Services/VWR, Radnor, PA) for 5 minutes at 

room temperature. To stain, plates were incubated with 

100 μl/well of a solution of 0.5% w/v crystal violet (Sigma 
Aldrich) dissolved in 25% methanol: 75% water at 4°C 

for 15 minutes. Excess stain was removed and each plate 

was washed 5-6 times with deionized H
2
O and allowed 

to air dry completely. Stained cells were rehydrated in 

a 0.1M sodium citrate buffer dissolved in 50% ethanol: 

50% water, then read on a plate reader at an absorbance 

of 550nm. Each assay included 6 technical replicates, 

and was performed twice independently (biological 

duplicates).

Image and statistical analyses

All statistical analyses were performed in Prism 6.0 

or 7.0 (Graphpad, San Diego, CA), and are specified in 

the figure legends. For cell proliferation assays, non-linear 

regression analyses were performed using log[inhibitor] 

vs. normalized response, or, log[inhibitor] vs. normalized 

response - variable slope, parameters. A comparison of 

fits was used to determine the preferred analysis model, 

and curve fits with an R2 value ≥ 0.8 are shown. All data 
are presented as the mean ± standard deviation (S.D.). 

Two-way analysis of variance (ANOVA) with post hoc 

Tukey’s multiple comparisons test was used to determine 

differences between cell lines at individual doses. 

Statistical significance is defined as a P value of ≤0.05. 
*p≤0.05, **p≤0.01, ***p≤0.001, ****p≤0.0001.

CONCLUSIONS

TNBC is a devastating disease with poor survival 

outcomes, increasing costs, and a relatively small 

therapeutic armamentarium. Transcriptomics and 

proteomics have pointed toward TNBC as a heterogeneous 

sub-group of breast cancer where multiple phenotypically 

distinct subtypes exist. As hormone receptor positivity and 

PAM50 gene expression signatures [75] affect treatment 

selection, TNBC subtyping should also be embraced for 

drug discovery. Furthermore, like other tumors, TNBC 

is variable in having actionable gene mutations or other 

clear therapeutic targets, which further contributes to its 

complexity. Here we have devised a novel, multi-tiered 

drug discovery and repurposing platform entitled GenEx-

TNBC inspired by the concept of disease-therapy inverse 

associations. Through this first-in-class platform, TNBC 

subtype-directed drugs are prioritized by using a holistic 

approach targeting all subtype-specific biological elements 

at different tiers, including direct gene products (proteins), 

protein-protein interactions, pathways, and molecular 

functions. This circumvents traditional limitations 

imposed by prioritization of single actionable targets.

We demonstrated that our subtype-specific TNBC 

biological network models reflect mechanisms that 

have been previously attributed to those subtypes in the 

scientific literature. This validates our strategy of inter-

subtype comparisons in differential gene expression rather 

than a conventional “cancer versus normal” approach, 

and highlights the potential of GenEx-TNBC to propose 

alternative subtype-specific mechanisms that have 

not been recognized for targetability. Furthermore, we 

prioritized drugs against each subtype based on network 

coincidence at multiple scales of biological action. 

GenEx-TNBC prioritized drugs and drug classes that were 

confirmed or being explored for effectiveness against a 

given subtype in the literature, as well as drugs that 

have not been evaluated against TNBC and are potential 

candidates for subtype-specific assessment. We tested 

four GenEx-TNBC predictions in cell lines corresponding 

to specific subtypes, and validated several of them, 

the most interesting of these being the susceptibility 

of the LAR subtype of TNBC to an nAChR antagonist 

(Mecamylamine) and a pan-ErbB tyrosine kinase inhibitor 

(Canertinib). These data support further testing and 

validation of other novel agents predicted by GenEx-

TNBC which may be successfully repurposed for TNBC 

such as etodolac, a non-steroidal cyclooxygenase inhibitor 

used as an anti-inflammatory agent predicted to target the 

ML subtype. Etodolac and other drugs of this class could 

present repurposing opportunities to the ML subtype of 

TNBC. The drug prioritization scheme of GenEx-TNBC 

does not depend on association with the subtype at all 

four assessed levels of activity, but instead can rely on a 

mixture of one or more levels. In applying this concept, 

GenEx-TNBC was successful in predicting well-known 

drugs for TNBC subtypes as well as discriminating a 

drug’s potency across subtypes.

As GenEx-TNBC is a polypharmacology-based 

approach rooted in systems biology, it can be adapted for 

any other disease state where gene expression signatures 

exist. Breast cancer is a well-established case in which 

molecular profiling has matured to a point where it is a 

key component of clinical practice that impacts treatment 

decisions. It is now appreciated that other malignancies, 

such as colorectal cancer [76], glioblastoma [77], and 

pancreatic cancer [78], can be classified into two or more 

subtypes. These subtypes have prognostic value, but this 

has not yet translated to widespread adoption of targeted 

therapies to address the specific molecular features of a 

tumor belonging to a particular subtype. Implementation 

of strategies like GenEx-TNBC in these contexts could be 

very impactful.
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