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Abstract. Over the past five years a new approach to privacy-preserving
data analysis has born fruit [13, 18, 7, 19, 5, 37, 35, 8, 32]. This approach
differs from much (but not all!) of the related literature in the statistics,
databases, theory, and cryptography communities, in that a formal and
ad omnia privacy guarantee is defined, and the data analysis techniques
presented are rigorously proved to satisfy the guarantee. The key privacy
guarantee that has emerged is differential privacy. Roughly speaking, this
ensures that (almost, and quantifiably) no risk is incurred by joining a
statistical database.

In this survey, we recall the definition of differential privacy and two
basic techniques for achieving it. We then show some interesting appli-
cations of these techniques, presenting algorithms for three specific tasks
and three general results on differentially private learning.

1 Introduction

Privacy-preserving data analysis is also known as statistical disclosure control,
inference control, privacy-preserving datamining, and private data analysis. Our
principal motivating scenario is a statistical database. A statistic is a quantity
computed from a sample. Suppose a trusted and trustworthy curator gathers
sensitive information from a large number of respondents (the sample), with
the goal of learning (and releasing to the public) statistical facts about the un-
derlying population. The problem is to release statistical information without
compromising the privacy of the individual respondents. There are two settings:
in the noninteractive setting the curator computes and publishes some statis-
tics, and the data are not used further. Privacy concerns may affect the precise
answers released by the curator, or even the set of statistics released. Note that
since the data will never be used again the curator can destroy the data (and
himself) once the statistics have been published.

In the interactive setting the curator sits between the users and the database.
Queries posed by the users, and/or the responses to these queries, may be modified
by the curator in order to protect the privacy of the respondents. The data can-
not be destroyed, and the curator must remain present throughout the lifetime of
the database. Of course, any interactive solution yields a non-interactive solution,
provided the queries are known in advance: the curator can simulate an interaction
in which these known queries are posed, and publish the resulting transcript.

There is a rich literature on this problem, principally from the satistics com-
munity (see, e.g., [10, 14, 27, 28, 29, 38, 40, 26, 39] and the literature on controlled
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release of tabular data, contingency tables, and cell suppression), and from such
diverse branches of computer science as algorithms, database theory, and cryp-
tography, for example as in [3, 4, 21, 22, 23, 33, 34, 41, 48], [1, 24, 25, 31], and
[6, 9, 11, 12, 13, 18, 7, 19]; see also the survey [2] for a summary of the field prior
to 1989.

This survey is about differential privacy. Roughly speaking, differential pri-
vacy ensures that the removal or addition of a single database item does not
(substantially) affect the outcome of any analysis. It follows that no risk is in-
curred by joining the database, providing a mathematically rigorous means of
coping with the fact that distributional information may be disclosive.

We will first describe three differentially private algorithms for specific, un-
related, data analysis tasks. We then present three general results about com-
putational learning when privacy of individual data items is to be protected.
This is not usually a concern in the learning theory literature, and signals the
emergence of a new line of research.

2 Differential Privacy

In the sequel, the randomized function K is the algorithm applied by the curator
when releasing information. So the input is the data set, and the output is the
released information, or transcript. We do not need to distinguish between the
interactive and non-interactive settings.

Think of a database as a set of rows. We say databases D1 and D2 differ in at
most one element if one is a proper subset of the other and the larger database
contains just one additional row.

Definition 1. A randomized function K gives ε-differential privacy if for all
data sets D1 and D2 differing on at most one element, and all S ⊆ Range(K),

Pr[K(D1) ∈ S] ≤ exp(ε) × Pr[K(D2) ∈ S] (1)

The probability is taken is over the coin tosses of K.

A mechanism K satisfying this definition addresses concerns that any participant
might have about the leakage of her personal information: even if the participant
removed her data from the data set, no outputs (and thus consequences of out-
puts) would become significantly more or less likely. For example, if the database
were to be consulted by an insurance provider before deciding whether or not to
insure a given individual, then the presence or absence of that individual’s data
in the database will not significantly affect her chance of receiving coverage.

Differential privacy is therefore an ad omnia guarantee. It is also a very strong
guarantee, since it is a statistical property about the behavior of the mechanism
and therefore is independent of the computational power and auxiliary informa-
tion available to the adversary/user.

Differential privacy is not an absolute guarantee of privacy. In fact, Dwork
and Naor have shown that any statistical database with any non-trivial utility
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compromises a natural definition of privacy [15]. However, in a society that has
decided that the benefits of certain databases outweigh the costs, differential
privacy ensures that only a limited amount of additional risk is incurred by
participating in the socially beneficial databases.

Remark 1. 1. The parameter ε in Definition 1 is public. The choice of ε is essen-
tially a social question and is beyond the scope of this paper. That said, we
tend to think of ε as, say, 0.01, 0.1, or in some cases, ln 2 or ln 3. If the prob-
ability that some bad event will occur is very small, it might be tolerable to
increase it by such factors as 2 or 3, while if the probability is already felt to
be close to unacceptable, then an increase by a factor of e0.01 ≈ 1.01 might be
tolerable, while an increase of e, or even only e0.1, would be intolerable.

2. Definition 1 discusses the behavior of the mechanism K, and is indepen-
dent of any auxiliary knowledge the adversary, or user, may have about the
database. Thus, a mechanism satisfying the definition protects the privacy
of an individual row in the database even if the adversary knows every other
row in the database.

3. Definition 1 extends to group privacy as well (and to the case in which an
individual contributes more than a single row to the database). A collection
of c participants might be concerned that their collective data might leak
information, even when a single participant’s does not. Using this definition,
we can bound the dilation of any probability by at most exp(εc), which may
be tolerable for small c. Of course, the point of the statistical database is
to disclose aggregate information about large groups (while simultaneously
protecting individuals), so we should expect privacy bounds to disintegrate
with increasing group size.

3 Achieving Differential Privacy in Statistical Databases

We will presently describe an interactive mechanism, K, due to Dwork, McSherry,
Nissim, and Smith [19], for the case of continuous-valued queries. Specifically, in
this section a query is a function mapping databases to (vectors of) real numbers.
For example, the query “Count P” counts the number of rows in the database
having property P .

When the query is a function f , and the database is X , the true answer is
the value f(X). The mechanism K adds appropriately chosen random noise to
the true answer to produce what we call the response. The idea of preserving
privacy by responding with a noisy version of the true answer is not new, but
this approach is delicate. For example, if the noise is symmetric about the origin
and the same question is asked many times, the responses may be averaged,
cancelling out the noise1. We must take such factors into account.
1 We do not recommend having the curator record queries and their responses so that if

a query is issued more than once the response can be replayed: If the query language
is sufficiently rich, then semantic equivalence of two syntactically different queries is
undecidable; even if the query language is not so rich, the devastating attacks demon-
strated by Dinur and Nissim [13] pose completely random and unrelated queries.
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Definition 2. For f : D → Rk, the sensitivity of f is

Δf = max
D1,D2

‖f(D1) − f(D2)‖1 (2)

for all D1, D2 differing in at most one element.

In particular, when k = 1 the sensitivity of f is the maximum difference in the
values that the function f may take on a pair of databases that differ in only
one element.

For many types of queries Δf will be quite small. In particular, the simple
counting queries discussed above (“How many rows have property P?”) have
Δf = 1. Our techniques work best – introduce the least noise – when Δf is small.
Note that sensitivity is a property of the function alone, and is independent of
the database. The sensitivity essentially captures how great a difference (between
the value of f on two databases differing in a single element) must be hidden by
the additive noise generated by the curator.

The scaled symmetric exponential distributionwith standarddeviation
√

2Δf/ε
denoted Lap(Δf/ε), has mass at x proportional to exp(−|x|(ε/Δf)). More pre-
cisely, let b = Δf/ε. The probability density function is p(x) = exp(−|x|/b)/2b and
the cumulative distribution function is D(x) = (1/2)(1 + sgn(x)(1 − exp(|x|/b))).

On query function f the privacy mechanism K responds with

f(X) + (Lap(Δf/ε))k

adding noise with distribution Lap(Δf/ε) independently to each of the k com-
ponents of f(X). Note that decreasing ε, a publicly known parameter, flattens
out the Lap(Δf/ε) curve, yielding larger expected noise magnitude. When ε is
fixed, functions f with high sensitivity yield flatter curves, again yielding higher
expected noise magnitudes.

For simplicity, consider the case k = 1. The proof that K yields ε-differential
privacy on the single query function f is straightforward. Consider any subset
S ⊆ Range(K), and let D1, D2 be any pair of databases differing in at most one
element. When the database is D1, the probability mass at any r ∈ Range(K) is
proportional to exp(−|f(D1)−r|(Δf/ε)), and similarly when the database is D2.
Applying the triangle inequality in the exponent we get a ratio of at most exp
(−|f(D1) − f(D2)|(Δf/ε)). By definition of sensitivity, |f(D1) − f(D2)| ≤ Δf ,
and so the ratio is bounded by exp(−ε), yielding ε-differential privacy.

It is easy to see that ε-differential privacy can be achieved for any (adaptively
chosen) query sequence f1, . . . , fd by running K with noise distribution Lap(

∑
i

Δfi/ε) on each query. In other words, the quality of each answer deteriorates with
the sum of the sensitivities of the queries. Interestingly, it is sometimes possible to
do better than this. Roughly speaking, what matters is the maximum possible
value of Δ = ||(f1(D1), f2(D1), . . . , fd(D1)) − (f1(D2), f2(D2), . . . , fd(D2))||1.
The precise formulation of the statement requires some care, due to the po-
tentially adaptive choice of queries. For a full treatment see [19]. We state the
theorem here for the non-adaptive case, viewing the (fixed) sequence of queries
f1, f2, . . . , fd, with respective arities k1, . . . , kd, as a single k =

∑d
i=1 ki-ary query

f , and recalling Definition 2 for the case of arbitrary k.



Differential Privacy: A Survey of Results 5

Theorem 1 ([19]). For f : D → Rk, the mechanism Kf that adds indepen-
dently generated noise with distribution Lap(Δf/ε) to each of the k output terms
enjoys ε-differential privacy.

The mechanism K described above has excellent accuracy for insensitive queries.
In particular, the noise needed to ensure differential privacy depends only on the
sensitivity of the function and on the parameter ε. Both are independent of the
database and the number of rows it contains. Thus, if the database is very
large, the errors for many typical queries introduced by the differential privacy
mechanism is relatively quite small.

We can think of K as a differential privacy-preserving interface between the an-
alyst and the data. This suggests a general approach to privacy-preserving data
analysis: find algorithms that require few, insensentitive, queries. See, e.g.,
[7, 8, 32]. Indeed, even counting queries are extremely powerful, permitting accu-
rate and differentially private computations of many standard datamining tasks
including principal component analysis, k-means clustering, perceptron learning
of separating hyperplanes, and generation of an ID3 decision tree [7], as well as
(nearby) halfspace learning [8] (see Section 4.3 below).

Among the many applications of Theorem 1, of particular interest is the class
of histogram queries. A histogram query is an arbitrary partitioning of the do-
main of database rows into disjoint “cells,” and the true answer is the set of
counts describing, for each cell, the number of database rows in this cell. Al-
though a histogram query with k cells may be viewed as k individual counting
queries, the addition or removal of a single database row can affect the entire
k-tuple of counts in at most one location (the count corresponding to the cell to
(from) which the row is added (deleted); moreover, the count of this cell is af-
fected by at most 1, so by Definition 2, every histogram query has sensitivity 1.
Many data analyses are simply histograms; it is thus particularly encourag-
ing that complex histograms, rather than requiring large variance in each cell,
require very little.

3.1 When Noise Makes No Sense

In some tasks, the addition of noise makes no sense. For example, the function f
might map databases to strings, strategies, or trees. In a recent paper McSherry
and Talwar address the problem of optimizing the output of such a function while
preserving ε-differential privacy [35]. Assume the curator holds a database X and
the goal is to produce an object y. In a nutshell, their exponential mechanism
works as follows. There is assumed to be a utility function u(X,y) that measures
the quality of an output y, given that the database is X . For example, if the
database holds the valuations that individuals assign a digital good during an
auction, u(X, y) might be the revenue, with these valuations, when the price is
set to y. Auctions are a good example of where noise makes no sense, since an
even slightly too high price may prevent many bidders from buying.

McSherry and Talwar’s exponential mechanism outputs y with probability
proportional to exp(−εu(X, y)/2). This ensures εΔu-differential privacy, or
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ε-differential privacy whenever Δu ≤ 1. Here Δu is defined slightly differently
from above; it is the maximum possible change to the value of u caused by
changing the data of a single row (as opposed to removing or adding a row; the
notions differ by at most a factor of two); see [35].

With this approach McSherry and Talwar obtain approximately-truthful
auctions with nearly optimal selling price. Roughly speaking, this says that a
participant cannot dramatically reduce the price he pays by lying about his valu-
ation. Interestingly, they show that the simple composition of differential privacy
can be used to obtain auctions in which no cooperating group of c agents can
significantly increase their utility by submitting bids other than their true valu-
ations. This is analagous to the situation of Remark 1 above, where composition
is used to obtain privacy for groups of c individuals,

4 Algorithms for Specific Tasks

In this section we describe differentially private algorithms for three unrelated
tasks.

4.1 Statistical Data Inference

The results in this Section are due to Dwork and Nissim [18].
Consider a setting in which each element in the database is described by a set

of k Boolean attributes α1, . . . αk, and the rows are independently sampled from
some underlying distribution on {0, 1}k. Let 1 ≤ � ≤ k/2 be an integer. The
goal here is to use information about the incidence of settings of any � attribute
values to learn the incidence of settings of any 2� attribute values.

Although we use the term “queries,” these will all be known in advance,
and the mechanism will be non-interactive. From something like

(
k
�

)
2� pieces

of released information it will be possible to compute approximations to the
incidence of all

(
k
2�

)
22� minterms. This will allow the data analyst to approximate

the probabilities of all 2( k
2�)2� subsets of 2�-ary minterms of length 2�, provided

the initial approximations are sufficiently accurate.
We will identify probability with incidence, so the probability space is over

rows in the database. Fix any set of � attributes. The incidence of all possible
settings of these attribute values is described by a histogram with 2� cells, and
histograms have sensitivity 1, so we are going to be working with a query se-
quence of overall sensitivity proportional to

(
k
�

)
(in fact, it will be worse than

this by a factor t, discussed below).
Let α and β be attributes. We say that α implies β in probability if the condi-

tional probability of β given α exceeds the unconditional probability of β. The
ability to measure implication in probability is crucial to datamining. Note that
since Pr[β] is simple to estimate well using counting queries, the problem of mea-
suring implication in probability reduces to obtaining a good estimate of Pr[β|α].
Moreover, once we can estimate Pr[β|α], Pr[β], and Pr[a], we can use Bayes’ Rule
and de Morgan’s Laws to determine the statistics for any Boolean function of
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attribute values. For example, Pr[α ∧ β] = Pr[α] Pr[β|α], so if we have estimates
of the two multiplicands, within an additive η, we have an estimate for the
products that is accurate within 3η.

As a step toward the non-interactive solution, consider the interactive case and
assume that we have a good estimate for Pr[α] and Pr[β]. The key to determining
Pr[β|α] is to find a heavy set for α, that is, a set q ⊆ [n] such that the incidence
of α is at least, say, a standard deviation higher than expected, and then to
determine whether the incidence of β on this heavy set is higher than the overall
incidence of β. More specifically, one can test whether this conditional incidence
is higher than a given threshold, and then use binary search to find the “right”
threshold value. Finding the heavy set is easy because a randomly chosen subset
of [n] has constant probability of exceeding the expected incidence of α by at
least one standard deviation.

To “simulate” the interactive case, the curator chooses some number of ran-
dom subsets and for each one releases (noisy) estimates of the incidence of α
and the incidence of β within this subset. With high probability (depending on
t), at least one of the subsets is heavy for α.

Putting the pieces together: for t random subsets of [n] the curator releases
good approximations to the incidence of all m =

(
k
�

)
2� conjunctions of � literals.

Specifically, we require that with probability at least 1 − δ/m2 a computed
implication in distribution Pr[α|β] is accurate to within η/3m2, where α and β
are now minterms of � literals. This ensures that with probability least 1 − δ
all computed implications in distribution are accurate to within η/3m2, and
so all estimated probabilities for minterms of 2� literals are accurate to within
η/m2. The number t is rather large, and depends on many factors, including
the differential privacy parameter ε as well as η, δ, k and �. The analysis in [18]
shows that, when η and δ are constant, this approach reduces the number of
queries from

(
k
2�

)
(one histogram for each 2�-tuple of variables (not literals!)), to

O(24�k��2 log k). Note the interesting tradeoff: we require accuracy that depends
on m2 in order to avoid making m2 queries. When the database is sufficiently
large this tradeoff can be accomplished.

4.2 Contingency Table Release

The results in this Section are due to Barak, Chaudhuri, Dwork, Kale, McSherry,
and Talwar [5]. A contingency table is a table of counts. In the context of a census
or other survey, we think of the data of an individual as a row in a database.
We do not assume the rows are mutually independent. For the present, each
row consists of k bits describing the values of k binary attributes a1, . . . , ak.2

Formally, the contingency table is a vector in R
2k

describing, for each setting
of the k attributes, the number of rows in the database with this setting of the
attribute values. In other words, it is a histogram with 2k cells.

Commonly, the contingency table itself is not released, as it is likely to be
sparse when k is large. Instead, for various subsets of attributes, the data curator
2 Typically, attributes are non-binary. Any attribute with m possible values can be

decomposed into log(m) binary attributes.
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releases the projection of the contingency table onto each such subset, i.e., the
counts for each of the possible settings of the restricted set of attributes. These
smaller tables of counts are called marginals, each marginal being named by
a subset of the attributes. A marginal named by a set of j attributes, j ≤ k,
is called a j-way marginal. The data curator will typically release many sets
of low-order marginals for a single contingency table, with the goal of revealing
correlations between many different, and possibly overlapping, sets of attributes.

Since a contingency table is a histogram, we can add independently generated
noise proportional to ε−1 to each cell of the contingency table to obtain an ε-
differentially private (non-integer and not necessarily non-negative) table. We
will address the question of integrality and non-negativity later. For now, we
simply note that any desired set of marginals can be computed directly from
this noisy table, and consistency among the different marginals is immediate. A
drawback of this approach, however, is that while the noise in each cell of the
contingency table is relatively small, the noise in the computed marginals may
be large. For example, the variance in the 1-way table describing attribute a1 is
2k−1ε−2. We consider this unacceptable, especially when n 
 2k.

Marginals are also histograms. A second approach, with much less noise in the
(common) case of low-order marginals, but not offering consistency between
marginals, works as follows. Let C be the set of marginals to be released. We
can think of a function f that, when applied to the database, yields the desired
marginals. Now apply Theorem 1 with this choice of f , (adding noise to each cell
in the collection of tables independently), with sensitivity Δf = |C|. When n
(the number of rows in the database) is large compared to |C|/ε, this also yields
excellent accuracy. Thus we would be done if the small table-to-table inconsisten-
cies caused by independent randomization of each (cell in each) table are not of
concern, and if the user is comfortable with occasionally negative and typically
non-integer cell counts.

We have no philosophical or mathematical objection to these artifacts – incon-
sistencies, negativity, and non-integrality – of the privacy-enhancing technology,
but in practice they can be problematic. For example, the cell counts may be
used as input to other, possibly off-the-shelf, programs that anticipate positive
integers, giving rise to type mismatch. Inconsistencies, not to mention negative
values, may also be confusing to lay users, such as casual users of the American
FactFinder website.

We now outline the main steps in the work of Barak et al [5].

Move to the Fourier Domain. When adding noise, two natural solutions present
themselves: adding noise to entries of the source table (this was our first proposal;
accuracy is poor when k is large), or adding noise to the reported marginals (our
second proposal; consistency is violated). A third approachbegins by transforming
the data into the Fourier domain. This is just a change of basis. Were we to com-
pute all 2k Fourier coefficients we would have a non-redundant encoding of the
entire consistency table. If we were to perturb the Fourier coefficients and then
convert back to the contingency table domain, we would get a (different, possibly
non-integer, possibly negative) contingency table, whose “distance” (for example,
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�2 distance) from the original is determined by the magnitude of the perturbations.
The advantage ofmoving to the Fourier domain is that if only a setC ofmarginals is
desired then we do not need the full complement of Fourier coefficients. For exam-
ple, if C is the set of all 3-way marginals, then we need only the Fourier coefficients
of weight at most 3, of which there are

(
k
3

)
+

(
k
2

)
+ k + 1. This will translate into

a much less noisy set of marginals.
The Fourier coefficients needed to compute the marginals C form a model of the

dataset that captures everything that can be learned from the set C of marginals.
Adding noise to these coefficients as indicated by Theorem 1 and then convert-
ing back to the contingency table domain yields a procedure for generating syn-
thetic datasets that ensures differential privacy and yet to a great (and measurable)
extent captures the information in the model. This is an example of a concrete
method for generating synthetic data with provable differential privacy.

The Fourier coefficients exactly describe the information required by the
marginals. By measuring exactly what is needed, Barak et al. add the least
amount of noise possible using the techniques of [19]. Moreover, the Fourier ba-
sis is particularly attractive because of the natural decomposition according to
sets of attribute values. Even tighter bounds than those in Theorem 4 below can
be placed on sub-marginals (that is, lower order marginals) of a given marginal,
by noting that no additional Fourier coefficients are required and fewer noisy
coefficients are used in computing the low-order marginal, improving accuracy
by reducing variance.

Use Linear Programming and Rounding. Barak et al. [5] employ linear program-
ming to obtain a non-negative, but likely non-integer, data set with (almost) the
given Fourier coefficients, and then round the results to obtain an integer so-
lution. Interestingly, the marginals obtained from the linear program are no
“farther” (made precise in [5]) from those of the noisy measurements than are
the true marginals of the raw data. Consequently, the additional error intro-
duced by the imposition of consistency is no more than the error introduced by
the privacy mechanism itself.

Notation and Preliminaries. Recall that, letting k denote the number of
(binary) attributes, we can think of the data set as a vector x ∈ R

2k

, indexed
by attribute tuples. For each α ∈ {0, 1}k the quantity xα is the number of data
elements with this setting of attributes. We let n = ‖x‖1 be the total number of
tuples, or rows, in the data set.

For any α ∈ {0, 1}k, we use ‖α‖1 for the number of non-zero locations. We
write β � α for α, β ∈ {0, 1}k if every zero location in α is also a zero in β.

The Marginal Operator. Barak et al. describe the computation of a set of
marginals as the result of applying a marginal operator to the contingency table
vectorx. The operatorCα : R

2k → R
2‖α‖1 for α ∈ {0, 1}k maps contingency tables

to the marginal of the attributes that are positively set in α (there are 2‖α‖1 pos-
sible settings of these attributes). Abusing notation, Cαx is only defined at those
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locations β for which β � α: for any β � α, the outcome of Cαx at position β is
the sum over those coordinates of x that agree with β on the coordinates described
by α:

(Cα(x))β =
∑

γ:γ∧α=β

xγ (3)

Notice that the operator Cα is linear for all α.

Theorem 2. The fα form an orthonormal basis for R
2k

.

Consequently, one can write any marginal as the small summation over relevant
Fourier coefficients:

Cβx =
∑

α�β

〈fα, x〉Cβfα . (4)

The coefficients 〈fα, x〉 are necessary and sufficient data from x for the compu-
tation of Cβx.

Theorem 3 ([5]). Let B ⊆ {0, 1}k describe a set of Fourier basis vectors. Re-
leasing the set φβ = 〈fβ , x〉 + Lap(|B|/ε2k/2) for β ∈ B preserves ε-differential
privacy.

Proof: Each tuple contributes exactly ±1/2k/2 to each output coordinate, and
consequently the L1 sensitivity of the set of |B| outputs is at most |B|/2k/2. By
Theorem 1, the addition of symmetric exponential noise with standard deviation
|B|/ε2k/2 gives ε-differential privacy.

Remark: To get a sense of scale, we could achieve a similar perturbation to each
coordinate by randomly adding or deleting |B|2/ε individuals in the data set, which
can be much smaller than n.

Putting the Steps Together. To compute a set A of marginals, we need all
the Fourier coefficients fβ for β in the downward closure of A uner �.

Marginals(A ⊆ {0, 1}k, D):
1. Let B be the downward closure of A under �.
2. For β ∈ B, compute φβ = 〈fβ , D〉 + Lap(|B|/ε2k/2).
3. Solve for wα in the following linear program, and round to the nearest inte-

gral weights, w′
α.

minimize b

subject to:
wα ≥ 0 ∀α

φβ −
∑

α

wαfβ
α ≤ b ∀β ∈ B

φβ −
∑

α

wαfβ
α ≥ −b ∀β ∈ B

4. Using the contingency table w′
α, compute and return the marginals for A.
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Theorem 4 ([5]). Using the notation of Marginals(A), with probability 1− δ,
for all α ∈ A,

‖Cαx − Cαw′‖1 ≤ 2‖α‖12|B| log(|B|/δ)/ε + |B| . (5)

When k is Large. The linear program requires time polynomial in 2k. When k
is large this is not satisfactory. However, somewhat surprisingly, non-negativity
(but not integrality) can be achieved by adding a relatively small amount to
the first Fourier coefficient before moving back to the data domain. No linear
program is required, and the error introduced is pleasantly small. Thus if poly-
nomial in 2k is an unbearable cost and one can live with non-integrality then this
approach serves well. We remark that non-integrality was a non-issue in a pilot
implementation of this work as counts were always converted to percentages.

4.3 Learning (Nearby) Halfspaces

We close this Section with an example inspired by questions in learning theory,
appearing in a forthcoming paper of Blum, Ligett, and Roth [8]. The goal is
to give a non-interactive solution to half-space queries. At a high level, their
approach is to publish information that (approximately) answers a large set of
“canonical” queries of a certain type, with the guarantee that for any (possibly
non-canonical) query of the given type there is a “nearby” canonical query.
Hence, the data analyst can obtain the answer to a query that in some sense is
close to the query of interest.

The queries in [8] are halfspace queries in R
d, defined next. Throughout this

section we adopt the assumption in [8] that the database points are scaled into
the unit sphere.

Definition 3. Given a database D ⊂ R
d and unit length y ∈ R

d, a halfspace
query Hy is

Hy(D) =
|{x ∈ D :

∑d
i=1 xi · yi ≥ 0}|
|D| .

Note that a halfspace query can be estimated from two counting queries: “What
is |D|?” and “What is |{x ∈ D :

∑d
i=1 xi · yi ≥ 0}|?” Thus, the halfspace query

has sensitivity at most 2.
The distance between halfspace queries Hy1 and Hy2 is defined to be the sine

of the angle between them, sin(y1, y2). With this in mind, the algorithm of Blum,
Ligett, and Roth, ensures the following notion of utility:

Definition 4 ([8]). A database mechanism A is (ε, δ, γ)-useful for queries in
class C according to some metric d if with probability 1 − δ, for every Q ∈ C
and every database D, |Q(A(D)) − Q′(D)| ≤ ε for some Q′ ∈ C such that
d(Q, Q′) ≤ γ.

Note that it is the queries that are close, not (necessarily) their answers.
Given a halfspace query Hy1 , the algorithm below will output a value v such

that |v − Hy2(D)| < ε for some Hy2 that is γ-close to Hy1 . Equivalently, the
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algorithm arbitrarily counts or fails to count points x ∈ D such that cos(x, y1) ≤
γ. Blum et al. note that γ plays a role similar to the notion of margin in machine
learning, and that even if Hy1 and Hy2 are γ-close, this does not imply that true
answers to the queries Hy1(D) and Hy2(D) are close, unless most of the data
points are outside a γ margin of Hy1 and Hy2 .

Definition 5 ([8]). A halfspace query Hy is b-discretized if for each i ∈ [d], yi

can be specified with b bits. Let Cb be the set of all b-discretized halfspaces in R
d.

Consider a particular k < d dimensional subspace of R
d defined by a random

d × k matrix M with entries chosen independently and uniformly from {−1, 1}.
Consider the projection PM (x) = (1/

√
k)x · M , which projects database points

into the subspace and re-scales them to the unit sphere. For a halfspace query
Hy, the projection PM (Hy) is simply the k-dimensional halfspace query defined
by the projection PM (y). The key fact is that, for a randomly chosen M , pro-
jecting a database point x and the halfspace query specifier y is very unlikely to
significantly change the angle between them:

Theorem 5 (Johnson-Lindenstrauss Theorem). Consider a projection of
a point x and a halfspace Hy onto a random k-dimensional subspace as defined
by a projection matrix M . Then

Pr[| cos(x, Hy) − cos(PM (x), HPM (y))| ≥ γ/4] ≤ 2e−((γ/16)2−(γ/16)3)k/4.

The dimension k of the subspace is chosen such that the probability that pro-
jecting a point and a halfspace changes the angle between them by more than
γ/4 is at most ε1/4. This yields

k ≥ 4 ln(8/ε1)
(γ/16)2 − (γ/16)3

.

Thus, the answer to the query Hy can be estimated by a privacy-preserving
estimate of the answer to the projected halfspace query, and overall accuracy
could be improved by choosing m projection matrices; the angle between x and
y would be estimated by the median of the angles induces by the m resulting
pairs of projections of x and y.

Of course, if the goal were to respond to a few half-space queries there would
be no point in going through the projection process, let alone taking several pro-
jections. But the goal of [8] is more ambitious: an(ε, δ, γ)-useful non-interactive
mechanism for (non-discretized) halfspace queries; this is where the lower di-
mensionality comes into play.

The algorithm chooses m projection matrices, where m depends on the
discretization parameter b, the dimension d, and the failure probability δ (more
specifically, m ∈ O(ln(1/δ)+ln(bd))). For each random subspace (defined by a pro-
jection matrix M), the algorithm selects a net NM of “canonical” halfspaces (de-
fined by canonical vectors in the subspace) such that for every vector y ∈ Rk there
is a nearby canonical vector, specifically, of distance (induced sine) at most (3/4)γ.
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The number of canonical vectors needed is O(1/γk−1). For each of these, the cura-
tor publishes a privacy-preserving estimate of the projected halfspace query. The
mechanism is non-interactive and the curator will play no further role.

To handle an arbitrary query y, the analyst begins with an empty multiset.
For each of the m projections M , the analyst finds a vector ŷ ∈ NM closest to
PM (y), adding to the multiset the answer to that halfspace query. The algorithm
outputs the median of these m values.

Theorem 6 ([8]). Let

n ≥ log(1/δ) + log m + (k − 1) log(1/γ) + mO(1/γ)k−1

ε2α

Then the above algorithm is (ε, γ, δ)-useful while maintaining α-differential pri-
vacy for a database of size n. The algorithm runs in time poly(log(1/δ),
1/ε, 1/α, b, d) for constant γ.

5 General Learning Theory Results

We briefly outline three general results regarding what can be learned privately
in the interactive model.

We begin with a result of Blum, Dwork, McSherry and Nissim, showing that
anything learnable in the statistical queries learning model can also be effi-
ciently privately learned interactively [7]. We then move to results that ignore
computational issues, showing that the exponential mechanism of McSherry and
Talwar [35] can be used to

1. Privately learn anything that is PAC learnable [32]; and
2. Generate, for any class of functions C with polynomial VC dimension, a

differentially private “synthetic database” that gives “good” answers to any
query in C [8].

The use of the exponential mechanism in this context is due to Kasiviswanathan,
Lee, Nissim, Raskhodnikova, and Smith [32].

5.1 Emulating the Statistical Query Model

The Statistical Query (SQ) model, proposed by Kearns in [10], is a framework for
examining statistical algorithms executed on samples drawn independently from
an underlying distribution. In this framework, an algorithm specifies predicates
f1, . . . , fk and corresponding accuracies τ1, . . . , τk, and is returned, for 1 ≤ i ≤
k, the expected fraction of samples satisfying fi, to within additive error τi.
Conceptually, the framework models drawing a sufficient number of samples so
that the observed count of samples satisfying each fi is a good estimate of the
actual expectation.

The statistic/al queries model is most commonly used in the computational
learning theory community, where the goal is typically to learn a (in this case,
Boolean) concept, that is, a predicate on the data, to within a certain degree of
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accuracy. Formally, an algorithm δ-learns a concept c if it produces a predicate
such that the probability of misclassification under the latent distribution is at
most 1 − δ.

Blum, Dwork, McSherry, and Nissim have shown that any concept that is
learnable in the statistical query model is privately learnable using the equivalent
algorithm on a so-called “SuLQ” database [7]; the proof is not at all complicated.
Reformulting these results using the slightly different technology presented in the
current survey the result is even easier to argue.

Assume we have an algorithm in the SQ model that makes the k statistical
queries f1, . . . , fk, and let τ = min{τ1, . . . , τk} be the minimum required toler-
ance in the SQ algorithm. Assume that n, the size of the database, is known.
In this case, we can compute the answer to fi by asking the predicate/counting
query corresponding to fi, call it pi, and dividing the result by n. Thus, we are
dealing with a query squence of sensitivity at most k.

Let b = k/ε. Write τ = ρ/n, for ρ to be determined later, so that if the noise
added to the true answer when the counting query is pi has magnitude bounded
by ρ, the response to the statistical query is within tolerance τ .

We want to find ρ so that the probability that a response has noise magnitude
at least ρ is bounded by δ/k, when the noise is generated according to Lap(k/ε).
The Laplace distribution is symmetric, so it is enough to find x < 0 such that
the cumulative distribution function at x is bounded by δ/2k:

1
2
e−|x|/b <

δ

2k

By a straightforward calculation, this is true provided |x| > b ln(k/δ), ie, when
|x| > (k/ε) ln(k/δ). We therefore set ρ > (k/ε) ln(k/δ). So long as ρ/n < τ , or,
more to the point, so long as n > ρ/τ , we can emulate the SQ algorithm.

This analysis only takes into account noise introduced by K; that is, it assumes
1
n

∑n
i=1 fj(di) = Prx∈RD[fj(x)], 1 ≤ j ≤ k, where D is the distribution on

examples. The results above apply, mutatis mutandis, when we assume that the
rows in the database are drawn iid according to D using the well known fact that
taking n > τ−2 log(k/δ) is sufficient to ensure tolerance τ with probability at
least 1 − δ for all fj, 1 ≤ j ≤ k, simultaneously. Replacing τ by τ/2 everywhere
and finding the maximum lower bound on n handles both types of error.

5.2 Private PAC Learning

The results in this section are due to Kasiviswanathan, Lee, Nissim, Raskhod-
nikova, and Smith [32]. We begin with an informal and incomplete review of
the concept of probably-appproximately-correct (PAC) learning, a notion due to
Valiant [47].

Consider a concept t : X −→ Y that assigns to each example taken from
the domain X a label from the range Y . As in the previous section, a learning
algorithm is given labeled examples drawn from a distribution D, labeled by a
target concept; the goal is to produce an hypothesis h : X −→ Y from a specified
hypothesis class, with small error, defined by:
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error(h) = Pr
x∈RD

[t(x) �= h(x)].

A concept class is a set of concepts. Learning theory asks what kinds of
concept classes are learnable. Letting α, β denote two error bounds, if the target
concept belongs to C, then the goal is to minimize error, or at least to ensure
that with probability 1 − β the error is bounded by α. This is the setting of
traditional PAC learning. If the target concept need not belong to C, the goal
is to produce an hypothesis that, intuitively, does almost as well as any concept
in C: Letting OPT = minc∈C{error(c)}, we want

Pr[error(h) ≤ OPT + α] ≥ 1 − β,

where the probability is over the samples seen by the learner, and the learner’s
randomness. This is known as agnostic learning.3

Following [32] we will index concept classes, domains, and ranges by the length
d of their binary encodings. For a target concept t : Xd → Yd and a distribution
D over Xd, let Z ∈ Dn be a database containing n labeled independent draws
from D. That is, Z contains n pairs (xi, yi) where yi = t(xi), 1 ≤ i ≤ n. The
goal of the data analyst will be to agnostically learn a hypothesis class C; the
goal of the curator will be to ensure ε-differential privacy.

Theorem 7 ([32]). Every concept class C is ε-differentially pivately agnosti-
cally learnable using hypothesis class H = C with n ∈ O(log Cd + log(1β) ·
max{ 1

εα , 1
α2 }). The learner may not be efficient.

The theorem is proved using the exponential mechanism of McSherry and Tal-
war, with utility function

u(Z, h) = −|{i : t(xi) �= h(xi)}|

for Z ∈ (X × Y )n, h ∈ Hd. Note that u has sensitivity 1, since changing any
element in the database can change the number of misclassifications by at most
1. The (inefficient) algorithm outputs c ∈ Hd with probability proportional to
exp(εu(Z, c)/2). Privacy follows from the properties of the exponential mecha-
nism and the small sensitivity of u. Accuracy (low error with high probablity) is
slightly more difficult to argue; the proof follows, intuitively, from the fact that
outputs are produced with probability that falls exponentially in the number of
misclassifications.

5.3 Differentially Private Queries of Classes with Polynomial VC
Dimension

Our last example is due to Blum, Ligett, and Roth [8] and was inspired by the
result of the previous section, This learning result again ignores computational
3 The standard agnostic model has the input drawn from an arbitrary distribution

over labeled examples (x, y) (that is, the label need not be a deterministic function
of the example). The error of a hypothesis is defined with respect to the distribution
(i.e. probability that y �= h(x)). The results (and proofs) of Kasiviswanathan et al.
stay the same in this more general setting.
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efficiency, using the exponential mechanism of McSherry and Talwar. The ob-
ject here is to release a “synthetic dataset” that ensures “reasonably” accurate
answers to all queries in a specific class C. The reader is assumed to be familiar
with the Vapnick-Chervonenkis (VC) dimension of a class of concepts. Roughly
speaking, it is a measure of how complicated a concept in the class can be.

Definition 6 ([8]). A database mechanism A is (γ, δ)-useful for queries in class
C if with probability 1−δ, for every Q ∈ C and every database D, for D̂ = A(D),
|Q(D̂) − Q(D)| ≤ γ.

Let C be a fixed class of queries. Given a database D ∈ ({0, 1}d)n of size n,
where n is sufficiently large (as a function of the VC dimension of C, as well
as of ε and δ), the goal is to produce produce a synthetic dataset D̂ that is
(γ, δ)-useful for queries in C, while ensuring ε-differential privacy.

The synthetic dataset will contain m = O(VC dim(C)/γ2) d-tuples. It is
chosen according to the exponential mechanism using the utility function

u(D, D̂) = − max
h∈C

∣
∣
∣h(D) − n

m
h(D̂)

∣
∣
∣ .

Theorem 8 ([8]). For any class of functions C, and any database D ⊂ {0, 1}d

such that

|D| ≥ O

(
d · VC dim(C)

γ3ε
+

log(1/δ)
εγ

)

we can output an (γ, δ)-useful database D̂ that preserves ε-differential privacy.
Note that the algorithm is not necessarily efficient.

Blum et al.note that this suffice for (γ, δ)-usefulness because the set of all databases
of this size forms a γ-cover with respect to C of the set of all possible databases.
One can resolve the fact that, since |D̂| < |D|, the number of database entries
matching any query will be proportionately smaller by considering the fraction of
entries matching any query.

6 Concluding Remarks

The privacy mechanisms discussed herein add an amount of noise that grows
with the complexity of the query sequence applied to the database. Although
this can be ameliorated to some extent using Gaussian noise instead of Laplacian,
an exciting line of research begun by Dinur and Nissim [13] (see also [17, 20])
shows that this increase is essential. To a great extent, the results of Dinur and
Nissim drove the development of the mechanism K and the entire interactive
approach advocated in this survey. A finer analysis of realistic attacks, and a
better understanding of what failure to provide ε-differential privacy can mean
in practice, are needed in order to sharpen these results – or to determine this
is impossible, in order to understand the how to use these techniques for all but
very large, “internet scale,” data sets.
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