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ABSTRACT Combining medical data and machine learning has fully utilized the value of medical data.

However, medical data contain a large amount of sensitive information, and the inappropriate handling of

data can lead to the leakage of personal privacy. Thus, both publishing data and training data in machine

learning may reveal the privacy of patients. To address the above issue, we propose two effective approaches.

One combines a differential privacy and decision tree (DPDT) approach to provide strong privacy guarantees

for publishing data, which establishes a weight calculation system based on the classification and regression

tree (CART) method and takes weights as a new element of differential privacy to participate in privacy

protection and reduce the negative impact of differential privacy on data availability. Another uses the

differentially private mini-batch gradient descent algorithm (DPMB) to provide strong protection for training

data; it tracks the privacy loss and allows the model to satisfy differential privacy in the process of gradient

descent to prevent attackers from invading personal privacy with the training data. It is worth mentioning

that, in this paper, we adopt the data processed by DPDT as the training data of DPMB to further strengthen

the privacy of data.

INDEX TERMS Deep learning, data privacy, differential privacy, data publishing.

I. INTRODUCTION

Recent progress in deep learning has led to impressive suc-

cesses in a wide range of applications, such as the combi-

nation of deep learning with medical data. This approach

enables the machine to learn some basic diagnoses, which

not only can help patients better understand their physical

condition with less frequent medical visits but can also help

doctors to reduce work pressure and improve work effi-

ciency [2]. However, with the rapid development of machine

learning and deep learning, the acquisition of medical data

has become a major problem. Because medical data contain

a large amount of sensitive information, it may reveal the pri-

vacy of patients both when publishing data and training data

in machine learning [3], [4]. Therefore, hospitals are reluctant

to provide data sources. In addition, if privacy issues cannot

be resolved, no technology can be used publicly, no matter

how developed it is.

The associate editor coordinating the review of this manuscript and

approving it for publication was Xiaochun Cheng .

An increasing number of people are paying attention to

protecting data privacy while applying data. On the one

hand, for publishing data, K-anonymity [5], L-diversity [6]

and T-closeness [7] protect sensitive information against

attacks, such as linking attacks, skewness attacks and back-

ground knowledge attacks. However, they do not have high

resistance to the background knowledge attacks because

they lack a strong attack model. However, differential pri-

vacy has a better ability to resist all of the above attacks

with good privacy protection and has been widely used

by scholars.

On the other hand, for a published model, recent attacks

have used information hidden in the model to recover some

sensitive training data. Such attacks can proceed directly

by analyzing internal model parameters and indirectly by

repeatedly querying models to gather data for the attack

analysis, such as the model inversion (MI) attack [8], mem-

bership inference attack [9], etc. These attacks can be effec-

tively resisted by applying a differential privacy algorithm to

machine learning [10]–[12].
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Although differential privacy provides strong privacy

guarantees for publishing data and training data, it will

greatly reduce the availability of data and models, which

is embodied specifically in the fact that using the data

processed by differential privacy as training data will

decrease model accuracy, and applying a differential pri-

vacy algorithm to machine learning will also reduce

accuracy sharply.

In this paper, we are committed to finding a balance

between usability and privacy and to preprocessing data to

solve the problems faced by most discrete medical data.

Specific contributions are as follows:
1) By normalizing data, we make them more closely dis-

tributed and reduce their variance, and thereby data

quality can be improved. In addition, differential pri-

vacy is positively affected by normalization through

step simplification and sensitivity reduction, which

decreases the negative impact of differential privacy

on data availability and facilitates the application of

differential privacy to data.

2) The combination of differential privacy and decision

tree (DPDT) is proposed for publishing data to balance

the protection strength and data availability. Different

from the traditional method of adding noise, we formu-

late rules to calculate attribute weights via the decision

tree. Then, we use weights to influence the degree of

noise added to attributes. Thereupon, data availability

and privacy can obtain a better balance, which further

reduces the negative impact of differential privacy on

data availability.

3) The differentially private mini-batch gradient descent

algorithm (DPMB) is established to prevent attack-

ers from invading personal privacy via training

data, thereby providing strong privacy guarantees for

training data of the publishing model. Moreover,

the moments accountant is adopted, which is advanced

and can obtain much tighter estimates on the overall

privacy loss than the traditional strong composition

theorem. We record the training accuracy for each pri-

vacy parameter, thus obtaining direct guidance for the

selection of appropriate privacy parameters. In addi-

tion, to improve the fitting speed and the quality of

the model, we let the learning rate decrease with the

increase of epoch.

The rest of the paper is organized as follows. The

next section reviews the background of differential privacy,

the moments accountant, deep learning, and classification

and regression tree (CART). III explains our design method-

ology. IV describes our experimental model and experimental

results. V discusses related work, and the conclusion will be

presented in VI.

II. BACKGROUND

This section introduces differential privacy and the moments

accountant and briefly presents the definition of CART and

an overview of deep learning.

A. DIFFERENTIAL PRIVACY

Differential privacy [10], [13], [14] possesses a strong capac-

ity in privacy protection. In our experiments, we apply

the original definition of ε-differential privacy [15] with a

Laplace mechanism to data for dataset privacy protection and

adopt the variant definition of (ε, δ)-differential privacy [16]

with a Gaussian mechanism, which adds δ to indicate the

possibility that ε-differential privacy might be broken, for

training data protection in the model.

Original definition 1: Two input datasets d and d ′ whose
difference is at most one record are called adjacent databases.

For a randomized function K : D → R with two adjacent

databases as input, if you want it to satisfy ε-differential

privacy, any subcollection of outputs S ∈ R needs to satisfy:

Pr[K(d) ∈ S] ≤ eεPr[K(d ′) ∈ S]. (1)

The random function K protects privacy by adding noise to

a real-valued function f : D → R. When we adopt Laplace

noise, the formula is as follows:

K(d) , f (d)+ Lap(0,
1f

ε
). (2)

In the above formulas, Lap(0,
1f
ε
) is the Laplace distribution

whose standard deviation is
√
21f /ε andmean is 0, and1f is

f ′s sensitivity calculated from the formula max |f (d)− f (d ′)|.
Variant definition 1: Two input datasets d and d ′ whose

difference is at most one record are called adjacent databases.

For a randomized function K : D → R with two adjacent

databases as input, if you want it to satisfy (ε, δ)-differential

privacy, any subcollection of outputs S ∈ R needs to satisfy:

Pr[K(d) ∈ S] ≤ eεPr[K(d ′) ∈ S]+ δ. (3)

When we adopt Gaussian noise, the formula is as follows:

K(d) , f (d)+N (0, 1f 2 · σ 2). (4)

In the above formulas, N represents the normal distribution.

Differential privacy has many useful properties, such as

composability, group privacy and robustness. In this paper,

we mainly use the basic composition theorem [16], [17]

and advanced composition theorems [18]–[21] to repeatedly

apply additive-noise mechanisms. To keep track of privacy

loss, McSherry put forward the privacy accountant [22]

via a composite mechanism, and Marín Abadi proposed the

moments accountant [23] which can provide a tighter bound

on the privacy loss.

B. THE MOMENTS ACCOUNTANT

Abadi et al. [23] recommended the moments accountant

based on former foundations [20], [21], [24]. It keeps track

of a bound on the moments of the privacy loss random

variable, which can provide a tighter bound compared to the

strong composition theorem. The value of the privacy loss

is associated with the level of noise added to the algorithm.

It defines a bound for the privacy loss of functionK to satisfy

differential privacy, which is called the tail bound. Moreover,
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it computes the log moments of the privacy loss and then

gets the tail bound via the moments bound and the standard

Markovin equality.

Definition 1: Let a represent an auxiliary input and c rep-

resent the privacy loss. The privacy loss at the output o is

calculated by

c(o;K, a, d, d ′) , log
K(a, d) = o

K(a, d ′) = o
. (5)

The following is the definition of the moments accountant:

Definition 2: Let a represent an auxiliary input. The

moments accountant is calculated by

αK(λ) , max
a,d,d ′

αK(λ; a, d, d ′). (6)

In the above formula, αK(λ; a, d, d ′) represents the log

moment at the value of λ, and it can be calculated by

αK(λ; a, d, d ′) , logE[exp(λc(K(d);K, a, d, d ′))].
The properties of the moments accountant are as follows:
Theorem 1: 1.[Composability] Assume that a function K

is composed of a series of adaptive functionsK1,K2, . . . ,Kk

where Ki :
∏i−1

j=1R×D→ Ri. Therefore, for any λ

αK(λ) ≤
k∑

i=1
αKi

(λ). (7)

2.[Tail bound] For any ε > 0, the function K is (ε, δ)-

differentially private for

δ = min
λ

exp(αK(λ)− λε). (8)

Themoments accountant can obtainmuch tighter estimates

on the overall privacy loss and clearly show the relationship

between model accuracy and privacy intensity. Though this

concept is very new, its effectiveness and potential cannot be

denied. The details can be found in the full version of the

paper [23], [25].

C. CLASSIFICATION AND REGRESSION TREE

CART [26] uses the Gini index of each attribute to determine

partitioning properties. The purity of dataset (D) can be mea-

sured by the Gini value:

Gini(D) = 6
|y|
k=16k ′ 6=kpkpk ′

= 1−6
|y|
k=1p

2
k . (9)

Intuitively, Gini(D) represents the probability of randomly

extracting two different sample types from D. Therefore,

the smaller the value of Gini(D) is, the higher the purity of

D is. The Gini index of attribute a is defined as:

Gini_index(D, a) =
V∑

v=1

|Dv|
|D|

Gini(Dv). (10)

In the candidate attribute set A, we choose the property with

the smallest Gini index as the optimal partition attribute:

a∗ = argmin
a∈A

Gini_index(D, a). (11)

That is, in this node of CART, according to this attribute

division, the best classification effect can be obtained. Then,

the data set is divided according to this attribute and the new

optimal partition attribute corresponding to the next node of

CART can obtained by using (9), (10) and (11) repeatedly.

From the above establishment of CART, we can think

that the more times an attribute appears on nodes of CART,

the more important it is for classification. Moreover, because

the Gini index of each node attribute is calculated according

to its parent-node, we have reason to believe that the closer an

attribute is to the root node, the more important this attribute

is to the classification.

Based on this discovery, we developed a method to express

the importance of each attribute in CART as an attribute

weight. Then, the weights are used to influence the process

of adding noise in differential privacy in Section III.

D. DEEP LEARNING

Deep learning, which has been widely used in various fields,

adopts back propagation (BP) algorithms to indicate how a

machine adjusts its internal parameters to discover complex

structures in large data sets. A complete deep neural network

consists of an input layer, hidden layer and output layer.

In deep neural networks, the selection of the activation func-

tion, the definition of the loss function, the selection of the

gradient descent method and the value of the hyperparameter

are closely related to the experimental results.

More precisely, we adopt rectified linear units (ReLUs) as

our activation functions which have faster convergence rate

and lower computational complexity and can solve the prob-

lem of gradient vanishing in sigmoids. Moreover, we define

a loss function L that represents the penalty for mismatching

the training data and calculate it bymean-square error (MSE),

which means that loss L(θ ) on parameters θ is 1
N

6iL(θ, xi),

where xi represents the training examples {x1, . . . , xn}. The
purpose of training is to find the smallest loss.

The loss function L is difficult to minimize due to

complex networks. In practice, the mini-batch gradient

descent (MBGD) algorithm is often used to find the small-

est loss. It computes the gradient ∇θL(θ ) based on random

examples whose quantity is b, and the formula is gb =
1/|b|

∑
x∈b ∇θL(θ, x). Then, we update θ based on the gra-

dient and learning rate to find a local minimum.

There have been several systems with excellent perfor-

mance to support neural networks [27], [28]. Moreover, our

work is performed based on TensorFlow and PyTorch. The

former is an open-source dataflow engine released byGoogle,

while the latter is an open-source dataflow engine released by

Facebook.

III. DESIGN METHODOLOGY

This section describes the main components of our approach

toward differential privacy for data publishing and differ-

entially private training of neural networks: Normalization,

DPDT and DPMB.
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FIGURE 1. The process of protecting the publishing data.

FIGURE 2. The process of protecting the publishing model.

Fig. 1 and Fig. 2 roughly show the application flow of our

method. The specific process is detailed below.

A. NORMALIZATION

Manymedical data have the characteristic that the variance of

numerical distribution is too large, which has a great influence

on the accuracy of machine learning. At the same time,

it makes the local sensitivity of the data properties so large

that data availability becomes extremely poor because we

need to add larger noise to the data while applying differential

privacy.

Through normalization, we make the data distribution

more concentrated and make the local sensitivity of the data

the same as the overall sensitivity, which facilitates the appli-

cation of differential privacy.

We transform data into a matrix of m ∗ n, using x1, . . . , xn
to represent each sample, a1, . . . , an to represent each

attribute, and aij to represent the value of attribute aj of

sample xi.

D =




a11 a12 a13 · · · a1n
a21 a22 a23 · · · a2n
...

...
...

. . .
...

am1 am2 am3 · · · amn


 (12)

We process data by zero-centering. First, calculate the

average of each attribute:

aj =
∑m

i=1 aij
m

(j = 1, 2, . . . , n). (13)

Then, use aij − aj to get zero-centered data:

D =




a11 − a1 a12 − a2 · · · a1n − an
a21 − a1 a22 − a2 · · · a2n − an

...
...

. . .
...

am1 − a1 am2 − a2 · · · amn − an


 . (14)

After zero-centering, we normalize the data. First,

we define the range variable r and then calculate the

maximum difference corresponding to each attribute as

d1, d2, . . . , dn:

dj=max(aij − aj)−min(aij − aj) (j = 1, 2, . . . , n). (15)

Finally, compress the data to the range(− r
2
, r
2
):

D=




(a11 − a1) · r
2 · d1 ·max |ai1 − a1|

· · ·
(a1n − an) · r

2 · dn ·max |ain − a1|
(a21 − a1) · r

2 · d1 ·max |ai1 − a1|
· · ·

(a2n − an) · r
2 · dn ·max |ain − a1|

...
. . .

...
(am1 − a1) · r

2 · d1 ·max |ai1 − a1|
· · ·

(amn − an) · r
2 · dn ·max |ain − a1|




.

(16)

It is noteworthy that r is closely related to the sensitivity in

differential privacy. We can limit the sensitivity by limiting r ,

thus reducing the negative impact of differential privacy on

data availability. In addition, r is flexible. We can find the

optimal solution of r through iterative experiments.

B. THE COMBINATION OF DIFFERENTIAL

PRIVACY AND DECISION TREE

As we all know, regardless of whether it is medical

data or some other form of data, there are always some
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attributes that have a great impact on the classification

results, while others have little impact. One might attempt

to protect the publishing data via differential privacy against

attacks, such as linking attacks, skewness attacks, and back-

ground knowledge attacks. However, if you apply excessive

noise to a vital attribute, data availability will be greatly

reduced (this can be reflected by the test accuracy of the

machine learning model). Therefore, if we can identify

the factors with a large impact on classification results

and then add mitigatory noise to these factors in the pro-

cess of differential privacy, the data availability will be

greatly increased.

Both feature extraction and feature selection can extract

important attributes. Feature extraction methods, such as

PCA, LDA, and SVD, will perform data transformation and

dimension reduction such that the processed data cannot be

published and provide statistical analysis and other functions.

Similarly, with the feature selection methods, we also need

to exclude the methods that will perform data transforma-

tion and dimension reduction. Fortunately, there are still

many methods in feature selection that can obtain impor-

tant features and meet the requirements of data publish-

ing without conducting data transformation and dimension

reduction, such as Relief (Relevant Features) and informa-

tion entropy. These methods can reflect which attributes

are important, but they cannot provide us with a specific

weight value.

CART can statistically demonstrate which factors are par-

ticularly important in a model or relationship in terms of

explanatory power and variance [26]. Moreover, CART is

constructed by feature selection, and each node is based

on the Gini index to select the most important parti-

tion attributes. By building CART, we can clearly analyze

which attributes are important by observing the attributes

of nodes. Then, by initializing the weight of the decision

tree, we can obtain the specific weight value correspond-

ing to each attribute and combine it with differential pri-

vacy (e.g. (19)) to realize the process of adding different

levels of noise to different important attributes to reduce

the negative impact of differential privacy on data avail-

ability. It is worth mentioning that this method is simple

and fast.

1) THE PROCESS OF INITIALIZING ATTRIBUTE WEIGHTS

First, we use the data that have been normalized as the

training data of CART to get one decision tree and compute

the depth of the tree as d . Then, we assign a weight value

of d − 1 to the attribute that is on the first layer of the

tree, assign a weight value of d − 2 to attributes that are

on the second layer of the tree, and so on, with the weight

decreasing progressively with each layer. Next, we calculate

the total weight of each attribute asW1,W2, . . . ,Wn. Finally,

we normalize each weight. For example:

From Fig. 3, we give each layer a weight and calculate the

weight of each attribute. We can calculate that the weight of

a1 is 5 (3+ 1+ 1) and then assign this value to W1.

FIGURE 3. Initializing weights based on CART.

Normalize eachweight according to the following formula:

Wi =
Wi∑n
j=1Wj

(i = 1, 2, . . . , n). (17)

2) USING THE WEIGHT OF EACH PROPERTY TO INFLUENCE

DIFFERENTIAL PRIVACY

Although traditional differential privacy can provide enough

privacy guarantees for publishing data, the data availability

will drop rapidly. As seen from the differential privacy for-

mula (2), when ε is fixed, the magnitude of1f is proportional

to the magnitude of the final added noise. f contains many

functions, such as finding the sum, average, and maximum.

In security analysis, we usually regard f as a summation

function. Before the data are processed by normalization,

the local sensitivity is different. However, after normalization

processing, the values of all local and global sensitivities

are unified to r . For two datasets with only one record dif-

ferential, only when the different records correspond to the

maximum and minimum, respectively, will1f be maximized

and its value is r (1f = r). Then, when r in normalization is

fixed, that is, when 1f is fixed, we use the attribute weights

Wi calculated in the previous step to impose different noise

on different attributes ai according to formula (20). This is

different from the traditional method in which all attributes

impose the same level of noise regardless of the importance

of attributes to classification. Therefore, in our method, if an

attribute has a greater impact on the classification results,

it will get more moderate noise, thus reducing the negative

impact of traditional differential privacy and balancing data

availability with privacy security.

The original differential privacy formula is:

Pr[K(d) ∈ S] ≤ eεPr[K(d ′) ∈ S]. (18)

Its noise adding formula is:

K(d) , f (d)+ Lap(0,
1f

ε
). (19)

We implement DPDT by improving the traditional noise

adding formula:

K , f (ai)+ Lap(
1f · (1−

√
Wi)

ε
) (i = 1, 2, . . . , n).

(20)

It is noteworthy that the differential privacy with the

Laplace mechanism is used for data publishing, while the
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Gaussian mechanism is adopted in the DPMB algorithm

for model publishing in the process of gradient descent in

the training model. Mixed use of the two mechanisms can

complicate data and models and enhance their security.

C. DIFFERENTIALLY PRIVATE MINI-BATCH GRADIENT

DESCENT ALGORITHM

In recent years, many attacks on models have been put for-

ward such as the MI attack [8] and membership inference

attack [9]. Through these attacks, an adversary may be able to

extract parts of the training data. Thus, many people attempt

to protect the privacy of training data by conducting research

only on the final parameters of the training process. However,

the same as for the protection of published data, our problem

is also that the availability of the model will be destroyed if

we add overly conservative noise to parameters on the basis

of the worst-case analysis.

Therefore, we use the DPMB algorithm to solve this prob-

lem and, in particular, combine the moments accountant with

it. In this part, we use a variant differential with the Gaussian

mechanism.

The variant differential privacy formula is:

Pr[K(d) ∈ S] ≤ eεPr[K(d ′) ∈ S]+ δ. (21)

Its noise adding formula is:

K(d) , f (d)+N (0, S2(f ) · σ 2). (22)

Algorithm 1 simply introduces the process of finding the

optimal θ by reducing the loss function L(θ ). Unlike tradi-

tional MBGD, we add noise to gradients for privacy protec-

tion. At the same time, the l2 norm is used to avoid model

overfitting. Eventually, we calculate the privacy loss based on

the moments accountant. In Algorithm 1, an epoch contains

M/B iterations, where one iteration requires B samples, B

samples constitute a Big-batch, and a Big-batch contains

B/b batches. Moreover, we use q to represent the sampling

probability, T to represent the total number of iterations in

the training process, and E to represent the number of epochs.

The algebraic relationships of the parameters are as follows:

q = B/M (each epoch consists of 1/q Big-batches i.e.

B/qb batches) and T = E/q. Next, we will describe the

composition of the algorithm in detail.

Norm clipping: To ensure that Algorithm 1 meets the

(ε, δ)-differential privacy, we need to limit the impact of

each individual example by replacing g with g/max(1,
||g||2
R

).

From the above formula, it can be seen that g will be saved in

the case of ||g||2 ≤ R while g will be reduced to R in the case

of ||g||2 > R.

Big-batches: In Algorithm 1, like the general MBGD

algorithm, we calculate the gradient based on a batch of

examples. However, the difference is that we also define a

group called Big-batch. One Big-batch consists of B samples

randomly selected from all samples with sampling probabil-

ity q (q = B/M ). Moreover, Big-batch and batch are two

parameters with a clear division of labor. We calculate the

gradient in batches, and then B/b batches form a Big-batch

Algorithm 1 DPMB (Outline)

Require: A data set consisting of M samples {x1, . . . , xM },
loss functionL(θ ) = 1

M
6iL(θ, xi). Batch size b, Big-batch

size B, gradient norm bound R, initial learning rate η and

total number of iterations T . Initialize θ0 randomly

In one epoch:

for t = 1, 2, . . . ,M/B do

Sampling Bt samples from all samples

for i = 1, 2, . . . ,Bt/b do

Calculate gradient

for j = 1, 2, . . . , b do

gbi (xj)← ∇θtL(θt , xj)

Normalize gradient

gbi (xj)← gbi (xj)/max(1,
||gbi (xj)||2

R
)

end for

gbi ←
1
b
6jgbi (xj)

end for

Add noise

g̃t ← b
B
6i(gbi +N (0, σ 2R2I ))

Reduce learning rate

ηt = 1
2
(1+ cos( tπ

T
))η

Descent

θt+1← ηt g̃t
end for

Ensure: θT

for the addition of noise. It is worth mentioning that an epoch

is composed of M/B Big-batches in the experiment.

Dynamic Change of Learning Rate: Generally,

the learning rate is fixed. However, too high a learning rate

may skip the global optimum, and too low a learning rate

will make the model fall into local optima. We introduce a

dynamic learning rate, which changes with the number of

iterations in the training process. In this manner, we can not

only accelerate the training speed but also find the global

optimum more effectively. The formula for dynamically

changing the learning rate is as follows:

ηt =
1

2
(1+ cos(

tπ

T
))η. (23)

In the above formula, ηt represents the learning rate cor-

responding to the tth iteration and η represents the initial

learning rate. For example, we set η as 1 and T as 300. The

change of learning rate during training is shown in Fig. 4.

D. THE MOMENTS ACCOUNTANT IN DNN

To analyze data privacy, numerous studies have begun to

focus on privacy losses. For the Gaussian noise, according to

the standard arguments [10], the privacy amplification theo-

rem [30] and the strong composition theorem [18], we can get

the best overall bound. Nevertheless, without considering the

particular noise distribution, the strong composition theorem

can be loose. The moments accountant proposed by Abadi

et al. in 2016 [23] is beneficial in both theory and practice,
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FIGURE 4. Dynamic change of learning rate.

so we use it to keep track of a bound on the moments of the

privacy loss in DNN.

The most difficult task is to calculate αKt
(λ) for each step.

For the Gaussian mechanism, α(λ) is defined as α(λ) =
logmax(E1,E2). In the above formula,

E1 = Ez∼µ0
[(µ0(z)/µ(z))

λ], (24)

E2 = Ez∼µ[(µ(z)/µ0(z))
λ]. (25)

µ0 denotes the probability density function (pdf) ofN (0, σ 2),

and µ1 indicates the pdf ofN (1, σ 2). Moreover, we define µ

and let µ = (1− q)µ0 + qµ1.

Then, we can compute α(λ) by numerical integration and

get the asymptotic bound

α(λ) ≤ O(q3/σ 3)+ q2λ(λ+ 1)/(1− q)σ 2. (26)

Next, by (7) mentioned in Section II, we can bound αK(λ)

at each step and overall and we can use the tail bound to

convert the moments bound to the (ε, δ)-differential privacy

guarantee through (8).

Moreover, the details of comparing the strong composi-

tion theorem and the moments accounts can be found in

the paper [23].

IV. EXPERIMENTAL RESULTS

This section evaluates the normalization, DPDT and DPMB

algorithms. We choose one popular medical data set:

Diabetes [1].

A. EXPERIMENTAL MODEL

This subsection can be divided into two parts. The first part

is the experimental model of DPDT for publishing data.

The second part is the experimental model of DPMB for

model publishing.

1) THE MODEL OF DPDT

We use the weight of each property to influence differential

privacy, and construct CART in scikit-learn with normalized

data as the training data to calculate weights. Then, after

calculating the weight of each attribute based on CART,

we use the method mentioned in Section III to impose dif-

ferential privacy on the data with weighted influence. Next,

we construct a deep neural network (named Deep_A) in Ten-

sorFlow and PyTorch with L(w) = 1
2m

∑m
i=1 ||y′i − yi||22 +

λ
2m

∑L
l=2 ||w||22 (mean square error and l2 norm) as the loss

function and with the general MBGD algorithm. Finally we

use differentially private data as training data to observe

data availability through the deep neural network we just

constructed.

2) THE MODEL OF DPMB

We have implemented DPMB algorithms mentioned in Sub-

section III-C in a new neural network named Deep_B

by TensorFlow and PyTorch. We construct a sanitizer ,

which safeguards privacy via gradient pretreatment, and

privacy_accountant [23], which follows the tracks of

the privacy loss over the procedure of training. Other

model information regarding Deep_B has been provided in

Subsection II-D.

We utilize DPMB_Optimizer , which finds the mini-

mum point of the loss function via DPMB, and DPTrain,

which iteratively calls DPMB_Optimizer via the moments

accountant to limit the total privacy loss. The code of

DPMB_Optimizer and DPTrain is detailed in [23].

B. NORMALIZING THE DATA

To facilitate the use of differential privacy and reduce data

variance for publishing data, we have normalized the data.

We compare the availability of raw data with that of processed

data for machine learning through Deep_A, with ReLU as

the activation function, setting the batch size b = 20, range

variable r = 4, dropout = 0.4, and learning rate η = 0.01.

From Fig. 5, it can be distinctly seen that both the testing

accuracy of processed data and the fitting speed are much

better than those of the original data. It can be observed that

the availability of medical data for machine learning may be

truly poor because of the large variance of the data or the

problem of data quality. Normalizing themedical data exactly

can improve both model accuracy and convergence rate.

C. DPDT WITH THE LAPLACE MECHANISM

FOR DATA PUBLISHING

To ensure balance between the availability and privacy of

medical data, we add mitigated noise that is influenced by

the weight coefficient of each property to the medical data

during the process of differential privacy based on the detailed

methods in Section III.

We divide privacy security into three scales, which are

called small (ε = 8), medium (ε = 2) and large (ε = 0.5).

Here ε represents the privacy parameters of differential pri-

vacy, reflecting the magnitude of the noise applied to the

data. Then we use Deep_A, whose initial learning rate η

is set to 0.01 and batch size b is set to 20 to observe the

testing accuracy of the noisy data to reflect data availability

and set the sensitivity of differential privacy at r (1f = r)
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FIGURE 5. Raw medical data and normalized medical data.

FIGURE 6. Comparison of model testing accuracy between DP and DPDT.
In this experiment, we use the normalized data as training data of
Deep_A. What’s more, the ε level is set at 0.5, 2 and 8 in turn.

which is imbued with a specific value in the process of

normalizing. What’s more, the training data of Deep_A is the

normalized data. It is worth mentioning that the learning rate

will decrease with the increase of epoch as in Fig. 4.

Comparing the solid and dotted lines in Fig. 6, we might

clearly find that direct application of differential privacy to

data does provide strong privacy guarantees for data, but

at the same time, it does greatly reduces data availability

and exhibits the problem that high data availability leads

to poor security and high security almost leads to data

unavailability. However, our approach has achieved remark-

able results in the effective combination of security and data

availability.

In terms of security, DPDT does add less noise than tradi-

tional differential privacy when setting the same ε. In other

words, our approach has a slight loss in model security com-

pared with traditional differential privacy. We try to convert

ε in DPDT into true ε corresponding in differential privacy

FIGURE 7. Comprehensive analysis of the security and accuracy of DP
and DPDT.

while keeping the noise at the same level. First, we transform

Lap(
1f ·(1−

√
Wi)

ε
) (20) into Lap(

1f

ε/(1−
√
Wi)

). Then, the value of

1f is fixed through normalization. Thus, if we set the value

of ε and calculate the value of Wi, we can get the noise we

need to add. In our experiment, the attribute of the diabetes

pedigree function (a7) has the highest weight (W7) among all

attributes.We take this attribute as an example to calculate the

safety loss of DPDT compared with traditional differential

privacy. Through CART, we calculate W7 = 58/357. If we

set ε = 0.5 in DPDT, then the true ε of a7 correspond-

ing to traditional differential privacy is 0.84 (calculated by

ε/(1−
√
W7)). That is, when ε is 0.5, the noise added by

DPDT to the attribute of a7 is similar to that applied by tradi-

tional differential privacy when ε is 0.84. After that, we cal-

culate the values of true ε of the other attributes. Finally,

we average the true ε of all attributes as the final true ε cor-

responding to differential privacy. In this manner, the values

of true ε corresponding to differential privacy are 0.77, 3.09

and 12.37 when ε in DPDT is set to 0.5, 2 and 8 respectively.

Therefore, in terms of security and accuracy, we make a com-

prehensive analysis of DPDT and traditional DP by Fig. 7.

From Fig. 7, we can see that data availability (represented

by classification accuracy) has been greatly improved with

a slight loss of security. At the same time, comparing DPDT

(0.5) and DP (2) in Fig. 7, we can find that DPDT can provide

more powerful privacy protection under the same testing

accuracy.

After verifying the availability of differentially private data

that is influenced by weights (calculated by CART), we per-

form the inverse operation of normalizing to restore the data

and publish the restored data, while publishing (a1, . . . , an),

maximum difference (d1, . . . , dn), range variable (r) and

one black-box that can apply DPDT to data as well.

In this manner, for new data (previously not in a published

dataset), we can normalize it according to published param-

eters and apply the black-box to making it consistent with

published data.
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FIGURE 8. Results on the accuracy for DPMB in Deep_B. We use the data,
which have been applied to DPDT with ε = 2, as training data. In this
experiments, the ε level is set at 0.5, 2 and 8 in turn.

D. DPMB ALGORITHM WITH A GAUSSIAN MECHANISM

FOR MODEL PUBLISHING

The DPMB algorithm is proposed to prevent various model

attacks while the moments accountant provides a tighter

bound on the privacy loss. We use the data that have been

applied to DPDT with ε = 2 as training data in Deep_B

to compare with the normal MBGD algorithm in Deep_A.

Moreover, we show the dynamic changes between privacy

parameters and testing accuracy via the moments accountant.

In our experiment, we divide the data into the training

set and test set with proportions of 500 : 268. In addition,

we utilize q = 0.1, δ = 10−5, Big-batch size B = 50, batch

size b = 10, initial learning rate η = 0.01, a 200-unit ReLU

hidden layer, and a 20-unit ReLU hidden layer. To reduce

sensitivity, we choose a value for C by taking the median

of the norms of the unclipped gradients over the course of

training. Like the upper part, we define three levels of noise

scale, which are small (σ = 2), medium (σ = 4), and large

(σ = 8).

Fig. 8 displays the results for different noise levels. In each

plot, it shows how the training accuracy and testing accu-

racy change with epochs. In turn, we achieve 83%, 87%,

and 89% testing accuracy for (0.5, 10−5), (2, 10−5), and
(8, 10−5)-differential privacy, respectively.

We can discover that the difference between the model

accuracy in the training and testing is so small by applying

DPMB, which conforms with the theory that differentially

private training generalizes well [31]. In contrast, the gap

between training and testing accuracy is evidence of over

fitting, and it will increase with the number of epochs. More-

over, we surprisingly find that the accuracy becomes higher

when we apply a small noise, which is consistent with what

Ian Goodfollow said: differential privacy is the friend of

machine learning.

FIGURE 9. Accuracy of various (ε, δ) privacy values on the Diabetes
dataset.

TABLE 1. Summary of results.

Moreover, through the moments accountant, we can get a δ

value for any given ε and we record the accuracy for different

(ε, δ) pairs in Fig. 9. This intuitive representation allows us

to select appropriate privacy parameters while ensuring the

model accuracy.

Finally, all experimental results, including those not men-

tioned in the text but achieved, are summarized in Table 1.

In addition, S, MED and L represent small, medium and large

noises corresponding to those above, respectively.

From all of the experiments and Table 1, we can observe

the following conclusions.

1. The quality of medical data is often mediocre, and

normalizing data can greatly improve data availability.

2. When applying differential privacy to data, DPDT can

greatly increase data availability by considering the weight

of attributes on the premise of guaranteeing data privacy.

3. The model can be protected at low accuracy loss via the

DPMB algorithm and the moments accountant, and we can

have direct guidance to expediently choose privacy parame-

ters via a statistical chart.

V. RELATED WORK

Since the late 1990s, both privacy-preserving data publishing

and machine learning have been areas of energetic work from

several research groups.

Early research on privacy preservation studied the secure

function evaluation (SFE) [32] and secure multiparty com-

putation (MPC) [33], which focus on minimizing the infor-

mation revealed. However, they cannot guarantee that the

information will not leak at all, so we are more concerned
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with how to protect personal privacy under the assumption

that information is leaked.

With the development of technology and theory,

K-anonymity was proposed by Sweeney et al. in 2002 [5].

Subsequently, L-diversity [6], T-closeness [7] and

M-invariance [34] were proposed. They achieved good results

under the assumption that the attacker has no or only slight of

background knowledge of sensitive information. Generally,

these early privacy models have two shortcomings: one is

the lack of a strict mathematical definition of privacy pro-

tection, which makes it impossible to quantify the degree of

privacy protection or disclosure; the other is the hypothetical

restriction on the background knowledge of the attacker.

However, we in fact cannot predict how much background

knowledge the attacker has. Therefore, we expect a privacy

model that can strictly define the degree of privacy protection

mathematically without assuming the background knowledge

of the attacker.

In 2006, Dwork et al. proposed the definition of differen-

tial privacy [13]. This method meets the needs of previous

researchers and can provide strong privacy protection for data

privacy. The research on differential privacy can generally

be divided into two directions: one is data publishing under

privacy protection [13], [18], [35]–[45]; the other is privacy

protection for machine learning [29], [40], [46]–[54].

For data publishing, many methods for set-valued data

publishing [42], [43] have been proposed for data mining,

statistical query, data analysis, etc. rather than for classifi-

cation. In addition, there are some secure data publishing

methods that are effective but not applicable to medical data,

such as [44]. Because the sensitive data contained in medical

data is not only the final label but also various sensitive

attributes, the method in [44] requires a great limitation on

the attackera̧ŕs background knowledge, and the security level

is insufficient. However, not much is found in papers that

address the privacy preservation to achieve the goal of clas-

sification [45], [54]. The content of [45] is the closest to our

work, and the data are also medical data. In [45], anonymity

technology and differential privacy are combined to protect

published medical data, which enhances the security of the

published data. Then, the protected data is treated as the

training data of the C4.5 model to observe the classification

effect, and the classification accuracy is enhanced by increas-

ing the taxonomy tree depth (TTD). The results in [45] show

that the data quality of training data processed by differential

privacy is damaged, and thus the classification accuracy is

greatly reduced. To solve this problem, we adopt two meth-

ods, normalization and DPDT, to improve the quality of data

and reduce the negative impact of differential privacy on

data availability. Thereupon, data availability and privacy can

achieve a better balance.

For machine learning, differential privacy has been com-

binedwith decision tree [51], [52] andwith logistic regression

by Chaudhuri and Monteleoni [53]. We attempted to use

logistic regression and decision tree to train Diabetes [1], but

we obtained a very low training accuracy of 75%. Therefore,

we combine differential privacy and deep learning to give

training data stronger guarantees in the case of slight accuracy

loss via the DPMB algorithm, which achieves good results.

Moreover, the combination of MPC and differential privacy

is widely used [47]–[50]. They build a distributed aggregation

classifier and divide the sensitive information into several

parties as training data, thus avoiding prohibitive amounts of

noise and ensuring model validation. However, in our experi-

ment, the total number of our training data points is only 500.

Because of the small amount of training data, the establish-

ment of a distributed aggregation classifier will only cause

the model to under-fit. In terms of noise limitation, we use

the moments accountant [23] to get a much tighter estimation

of the privacy loss to avoid excessive noise addition, which is

more effective and convenient for a small amount of training

data. In terms of security, even with the model generated by

the differential private algorithm, it is still possible to perform

training data disclosure [54]. Hence, we use DPDT protected

data instead of sensitive data as training data, thus further

enhancing the security of the data. We prefer that training

data and models can be published for research without reveal-

ing personal privacy, while sensitive data cannot be released

directly. In terms of model complexity, our model is simpler

and equally effective.

VI. CONCLUSION

In this paper, we use normalization to improve data quality,

achieving 93% testing accuracy which is 11% higher than

that before without data processing. In addition, we achieve

83%, 88% and 91% testing accuracy by defining the variable

r in normalization, by determining the method of calculating

the weight of each attribute and by changing the traditional

differential privacy. We can see that DPDT offers a more

significant improvement in data availability than normal dif-

ferential privacy. Moreover, we use the data processed with

normalization and DPDT as training data, proving that the

model can obtain much tighter estimates on the overall pri-

vacy loss and give training data stronger guarantees in the

case of slight loss of accuracy via the DPMB algorithm

and the moments accountant. More interestingly, the DPMB

algorithm can effectively prevent over-fitting, and slightly

improve the accuracy of the model in some uncertain situa-

tions. Through the above analyses, it can be seen that we have

achieved a better balance between privacy and availability,

and initially solved the problem of privacy disclosure in data

and model publishing.

In addition, the model and training data can be further

improved. In particular, wewould like to explore other classes

of deep networks such as the combination of LSTM and

CNN, which may contribute to our experience. The combi-

nation of MPC, differential privacy and the moments accoun-

tant may better limit privacy loss and noise addition for a

large dataset. Moreover, we would like to achieve additional

improvements in training datasets. Many training datasets

contain more data than Diabetes [1], and the accuracy of the

model will be improved by the amount of data. However,
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public medical datasets with such a large amount of data are

unfortunately difficult to obtain.
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