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Differential programming enabled functional imaging with

Lorentz transmission electron microscopy
Tao Zhou1, Mathew Cherukara 2 and Charudatta Phatak 3✉

Lorentz transmission electron microscopy is an advanced characterization technique that enables the simultaneous imaging of

both the microstructure and functional properties of materials. Information such as magnetization and electric potentials is carried

by the phase of the electron wave, and is lost during image acquisition. Various methods have been proposed to retrieve the phase

of the electron wavefunction using intensities of the acquired images, most of which work only in the small defocus limit. Imaging

at strong defoci not only carries more quantitative phase information, but is essential to the study of weak magnetic and

electrostatic fields at the nanoscale. In this work we develop a method based on differentiable programming to solve the inverse

problem of phase retrieval. We show that our method maintains a high spatial resolution and robustness against noise even at the

upper defocus limit of the microscope. More importantly, our proposed method can go beyond recovering just the phase

information. We demonstrate this by retrieving the electron-optical parameters of the contrast transfer function alongside the

electron exit wavefunction.
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INTRODUCTION

The design and development of new and improved engineered
materials requires a fundamental understanding of the structure-
property relationship at the nanoscale. For example, magnetic
materials which host novel topological excitations such as
skyrmions are of great interest to not only fundamental physics
but also technological applications1–4. The quest to understand
how these excitations interact locally with material inhomogene-
ities requires the capability to map the weak magnetization with
both high spatial resolution and high phase accuracy. Similarly,
grain boundaries in solid electrolytes for fuel cells and solid state
batteries have a huge impact on their charge transport behavior5–8.
The ability to quantify the often weak local electrostatic potential,
along with the microstructure and the composition is crucial to the
controlling and engineering of desired properties in these
materials. Last but not least, 2D electron gas at the interface of
heterostructures plays an important role in the emergence of
unique properties such as interfacial magnetism, and high
interfacial conductivity9,10. Their functional characterization also
requires high spatial resolution and high phase sensitivity owing to
their confined nature.
Despite being a relatively old technique, Lorentz transmission

electron microscopy (LTEM) has seen major developments in
recent years thanks to its ability to perform correlative micro-
structural and functional imaging at the nanoscale11–17. Quanti-
tative information about the functional properties such as
magnetization and electrostatic potentials is carried by the phase
shift of the electrons, and is described by the Aharanov-Bohm
relation18. This phase information is however lost during image
acquisition as the recorded intensity is merely the squared
amplitude of the electron exit wavefunction. Quantitative evalua-
tion of the functional properties thus necessitates solving for the
phase of the electron wave. The process of obtaining phase
information from measured intensities is the basis for a variety of
coherent imaging techniques in x-ray (known as phase retrieval)

and electron microscopy (known as wave function reconstruction).
In LTEM, methods based on the transport of intensity equation
(TIE)19 and off-axis electron holography are commonly used, each
having its own merits and limitations20,21. The TIE approach is
experimentally easy to implement, but the result often suffers
from low spatial resolution due to the extent of defocusing
required. Off-axis holography on the other hand has high
sensitivity, and high spatial resolution22–24, but comes with
additional requirements such as the need for a reference electron
wave, and a special electron-optical setup. Iterative methods such
as the Gerchberg-Saxton (GS) algorithm25–30 and the maximum-
likelihood optimization31,32 have also been proposed. These
methods are most commonly used in high resolution TEM, and
for retrieving electrostatic phase shifts. More recent development
on 4D-STEM have shown promising results on achieving extremely
high spatial resolution33 as well as magnetic phase shift retrieval34,
but the long measurement time makes them impractical for in situ
experiments.
Recent years have seen a tremendous increase in the

application of machine-learning methods to determine the
structure-property relationship in materials characterization35–39.
For electron microscopy, the primary focus has been on the
analysis of high resolution images to determine atomic positions,
or on the processing of large datasets for electron diffraction to
infer physical properties of the materials40–46. In this work, we
develop a method based on reverse-mode automatic differentia-
tion (AD) to solve the inverse problem of phase retrieval in LTEM.
AD has become the de facto means of training a neural network47

thanks to the flexible interfaces developed and supported by large
technology corporations48,49. Phase retrieval with AD was first
proposed50 and later demonstrated with x-ray coherent diffraction
imaging51,52. By applying this method to LTEM, we demonstrate
functional imaging with simultaneously high spatial resolution
and high phase accuracy. We use large defocus conditions to
increase the phase sensitivity of our method, which is a common
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practice for imaging weak magnetic and electrostatic fields53,54.
We show that under these conditions, our method outperforms
the TIE method in terms of spatial resolution and the GS method
in terms of robustness to noise. The high noise tolerance and
improved phase sensitivity should permit significant reduction on
the acquisition time, which may prove useful on beam sensitive
samples or in in situ experiments. More importantly, our method
can easily be extended to recover any information implicitly
contained in the measured intensity. We demonstrate this
through the simultaneous retrieval of the convergence semi-
angle and the correct defocus values alongside the exit
wavefunction.

RESULTS

Phase retrieval using differentiable programming

The process of applying AD for phase retrieval in LTEM is shown in
Fig. 1. We used the modified electron wave function to describe
the electron-sample interaction. The exit wavefunction is calcu-
lated as ψðr?Þ ¼ aðr?Þeiφðr?Þ, where a is the amplitude, φ is the
phase and r⊥ is a radial vector in the direction perpendicular to
the electron propagation direction taken to be along z55. The
phase shift, φ(r⊥), accounts for contributions from both the mean
inner potential, and the magnetization of the sample. The mean
inner potential can be considered as a result of forward elastically
scattered electrons and approximated as the zero-order term of
the Fourier expansion of the crystal lattice potential56. We initialize
the guess amplitude as the square root of the intensity of the in-
focus image and keep it fixed at the beginning of the phase
retrieval process. (For reasons why this is a good estimation of the
true amplitude, the reader is referred to the Supplementary
Notes.) The starting guess φ0 for the phase is set to a constant. For
each iteration, the wavefunction at the image plane is calculated
by the convolution of the exit wavefunction with the microscope
contrast transfer function (TF). The latter includes both the phase
transfer function and the damping envelope. The linear image
formation model employed in this work is generally valid within
the scope of LTEM, even in the presence of a strong phase object
such as a magnetic sample. Because the scattering angle of
Lorentz deflection is small, about 1000 times smaller than the
angle of the diffracted electron beam, the spatial frequencies
relevant to the magnetic signal are also small. The phase
information for such strong phase objects is thus primarily carried
by the lowest order terms in the phase transfer function28. Finally,
the difference between the absolute of the calculated image
wavefunction and the square root of the measured intensity of the
Fresnel images is used to compute the loss function. The concept
of phase retrieval with AD is analogous to the training of a neural

network. In both cases, the gradients are calculated by back-
propagating the loss through the network in what is known as
reverse-mode automatic differentiation. The guess phase and
amplitude are then updated iteratively in steps proportional to the
negative of the gradients. The phase retrieval process is
considered complete if the improvement of the loss function is
smaller than a pre-defined value. For more detailed description,
the reader is referred to the “Methods” section. Next, we shall
demonstrate the advantages of AD over other conventional
methods using simulated and experimental Fresnel images at
different defocus values.

Higher spatial resolution

Figure 2 shows the comparison of phase retrieved with various
methods using simulated data at large defocus values. Figure 2a
shows the ground truth phase used for creating the simulated
LTEM dataset (Supplementary Fig. 1). The knowledge of the
ground truth is essential for evaluating the accuracy and spatial
resolution of the retrieved phase, which is described in the
“Methods” section. State-of-the-art TIE57,58 formalism uses the
differentiation of Fresnel images to numerically approximate the
longitudinal intensity derivatives. The phase is then retrieved by
solving the partial differential equation using either the Fourier
transform method59 or the conjugate gradient method60. TIE
solved in this way is strictly valid only in the small defocus limit. At
large defocus values, the intensity no longer varies linearly with
Δf61, and exact solution of the partial differential equation is
required using for instance multi-grid numerical integration25. The
biggest hurdle that limits the application of TIE at large defocus
values is its reduced spatial resolution62. This is illustrated in Fig. 2c
using the most simple scenario consisting of one over-focused
and one under-focused image (Δf= ±1.6 mm). Despite using
noise-free images, the achievable accuracy was only at 90%. The
retrieved phase appeared to be blurry, which was reflective of the
estimated spatial resolution of 160 nm (Fig. 2b).
We then performed AD phase retrieval on the same dataset. At

large defocus values, AD (Fig. 2d) vastly outperformed TIE by
simultaneously showing an extremely high level of accuracy (99%)
and high spatial resolution (5 nm). We also compared our result
with phase retrieved using the Gerchberg-Saxton iterative
algorithm. Details about the GS algorithm implemented for this
work can be found in the “Methods” section. Figure 2e shows that
the GS retrieved phase on the same dataset did not converge to
the ground truth. This is understood as the GS method by design
only works with images of weak defocus values (∣Δf∣ ~ 1 μm)26,
because the back-projection involves division by the spatial
coherence envelope which, at large defocus values, vanishes for
large spatial frequencies. Although a modification was proposed

Fig. 1 Flow chart of phase retrieval in LTEM through differentiable programming. The experimental data and instrument parameters are
color coded in gray. The imaging process that carries the phase information is color coded in blue while the path for back-propagation is color
coded in red.
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to improve the numerical stability of the GS method27, that too
was limited to only moderately defocused images (∣Δf∣ < 100 μm).
At large defocus values (∣Δf∣ > 1mm), information at large spatial
frequencies cannot be calculated correctly, which explains the
failed phase retrieval as shown in Fig. 2e. For comparison,
Supplementary Fig. 2e shows the GS retrieved phase on two
images at Δf= ±0.15 mm. As expected, the modified GS method is
numerically stable in the moderately defocused regime. The
quality of the retrieved phase (Supplementary Fig. 2e) was in fact
identical to that of the AD method (Supplementary Fig. 2d). It is
worth pointing out that, at moderate defoci, none of the methods
was able to correctly retrieve the true phase (Supplementary Fig.
2b). This is explained by the lower phase sensitivity at low spatial
frequencies, and shows again the potential benefit of working at
large defocus values.

Increased robustness to noise

Next, we demonstrate how high noise tolerance can be achieved
with AD at large defocus values. We choose to show the gradient
of the phase to highlight the effectiveness of our strategy.
Compared to the phase itself, the gradient of the phase is a better
representation of the functional properties such as the direction of
magnetic induction or local electric fields. Figure 3a shows the
ground truth for the phase gradient, with its direction and its
magnitude respectively indicated by false color and grayscale
contour. Optimization based methods such as AD often suffer
from numerical instability when working with noisy images at
large defocus values. This again can be explained by the damping
envelope which reduces the amount of information transferred,
and as a result, the numerical constraint at large spatial
frequencies. Continuous error reduction would force AD to fit to
the noise at these frequencies, thus producing the grainy phase
images as shown in Fig. 3b.
There are in principle two approaches to resolve the issue of

numerical stability, the first being the implementation of
regularizations63. In the case of AD, this is more commonly
achieved by adding a total variation (TV) regularizer in the loss
function. While a TV regularizer is known to be capable of
preserving edges (i.e., high spatial frequency information) and

improves noise tolerance, its effectiveness is highly dependent on

the choice of the regularization parameter. Choosing the right
value for the regularization parameter was essential to achieving
the high accuracy (96.02%) shown in Fig. 3c, whereas using a
larger value resulted in the loss of low spatial frequency

information as shown in Supplementary Fig. 3c.
To improve the noise tolerance at large defocus values, we

explore a strategy that leverages the flexibility of the AD method
to work with any number of through focus images. More
specifically, the images at moderate defocus carry sufficient

information at large spatial frequencies, and could be used to
improve the numerical stability of AD at large defocus values.
Figure 3d shows the AD retrieved phase after adding two images
at moderate defocus to the two images at large defocus, with a

final accuracy of 96.93%. To ensure a fair comparison, the noise
level of the images was raised to 15%. This is to account for the
factor of

ffiffiffi

2
p

shot noise variation when the exposure time of each

image is halved and the total exposure time remains unchanged.
It became evident that the retrieved phase with the mixed focus
series (Fig. 3d) is actually a more faithful reconstruction of the
ground truth (Fig. 3a) than the one retrieved with TV regulariza-

tion (Fig. 3c). To test the limit of the noise tolerance, the level of
the Gaussian noise was further increased to 30%. Using the same
mixed focus condition, the AD process remained convergent to
the truth (Fig. 3e). Despite the lower accuracy, information of both

high and low spatial frequencies was correctly retrieved as
evidenced by the phase contour near the edge and at the center
of the nanostructures. Compared to AD, the GS method is even

more unstable in the presence of noise at large defocus values,
due to reasons stated in the previous section. While the idea of
mixed focus series also improves the noise tolerance of GS phase
retrieval, the achievable accuracy is on average about 10% lower

than AD under the same conditions (Supplementary Fig. 4). Figure
3f shows the GS retrieved phase using the mixed focus series with
15% of Gaussian noise. Distortions of the phase were clearly
visible in the rectangular shaped nanostructures, and the final

accuracy was only 87.57%.

Fig. 2 Comparative performance on simulated noise free images. a Ground truth for the phase. The scale bar is 500 nm. b Comparison
between the line profiles of the (c) TIE and (d) AD retrieved phases using an image pair at Δf= ±1.6 mm. The position at which the line profiles
are extracted is illustrated by the dotted line in (a). e GS retrieved phase using the same image pair. The numbers in the brackets denotes the
accuracy of the retrieved phases. The scale bar and the color bar apply to all the images.

T. Zhou et al.

3

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2021)   141 



Demonstration of partial recovery of the transfer function

The most exciting aspect of the AD method is that it can easily be
extended to retrieve any information implicitly contained in the
measured intensity, regardless of the complexity of the forward
model. This is particularly interesting as the accuracy of both the
AD and GS method hinges on the precise knowledge of the
transfer function. In fact, the phase retrieval process may not even
be successful if one or more parameters in the TF is incorrect. The
ability to retrieve those parameters alongside the phase is thus
crucial to the applicability of our proposed strategy. To illustrate
this, we demonstrate simultaneous recovery of the beam
convergence semi-angle and defocus values embedded in the
normal phase retrieval process. We used the same dataset as
described in the previous section, which consisted of four images
in a mixed focus series (Δf ± 0.15 and ±1.6 mm) with 15% of
Gaussian noise. The starting guess for the convergence angle was
0.1 mrad which is 10 times larger than the true convergence (0.01

mrad) used to produce the simulated data. We picked the
convergence angle in this example as it is hard to determine in
practice, and has major impact on the image quality and contrast.
In addition, we have offset the starting guess of all the Δf by
10 μm, to emulate uncertainties on the knowledge of the exact
defocus values. We note that the added uncertainty represents
less than 1% of the largest defocus value used (1.6 mm) in this
scenario.
For the partial recovery of the transfer function, essentially the

same strategy was used as described in Fig. 1. In addition to the
phase, the convergence semi-angle and defocus values in the
transfer function were also updated iteratively in steps propor-
tional to the negative of their respective gradients. We began TF
optimization after 50 iterations of pure phase retrieval. Figure 4a
shows the accuracy evolution with (black line) and without (red
line) optimizing the TF. The two initially overlap with each other
during the first 50 iterations of pure phase retrieval. With TF
optimization, the accuracy of the retrieved phase quickly

Fig. 4 AD phase retrieval with partial recovery of the transfer function. a Evolution of the accuracy during AD phase retrieval with (black)
and without (red) TF optimization. b Evolution of the recovered convergence semi-angle (black) and offset of the defocus values (red) during
AD phase retrieval with TF optimization. The dashed lines mark respectively the ground truth for the two parameters.

Fig. 3 Comparative performance in the presence of simulated noise. a Ground truth for the phase gradient. Its direction is shown in false
color as defined by the color wheel in the inset. Its magnitude is indicated by the gray contour which appears each time the phase wraps over
one tenth of 2π. The scale bar is 500 nm. AD retrieved phase gradient using an image pair with 10% of Gaussian noise at Δf= ±1.6 mm, (b)
without and (c) with a TV regularizer. The regularization parameter was 4 × 10−8. AD retrieved phase gradient using a mixed focus series
consisting of four images (Δf= ±0.15 and ±1.6 mm) with (d) 15% and (e) 30% of Gaussian noise. f GS retrieved phase gradient using the same
condition as (d). The numbers in the brackets denotes the accuracy of the retrieved phases. The scale bar and the color wheel apply to all the
images.
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improved, reaching 95.57% at the end of 1000 iterations. Without
TF optimization and with the wrong values for the convergence
and defocus, the accuracy evolution staggered at around 60% and
the retrieved phase gradually diverged from the true phase with
further iterations. Figure 4b shows the evolution of the recovered
values for the divergence semi-angle and defocus offset. Both
values converged to the vicinity of their respective truth, with a
small discrepancy due entirely to the noise in the simulated
images. The result thus indicates that even in the presence of 15%
of Gaussian noise, the current strategy is capable of correcting
errors in the convergence semi-angle with an uncertainty of better
than 0.5 μrad and errors in the defocus values with an uncertainty
of better than 0.5 μm.

Application to experimental data

Finally, we demonstrate the viability of the proposed phase
retrieval strategy on experimental LTEM images. The imaging
conditions and information about the sample can be found in the
“Methods” section. We choose specifically, for the purpose of
verification, nanostructures with known magnetic configuration.
TIE phase retrieval were performed on two images at Δf=
±1.44 mm with 2 s of exposure per image. AD and GS phase
retrieval was performed on a mixed focus series of four images at
Δf= ±0.49 mm and ±1mm with 1 s of exposure per image. The
total counting time was thus 4 s in both cases, to ensure a fair
comparison under the same electron dose conditions. The
convergence semi-angle was also retrieved with the AD method.
With a starting guess of 0.1 mrad, its value quickly converged to
0.02 mrad after about 100 iterations (Supplementary Fig. 5a). With
a fixed and erroneous value of 0.1 mrad, the error reduction of
both AD and GS staggered (Supplementary Fig. 5b) before any
meaningful results could be produced. Concurrent phase and

amplitude optimization (Supplementary Fig. 5c) was enabled near
the end of the process and the retrieved amplitude (Supplemen-
tary Fig. 5d) was found to be close to the guess amplitude. Figure
5a, b shows respectively the TIE and AD retrieved phase. A strong
phase variation spanning over 13 rad was observed in both cases
from the edge to the center of the largest nanostructure. As
expected, the AD result appears to be sharper thanks to its
inherent high spatial resolution. Figure 5c and d shows
respectively the TIE and AD retrieved phase gradient. Line profiles
were extracted across the center of the largest nanostructure.
Once again, AD (Fig. 5e, red line) outperformed TIE (black line) in
retrieving the sharp variations of the phase gradient expected at
the edges of the nanostructures. Elsewhere on the extracted line
profiles, the two methods agree extremely well with each other,
indicating that the accuracy of the AD method on the
experimental data is at least equal to, if not better than that of
TIE, under the same electron dose conditions. Energy dispersive
x-ray spectroscopy and atomic force microscopy measurements
were also performed on this sample. Based on the measured
thickness and composition, and using the mean inner potential
and saturation magnetization for Permalloy, we have calculated
the expected phase shift and found good agreement with the
experimentally retrieved ones (Supplementary Fig. 6).

DISCUSSION

In this work, we demonstrate phase retrieval in Lorentz TEM using
automatic differentiation. The main advantage of our approach is
its outstanding performance when working with Fresnel images of
large defocus values (∣Δf∣ > 1mm). There are many reasons for
which large defocus values may be desired. Functional properties
such as the magnetic or electrostatic field within the sample
typically has a slow varying component, and are carried primarily

Fig. 5 Application of AD phase retrieval on experimental data. a TIE and b AD retrieved phase. The colorbar applies to both figures. The
scale bar is 1 μm. c TIE and (d) AD retrieved gradients. TIE phase retrieval was performed on two Fresnel images at Δf= ± 1.44mm with 2 s of
exposure per image. AD phase retrieval was performed on a mixed focus series of four images at Δf= ±0.49mm and ±1mm with 1 s of
exposure per image. The convergence semi-angle was also retrieved in the AD process. e Line profiles of the phase gradient. The position at
which the line profiles were extracted is indicated by the dashed line in (d).
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by the very low spatial frequency part of the contrast transfer
function. As can be seen from the comparison between Fig. 2b
and Supplementary Fig. 2b, these low spatial frequency informa-
tion cannot be fully extracted at moderate defocus values (∣Δf∣ ~
100 μm). Imaging at large defocus values thus allows either more
quantitative analysis of weak magnetic or electrostatic field, or
similar analysis at a reduced electron dose. The latter is particularly
appealing to in situ studies. Among the common methods used
for phase retrieval, neither TIE nor GS work well near the upper
limit of the microscope defocus. Conventional TIE cannot recover
information beyond the point resolution and produces blurry
phase images at large defocus values. Both multi-grid TIE and GS
can in theory produce sharp phase images, but are numerically
unstable at large defocus due to division (back-projection) by the
vanishing damping envelope at large spatial frequencies. The
maximum defocus value at which GS is stable depends on the
convergence semi-angle as both parameters contribute to the
angular spread of the source. In our simulated environment, a
convergence angle of 10 μrad allows for a maximum defocus on
the order of 100 μm. For GS to be stable at ∣Δf∣= 1mm would
require a convergence semi-angle of 1 μrad.
Because the phase is updated through back-propagation of the

gradient rather than back-projection of the wavefunction, our AD
approach is in principle stable at large defocus values, capable of
retrieving phase with both high accuracy and high spatial
resolution (Fig. 2d). However, as an optimization method, AD
has a tendency to fit to the noise at places with weak numerical
constraint. At large defocus values, the numerical constraint is
particularly weak at large spatial frequencies due to the vanishing
damping envelope function. To improve the noise tolerance, we
proposed the use of mixed focus series consisting of two images
at large defocus and two images at moderate defocus. We show
that under the same conditions, AD out-performs GS in terms of
accuracy of the retrieved phase (Supplementary Fig. 4), and is
stable against up to 30% of Gaussian noise (Fig. 3e). The excellent
noise tolerance is another reason why our proposed method may
prove useful on beam sensitive samples or in in situ studies.
The most exciting feature of the AD formalism is perhaps the

possibility to retrieve any information implicitly contained in the
measured intensity. We demonstrate that by simultaneously
recovering the convergence semi-angle and an intentional
defocus offset alongside the phase image. The convergence
semi-angle is experimentally hard to determine, and while its
knowledge is not required in conventional TIE formalism, it is of
critical importance to the AD and GS methods. An incorrect
convergence semi-angle not only limits the maximum accuracy of
the retrieved phase, but may also disrupt completely the iterative
error reduction process (Fig. 4a). In a similar manner, uncertainty
on the defocus values may affect the accuracy of the TIE retrieved
phase. For those reasons, the possibility to recover any parameters
in the contrast transfer function is a feature that may have
profound impact on quantitative analysis in LTEM. Finally, we
would like to point out that despite being demonstrated primarily
at large defocus values, the proposed method works equally well
under moderate defocus conditions. In fact, when only moderately
defocused images are used, AD behaves very much like GS,
sharing the same advantage (high noise tolerance) and disadvan-
tage (slow in retrieving low spatial frequency information) as
compared to conventional TIE.

METHODS

Gradient descent optimization with automatic differentiation

We use the Adam optimizer64 implemented in Google’s Tensorflow
package48 for the gradient descent optimization. The initial learning rate is
set to 1. Before computing the amplitude guess, the in-focus image was
denoised with a total variation (TV) filter. For simulated data, the weight of
the TV filter is set to the level of the Gaussian noise. For experimental data,

it is set to the standard deviation measured on the background area. No
denoising process was performed on any of the defocus images. The
starting guess for the phase is 0.5 everywhere, though any other number
or a random 2D array works just as well. Mean Squared Error was used as
the loss function, calculated as the difference between the calculated
amplitude at the image planes and the measured amplitude of the Fresnel
images, squared and averaged for all the pixels. The phase retrieval
process is run on a remote Nvidia Tesla T4 GPU hosted on Google’s
Colaboratory. The amount of time per iteration depends on the number of
defocus images used, and is typically 1 min per 10000 iterations.

Gerchberg-Saxton algorithm with weighted back-projection

For the Gerchberg-Saxton algorithm we adopt the modification proposed
by Bhattacharyya et al.27. Similar to the AD approach, we calculate the exit
wavefunction as ψðr?; zÞ ¼ aðr?; zÞeiφðr? ;zÞ. The same initial guess as in AD
was used for the phase. For each iteration, the wavefunctions at the image
plane were calculated by the convolution of the exit wavefunction with the
microscope contrast transfer function. The latter again includes both the
phase transfer function and the damping envelope. We then replace the
amplitude of the image wavefunctions by the square root of the intensity
of their corresponding Fresnel images. A new estimate for the phase was
obtained by averaging the back-projected wavefunctions to the nominal
exit plane (∣Δf∣= 0), weighted by their corresponding damping envelope.
The multiplication by the damping envelope as the weight conveniently
canceled out the division of the damping envelope in the back-projection,
thus significantly improving the numerical stability of the method at
moderate defocus values. Finally, the difference between the absolute of
the calculated image wavefunction and the square root of the measured
intensity of the Fresnel images is used to calculate the loss function. The
phase retrieval process is considered complete if the improvement of the
loss function is smaller than a pre-defined value.

Phase retrieval using transport of intensity equation

The phase was retrieved by solving the transport of intensity equation:

∇ � ½Iðr?; 0Þ∇φ� ¼ � 2π

λ

∂Iðr?; 0Þ
∂z

� �

; (1)

where I(r⊥) represents the image intensity observed at a given focus z, φ is
the phase of the electron wave and λ is the electron wavelength (2.508 pm
for 200 kV electrons). The inverse Laplacian method using Fourier
transforms was used to solve the TIE to retrieve phase shift65 and is given
as:

φðr?; zÞ ¼ � 2π

λ
∇�2

? ∇? � 1

Iðr?; 0Þ
∇? ∇�2

?
∂Iðr; 0Þ
∂z

� �� �� �� �

; Iðr?; 0Þ≠ 0

(2)

where ∇�2
? is the inverse Laplacian operator. The image intensity derivative

with respect to z on the right hand side of the equation was calculated
using central difference method. Image symmetrization was used to avoid
any errors due to periodic boundary conditions66. The phase recovery was
performed using PyLorentz, an open-source software for TIE-based phase
reconstruction67,68.

Accuracy and spatial resolution of the retrieved phase

The use of the simulated datasets allowed us to evaluate the accuracy of
the retrieved phase, calculated as the cross correlation between the
ground truth phase and the retrieved phase.
The spatial resolution of the retrieved phase is estimated by fitting a

Gaussian function to the sharp variation of the phase gradient at the edges
of the nanostructures. The spatial resolution is then taken as the FWHM of
the Gaussian distribution. Because an error function can be considered as
twice the integral of a normalized Gaussian function. This is equivalent to
fitting an error function to the sharp variation of the phase at the same
edges (Fig. 2b)

Simulated dataset

Simulated LTEM images (Supplementary Fig. 1) were computed for
magnetic nanostructures using parameters for Permalloy (Ni80Fe20) . The
simulated pattern was a slightly modified version of the 1951 USAF
resolution test standard. For a given noise level, a total of 65 images were
produced with defocus values spanned evenly between Δf= ±1.6 mm. The

T. Zhou et al.

6

npj Computational Materials (2021)   141 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



magnetization of the nanostructures was determined using OOMMF
micromagnetic simulations69, from which the electron phase shift was
calculated using the following equation

φtðr?Þ ¼ σ

Z

Vðr?; zÞ dz þ
e

_

Z

Aðr?; zÞ dz; (3)

where σ is the interaction constant for a TEM and depends on the
accelerating voltage (σ= 0.00728 V.nm−1 for 200 kV electrons), ℏ is the
reduced Planck’s constant and the integration is carried out along the
direction of propagation of the electrons. Since the composition of the
Permalloy films was taken to be uniform, the first term was approximated
as σV0t(r⊥), where V0= 26 V is the mean inner potential of Permalloy, and t
(r⊥) is the thickness of the sample. The amplitude for the simulated images
was calculated as aðr?Þ ¼ expð�tðr?Þ=ξ0Þ, where ξ0 is the absorption
length of electrons for Permalloy. In the case of thin specimens, ξ0 mainly
accounts for the loss of electrons as they are scattered outside the
acceptance angle of the TEM projection lenses. The LTEM images were
then computed using the forward model described previously. Each LTEM
image is composed of 512 × 512 pixels of 5 × 5 nm. Gaussian noise was
added to the images after they are generated. The level of the Gaussian
noise refers to the standard deviation of the distribution.

Experimental dataset

Experimental images (512 × 512 pixels) were taken using an aberration-
corrected JEOL 2100F Lorentz TEM operating at 200 kV. The sample
consists of 10 nm thick of Permalloy magnetic nanostructures, sputter-
deposited on a TEM grid and patterned with e-beam lithography. The pixel
size was 6.9 nm.

Microscope transfer function

In order to calculate the image intensity, we propagate the electron exit
wavefunction to the image plane by convolving it with the transfer
function of the microscope in the back focal plane. The intensity is
determined by

Iðr?Þ ¼ ψðr?Þ �Tðr?Þj j2; (4)

where * is a convolution operation, and Tðr?Þ is the microscope transfer
function. This operation is written here in real space but is computed in
Fourier space. The LTEM transfer function is composed of three parts55:

TðqÞ ¼ AðqÞe�iχðqÞe�gðqÞ; (5)

where A(q) is the objective aperture function, e−iχ(q) the phase transfer
function, e−g(q) the damping envelope, and q is the reciprocal space wave
vector. The aperture is a binary function (1 inside and 0 outside) centered
in reciprocal space for the Fresnel imaging mode. We can define the phase
transfer function as

χðqÞ ¼ πλ Δz þ Ca cos 2ϕað Þ½ �q2 þ π

2
Csλ

3q4; (6)

where Δz is the defocus, Ca and ϕa are the magnitude and orientation of
the two-fold astigmatism, and Cs is the spherical aberration coefficient.
The damping envelope can be written as

gðqÞ ¼ exp � π2θ2c
λ2 u

Csλ
3q3 � Δzλq

	 
2
� �

´ exp � πλΔð Þ2
2u

q4
� �

;
(7)

where u ¼ 1þ 2 πθcΔð Þ2q2 , θc is the beam convergence angle, and Δ is the
defocus spread.

DATA AVAILABILITY

All the data and codes developed in this study is available in a public GitHub
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