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Social networks can be analyzed to discover important social issues; however, it will cause privacy disclosure in the process. �e
edge weights play an important role in social graphs, which are associated with sensitive information (e.g., the price of commercial
trade). In the paper, we propose theMB-CI (Merging Barrels and Consistency Inference) strategy to protect weighted social graphs.
By viewing the edge-weight sequence as an unattributed histogram, di	erential privacy for edge weights can be implemented based
on the histogram. Considering that some edges have the same weight in a social network, we merge the barrels with the same count
into one group to reduce the noise required. Moreover, �-indistinguishability between groups is proposed to ful
ll di	erential
privacy not to be violated, because simple merging operation may disclose some information by the magnitude of noise itself.
For keeping most of the shortest paths unchanged, we do consistency inference according to original order of the sequence as an
important postprocessing step. Experimental results show that the proposed approach e	ectively improved the accuracy and utility
of the released data.

1. Introduction

Social networks, such as Facebook and Twitter, have played
an important role in people’s daily social interaction. Social
network analysis attempts to discover important social issues,
including disease transmission, emotional contagion, and
occupational mobility. Due to the need of scienti
c research
and data sharing, social networks are supposed to release
data without leaking privacy information. Privacy can be
guaranteed by disturbing or encrypting the original data, or
doing anonymous processing before releasing the data [1–3].

Privacy is a charged term, meaning di	erent things
to di	erent people. In social networks, the edge weights
may re�ect the frequency of communication, the price of
commercial trade, the intimacy of relationship, and so forth,
which are associated with sensitive information. A typical
example is an intelligence network, in which edge weights
denote the contact frequencies of two institutions. Too-
frequent communications may imply potential problems.
Another example is a commercial trade network, in which
edge weights indicate the transaction price between two
companies. Most managers would be reluctant to reveal a

commercial secret to their adversaries, due to the 
erce
competition. Our goal is to protect the edge weights in social
networks without leakage while preserving as much utility as
possible.

Das et al. [4] considered edge-weight anonymization in
social graphs. �ey built a linear programming (LP) model
to preserve the properties of the graph, for example, the
shortest paths, �-nearest neighbors, and minimum spanning
tree, which are expressible as linear functions of the edge
weights. Liu et al. [5] considered preserving the weights
of some edges, while trying to preserve the shortest-path
lengths and exactly the same shortest paths of some pairs
of nodes. �ey developed two privacy-preserving strategies:
Gaussian randomization multiplication and a greedy per-
turbation algorithm based on graph theory. Costea et al.
[6] analyzed how di	erential privacy can be used to protect
the edge weights in graph structures. Nonetheless, simply
adding Laplacian noise to the edge weights would distort the
accuracy very signi
cantly. Our approach is to disturb the
edge weights via di	erential privacy for protection, which
e	ectively improves the accuracy and utility of the released
data.
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Hayy et al. [7] showed that it is possible to signi
cantly
improve the accuracy of a general class of histogram query
while satisfying di	erential privacy. �e approach carefully
chooses the queries to evaluate, and then exploits the con-
sistency constraints that should hold over the noisy output.
A�er a postprocessing phase, the 
nal output is di	erentially
private and consistent, but, in addition, it is o�en much
more accurate. �e technique was used to very precisely
estimate the degree sequence of a graph, which is an impor-
tant instance of an unattributed histogram. Inspired by the
above, we treat the edge-weight sequence as an unattributed
histogram in the proposed approach, which is a key step in
this paper. To better keep the shortest paths unchanged, we
do consistency inference according to original order of the
sequence.

Xu et al. [8, 9] proposed two algorithms, namely, Noise-
First and StructureFirst, for computing di	erentially private
histograms. �e main di	erence lies in the relative order of
the noise injection and the histogram construction. Going
one step further, they extended both solutions to answer
arbitrary range queries. StructureFirst constructs an optimal
histogram based on the original data. �en, the algorithm
randomly moves the boundaries between the barrels, which
adds noise to the structure of the histogram. A�er setting
down all the boundaries, Laplace noise is added to the
average counts. �us, this method introduces two kinds of
errors: construction error and noise error. For the speci
c
application, our strategy is to merge all barrels with the
same count into one group and then add Laplace noise
to each count, so the proposed approach only has noise
error. In the step of merging barrels, to prevent leaking
some information by the magnitude of the noise itself,
inspired by literature [10, 11], we propose the de
nition of �-
indistinguishability between groups to guarantee di	erential
privacy.

2. Background

In this section, we review the de
nition of di	erential privacy
and its implementation mechanism. �en, we clarify the
concepts of an unattributed histogram versus a conventional
histogram.

2.1. Di�erential Privacy. Dalenius [12] proposed an issue for
statistical databases: no one should learn anything about an
individual while accessing the database. Nevertheless, the
type of privacy that is an absolute guarantee about disclo-
sures cannot be achieved because of auxiliary information.
Di	erential privacy [13] sidesteps this problem to the related
ones; any givendisclosurewill bewithin a smallmultiplicative
factor. Note that a bad disclosure may still occur, but it will
not be caused by the presence of an individual’s data in the
database. Di	erential privacy can hide the in�uence of a
single record, that is, the output probability of the same results
will not change signi
cantly, whether a record is in the data
set or not. Hence, di	erential privacy makes no assumptions
about the background knowledge of any potential adversary.

However, we still face the challenge of making the tradeo	
between protecting privacy information and maintaining the
data utility.

Di	erential privacy was presented in a series of Dwork’s
papers [14–18] and its implementation mechanism was pre-
sented in the literature [19, 20]. McSherry [21] pointed
out that a di	erentially private algorithm for some com-
plex privacy problem satis
es two combination proper-
ties. Recently, di	erential privacy has mainly been used in
data publishing, including releasing histograms [7–9, 22–
24] and graph data [22, 25–28], and also in data mining
[29–31].

De�nition 1. A randomized function � gives �-di	erential
privacy if, for all data sets�1 and�2 di	ering on at most one
element, and all � ⊆ Range(�),

Pr [� (�1) ∈ �] ≤ exp (�) ∗ Pr [� (�2) ∈ �] . (1)

Here, � is a small positive value with which one can
balance the tradeo	 between privacy and accuracy. Rela-
tively, if � is smaller, the privacy is higher and accuracy
is lower, and vice versa. Usually, � is chosen by the user
administering the privacy policy; therefore, selecting a rea-
sonable � is worth further study. Moreover, an algorithm
that provides �-di	erential privacy for neighboring databases
di	ering on a single record also provides ��-di	erential
privacy [14] for neighboring databases di	ering on at most �
records.

To achieve di	erential privacy, a certain amount of
random noise must be added to the answer of the
query set. Intuitively, its magnitude should cover up the
largest change that a single record could have on the
output.

De�nition 2. Let � be a sequence of counting queries. �e
sensitivity of � is denoted by Δ�:

Δ� = max
�1 ,�2

����� (�1) − � (�2)����1 . (2)

In particular, a simple counting query has Δ� = 1.
For example, consider a private personnel database with an
attribute column to indicate marital status. An analyst may
query the number of married persons, �, and the number of
unmarried persons, �, so this query set (�, �) has Δ� = 1,
because adding or removing one record changes exactly one
output by a value of one. Furthermore, if he simultaneously
queries the total number of people, �, the query set (�, �, �)
has Δ� = 2, because one change could a	ect two outputs,
each by a value of one.Note that, in the secondquery set, there
exist constraints, � = �+�, by which someone can search for
the closest consistent solution to boost the accuracy of the
results.

�e Laplace mechanism [19], the most common noise-
adding mechanism, disturbs the outputs by adding noise
produced by a Laplace distribution to achieve di	erential
privacy.
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Proposition 3. Let � be a query sequence of length �. �e
randomized algorithm�, which takes database� as input and
outputs the following vector, satis�es �-di�erential privacy.

�(�) = � (�) + ⟨Lap(Δ�� )⟩� . (3)

Here, ⟨Lap(Δ�/�)⟩� denotes a �-length vector of i.i.d.
(independent and identically distributed) samples from a
Laplace distribution with scale Δ�/�. In other words, the
magnitude of the noise is proportional to Δ�, and inversely
proportional to �. Proof of the proposition can be found in the
literature.

Sometimes we need to combine several di	erentially
private mechanisms in complex privacy issues as in this
paper, sowe can take advantage of the combination properties
[21] of di	erential privacy.

Proposition 4. Let each � � provide ��-di�erential privacy. A
sequence of� �(�) over the database� providesΣ��-di�erential
privacy.

It is the sequential theorem of di	erential privacy. Intu-
itively, � can be split among a sequence of di	erentially private
mechanisms and the 
nal output still provides di	erential
privacy.

2.2. Unattributed Histogram. A conventional histogram
adopts a box-dividing technology, a popular form for data
reduction, to approximate the data distribution. It divides
ranged attributes into disjoint subsets or barrels, which
usually are continuous intervals for a given attribute, and
then computes counting queries for each speci
ed range.
Distinguishingly, in an unattributed histogram, each barrel
only represents a single attribute value, that is, a unit-length
range. An important instance is the degree distribution of
networks, in which each barrel is the degree of one node, and
the histogram is simply the sorted degree sequence.

In the context of our application, 
rstly consider a com-
munication database �, organized as a set of records ( , !),
in which a record represents one communication between
two addresses. Whenever a communication occurs, a record
is added to the database. Next, this database is converted
to a multigraph. If the same record ( , !) appears " times,
there are " edges between  and ! in the graph. Finally,
the multigraph is transformed into a weighted graph, in
which the edge weight is the number of edges, ", between
any two vertices. �erefore, we view each edge weight as
one barrel, and the edge-weight sequence as an unattributed
histogram.Naturally, di	erential privacy for edgeweights can
be implemented based on the histogram.

3. Methods

In this section, we detail the Lap strategy and the MB-CI
(Merging Barrels and Consistency Inference) strategy, which
are used to perform di	erential privacy for edge weights.
Furthermore, the algorithmofMB-CI strategy is provided. To

evaluate and quantify the error of the added noise, a formula
is given using the common Squared Error to calculate the
expectation of the possible randomness.

De�nition 5. For a primitive edge-weight sequence � and its
noisy sequence �∗, the introduced error (�∗) is #(∑��=1(�∗� −��)2). Here, % is the length of the sequence.

3.1. Lap Strategy. To achieve di	erential privacy for edge
weights, the naive strategy, called Lap strategy, is to directly
add Laplace noise without any processing.

�eorem 6. �e edge-weight sequence � has Δ� = "�	
 −"���, "�	
 is the maximum of edge weights, and "��� is the
minimum of edge weights.

Proof. Given a graph &1 and its neighbor graph &2 di	ering
on at most one edge weight, the edge-weight sequence � has
only one value changed by at most"max −"min and all other
values kept the same. According to De
nition 2, the edge-
weight sequence � has Δ� = "max − "min. For simplicity,"max − "min is denoted by Δ�.

On the basis of Proposition 3, the scale of Laplace noise
added is Δ�/�, so each edge weight should add Lap(Δ�/�).
�e error in this strategy can be computed as follows:

Error (�∗) = #( �∑
�=1

(�∗� − ��)2)

= #(% ∗ (Lap(Δ�� ))2)
= % ∗ #(Lap(Δ�� ))2

= % ∗ 6(Lap(Δ�� )) = 2%�2 (Δ�)2 .

(4)

3.2. MB-CI Strategy. We propose a novel strategy which
needs less noise to achieve di	erential privacy for edge
weights; for the global utility, it keeps most of the shortest
paths unchanged.�e proposedMB-CI strategy includes two
key steps, merging barrels and consistency inference.

3.2.1. Merging Barrels. Consider that in a social network,
especially a large one, some edges or even more should
have the same weight. Viewing the edge-weight sequence as
an unattributed histogram, we merge barrels with the same
count into one group to reduce the added noise. It does not
introduce histogram construction error, as the value of each
barrel does not change a�er merging. �en, we can add less
Laplace noise to each barrel merged, while adding the same
amount as the Lap strategy to other ones.

�eorem 7. �e noise added to every merged barrel is
Lap(Δ�/(7 ∗ �)); 7 is the number of merged barrels.
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Figure 1: A simple weighted graph &.

Proof. Given a graph &1 and its neighbor graph &2 di	ering
on at most one edge weight, which will a	ect at most one
group by value Δ�, and Δ�/7 for every barrel in the
group, hence, the noise added to every merged barrel is
Lap(Δ�/(7 ∗ �)).

Others unmerged will still need to add Lap(Δ�/�) as the
Lap strategy does.�e error of this approach can be calculated
as follows. Given %weights, merging into � groups, � ≤ %, the

rst group has %1 values, and so forth, and the �th group has%� values, and %1 + %2 + ⋅ ⋅ ⋅ + %� = %. �en,

Error (�∗) = #( �∑
�=1

(�∗� − ��)2) = #( �1∑
�=1

(�∗� − ��)2

+ �2∑
�=1

(�∗� − ��)2 + ⋅ ⋅ ⋅ + ��∑
�=1

(�∗� − ��)2) = #(%1
∗ (Lap(Δ�%1� ))2 + %2 ∗ (Lap(Δ�%2� ))2 + ⋅ ⋅ ⋅
+ %� ∗ (Lap(Δ�%��))2) = %1 ∗ #(Lap(Δ�%1� ))2

+ %2 ∗ #(Lap(Δ�%2� ))2 + ⋅ ⋅ ⋅ + %�
∗ #(Lap(Δ�%��))2 = %1 ∗ 6(Lap(Δ�%1� )) + %2
∗ 6(Lap(Δ�%2� )) + ⋅ ⋅ ⋅ + %� ∗ 6(Lap(Δ�%��))
= ( 2%1�2 +

2%2�2 + ⋅ ⋅ ⋅ + 2%��2) (Δ�)2 = 2�2 ( 1%1
+ 1%2 + ⋅ ⋅ ⋅ + 1%�) (Δ�)2 ≪ 2:�2 (Δ�)2

≤ 2%�2 (Δ�)2 .

(5)

Moreover, di	erential privacy may be violated if we
simply merge all barrels with the same count into one
group, because the magnitude of the noise itself may disclose
some information. �erefore, �-indistinguishability between

groups is proposed to guarantee that these groups require
the same amount of noise. �at is, these groups are indis-
tinguishable only from the aspect of the amount of noise. In
fact, we compromise in the merging step. We merge them
while guaranteeing �-indistinguishability between groups;
otherwise, we do nothing.

De�nition 8. �e groups are said to satisfy �-
indistinguishability for an integer � ≥ 1, if the number
of groups with the same amount of barrels is greater than or
equal to �.

For example, a simple weighted graph is shown in Fig-
ure 1, the range of weights is limited in 1∼25."1,2 = "2,3 = 6,"4,5 = "5,6 = 10, and the other weights are di	erent. If we set� = 2, "1,2 and "2,3 can be merged into one group and "4,5
and "5,6 into the other group. �us, there are two merged
groups, and, with the noise added to"1,2,"2,3, and"4,5,"5,6
is Lap(12/�). If we set � = 3, there are no merged groups and
the noise added to eachweight is Lap(24/�). Suppose that"2,5
is 13 instead of 5 in Figure 1; then "2,5 = "3,5 = 13. When� = 2 or 3, there will be three merged groups in both cases,
and for larger � there will be no merged groups.

3.2.2. Consistency Inference. Here, we do consistency infer-
ence according to original order of the sequence as an impor-
tant postprocessing step. �e disturbed sequence should
satisfy the original order to maintain consistency, which also
means the relative weights between each edge do not change.
Intuitively, the shortest paths will not go around easily but
tend to be unchanged. It is worthmentioning that the process
is only based on the known order, without accessing the
private database; hence, there is no privacy leakage.

As a matter of fact, this problem is an instance of isotonic
regression, and the following min-max formula [32] is one of
the solutions.

Proposition 9. Let �[B, C] be the mean of elements from
indexes B to C. Denote D� = min
∈[�,�]max�∈[1,
]�[B, C] andE� = max�∈[1,�]min
∈[�,�]�[B, C]. �e minimum D2 solution is
unique and given by D� = E�.

In the literature [22], Hay et al. provided theoretical proof
of the error brought by consistency inference; the results of
derivation showed that it barely hurts the accuracy. However,
the results of experiments showed that it could improve the
accuracy obviously.
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Input: Raw weighted-graph database �, privacy budget �, parameter �
Output: Disturbed weighted-graph database �∗
// � and �∗ contain three column vectors �, #, ", and �, #, "∗, respectively.
// � represents the starting points of edges. # indicates the ends.
// " and "∗ store the original edge weights and the disturbed ones.
(1) Scan � once to compute three vectors 7, �, F:7� ← Count("�), �� ← Count(7�), F� ← Sort("�).
(2) � = �1 + �2
(3) �∗� = �� + Lap(4/�1)
(4) for B = 1 to H
(5) if �∗� >= � then
(6) "∗� = "� + Lap(Δ�/(7� ∗ �2))
(7) else
(8) "∗� = "� + Lap(Δ�/�2)
(9) end if
(10) end for
(11) if min("∗) < 0 then "∗ ← "∗ − min("∗) + 1
(12) for B = 1 to H
(13) K∗� = "∗(F�)
(14) end for
(15) while B < H
(16) C = B + 1
(17) while C < H
(18) if �[B, C − 1] < K∗�−1 or �[B, C − 1] > K∗
 then
(19) C = C + 1
(20) else
(21) K∗� ∼ K∗
−1 ← �[B, C − 1]
(22) end if
(23) end while
(24) B = C
(25) end while
(26) for B = 1 to H
(27) "∗(F�) = K∗�
(28) end for
(29) return �∗

Algorithm 1: Merging Barrels and Consistency Inference (MB-CI) algorithm.

3.2.3. Algorithm of the MB-CI Strategy. Algorithm 1 is the
complete algorithm of the MB-CI strategy.

AlgorithmMB-CI presents entire process of the proposed
strategy. Line 1 scans � once to compute three vectors, 7,�, and F. Each element 7� of 7 stores the count of the
corresponding W i, which is also the number of barrels with
the same count. Each element �� of � stores the count of the
corresponding 7� to estimate whether to merge or not. Each
element F� of F points to the index of the corresponding"� in the original order. Line 2 allocates privacy budget �
according to the proportion of 2 : 8 in the experiments. �at
is, �1 = 0.2 ∗ �; �2 = 0.8 ∗ �. To randomly choose groups
to merge, Line 3 adds Laplace noise to each �� according to
�eorem 10.

�eorem 10. �e vector � has Δ� = 4.
Proof. Given a graph &1 and its neighbor graph &2 di	ering
on at most one edge weight, the vector " has only one value
changed and all other values kept the same. �e vector 7,
storing the count of the corresponding "�, has two values

changed with one plus 1 and the other minus 1. In the same
way, the vector �, storing the count of the corresponding 7�,
has four values changed. According toDe
nition 2, the vector� has Δ� = 4.

Lines 4–10 add Laplace noise to every weight; we need
to test whether it satis
es �-indistinguishability between
groups. If it is true, we merge the barrels, so the amount of
noise should be Lap(Δ�/(7� ∗ �)). Otherwise, Lap(Δ�/�)
is still added, which is equivalent to not merging. Line 11
mainly deals with the negative weight, which is meaningless
and inexistent. Speci
cally, if the minimum of "∗ is less
than zero, we uniformly adjust all the values to subtract the
minimum, rather than simply resetting all the negatives to
zero.�e purpose is not tomandatorily change someweights,
but to ensure that all theweights remain relatively unchanged.
In addition, adding one to the results is tomake theminimum
nonzero; otherwise, it is likely to cancel an edge between two
vertices.

Lines 12–14 generate a vector K∗ that stores the noisy
weights according to the corresponding indexes. Obviously,
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Table 1: Data sets statistics.

Datasets Type Vertices Edges Weights range

BA1 Undirected 1,000 4,967 100∼600
BA2 Undirected 2,000 9,966 100∼800
CA-GrQc Undirected 5,242 14,490 100∼800

K∗ should satisfy the original order. Lines 15–25 adopt
nonrecursive programming based on the ideas of min-max
formula to do consistency inference. If the current value
does not meet the conditions—that is, it is smaller than
the previous value, or bigger than the next—we continue to
merge back and calculate the mean. Otherwise, the mean is
assigned to each element in this cycle. It is worth mentioning
that, considering some special situation, the last group may
be out of order, so we do consistency inference from back to
front to readjust it again in the experiments. Lines 26–28 reset
the processed noisy weights and "∗ is obtained in the end.
Line 29 returns �∗ as the output of the algorithm.

�eorem 11. Algorithm (MB-CI) guarantees �-di�erential pri-
vacy.

Proof. In the algorithm, adding Laplace noise guarantees
di	erential privacy according to �eorems 6 and 7. Fur-
thermore, randomly choosing groups to merge guarantees
di	erential privacy according to�eorem 10.�e rest lines do
not incur any extra privacy cost.�erefore, MB-CI algorithm
as a whole guarantees �-di	erential privacy according to
Proposition 4.

4. Experiments

In this section, the proposed approach is evaluated from two
aspects, accuracy and utility. We use ARE (Average Relative
Error) to test the loss of accuracy due to the added noise and
KSP (Keeping Shortest Paths) to measure the proportion of
unchanged shortest paths.

(1) WARE is the average relative error of all the edge
weights. �e smaller the value, the higher the accu-
racy.

WARE = (∑��=1 NNNN"∗� − "�NNNN)H . (6)

(2) KSP is the proportion of unchanged shortest paths.H� is the number of all the reachable shortest paths,
and H�� is the number of all the unchanged shortest
paths. �e greater the value, the more the unchanged
shortest paths and the better the utility.

KSP = H��H� . (7)

(3) LARE is the average relative error of all the unchanged
shortest paths, not considering the shortest paths that
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Figure 2: Results of WARE for BA1.

have changed, as it does not make sense to compare
the lengths of di	erent paths.

LARE = (∑����=1 NNNND∗� − D �NNNN)
H�� . (8)

�ree data sets were used in the experiments, shown in
Table 1. �ere are two synthetic data sets employing a BA
(Barabási–Albert)model to generate scale-free networks.�e

rst one has 
ve fully connected vertices in the original state.
With each new vertex, 
ve edges are associated at the same
time, until it grows to 1,000 vertices. In the same way, we
got the second one with a total of 2,000 vertices. �e other
is a real data set: CA-GrQc, the Collaboration Network of
Arxiv General Relativity Category. �ere is an edge if two
authors have coauthored at least one paper. We randomly
assigned weights for each edge, ignoring its semantics. �e
experimental environment is an Intel� Core� i7-6700 CPU
@ 3.40GHz, with 24G memory, using the Windows 10
operating system; the algorithm o	ered was implemented in
Matlab R2014a.

�e MB-CI strategy is mainly composed of two steps:
merging barrels, MB for short, and consistency inference,
CI for short. To improve the accuracy, MB reduces the
added noise by merging barrels with the same count while
guaranteeing �-indistinguishability between groups. For the
sake of guaranteeing better utility and keeping most of the
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Figure 3: Results of WARE for BA1 when � = 5.

shortest paths unchanged, CI does not change the relative
weights between each edge by consistency inference. In order
to display the respective e	ects of the two steps, we break
them up to compare with the Lap strategy. �e MB strategy
merges barrels with the same count while guaranteeing �-
indistinguishability between groups and then adds Laplace
noise to each barrel. �e Lap-CI strategy does consistency
inference based on the Lap strategy, which adds Laplace noise
directly to each barrel with no merging. In the experiments,
we set � between 1 and 50, relatively large values, to balance
the tradeo	 between privacy and data utility, as we set the
weights to a relatively large range.�e fact is that large �, more
than 10, provide almost no privacy protection in practice and
it is to check the performance of the algorithm in real social
networks.

In the experiments, we evaluated the error for MB under
di	erent �, comparing with Lap 
rst. �e results are shown
in Figures 2, 6, and 10; � takes three di	erent values 1, 5,
and 10 uniformly. �e error decreases with the increase of�, due to less noise. �e error for Lap is maximal because
there is no merging. When � = 1, it means that all the
barrels with the same count are merged unconditionally, so
the number of merging barrels is the greatest and the error
is minimum. If � is larger, it means the limiting condition is
stricter; there may be more barrels with the same count that
could not bemerged.�us, when � takes two other values, the
error is between them. �e curves are not smooth as shown
in the 
gures, because it depends on the proportion of the
nonmerging barrels. Next, we set � to be value 5 for MB, to
test howmuch errorwas introduced by consistency inference.
�e results are shown in Figures 3, 7, and 11. It can be seen that
comparedwith Lap, Lap-CI e	ectively reduces the error;MB-
CI adds some error compared with MB in the last data set.
MB-CI may introduce extra error because it needs to process
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Figure 5: Results of LARE for BA1.

more data according to consistency inference in the larger
data set, and the error in MB is already very small.

�e most important step is to evaluate the change of the
shortest paths, which is a key measure of the global utility. As
shown in Figures 4, 8, and 12, with the increase of �, more
shortest paths will remain unchanged. Obviously, compared
with Lap,MB can better protect the shortest paths.MB-CI has
a little bit better e	ect thanMB, as MB has kept about 90% of
the shortest paths unchanged when � is more than 20. Lap-
CI has a much better e	ect than Lap when � is more than 20.
As shown in Figures 5, 9, and 13, we evaluated the error of all
the unchanged shortest paths. It can be seen that the trends
of these curves are consistent with the previous analysis. �is
suggests that consistency inference can further improve the
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Figure 7: Results of WARE for BA2 when � = 5.

proportion of unchanged shortest paths and reduce the error
e	ectively; this is an essential step in our application. In
conclusion, MB-CI has achieved better performance of the
experimental results.

5. Conclusions

In this paper, we proposed the MB-CI strategy, a novel
approach for protecting the edge weights of social networks.
�e starting point was treating the edge-weight sequence
as an unattributed histogram; we merged all barrels with
the same count into one group, while guaranteeing �-
indistinguishability between groups.�en, we added Laplace
noise to every edge weight and did consistency inference
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according to original order of the sequence. We conducted
experiments on both synthetic data sets and a real data
set. �e results showed that the MB-CI strategy improved
the accuracy and utility of the released data, which are
consistent with the theoretical analysis. �at is, the approach
was e	ective in reducing the error introduced by the added
noise, and kept most of the shortest paths unchanged.

Note that, the edge weights considered here, are integers
not continuous values. �us, generalizing the data set to
the real-value 
eld is an object for future study. Moreover,
many applications in the real world demand higher user-level
privacy rather than record-level privacy. �erefore, we will
further extend the method for providing stronger protection.
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[4] S. Das, Ö. Egecioglu, and A. El Abbadi, “Anonymizing weighted
social network graphs,” in Proceedings of the 26th IEEE Interna-
tional Conference on Data Engineering (ICDE ’10), pp. 904–907,
Long Beach, Calif, USA, March 2010.



10 Security and Communication Networks

[5] L. Liu, J.Wang, J. Liu, and J. Zhang, “Privacy preserving in social
networks against sensitive edge disclosure,” Tech. Rep. CMIDA-
HiPSCCS006-08,Department ofComputer Science,University
of Kentucky, 2008.

[6] S. Costea, M. Barbu, and R. Rughinis, “Qualitative analysis of
di	erential privacy applied over graph structures,” in Proceed-
ings of the 11th Roedunet International Conference onNetworking
in Education and Research (RoEduNet ’13), January 2013.

[7] M. Hayy, V. Rastogiz, G. Miklauy, and D. Suciu, “Boosting the
accuracy of di	erentially private histograms through consis-
tency,” Proceedings of the VLDB Endowment, vol. 3, no. 1-2, pp.
1021–1032, 2010.

[8] J. Xu, Z. Zhang, X. Xiao, Y. Yang, and G. Yu, “Di	erentially
private histogram publication,” in Proceedings of the IEEE 28th
International Conference on Data Engineering (ICDE ’12), pp.
32–43, IEEE, Washington, DC, USA, April 2012.

[9] J. Xu, Z. Zhang, X. Xiao, Y. Yang,G. Yu, andM.Winslett, “Di	er-
entially private histogram publication,” �e VLDB Journal, vol.
22, no. 6, pp. 797–822, 2013.

[10] J. Soria-Comas, J. Domingo-Ferrer, D. Sánchez, and S.
Mart́ınez, “Enhancing data utility in di	erential privacy via
microaggregation-based k-anonymity,” �e VLDB Journal, vol.
23, no. 5, pp. 771–794, 2014.

[11] D. Sánchez, J. Domingo-Ferrer, S. Mart́ınez, and J. Soria-
Comas, “Utility-preserving di	erentially private data releases
via individual ranking microaggregation,” Information Fusion,
vol. 30, pp. 1–14, 2016.

[12] T. Dalenius, “Towards a methodology for statistical disclosure
control,” Statistik Tidskri�, vol. 15, pp. 429–422, 1977.

[13] C. Dwork, “Di	erential privacy,” in Proceedings of the 33rd Inter-
national Colloquium on Automata Languages and Programming
(ICALP ’06), pp. 1–12, Venice, Italy, July 2006.

[14] C. Dwork, “Di	erential privacy: a survey of results,” in Pro-
ceedings of the 5th International Conference on �eory and
Applications of Models of Computation (TAMC ’08), pp. 1–19,
Xi’an, China, April 2008.

[15] C. Dwork, “�e di	erential privacy frontier (extended
abstract),” in Proceedings of the 6th �eory of Cryptography
Conference (TCC ’09), pp. 496–502, San Francisco, Calif, USA,
March 2009.

[16] C. Dwork and J. Lei, “Di	erential privacy and robust statistics,”
in Proceedings of the 41st Annual ACM Symposium on�eory of
Computing, pp. 371–380, Bethesda, Md, USA, May 2009.

[17] C. Dwork, “Di	erential privacy in new settings,” in Proceedings
of the Symposium onDiscrete Algorithms (SODA ’10), Society for
Industrial and AppliedMathematics, Austin, Tex, USA, January
2010.

[18] C. Dwork, “�e promise of di	erential privacy: a tutorial on
algorithmic techniques,” in Proceedings of the IEEE 52ndAnnual
Symposium on Foundations of Computer Science (FOCS ’11),
October 2011.

[19] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating
noise to sensitivity in private data analysis,” in Proceedings of the
3rd�eory of Cryptography Conference, pp. 265–284, New York,
NY, USA, March 2006.

[20] F. McSherry and K. Talwar, “Mechanism design via di	erential
privacy,” in Proceedings of the 48th Annual Symposium on Foun-
dations of Computer Science (FOCS ’07), pp. 94–103, Providence,
RI, USA, October 2007.

[21] F.McSherry, “Privacy integrated queries: an extensible platform
for privacy-preserving data analysis,” Communications of the
ACM, vol. 53, no. 9, pp. 89–97, 2010.

[22] M. Hay, C. Li, G. Miklau, and D. Jensen, “Accurate estimation
of the degree distribution of private networks,” in Proceedings of
the 9th IEEE International Conference on Data Mining (ICDM
’09), pp. 169–178, Miami, Fla, USA, December 2009.

[23] N. Li, W. Yang, and W. Qardaji, “Di	erentially private grids for
geospatial data,” in Proceedings of the IEEE 29th International
Conference on Data Engineering (ICDE ’13), pp. 757–768, IEEE,
Brisbane, Australia, April 2013.

[24] X. Xiao, G. Wang, and J. Gehrke, “Di	erential privacy via
wavelet transforms,” IEEE Transactions on Knowledge and Data
Engineering, vol. 23, no. 8, pp. 1200–1214, 2011.

[25] A. Sala, X. Zhao, C. Wilson, H. Zheng, and B. Y. Zhao, “Sharing
graphs using di	erentially private graphmodels,” in Proceedings
of the ACM SIGCOMM Internet Measurement Conference (IMC
’11), pp. 81–98, Berlin, Germany, November 2011.

[26] A. Gupta, A. Roth, and J. Ullman, “Iterative constructions
and private data release,” in Proceedings of the 9th �eory of
Cryptography Conference, pp. 339–356, Taormina, Italy, March
2012.

[27] C. Task and C. Cli�on, “A guide to di	erential privacy theory in
social network analysis,” in Proceedings of the IEEE/ACM Inter-
national Conference on Advances in Social Networks Analysis
and Mining, pp. 411–417, Istanbul, Turkey, August 2012.

[28] R. Chen, B. C. M. Fung, P. S. Yu, and B. C. Desai, “Correlated
network data publication via di	erential privacy,” VLDB Jour-
nal, vol. 23, no. 4, pp. 653–676, 2014.

[29] N. Li, W. Qardaji, D. Su et al., “PrivBasis: frequent itemset
mining with di	erential privacy,” in Proceedings of the 38th
International Conference on Very Large Data Bases, pp. 1340–
1351, Istanbul, Turkey, August 2012.

[30] G. Jagannathan, K. Pillaipakkamnatt, and R.N.Wright, “A prac-
tical di	erentially private random decision tree classi
er,” in
Proceedings of the IEEE International Conference onDataMining
Workshops (ICDMW ’09), pp. 114–121, December 2009.

[31] J. Zhang, Z. Zhang, X. Xiao et al., “Functional mechanism:
regression analysis under di	erential privacy,” in Proceedings
of the 38th Conference of Very Large Database, pp. 1364–1375,
Istanbul, Turkey, 2012.

[32] R. E. Barlow andH. D. Brunk, “�e isotonic regression problem
and its dual,” Journal of the American Statistical Association, vol.
67, no. 337, pp. 140–147, 1972.



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014
Hindawi Publishing Corporation 

http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at

https://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in

OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


