
Differential Privacy Under Continual Observation

Cynthia Dwork
Microsoft Research

Mountain View, CA, USA
dwork@microsoft.com

Moni Naor
∗

Weizmann Institute of Science
Rehovot, Israel

moni.naor@weizmann.ac.il

Toniann Pitassi
†

University of Toronto
Toronto, Canada

toni@cs.toronto.edu

Guy N. Rothblum
‡

Princeton University
Princeton, NJ, USA

rothblum@alum.mit.edu

ABSTRACT
Differential privacy is a recent notion of privacy tailored to
privacy-preserving data analysis [11]. Up to this point, re-
search on differentially private data analysis has focused on
the setting of a trusted curator holding a large, static, data
set; thus every computation is a “one-shot” object: there is
no point in computing something twice, since the result will
be unchanged, up to any randomness introduced for privacy.

However, many applications of data analysis involve re-
peated computations, either because the entire goal is one
of monitoring, e.g., of traffic conditions, search trends, or
incidence of influenza, or because the goal is some kind of
adaptive optimization, e.g., placement of data to minimize
access costs. In these cases, the algorithm must permit con-
tinual observation of the system’s state. We therefore initi-
ate a study of differential privacy under continual observa-
tion. We identify the problem of maintaining a counter in
a privacy preserving manner and show its wide applicability
to many different problems.

Categories and Subject Descriptors
F.2.0 [Theory of Computation]: Analysis of Algorithms
and problem complexity—General

∗Research supported by a grant from the Israel Science
Foundation. Part of this work was done while visiting MSR
and the Center for Computational Intractability at Prince-
ton University.
†Research supported by Nserc. Part of this work was done
while visiting MSR.
‡Research supported by NSF Grants CCF-0635297, CCF-
0832797 and by a Computing Innovation Fellowship. Parts
of this work were done while visiting and interning at MSR.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’10, June 5–8, 2010, Cambridge, Massachusetts, USA.
Copyright 2010 ACM 978-1-4503-0050-6/10/06 ...$10.00.

General Terms
Algorithms, Security, Theory, Privacy, Private Data Analy-
sis

1. INTRODUCTION
Differential privacy is a recent privacy guarantee tailored

to the problem of statistical disclosure control: how to pub-
licly release statistical information about a set of people
without compromising the privacy of any individual [11]
(see [8, 9, 6] for motivation of the definition, history, ba-
sic techniques, and pointers to recent results). In a nutshell,
differential privacy requires that the probability distribution
on the published results of an analysis is “essentially the
same,” independent of whether any individual opts in to, or
opts out of, the data set. (The probabilities are over the
coin flips of the privacy mechanism.) Statistical databases
are frequently created to achieve a social goal, and increased
participation in the databases permits more accurate anal-
yses. The differential privacy guarantee supports the social
goal by assuring each individual that she incurs little risk by
joining the database: anything that can happen is essentially
equally likely to do so whether she joins or abstains.

Up to this point, research on differentially private data
analysis has focused on the setting of a trusted curator hold-
ing a large, static, data set, in a permanently infrangible
storage system. The curator either responds to queries (the
interactive case) or prepares some sort of summary or syn-
thetic database intended to answer all queries of a particu-
lar type (the non-interactive case)1. A line of work investi-
gates the way in which the accuracy of the responses to the
queries may need to deteriorate with the number, sensitivity
(a metric describing how much the addition or deletion of a
member of the database can change affect the outputs), and
geometry of the query sequence [5, 12, 16, 17], and general
techniques have been developed that in some cases match
these bounds [15, 2, 11, 19, 17, 3, 14].

In all previous work every computation is a “one-shot” ob-
ject: there is no point in computing something twice, since
the result will be unchanged, up to any perturbations in-
troduced for privacy. However, many applications of data
analysis involve repeated computations, either because the

1The one exception considers a distributed setting, in which
each data holder controls her own data and decides in which
analyses to participate [10]. However, this is done by emu-
lating the curator via secure multiparty computation.

715

entire goal is one of monitoring, e.g., of traffic conditions,
search trends, or incidence of influenza, typically with a goal
of preparing some appropriate response, or the goal is to op-
timize the placement of data to minimize access costs. In
such an application the system is required to continually pro-
duce outputs. We therefore initiate a study of differential
privacy under continual observation. We illustrate the de-
sign goals of our continual observation algorithms by appeal
to a real-life example.
Continual Observation. Consider a website for H1N1
self-assessment2. Individuals can interact with the site to
learn whether symptoms they are experiencing may be in-
dicative of the H1N1 flu. The user fills in some demographic
data (age, zipcode, sex), and responds to queries about his
symptoms (fever over 100.4◦F?, sore throat?, duration of
symptoms?). We would like to continually analyze aggregate
information of consenting users in order to monitor regional
health conditions, with the goal, for example, of organizing
improved flu response. Can we do this in a differentially pri-
vate fashion with reasonable accuracy (despite the fact that
the system is continually producing outputs)?

We would expect a given individual to interact very few
times with the H1N1 self-assessment site. For simplicity, let
us say this is just once (the general case is an easy exten-
sion). In such a setting, it is sufficient to ensure event-level
privacy, in which the privacy goal is to hide the presence or
absence of a single event (interaction of one user with the
self-assessment site). That is, the probability of any output
sequence should be essentially the same, independent of the
presence or absence of any single interaction with the site.

The privacy statement at the H1N1 self-assessment site
encourages users to allow their data to be shared:

“This information can be very helpful in monitor-
ing regional health conditions, plan flu response,
and conduct health research. By allowing the re-
sponses to the survey questions to be used for
public health, education and research purposes,
you can help your community.”

But the site also describes conditions under which the data
may be disclosed:

“...if required to do so by law or in the good faith
belief that such action is necessary to (a) conform
to the edicts of the law or comply with legal pro-
cess served on Microsoft or the Site; (b) protect
and defend the rights or property of Microsoft
and our family of Web sites; or (c) act in urgent
circumstances to protect the personal safety of
users of Microsoft products or members of the
public.”

Pan-Privacy. This raises the following question, orthogo-
nal to that of continual observation: Is it possible to main-
tain a differentially private internal state, so that a consent-
ing user has privacy even against a subpoena or other in-
trusion into the local state? Algorithms with this property
are called pan-private, as they are private inside (internal
state) and out (output sequence). This notion was recently
introduced in [13]. The goal of pan-privacy is to provide a
mathematically rigorous way of (essentially) eliminating the

2https://h1n1.cloudapp.net is such a website. User-supplied
data are stored for analysis only if the user consents.

risk – of anything – incurred by sharing one’s information,
even in the presence of an intrusion, further encouraging
participation. Another motivation is the prevention of “mis-
sion creep” for data, protecting the data curator from the
(very real!) pressure to allow data to be used for purposes
other than that for which they were collected. This fits
well with streaming algorithms with small state, which can
at most store a few data items, and [13] does focus on the
streaming model. However, nothing prevents a streaming
algorithm from storing in its state an event of a person of
interest. Event-level pan-privacy rules this out, since the
internal state must have essentially the same distribution,
independent of whether an event of the person of interest
has, or has not, appeared in the stream.

We remark that, since an intrusion can occur at an unpre-
dictable time, designing pan-private algorithms is interest-
ing even when the system will generate only a single output.
This was studied in [13]. The current paper addresses pan-
privacy under continual observation. We emphasize that
continual output and pan-privacy are each interesting and
non-trivial properties and, generally speaking, they are in-
dependent of each other3. Their combination is, of course,
more powerful than each individually.
Adjacency notions: User-Level vs. Event-Level Pri-
vacy. We have made the reasonable assumption that a sin-
gle individual interacts with the H1N1 self-assessment site
at most a small number of times (one). Such an assump-
tion is not reasonable for other kinds of websites, such as
a search engine. We ask: what kinds of statistics can we
gather while preserving the privacy of an individual’s entire
history of accesses to the website? That is, what can we
compute if we require that, no matter how many times an
individual accesses the website, and no matter how these ac-
cesses are interleaved with those of others, the distribution
on outputs, or, in the case of user-level pan-privacy, the dis-
tribution on pairs (internal state, output sequence), should
be essentially the same, independent of presence or absence
of any individual’s data in the stream? All the algorithms
of [13] enjoy user-level pan-privacy. In this paper we con-
struct several algorithms that exhibit user-level pan-privacy
under continual observation.

2. OVERVIEW OF OUR RESULTS
Counter. We identify the problem of maintaining a counter
in a privacy preserving manner and show its wide applica-
bility to many different problems. We construct a continual
observation low-error pan-private counter estimating, at all
times, the answer to the question “How many times has an
event of interest happened so far?”
One-shot→ Continual Observation. We describe a gen-
eral transformation that, roughly speaking, converts a large
class of (possibly user-level possibly pan-private) one-shot
algorithm and produces an algorithm with the same types of
privacy guarantees under continual observation. This class
contains algorithms for monotonically increasing or decreas-
ing functions with a bounded range, as well as functions that
are “close to” monotonic, provided the algorithm satisfies a
condition we call (k, d)-unvarying. Roughly speaking, this
condition says that the output can change by an additive d

3The extreme case of continual intrusion also implies con-
tinual output

716

amount at most k times. The loss of accuracy deteriorates
as k and d increase.
Applications of the Counter. Counting is a fundamen-
tal computational primitive. We illustrate the utility of the
counter by obtaining event-level pan-private algorithms for
sophisticated tasks, such as following expert advice. We ob-
tain an event-level pan-private under continual observation
version of Follow the Perturbed Leader [18].
Negative Results. Pan-privacy comes at a price that in-
creases with the number of intrusions: we prove that any
counter providing pan-privacy against a number k of in-
trusions on the internal state must have error at least

√
k.

In [13] Dwork et al. obtained an accurate, one-shot, pan-
private algorithm for modular incidence counting. Unlike all
the other problems addressed in that work, for this problem
there is no reasonably accurate algorithm providing user-
level privacy under continual observation, even without pan-
privacy. This result generalizes to any function whose value
“many times” increases by “a lot” (the accuracy deteriorates
with the product of “many” and “a lot;” see Section 4.2).

3. DEFINITIONS AND TOOLS

3.1 Differential Privacy Basics
In the literature, a differentially private mechanism oper-

ates on a database, or data set. This is a collection of rows,
where the data of an individual are held in a single row.
Differential privacy ensures that the ability of an adversary
to inflict harm (or good, for that matter) – of any sort, to
any set of people – is essentially the same, independent of
whether any individual opts in to, or opts out of, the dataset.
This is done indirectly, simultaneously addressing all possi-
ble forms of harm and good, by focusing on the probability
of any given output of a privacy mechanism and how this
probability can change with the addition or deletion of any
row. We will concentrate on pairs of databases (D, D′) dif-
fering only in one row, meaning one is a subset of the other
and the larger database contains just one additional row.

Definition 3.1. [11] A randomized function K gives ε-
differential privacy if for all data sets D and D′ differing
in at most one row, and all S ⊆ Range(K),

Pr[K(D) ∈ S] ≤ exp(ε)× Pr[K(D′) ∈ S], (1)

where the probability is over the coin flips of K.

The multiplicative nature of the guarantee implies that an
output whose probability is zero on a given database must
also have probability zero on any neighboring database, and
hence, by repeated application of the definition, on any other
database. The parameter ε is public, and its selection is a
social question. We tend to think of ε as, say, 0.01, 0.1, or
in some cases, ln 2 or ln 3.

Definition 3.2. [11] For f : D → Rd, the L1 sensitivity of
f is ∆f = maxD,D′ ‖f(D)−f(D′)‖1 for all D, D′ differing
in at most one row.

The Laplace distribution with parameter b, denoted Lap(b),
has density function Pr(z|b) = 1

2b
exp(−|z|/b) and variance

2b2. Taking b = 1/ε we have that the density at z is propor-

tional to e−ε|z|. This distribution has highest density at 0
(good for accuracy), and for any z, z′ such that |z − z′| ≤ 1

the density at z is at most eε times the density at z′. Fi-
nally, the distribution gets flatter as ε decreases: smaller
ε means better privacy, so the noise density should be less
“peaked” at 0 and change more gradually as the magnitude
of the noise increases.

Theorem 3.1. [11] For f : D → Rd, the mechanism K that
adds independently generated noise with distribution Lap(∆f/ε)
to each of the d output terms enjoys ε-differential privacy.

Theorem 3.2. [11] The composition of an ε1-differentially
private mechanism and an ε2-differentially private mecha-
nism is at worst (ε1 + ε2)-differentially private.

3.2 Event-Level and User-Level (Pan-)Privacy
Speaking intuitively, we think of continual observation al-

gorithms as taking steps at discrete time intervals; at each
step the algorithm receives an input, computes, and pro-
duces output. We model this formally with a streaming
algorithm. Computation proceeds in a sequence of atomic
steps. At each step the algorithm receives an input from the
stream, computes (changes state), and produces outputs.
Thus the intuitive notion of “t time periods” corresponds to
processing a sequence of t elements in the stream. Intrusions
may only occur between atomic steps.

Because we are modeling real systems, where time is a
factor (computers have clocks, as do the adversaries), we
will occasionally need to model the fact that “nothing has
happened” in a given time unit. We may do this by means of
a “nothing happened” element. For example, the motivation
behind the counter primitive below is to count the number
of times that something has occurred since the algorithm
was started (the counter is very general; we don’t specify
a priori what it is counting). This is modeled by an input
stream over {0, 1}. Here, “0”means “nothing happened,”“1”
means the event of interest occurred, and for t = 1, 2, . . .
the algorithm outputs an approximation to the number of
1’s seen in the length t prefix of the stream.

To define privacy, we need a notion of adjacent stream pre-
fixes. The definition of adjacency in [13] permitted strings
of radically different lengths to be adjacent. To be able to
capture time, we modify the definition as follows. Let X
be the universe of possible input symbols. Let S and S′ be
stream prefixes (ie, finite streams) of symbols drawn from
X. Then Adj(S, S′) (“S is adjacent to S′”) if and only if
there exist x, x′ ∈ X so that if we change some of the in-
stances of x in S to instances of x′, then we get S′. More
formally, Adj(S, S′) iff ∃x, x′ ∈ X and ∃T ⊆ [|S|], such that
S|T :x→x′ = S′. Here, T is a set of indices in the stream
prefix S, and S|T :x→x′ is the result of replacing all the oc-
currences of x at these indices with x′ (note that w.l.o.g we
can assume S|T contains only occurrences of x).

The definition of adjacency anticipates user-level privacy,
where the behavior of the algorithm should remain the same
independent of the number or pattern of instances of any
single symbol x in the stream. A special case of adjacency
is event-level adjacency, in which the number of instances
of one symbol replaced by another is at most 1. Naturally,
this will be used for defining event-level privacy. With these
definitions, adjacent prefixes are always of the same length.

Definition 3.3. Let Alg be an algorithm. Let I denote the
set of internal states of the algorithm, and σ the set of pos-
sible output sequences. Then algorithm Alg mapping data

717

stream prefixes to the range I × σ, is user-level pan-private
(against a single intrusion) if for all sets I′ ⊆ I and σ′ ⊆ σ,
and for all pairs of X-adjacent data stream prefixes S, S′

Pr[Alg(S) ∈ (I′, σ′)] ≤ eε Pr[Alg(S′) ∈ (I′, σ′)]

where the probability is over the coin flips of Alg.

We typically omit the term ε-differential when discussing
pan-privacy. However, every claim of pan-privacy must de-
scribe the privacy loss.
Event-level pan-privacy is defined analogously, with the re-
quirement restricted to event-level adjacent streams. In the
case of one-shot algorithms the output sequence has length 1.
In the case of continual observation the output sequence is as
long as the stream prefix processed by the algorithm. Ordi-
nary user-level, respectively, event-level, privacy (as opposed
to pan-privacy) is just differential privacy for user-level, re-
spectively, event-level, adjacent streams.

Note that popular techniques from the streaming litera-
ture, such as Count-Min Sketch and subsampling, cannot be
pan-private.

4. EVENT-LEVEL PRIVATE COUNTING
In this section we introduce the web-counter problem, and

present algorithms and lower bounds.
Monitoring events, such as the spread of an epidemic or

the traffic at a website, frequently can be cast in terms of
counting the number of “interesting” events that have oc-
curred over time. Formally, we view time as a series of time
periods, named by the natural numbers. In each time pe-
riod there are two possibilities: an event occurs or no event
occurs. We model this as a binary stream, with 1’s corre-
sponding to periods in which an event occurs and 0’s cor-
responding to periods in which no event occurs. Informally,
the web counter problem is to continually produce an accu-
rate, but not necessarily exact, estimate of the number of
events that have occurred “so far,” while obscuring, for each
time period t, whether or not an event actually occurs at t.

Definition 4.1. A randomized streaming algorithm yields
a (T, α, β) counter if, in every execution, with probability at
least 1 − β over the coin flips of the algorithm, simultane-
ously, for all 1 ≤ t ≤ T , after processing a prefix of length t,
the current output contains an estimate of the number of 1’s
in the prefix that differs from the true weight of the prefix by
at most an additive α amount.

with T and 1/β. In the remainder of this section we present
an event-level counter4 for which α grows as roughly
log(1/β) log2.5 T . There is a narrow gap between this and
the lower bound (see Section 4.1). The algorithm is pan-
private against a single intrusion; it appears in Figure 1.

It will be convenient to number the time periods 0, 1, . . . , T−
1, so that in time period t the algorithm is processing the
(t + 1)st element in the input stream. Similarly, we will
number the elements of the stream beginning with 0, so on

4Our original algorithm (see full version of this paper or [7])
had worse performance guarantees. Several people, includ-
ing Ilya Mironov, Kobbi Nissim, and Adam Smith (thanks
guys!), immediately suggested an approach closely resem-
bling the one presented here, based on the Bentley-Saxe
method of converting static data structures to dynamic
ones [1]. Our algorithm is slightly different, in order to en-
sure pan-privacy.

stream x at time t the algorithm is processing xt. The al-
gorithm requires the following set of (time) segments. For
i ∈ {1, . . . , log T}, associate with each string s ∈ {0, 1}i the
time segment S of 2log T−i time periods {s ◦ 0log T−i, . . . s ◦
1log T−i}. We say the segment begins in time s◦0log T−i and
ends in time s ◦ 1log T−i.

Theorem 4.1. The counter algorithm of Figure 1 run with
parameters T, ε, β > 0, yields a (T, 4 log(1/β) · log2.5 T/ε, β)
counter enjoying ε-differential pan-privacy against a single
intrusion.

Proof. We first argue about the accuracy of the algorithm,
and then prove event-level differential pan-privacy.
Accuracy. Let S be a segment. The noise value ηS is
stored in the algorithm’s internal state during the first time
period contained in S, and is deleted during the atomic step
occurring in the last time period contained in S. Thus, all
the noise values for segments containing t are in memory in
Step 3 when we generate time period t’s output.

We add 1+log T independently chosen Laplace noise vari-
ables to the true answer: the log T segment noises, and the
noise with which we initialize count . Each of these variables
has variance 2(log T/ε)2, Thus, in each round, with proba-
bility at least 1−β/T probability, the sum of noises is within
magnitude 2 log(1/β) + log T standard deviations, so by a
union bound, with probability at least 1−β, in all rounds si-
multaneously, this sum of noises has magnitude smaller than
4 log(1/β) · log2.5 T/ε.
Pan-Privacy. During an intrusion between atomic steps t∗

and t∗ + 1, that is, immediately following the processing of
element t∗ in the input stream (recall that we begin number-
ing the elements with 0), the view of the adversary consists
of (1) the noisy count, (2) the segment noise values ηS in
memory when the intrusion occurs, and (3) the complete se-
quence of all of the algorithm’s outputs. Consider adjacent
databases x and x′, which differ in time t, say, without loss
of generality, xt = 1 and x′t = 0, and an intrusion immedi-
ately following time period t∗ ≥ t (we will discuss the case
t∗ < t below). We will describe a bijection between the vec-
tor of noise values used in executions on x and executions
on x′, such that corresponding noise values induce identical
adversary views on x and x′, and the probabilities of adja-
cent noise values differ only by an eε multiplicative factor.
This implies ε-differential pan-privacy.

By assumption, the true count just after the time period
t∗ ≥ t is larger when the input is x than it is when the input
is x′. Fix an arbitrary execution Ex when the input stream
is x. This amounts to fixing the randomness of the algo-
rithm, which in turn fixes the noise values generated. We
will describe the corresponding execution Ex′ by describing
how its noise values differ from those in Ex.

The program variable count was initialized with Laplace
noise. By increasing this noise by 1 in Ex′ the value of
count just after step t∗ is identical in Ex′ and Ex. The
noise variables in memory immediately following period t∗

are independent of the input; these will be unchanged in
Ex′ . We will make the sequence of outputs in Ex′ identical
to those in Ex by changing a collection of log T segment
noise values ηS that are not in memory when the adversary
intrudes, so that the sum of all noise values in all rounds up
through t− 1 is unchanged, but the sum from round t on is
larger by 1 for database x′ than for x. Since we increased
the initialization noise for count , we now need to decrease

718

Counter (T, ε)

Initialization. Initialize ξ = (1 + log T)/ε, and sample count ∼ Lap(ξ).

Segments. For i ∈ {1, . . . , log T}, associate with each string s ∈ {0, 1}i the time segment S of 2log T−i time periods
{s ◦ 0log T−i, . . . s ◦ 1log T−i}. The segment begins in time s ◦ 0log T−i and ends in time s ◦ 1log T−i.

Processing. In time period t ∈ {0, 1, . . . , T − 1}, let xt ∈ {0, 1} be the t-th input bit:

1. count ← count + xt;

2. For every segment S which begins in time t, sample noise ηS ∼ Lap(ξ);

3. Let S1, . . . , Slog T be the log T segments that contain t. Output count +
∑log T

i=1 ηSi
.

4. For every segment S that ends in time t, erase ηS .

Figure 1: Event-Level Counter Algorithm

the sum of segment noise values for periods 0, . . . , t−1 by 1,
and leave unchanged the sum of segment noise values from
period t.

To do this, we find a collection of disjoint segments whose
union is {0, . . . , t − 1}. There is always such a collection,
and it is always of size at most log T . We can construct it
iteratively by, for i decreasing from blog(t−1)c to 0, choosing
the segment of size 2i that is contained in {0, . . . , t − 1}
and is not contained in a previously chosen segment (if such
a segment exists). Given this set of disjoint segments, we
notice also that they all end at time t − 1 < t ≤ t∗, and so
their noises are not in memory when the adversary intrudes
(just following period t∗). In total (taking into account also
changing the initial noise value for count), the complete view
seen by the adversary is identical and the probabilities of the
(collection of) noise values used for x and x′ differ by at most
an eε multiplicative factor.

Note that we assumed t∗ ≥ t. If t∗ < t then the initial
noise added to count in Ex′ will be the same as in Ex, and
we need to add 1 to the sum of segment noises in every time
period from t through T (the sum of segment noises before
time t remains unchanged). This is done as above, by finding
a disjoint collection of at most log T segments that exactly
covers {t, . . . , T − 1}. The noise values for these segments
are not yet in memory when the intrusion occurs in time
t∗ < t, and the proof follows similarly.

We note also that in every round individually (rather than
in all rounds simultaneously), with all but β probability, the
error has magnitude at most O(log(1/β) · log1.5 T/ε).

4.1 A Logarithmic (in T) Lower Bound
Given the upper bound of Theorem 4.1, where the error

depends only poly-logarithmically on T , it is natural to ask
whether any dependence is inherent. In this section we show
that a logarithmic dependence on T is indeed inherent. The
proof is omitted from this extended abstract.

Theorem 4.2. Any differentially private event-level algo-
rithm for counting over T rounds must have error Ω(log T)
(even with ε = 1).

4.2 Lower Bound for Counting with Intrusions

Theorem 4.3. Any counter that is ε-pan-private under con-
tinual observation while tolerating n intrusions must have
additive error Ω(

√
n) with probability at least 1/2 − 2δ, for

any δ > 0.

Proof. Let A be an ε-pan-private algorithm for counting
the number of 1’s in x, |x| = n, with continual intrusions.
At each step, A reads the next bit, xi, of x, updates its
state from si−1 to si, and must reveal the entire state si

(including the updated count.)
Fix a constant k that depends on δ. We define two dis-

tributions on inputs of length n: I0 and I1. I0 puts all of
its weight on the all 0 string. A string is drawn from I1 as
follows. For each bit position i, set i = 0 with probability
1 − 1/k

√
n and set i = 1 with probability 1/k

√
n. We will

show that for any continual-intrusion pan-private algorithm,
A, the statistical distance between D0 and D1 is at most δ,
where D0 is the distribution on states when running A on
I0, and D1 is the distribution on states when running A on
I1. Thus there exists two input sequences, s0, the all 0 in-
put, and s∗, an input with O(

√
n) 1’s and the rest zeroes,

such that the statistical distance between the distribution
of states when run on s0 versus s∗ is at most δ. This in
turn implies that for one of these two inputs, the algorithm
must make an additive Ω(

√
n) error with probability at least

1/2− 2δ. (If on input s∗ A outputs a count that is smaller
than k′

√
n with probability at least 1/2, then we are done.

Otherwise A outputs a count that is at least k′
√

n with prob-
ability at least 1/2 on s∗. In this case, since the statistical
distance between the states on s0 and s∗ is at most δ, this
implies that with probability at least (1/2−2δ), A outputs a
count that is at least k′

√
n on s0, completing the argument.)

It is left to show that for any ε-pan-private algorithm A
with continuous intrusion, the statistical distance between
D0 and D1 is at most δ. Let ps

0(x) be the probability, over
the random coin tosses of algorithm A, of going to state x
from state s, upon seeing a 0. Similarly let ps

1(x) be the
probability of going to state x from state s, upon seeing a
1. We want to compare two distributions: the distribution
D0 induced on the possible states of A, when running A
starting in s0 on the distribution I0 for n steps, and the
distribution D1 induced on the states of A when running
A on I1 for n steps, still starting from s0. Let qs

0 = ps
0

and let qs
1 = (1 − 1

k
√

n
)ps

0 + 1
k
√

n
ps
1. D0 is the distribution

induced on the states if you start in the start state, s0, and
run for n steps using probabilities qs

0 and similarly D1 is the
distribution induced on the states running for n steps, using
the probabilities qs

1.
The details of the proof are omitted for lack of space. We

provide some intuition and the statements of the key lemma.
Randomized response is a popular technique in the social sci-
ences for obtaining answers to questions about embarrassing

719

or even illegal behaviors [20]. We can abstract randomized
response as follows. Consider a question for which there are
two possible answers, say, {0, 1}. We define two trivial distri-
butions: Zero and One, which place all their weight, respec-
tively, on 0 and 1. We now define two answer distributions
A0 and A1. A respondent whose answer is b ∈ {0, 1} chooses
from Ab. Both A0 and A1 are convex combinations of Zero
and one. The intuition for randomized response is that the
probability of producing any specific value v ∈ {0, 1} when
drawing from A0 is sufficiently close to the probability of
producing v when drawing from A1 to provide “plausible
deniability” to the respondent, while the statistician, know-
ing the descriptions of A0 and A1 can “reverse engineer” the
responses to obtain statistical information about the distri-
bution of true answers. This completes the abstract descrip-
tion of randomized response. The intuition for our proof is
that any counter that provides privacy is carrying out some
form of randomized response.

Formally, we show (Lemma 4.4) the existence of two spe-
cific distributions C′(x) and C′′(x) such that the distribu-
tions qs

0(x) and qs
1(x) are specific convex combinations of

these distributions, say, qs
0(x) = z0C

′(x) + z1C
′′(x) and

qs
1(x) = w0C

′(x) + w1C
′′(x). To upper bound the distance

between qs
0(x) and qs

1(x) we replace C′(x) and C′′(x) with
distributions that are, intuitively, as far apart as possible,
specifically, we replace C′(x) with the trivial Zero distribu-
tion and C′′(x) with the trivial One distribution, and bound
the distance between z0Zero+z1One and w0Zero+w1One.

Lemma 4.4. If the algorithm is ε-differentially pan private,
then for every state s, distributions qs

0 and qs
1 can be written

in the following form:

qs
0(x) =

1

2
C′(x) +

1

2
C′′(x)

qs
1(x) = (

1

2
− 1

k
√

n
)C′(x) + (

1

2
+

1

k
√

n
)C′′(x), where

C′(x) =
k
√

n

2
qs
0(x) + qs

0(x)− k
√

n

2
qs
1(x)

C′′(x) = qs
0(x)− k

√
n

2
qs
0(x) +

k
√

n

2
qs
1(x)

That is, qs
0 is obtained by choosing either C′ or C′′ with

equal probability, and then sampling uniformly from the cho-
sen distribution; qs

1 is obtained via biased sampling from
the distributions C′ and C′′: choose C′′ with probability
(1/2 + 1/k

√
n) and C′ with probability (1/2− 1/k

√
n), and

then sample uniformly from the chosen distribution.

5. A GENERAL TRANSFORMATION
Our main result in this section will be a general transfor-

mation that converts a single-output streaming algorithm
into a streaming algorithm that continually produces out-
puts. As an example, consider a single-output algorithm
Alg for a monotone function, such as counting. Given a
stream σ, the true count is the number of 1’s in σ, and
Alg(σ) produces an approximation to this true count. The
transformed algorithm will be a counting algorithm as de-
fined in the previous section of this paper: after processing
any prefix of σ the output will be an approximation to the
number of 1’s in the prefix.

Our transformation works for single algorithms for any
monotonic or“nearly monotonic”(see below) functions. User-
level privacy and pan-privacy are preserved by the transfor-
mation, so if the original algorithm enjoys either or both of
these properties then so will the transformed algorithm.

Remark 5.1. Throughout this section, we focus on the prop-
erties of the algorithm being transformed, such as the prob-
ability with which it produces output of specific accuracy,
and we obtain results describing how these properties change
(typically, deteriorate) in the transformed algorithm.

Fix a single-output streaming algorithm Alg. We begin
with the notion of a k-snapshot. Intuitively, this is a snap-
shot of the algorithm’s outputs from k different time periods.
Of course, our algorithm to be transformed is a single-output
algorithm, so there is only one output, and not k outputs.
However, for a fixed length T input stream σ and a fixed se-
quence τ of coin tosses, given a k-tuple t1, . . . , tk of times in
[T], we can fix the algorithm’s coin tosses and run it on the
k prefixes of length, respectively, t1, t2, . . . , tk. Each time
we start from the beginning of σ and τ , and obtain a single
output. This gives a well defined notion of the outputs at k
different times.

Definition 5.1 (k-snapshot). For a fixed T -round execu-
tion of an algorithm Alg (i.e. fixing the algorithm’s random
coins τ and its input stream σ), a k-snapshot is a set of k
pairs (t1, a1), . . . , (tk, ak), where, for 1 ≤ i ≤ t, ai is the
output produced by Alg when run on the length ti prefix of
σ, using coin sequence τ (not all coins in τ need be read).
We say that a snapshot is d-varying if for all 1 ≤ i ≤ k it
holds that |ai+1 − ai| ≥ d.

The deterioration in accuracy of the transformed algo-
rithm is affected by the number of times the output can
change by at least an additive factor of d. When k and d
are both small the accuracy hit will be low.

Definition 5.2 ((k, d, γ)-unvarying algorithm). An al-
gorithm Alg is (k, d, γ)-unvarying if in every execution, with
all but γ probability over the algorithm’s coins, there does
not exist a d-varying k-snapshot for the execution. I.e., the
number of times the algorithm’s output varies by at least d
is at most k.

Intuitively, any accurate algorithm computing a monotone
function cannot vary too often or too wildly. In particular,
when the range of the function to be computed is bounded,
for example, when the range is contained in the interval
[0, 1], then the output can change by an additive d amount
at most 1/d times. We now make this precise.

Claim 5.1. Let Alg be an algorithm for computing a mono-
tonically increasing function whose output is in [0, 1].5 If in
every execution, with all but γ probability, the outputs of Alg
are all within an α additive error, then for any 0 < d < 1,
Alg is (1/d, d + 2α, γ)-unvarying. The claim also holds for
monotonically decreasing functions.

5A monotonically increasing function is one whose value can
only increase as more data items are processed. For example,
density estimation is a monotone increasing function.

720

Proof. With probability at least 1 − β, the algorithm’s
outputs are all α-accurate. Assuming we are in this high
probability case, for any k > 0 consider any k-snapshot
(t1, a1), . . . , (tk, ak). For any 0 < d < 1 and any j ∈ {1, . . . , k},
a d + 2α-change in the algorithm’s output between tj and
tj+1 corresponds to a change of at least 1/k in the value of
the function between tj and tj+1 (because of α-accuracy in
time periods tj and in tj+1). Since the function is monotone,
this change in its value can only be an increase, and since
the output is bounded to be between 0 and 1, there can only
be 1/d such increases. We conclude that k ≤ 1/d.

Before presenting our general transformation, we provide
some intuition. Assume Alg is a (user-level pan-private)
algorithm for a monotonic function f with range in [0, 1]. Fix
an input stream σ and sequence τ of random coins. Let Algt

denote the output that the algorithm would produce after
a prefix of length t. Recall that the transformed algorithm
will have output at every step; let out t denote this output
after processing the t-length prefix of σ. The first idea is
to change out infrequently, that is, only when it becomes
very inconsistent with Algt. In other words, for “suitably
chosen” d, at each time t:

If Algt − outt−1 > d then out t ← Algt,
else outt ← out t−1.

As noted above, we will expect at most about 1/d changes
to out . For privacy, we now have two problems. First, if
there is no change at time t but there is a change at time
t+1, this leaks information about σt+1, the (t+1)st symbol
in σ, so, still speaking intuitively, we will need to add some
noise to the comparison. For a similar reason, we need to
add noise to the output.

Since we expect a change to occur only about 1/d times,
we can scale the noise to this amount and abort the execu-
tion if the number of updates exceeds this.

At time t: if Algt + fresh noise − outt−1 ≤ d
then out t ← out t−1 (no change in output); else
out t ← Algt + fresh noise (update output).

This approach leads to an algorithm ensuring a weaker form
of privacy known as (ε, δ)-differential privacy. Intuitively,
the obstacle to pure differential privacy is that information is
also leaked by the fact that an update to out does not occur.
A long sequence of non-updates may be much more likely on
an input σ′, than on an adjacent input σ. For example, still
speaking intuitively, this might happen if the true value of
the function on a given prefix is close to triggering an update
in σ and slightly farther in σ′, and then for a large number
of steps there is no input, so the value of the function does
not change. Although in each of these steps the ratio of the
probability of no update in σ′ to the probability of no update
in σ may be relatively small, say, eε, the ratio of probabilities
of no update during this entire input-free stretch in σ′ to the
probability of no update during this stretch in σ may be very
large (emε for a stretch of length m). To address this, we
introduce a “soft” threshold: instead of comparing to d we
compare to d+fresh noise, where fresh noise is chosen anew
at each step. This fresh noise will be generated using the
same segment-based techniques as were used in the counter
construction. These involve relatively few variables at any
one time (log T), while simultaneously providing a dynamic
set of thresholds for comparison, changing at every step.

The general transformation is presented in Figure 2. As we
will see, the transformation preserves user-level pan-privacy.

Theorem 5.2. For any (k, d, γ)-unvarying algorithm Alg
with (α0, β0)-accuracy, ε0 (pan-)privacy, and user-level sen-
sitivity ρ, the transformation of Figure 2, run with parame-
ters as above and with any T, ε, β > 0, yields a T -round con-
tinual output algorithm with (ε0 + 3ε) (pan-)privacy. With
all but (β + β0 + γ) probability, the error in all time periods
is at most:

d + α0 + (4ρ · (log(1/β) + log T) · (k + log2 T)/ε)

Proof. We first argue about the accuracy of the algorithm,
and then prove differential pan-privacy (for pan-privacy we
assume that Alg itself is pan-private, otherwise we get only
standard differential privacy for continual observation).
Accuracy. Assume that (1) the answers produced by Alg
are all α-accurate (“Alg is accurate”); (2) the sequence of
answers returned is (k, d)-unvarying, and (3) all the Laplace
noise values have magnitude at most (log(1/β) + log T +
O(1)) times their scale (“the noise is never large”). Taking a
union bound, all of these conditions above are satisfied (in all
rounds simultaneously) with all but (β +β0 +γ) probability.

If ̂comparet ≤ ̂thresht, so the conditional in Step 3 of
round t evaluates to“true”, then we say round t is light. Oth-

erwise, that is, if ̂comparet > ̂thresht, then we say round t is
heavy. Fix a round t, and let h < t be the last heavy round
preceding round t, if one exists; otherwise let h = −1. Con-
ditioned on assumption (3) that the noise is never large, the

“noisy”difference ̂comparet−̂thresht and the“true”difference
(|answerh− answer t|)− thresh differ by at most 2α (see the
definition of α in Figure 2). This means that in every heavy
round t, the difference between answerh and answer t is at
least d. Since, by Assumption (2), Alg is (k, d)-unvarying,
we conclude that the with all but (β + β0 + γ) probability,
the algorithm does not terminate by the HALT instruction
Step 3b.

Given that the algorithm never terminates in Step 3b,
what is its error? Still under our assumptions (1) and (3)
that Alg is accurate and the noise is never large, if the com-
parison of Step 3 evaluates to “true,” so the round in light,
we have that outt = outt−1 = · · · = outh is within a d + 4α
error of Algt. If t is heavy, then outt is within an α error
of Algt. We conclude that with all but (β + β0 + γ) prob-
ability, the error in all rounds (simultaneously) is indeed at
most (d+4α) plus the error of Alg, i.e. the total error is at
most:

d + α0 + (4ρ · (log(1/β) + log T) · (k + log2 T)/ε).

Privacy. To argue pan-privacy, we first use the ε0 pan-
privacy of Alg (and the composition of differential privacy)
to argue that Alg’s internal state during an intrusion is
privacy preserving. The proof of privacy for the combination
of the internal state and the times of updates, i.e., the set
of the heavy rounds, is similar in spirit to the proof of pan-
privacy for the counter. Given this, and using composition
of differential privacy, the actual updated outputs in the at
most k heavy rounds will only incur an additional ε-cost in
privacy.

Fix two adjacent databases x and x′. Fix an arbitrary
execution Ex when the input stream is x. This amounts to
fixing the randomness of the algorithm, which in turn fixes
the noise values generated. We will describe a corresponding

721

Transformation for Alg with parameters (T, ε, β, ρ, k, d, γ)

Initialization. Initialize ξthresh = ρ · log T/ε, ξcompare , ξanswer = 2ρ · (k + 1)/ε, m = 0, answer−1 = 0, accuracy

α = ρ · (log(1/β) + log T) · (k + log2 T)/ε and thresh = d + 2α.

Noise. At time period 0 ≤ t < T , choose noise values ηcompare,t ∼ Lap(ξcompare) and ηanswer,t ∼ Lap(ξanswer). We

also associate log T threshold noise values with every time period t. To do this, view t ∈ [T] as a string in {0, 1}log T .
For the i-bit prefix t|i of t (where i ≥ 1), sample the noise value ηthresh,t|i ∼ Lap(ξthresh).

Persistent State. The value ηthresh,t|i is sampled and stored in round (t|i ◦ 0log T−i), and is erased by the end

of round (t|i ◦ 1log T−i). There are 2T − 2 of these noise values in total. The values ηcompare,t and ηanswer,t are
sampled in round t and erased by the end of round t; that is, they do not persist.

Processing. For t ∈ {0, 1, . . . , T − 1}, let answert denote the answer computed by Alg at time t (recall that we
enumerate time and input symbols starting with 0). inputs

1. ̂comparet ← |out last − answert + ηcompare,t|
2. ̂thresht ← thresh +

∑log T
i=1 ηthresh,t|i

3. If ̂comparet ≤ ̂thresht then outt ← outt−1 else DO:

(a) outt ← answert + ηanswer,t

(b) If m < k then m ← m + 1 else HALT.

Figure 2: Continual Output Transformation for Algorithm Alg

execution Ex′ by describing how its noise values differ from
those in Ex. The adversary’s view in Ex′ will be identical to
its view in Ex; moreover the probabilities of corresponding
noise values differ only by an e3ε ratio. This implies 3ε
differential pan-privacy.

Let η be the noise vector in execution Ex. The adversary’s
view consists of the incidence vector v for the set of heavy
rounds (these are the rounds in which the output changes),
the values of the heavy rounds’ outputs, and the internal
noise values seen in the intrusion. Let the intrusion occur
immediately following round t∗ of Ex. Then the observed
noise values are a subset of {ηthresh,t∗|i}

log T
i=1 . In constructing

the noise vector for Ex′ we will only change noise values
other than the threshold noises in round t∗; thus we only
change noise values that the are not observed during the
intrusion.

First, to ensure that all light rounds in Ex are also light
for in Ex′ , we want to increase the sum of threshold noises in
every round except t∗ by ρ. This can be done by increasing
the values of log T threshold noises as described below. For
t ∈ {0, 1, . . . , T−1}, and i ∈ {1, . . . , log T}, we view the noise
value ηthresh,t|i as “covering” or “corresponding to” the seg-

ment of 2log T−i time periods {t|i ◦0log T−i, . . . , t|i ◦1log T−i}.
For every round t∗, there exists a set S∗ of exactly log T

segments, such that every time period except t∗ is covered by
exactly one of these segments. To see this, we start with S∗

being empty, and then for each i going from 1 to log T , we
choose the one segment of size 2log T−i that isn’t covered by
previously chosen segments and does not cover t∗. In each of
these iterations we cover half of the remaining segments, and
all of the segments we choose are disjoint. This means that
after log T iterations, every time period except t∗ is covered
by exactly one segment. Now in η′ we increase the noise
values of each of these segments in S∗ by ρ. This guarantees
that when running with noise η′ the sum of threshold noises
in each round except t∗ is larger by ρ than in the run on x
(with noise η). In particular, since the sensitivity of Alg is at
most ρ, with the possible exception of round t∗, light rounds
in Ex with noise η will also be light in Ex′ with noise η′.

Because the threshold noises were chosen from the Laplace
distribution with magnitude ρ · log T/ε, the probabilities of
these new values differ by at most an eε factor from the
original noise values.

Now to ensure that heavy rounds in Ex are also heavy in
Ex′ , we need to change the noise ηcompare,t by at most 2ρ
between η and η′ for every heavy round t: we may need a
change of ρ to handle the sensitivity of Alg, and another
change of ρ to handle the increased sum of noisy thresholds.
Note that the decision as to whether the noise is increased or
decreased depends on Algt and the noise in previous rounds,
but this dependence is fixed and so indeed we have a bijec-
tion between the vector of noise values. There are at most
k heavy rounds in any execution, and so Ex has at most
k heavy rounds. We choose the comparison noises from a
Laplace distribution with magnitude 2ρ · (k + 1) · ε. This
change in the noise values changes the noise probabilities by
at most an eεk/(k+1).

Finally, to ensure that if round t∗ is light in Ex then it
is also light in Ex′ , we may change the comparison noise
ηcompare,t∗ . This poses no risk to privacy as this value does
not persist after round t∗, and so will not be seen during the
intrusion.

Thus, we have obtained an identical incidence vector by
changing the noise probabilities by at most an e2ε factor. To
argue privacy for the actual answers generated in the heavy
rounds, we simply note that there are at most k such an-
swers and this incurs another ε cost in privacy. In total, the
transformed algorithm is (ε0 + 3ε)-differentially pan private
with continual outputs. If the original algorithm Alg was
not pan-private, then the transformed one is not pan-private
either, but its collection of outputs is still 3ε-differentially
private.

5.1 Lower Bounds for User-Level Continual
Output Privacy

In the previous section, we saw that it is possible to ac-
curately approximate a wide class of functions with user-
level privacy even under continual observation (and more-
over some of these algorithms are even pan-private). In par-

722

ticular, this was the case for unvarying functions. In con-
trast, consider a highly varying function such as modular
incidence counting, where we want to estimate the number
(between 0 and n) of users that appear an odd number of
times (or more generally i times (mod k)). Each occur-
rence of each user is a significant event. Over many time
periods, the value of this function can vary wildly many
times. Thus, the general transformation of Section 5 does
not yield a privacy-preserving algorithm. This is no acci-
dent. Indeed, the following theorem shows that there is no
user-level differentially private continual-output algorithm
for any highly varying function. (See Definition 5.2 for the
definition of unvarying algorithms.) As this includes mod-
ular incidence counting, we obtain a natural statistic that
can be computed pan-privately (see [13]), but that cannot
be computed privately in the continual output setting (even
without pan-privacy).

Definition 5.3. Let f be a function defined over a database
with n users, with the property that f on a blank symbol does
not change value. f is (k, d)-varying if there exists an input
y and k indices, t1 < t2 < . . . < tk, such that for all i,
1 ≤ i ≤ k, |f(yti) − f(yti+1)| ≥ d. That is, the function f
on y jumps by at least d units k times.

Theorem 5.3. Let f be a (k, d)-varying function defined
over a database with n users. Then every differentially pri-
vate, continual output algorithm must have additive error
Ω(dk/n) (even with ε = 1).

Proof Sketch.. We assume throughout that the global
sensitivity is ρ = O(dk/n). Otherwise, if ρ = Ω(dk/n),
then by a standard argument for ε-privacy the error must
be Ω(dk/n).

First we claim that if f is (k, d)-varying, then there exists
a set S of 2k inputs such that for every pair x, y of inputs
from S, there exists an index i such that |f(x1, . . . , xi) −
f(y1, . . . , yi)| ≥ d. Let y be the input such that f jumps by
d at least k times. That is, there exist indices t1, . . . , tk such
that |f(yti)− f(yti+1)| ≥ d. We partition y into k intervals,
I1, . . . , Ik, as follows. The interval Il begins at tl−1 + 1 and
ends at tl. Each input v ∈ S will consist of k intervals, and
the total length of each v will be 2|y|. Letting v(α1, . . . , αk)
denote a particular string in S, where αi ∈ {0, 1}, the ith

interval of z(α1, . . . , αk) is defined as follows: (i) if αi = 0,
then the ith interval will contain a copy of Ii followed by |Ii|
blank symbols; (ii) otherwise if αi = 1, then the ith interval
will contain |Ii| blank symbols followed by a copy of Ii. This
defines a set of 2k inputs.

Now consider two distinct inputs v(α), v(β) from S. We
want to show that at some location l, the output of f after
reading the lth bits of v(α), v(β) differs by at least d. By
construction, v(α) and v(β) must differ in at least one inter-
val. Suppose it is interval j, so that the jth interval of v(α)
consists of Ij followed by an equal number of blanks, and
v(β) consists of |Ij | blanks followed by Ij . At the location
immediately preceding the jth interval of v(α), the value of
f on v(α) and v(β), is the same, and is equal to the value
of f on the first j − 1 intervals of y. At the first location in
the j-th interval of v(α), the value of f jumps by d, whereas
the value of f on v(β) on the same length substring has not
changed from its previous value. Thus the claim is proven.

Secondly we note that if f is (k, d)-varying, then f is also
(t, dk/t)-varying, as long as ρ ≤ dk/2t. If the sensitivity is

ρ, then for any a < d/2ρ, we can split up an interval with
a “jump” (change in the function value from the interval’s
beginning to its end) of d, into a subintervals where each
subinterval has a jump of at least d/a (this uses the upper
bound on the function’s sensitivity). Setting a = t/k, which
is less than d/(2ρ) as long as ρ ≤ dk/2t, we end up with t
intervals in total, each with a jump of at least dk/t.

Now let S be the set of 2t inputs, with the property that
for every pair of inputs in S, there exists a time period where
the output of f differs by at least d′ = dk/t. If A is accurate,
then w.h.p. its output is within d′/2 of the correct answer
in every time period. If we associate with each input in S
an event, corresponding to the algorithm being with d′/2 of
the correct answer on that input in every round, then this
set of events is disjoint. By privacy, however, each of these
events has some (exponentially small in n) probability on
every input. This implies a contradiction, since there are
|S| = 2t disjoint events, and for t > n the sum of these
probabilities is larger than 1. See the full version for details
(there we also rule out even algorithms that are accurate in
a large fraction of the rounds).

Note that the lower bound here is not tight with the upper
bound of Theorem 5.2. Finding a tight characterization is
an intriguing direction for future work.

6. HOW TO USE EXPERT ADVICE
The goal of this section is demonstrating that continual

observation counters can be applied to obtain privacy pre-
serving solutions to fairly complex problems, especially in
online environments. There are several algorithms in vari-
ous settings that rely on counting a number of “successes” or
“accesses”, determining their action based on this count. An
underlying principle behind many such algorithms is aggre-
gating the advice of several experts, and choosing a response
that is not much worse than any of the experts (regret mini-
mization). In this section out goal is showing that such algo-
rithms can be utilized without revealing the advice given by
the experts. I.e., we protect the experts’ privacy. The main
issue is whether the accuracy of the approximate counter is
good enough for the application considered. In this extended
abstract we focus on the problem of combining expert advice
(in the full version we also consider problems such as list ac-
cess or list update, and how to run many different counters
simultaneously).

We present a method for combining expert advice that is
competitive with the best expert in hindsight. The setting
is that there is a sequence of actions by n experts. At each
round each expert decides on an action, and following the
round the cost associated with the action is revealed (it is
a value in [0, 1]). The combiner has to choose one of the
experts at each round, and act by following that expert,
where all the information the combiner has is the cost of
the previous actions by the experts. The goal is to mini-
mize regret, that is to compare the combiner’s performance
to the best expert in hindsight. Known performance guar-
antees for this problem (without privacy concerns) are of the
form (1 + γ)(best expert) + O(log n/γ), for any γ. That is,
there are combiner strategies that only incur an (1 + o(1))
multiplicative overhead over the best expert in hindsight.

The problem has a long history, see the survey by Blum
and Mansour [4]. Our goal is performing the same sort of ag-
gregation, but while protecting the privacy of each expert’s
action with respect to an observer that sees which expert is

723

being followed. That is, for any time period t and expert i
we guarantee ε-differential privacy for expert i’s decision in
step t. Here we aim for event level privacy.6

Most of the combining algorithms in the literature rely,
when making a decision at the tth round, on the costs in-
curred by the experts so far, and not, say, on when ex-
actly these costs occurred. This suggests applying privacy-
preserving counters to this problem. The issue, however, is
showing that the approximate estimation of the cost given
by the privacy-preserving counter still serves the combiner
of the experts problem (almost) as well as an exact com-
putation of the cost. Some of the well known combining
algorithms, like Randomized Weighted Majority, use mul-
tiplicative weights or more involved functions of the cost,
making this a non-trivial obstacle.

Kalai and Vempala [18] suggested a very simple addi-
tive algorithm called Follow the Perturbed Leader: For each
round t = 1, 2, . . . , T : (1) for each expert i ∈ [n] pick weight
pt[i] independently chosen according to the exponential dis-
tribution with parameter γ, and (2) for each expert i let
Ct(i) be the total cost so far. Pick the expert minimizing
Ct(i)− pt(i) and act accordingly.

For this algorithm, as well as Randomized Weighted Ma-
jority, the regret (w.r.t the best expert in hindsight) is bounded
by γ(best expert) + log n/γ. The natural way to adapt this
algorithm is to have, for each expert, a private counter
counting the cost incurred so far (it is easy to adapt the
counter to work with continuous, rather than discrete, in-
crements).

The problem is that we do not have access to the real cost,
rather we have access to an approximation C′t where we are
guaranteed to have Ct(i) ∈ C′(t) ± log1.5 t (w.h.p in each
round). A possible approach to the problem is to show that
this is true for any adversarial approximation, that is at each
point in time the estimate C′ of the cost so far is guaranteed
to be with ∆ of the real cost C, but an adversary may set
the approximation as it wishes within these bounds, and the
question is what combining algorithm is appropriate. It is
not clear whether such a general approach will work.

Suppose, instead, that the approximation works by adding
noise, where at any point in time the distribution of the noise
is identical. This, in fact, is the case for the counter algo-
rithm of Section 4: in each round, the noise is the sum of
(the same number of) identically distributed Laplace vari-
ables. Consider the cost of the expert combining algorithm.
It is equal to

∑T
t=1 Yt where Yt is a random variable repre-

senting the cost of the combining algorithm at step t. The
r.v’s {Yt} depend on the noise added at each step and the
randomness of the combining algorithm (the perturbations
in the Kalai-Vempala algorithm). From linearity of expec-

tation E[
∑T

t=1 Yt] =
∑T

t=1 E[Yt]. The expectation of the
random variables Yt remains the same when the algorithm
is run on counters where exactly the same noise is added
at all the steps: that is, the noise is generated only for one
round and then exactly the same noise is added at all rounds.
If this is the case (i.e. the same noise added at all rounds),
then we can think of the algorithm as running with a prefix
of steps where the cost of each expert in that prefix equals
the noise added to it. Now take the guarantee on the re-
gret w.r.t to the best expert. The difference between the

6In fact, it can be shown that it is impossible to obtain any
non trivial result with respect to user level privacy.

real leading expert and the leading expert with the approx-
imation noise is at most the maximal noise. So we get that
the new combining algorithm is within the bound the origi-
nal algorithm was plus the maximum of n random variables,
each a sum of (1+log T) Laplacians with magnitude ε/ log T ,
that is an additional O(log n · log1.5T/ε) term to the regret.
Note that here we use the fact that in each round individu-
ally, w.h.p. the noise added by the counter has magnitude
O(log1.5 T/ε) (see the discussion following Theorem 4.1).

7. REFERENCES
[1] J. L. Bentley and J. B. Saxe. Decomposable searching

problems i: Static-to-dynamic transformation. J.
Algorithms, 1(4):301–358, 1980.

[2] A. Blum, C. Dwork, F. McSherry, and K. Nissim. Practical
privacy: The SuLQ framework. 24th PODS, 2005.

[3] A. Blum, K. Ligett, and A. Roth. A learning theory
approach to non-interactive database privacy. In
Proceedings of STOC, 2008.

[4] A. Blum and Y. Mansour. Learning, regret minimization,
and equilibria. In Algorithmic Game Theory. Cambridge
University Press, 2007.

[5] I. Dinur and K. Nissim. Revealing information while
preserving privacy. In Proceedings of 22nd PODS, pages
202–210, 2003.

[6] C. Dwork. A firm foundation for private data analysis.
Communications of the ACM (to appear).

[7] C. Dwork, Differential privacy in new settings. Proc.
ACM-SIAM SODA, 2010.

[8] C. Dwork. An ad omnia approach to defining and achieving
private data analysis. In Privacy, Security, and Trust in
KDD, First ACM SIGKDD International (PinKDD),
Revised Selected Papers, volume 4890 of Lecture Notes in
Computer Science, pages 1–13. Springer, 2007.

[9] C. Dwork. The differential privacy frontier. In Proceedings
of TCC, 2009.

[10] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and
M. Naor. Our data, ourselves: privacy via distributed noise
generation. In Advances in Cryptology: Proceedings of
EUROCRYPT, pages 486–503, 2006.

[11] C. Dwork, F. McSherry, K. Nissim, and A. Smith.
Calibrating noise to sensitivity in private data analysis. In
Proceedings of TCC, pages 265–284, 2006.

[12] C. Dwork, F. McSherry, and K. Talwar. The price of
privacy and the limits of lp decoding. In Proceedings of
STOC, pages pp. 85–94, 2007.

[13] C. Dwork, M. Naor, T. Pitassi, G. N. Rothblum, and
S. Yekhanin. Pan-private streaming algorithms. In
Proceedings of ICS, 2010.

[14] C. Dwork, M. Naor, O. Reingold, G. Rothblum, and
S. Vadhan. When and how can privacy-preserving data
release be done efficiently? In Proceedings of STOC, 2009.

[15] C. Dwork and K. Nissim. Privacy-preserving datamining on
vertically partitioned databases. In Proceedings of
CRYPTO 2004, volume 3152, pages 528–544, 2004.

[16] C. Dwork and S. Yekhanin. New efficient attacks on
statistical disclosure control mechanisms. In Proceedings of
CRYPTO 2008, pages 468–480, 2008.

[17] M. Hardt and K. Talwar. On the geometry of differential
privacy. arXiv:0907.3754v2, 2009.

[18] A. T. Kalai and S. Vempala. Efficient algorithms for online
decision problems. J. Comput. Syst. Sci., 71(3):291–307,
2005.

[19] F. McSherry and K. Talwar. Mechanism design via
differential privacy. In Proceedings of FOCS 2007.

[20] S. Warner. Randomized response: a survey technique for
eliminating evasive answer bias. JASA, pages 63–69, 1965.

724

