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ABSTRACT The medial prefrontal cortex has been associated with diverse functions

including attentional processes, visceromotor activity, decision-making, goal-directed

behavior, and working memory. The present report compares and contrasts projections

from the infralimbic (IL) and prelimbic (PL) cortices in the rat by using the anterograde

anatomical tracer, Phaseolus vulgaris-leucoagglutinin. With the exception of common

projections to parts of the orbitomedial prefrontal cortex, olfactory forebrain, and mid-

line thalamus, PL and IL distribute very differently throughout the brain. Main projec-

tion sites of IL are: 1) the lateral septum, bed nucleus of stria terminalis, medial and

lateral preoptic nuclei, substantia innominata, and endopiriform nuclei of the basal

forebrain; 2) the medial, basomedial, central, and cortical nuclei of amygdala; 3) the

dorsomedial, lateral, perifornical, posterior, and supramammillary nuclei of hypothala-

mus; and 4) the parabrachial and solitary nuclei of the brainstem. By contrast, PL

projects at best sparingly to each of these structures. Main projection sites of PL are: the

agranular insular cortex, claustrum, nucleus accumbens, olfactory tubercle, the para-

ventricular, mediodorsal, and reuniens nuclei of thalamus, the capsular part of the

central nucleus and the basolateral nucleus of amygdala, and the dorsal and median

raphe nuclei of the brainstem. As discussed herein, the pattern of IL projections is

consistent with a role for IL in the control of visceral/autonomic activity homologous to

the orbitomedial prefrontal cortex of primates, whereas those of PL are consistent with

a role for PL in limbic-cognitive functions homologous to the dorsolateral prefrontal

cortex of primates. Synapse 51:32–58, 2004. © 2003 Wiley-Liss, Inc.

INTRODUCTION

The medial prefrontal cortex (mPFC) in the rat con-

sists of four main subdivisions which, from dorsal to

ventral, are the medial agranular (AGm) (or medial

precentral), the anterior cingulate (AC) (dorsal and

ventral divisions), the prelimbic (PL), and the infra-

limbic (IL) cortices (Berendse and Groenewegen, 1991;

Ray and Price, 1992; Price, 1995; Swanson, 1998; On-

gur and Price, 2000).

The mPFC has been associated with diverse func-

tions including oculomotor control (frontal eye fields),

attentional processes, visceromotor activity, decision-

making, goal-directed behavior, and working memory

(Goldman-Rakic, 1987, 1994; Fuster, 1989; Neafsey et

al., 1986a; Kolb, 1990; Neafsey, 1990; Petrides, 1995,

1998). The various subdivisions of mPFC appear to

serve separate and distinct functions. For instance,

dorsal regions of mPFC (AGm and AC) have been im-

plicated in various motor behaviors, while ventral re-

gions of mPFC (PL and IL) have been associated with

diverse emotional, cognitive, and mnemonic processes.

Early reports in rats showed that stimulation of

AGm/AC generated eye movements (Hall and Lind-

holm, 1974; Donoghue and Wise, 1982), which together

with the demonstration that AGm/AC projects to ocu-

lomotor sites (Beckstead, 1979; Hardy and Leichnetz,

1981; Neafsey et al., 1986a; Leichnetz and Gonzalo-

Ruiz, 1987; Leichnetz et al., 1987; Reep et al., 1987;

Stuesse and Newman, 1990), led to the proposal that

AGm/AC of rats was equivalent to the frontal eye fields

(FEF) of primates (Leonard, 1969; Leichnetz and

Gonzalo-Ruiz, 1987; Reep et al., 1984, 1987; Guanda-

lini, 1998). Subsequent reports confirmed AGm in-

volvement in eye movement control, and further
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showed that AGm stimulation produced other types of

movements including those of the vibrissa, head, and

hindlimbs (Neafsey and Sievert, 1982; Sanderson et al.,

1984; Sinnamon and Galer, 1984; Gioanni and

Lamarche, 1985; Neafsey et al., 1986a). Accordingly, it

has been variously proposed that the AGm/AC of rats is

homologous to the FEF, supplementary motor, and pre-

motor cortices of primates (Neafsey et al., 1986a; Pass-

ingham et al., 1988; Reep et al., 1987, 1990).

In contrast to motor-associated properties of the dorsal

mPFC, the ventral mPFC (IL and PL) has been anatom-

ically and functionally linked with the limbic system. For

instance, the ventral mPFC (or IL) has been shown to

profoundly influence visceral/autonomic activity. IL stim-

ulation produces changes in respiration, gastrointestinal

motility, heart rate, and blood pressure (Terreberry and

Neafsey, 1983; Burns and Wyss, 1985; Hurley-Gius and

Neafsey, 1986; Verberne et al., 1987; Hardy and Holmes,

1988). IL has been viewed as a visceromotor center (Hur-

ley-Gius and Neafsey, 1986; Neafsey, 1990), homologous

to the orbitomedial prefrontal cortex of primates (Barbas,

1995, 2000; Groenewegen and Uylings, 2000).

The ventral mPFC (primarily PL) has also been im-

plicated in cognitive processes. Ventral mPFC lesions

Abbreviations

AA anterior area of amygdala
AC anterior cingulate cortex, dorsal division
ACC nucleus accumbens
AGm medial agranular (prefrontal) cortex
AGl lateral agranular (prefrontal) cortex
AHN anterior hypothalamic nucleus
AI,d,p,v agranular insular cortex, dorsal, posterior, ventral

divisions
AM anteromedial nucleus of thalamus
AON,m,v anterior olfactory nucleus, medial, ventral parts
AV anteroventral nucleus of thalamus
APN anterior pretectal nucleus
BLA basolateral nucleus of amygdala
BMA basomedial nucleus of amygdala
BST bed nucleus of stria terminalis
C cerebellum
CA1 field CA1, Ammon’s horn
CA3 field CA3, Ammon’s horn
CEA,c central nucleus of amygdala, capsular part
CEM central medial nucleus of thalamus
CLA claustrum
COA cortical nucleus of amygdala
C-P caudate-putamen, striatum
CU nucleus cuneiformis
DB,h,v nucleus of the diagonal band, horizontal, vertical

limbs
DG dentate gyrus
DMH dorsomedial nucleus of hypothalamus
DR dorsal raphe nucleus
EC entorhinal cortex
ECT ectorhinal cortex
EN endopiriform nucleus
FI fimbria of hippocampus
FP,m,l frontal polar cortex, medial, lateral divisions
FR fasciculus retroflexus
GI granular insular cortex
GP globus pallidus
HF hippocampal formation
IAM interanteromedial nucleus of thalamus
IC inferior colliculus
IL infralimbic cortex
INC insular cortex
IP interpeduncular nucleus
IMD intermediodorsal nucleus of thalamus
LA lateral nucleus of amygdala
LD lateral dorsal nucleus of thalamus
LGd lateral geniculate nucleus, dorsal division
LH lateral habenula
LHy lateral hypothalamic area
LOT lateral olfactory tract
LP lateral posterior nucleus of thalamus
LPO lateral preoptic area
LS lateral septal nucleus
LV lateral ventricle
MA magnocellular preoptic nucleus
MB mammillary bodies
MD mediodorsal nucleus of thalamus
MEA medial nucleus of amygdala
MGv medial geniculate nucleus, ventral division

MO medial orbital cortex
MPN medial preoptic nucleus
MPO medial preoptic area
MR median raphe nucleus
MRF mesencephalic reticular formation
MS medial septum
MT mammillothalamic tract
NLL nucleus of lateral lemniscus
NPC nucleus of posterior commissure
NTS nucleus of solitary tract
N7 facial nucleus
OC occipital cortex
OT olfactory tubercle
PAG,v periaqueductal gray, ventral division
PAR parasubiculum
PB,m,l parabrachial nucleus, medial, lateral parts
PCO precommissural nucleus
PFx perifornical region of hypothalamus
PH posterior nucleus of hypothalamus
PIR piriform cortex
PL prelimbic cortex
PMd dorsal premammillary nucleus
PMv ventral premammillary nucleus
PN nucleus of pons
PO posterior nucleus of thalamus
POA posterior nucleus of amygdala
PRC perirhinal cortex
PRE presubiculum
PT paratenial nucleus of thalamus
PV,p paraventricular nucleus of thalamus, posterior part
RE nucleus reuniens of thalamus
RH rhomboid nucleus of thalamus
RN red nucleus
RPO nucleus reticularis pontis oralis
RR retrorubral area
RSC retrosplenial cortex
RT reticular nucleus of thalamus
RTG reticular tegmental nucleus
SC superior colliculus
SF septofimbrial nucleus
SI substantia innominata
SLN supralemniscal nucleus (B9)
SME submedial nucleus of thalamus
SN,c,r substantia nigra, pars compacta, pars reticulata
SSI primary somatosensory cortex
SSII secondary somatosensory cortex
SUB,d subiculum, dorsal part
SUM supramammillary nucleus
TE temporal cortex
TT,d,v taenia tecta, dorsal, ventral parts
VAL ventral anterior-lateral complex of thalamus
VB ventrobasal complex of thalamus
VMH ventromedial nucleus of hypothalamus
VLO ventral lateral orbital cortex
VO ventral orbital cortex
VT ventral tegmental nucleus (Gudden)
VTA ventral tegmental area
ZI zona incerta
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(or PL lesions) have been shown to produce pronounced

deficits in delayed response tasks (Brito and Brito,

1990; Seamans et al., 1995; Delatour and Gisquet-Ver-

rier, 1996, 1999, 2000; Floresco et al., 1997; Ragozzino

et al., 1998), similar to those seen with lesions of the

dorsolateral PFC of primates (Kolb, 1984; Goldman-

Rakic, 1987, 1994; Groenewegen and Uylings, 2000).

A view appears to be emerging that IL primarily

serves a role in visceromotor functions and PL in cog-

nitive processes. Despite apparent functional differ-

ences, IL and PL are often (or generally) treated as a

single region (i.e., the ventral mPFC), with reportedly

minor differences in their efferent projections. For in-

stance, following an analysis of IL, PL, and anterior

cingulate projections in rabbits, Buchanan et al. ( 1994)

concluded that: “there were many similarities between

the projections from the three cytoarchitectonic areas.”

In like manner, Takagishi and Chiba (1991) examined

IL projections in the rat, compared their findings to an

earlier description of PL projections in rats (Sesack et

al., 1989), and reported that 26 of 27 sites receive

common projections from IL and PL (see their fig. 10, p.

35). Finally, Price and co-workers (Floyd et al., 2000,

2001) recently demonstrated significantly overlapping

IL and PL projections to the periaqueductal gray (PAG)

and hypothalamus in rats, stating, for instance (Floyd

et al., 2001) that: “Projections from rostral PL/IL tar-

geted the rostrocaudal extent of the lateral hypothala-

mus”; and “Projections arising from the caudal PL/IL

terminated within the dorsal hypothalamus.”

In the present report, we examine, compare, and

contrast projections from the IL and PL cortices in the

rat and show, with few exceptions, that IL and PL

distribute very differently throughout the brain. These

differential projections undoubtedly reflect distinct

functions for IL and PL.

MATERIALS AND METHODS

Single injections of PHA-L were made into the IL or PL

of 26 male Sprague-Dawley (Charles River, Wilmington,

MA) rats weighing 275–325 g. These experiments were

approved by the Florida Atlantic University Institutional

Animal Care and Use Committee and conform to all fed-

eral regulations and the National Institutes of Health

Guidelines for the Care and Use of Laboratory Animals.

Powdered lectin from Phaseolus vulgaris-leucoaggluti-

nin was reconstituted to 2.5% in 0.05 M sodium phos-

phate buffer, pH 7.4. The PHA-L solution was ionto-

phoretically deposited in the brains of anesthetized rats

by means of a glass micropipette with an outside tip

diameter of 40–60 �m. Positive direct current (5-10 �A)

was applied through a Grass stimulator (Model 88) cou-

pled with a high-voltage stimulator (FHC, Bowdoinham,

ME) at 2 sec “on” / 2 sec “off” intervals for 30–40 min.

After a survival time of 7–10 days, animals were deeply

anesthetized with sodium pentobarbital and perfused

transcardially with a buffered saline wash (pH 7.4, 300

ml/animal) followed by fixative (2.5% paraformaldehyde,

0.05–0.1% glutaraldehyde in 0.05 M phosphate buffer,

pH 7.4) (300–500 ml/animal), and then by 10% sucrose in

the same phosphate buffer (150 ml/animal). The brains

were removed and stored overnight at 4°C in 20% sucrose

in the same phosphate buffer. On the following day, 40 or

50 �m frozen sections were collected in phosphate-buff-

ered saline (PBS, 0.9% sodium chloride in 0.01 M sodium

phosphate buffer, pH 7.4) and incubated for 1 h in diluent

(10% normal rabbit serum (Colorado Serum, Denver, CO)

and 1% Triton X-100 (Sigma Chemicals, St. Louis, MO),

in PBS). Sections were then incubated overnight (14–17

h) at 4°C in primary antiserum directed against PHA-L

(biotinylated goat anti-PHA-L, Vector Laboratories, Bur-

lingame, CA) at a dilution of 1:500 in diluent. The next

day, sections were washed 5 times for 5 min each (5 � 5

min) in PBS, and then incubated in the second antiserum

(rabbit antisheep IgG, Vector Labs) at a dilution of 1:500

in diluent for 2 h. Sections were rinsed again (5 � 5

min) and incubated with peroxidase-antiperoxidase

(goat origin, Sternberger Monoclonals, Baltimore,

MD) at a dilution of 1:250 for 2 h. The last two

incubations were repeated (double-bridge procedure)

with 5 � 5 min rinses following each incubation for

1 h each. After 5 � 5 min rinses the sections were

incubated in 0.05% 3,3�diaminobenzidine (DAB) in

PBS for 10 min, followed by a second, 5-min DAB

(same concentration) incubation to which 0.018%

H2O2 had been added. Sections were then rinsed

again in PBS (3 � 1 min) and mounted onto chrome-

alum gelatin-coated slides. An adjacent series of sec-

tions was stained with cresyl violet for anatomical

reference.

Sections were examined using light and darkfield

optics. PHA-L-labeled cells (at injection sites) and fi-

bers were plotted onto maps constructed from adjacent

Nissl-stained sections. The main criteria used to dis-

tinguish labeled terminals from fibers of passage were:

1) the presence or essential absence of axon/terminal

specializations; and 2) the degree of axonal branching.

Terminal sites were typically characterized by a dense

array of highly branched axons containing numerous

specializations (varicosities, terminal boutons),

whereas passing fibers exhibited minimal branching

and contained few specializations. The lightfield pho-

tomicrographs of the injection sites were taken with a

Nikon DXM1200 camera mounted on a Nikon Eclipse

E600 microscope and enhanced (contrast and bright-

ness) using Adobe PhotoShop 7.0 (Mountain View, CA),

while the darkfield photomicrographs of labeled fibers

were taken with a Nikon FX-35A 35 mm camera.

RESULTS

The patterns of distribution of labeled fibers

throughout the brain with injections in the infralimbic

(IL) and prelimbic (PL) cortices are described. Two

cases are depicted and described in detail: one with an
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injection in IL (case 701) (Fig. 1A) and the other with

an injection in PL (case 668) (Fig. 1B,C). The patterns

of labeling obtained with the schematically illustrated

cases (see below) are representative of patterns found

with nonillustrated cases.

Infralimbic cortex: case 701

Figure 2 schematically depicts patterns of labeling

throughout the brain following a PHA-L injection in

the infralimbic cortex (Fig. 2C). PHA-L-filled cells were

primarily localized to layer 6 of IL, with some extension

to layer 5, mainly ventrally in layer 5 (Fig. 1A).

Labeled fibers coursed forward from the site of

injection to distribute to frontal polar regions of cor-

tex and olfactory structures (Fig. 2A). Labeled fibers

spread dorsoventrally throughout the medial wall of

mPFC terminating in the medial frontal polar cortex

(FPm), the rostral prelimbic cortex, and the medial

orbital cortex (MO). Significant numbers also ex-

tended laterally from MO to distribute to the ventro-

lateral (VLO) and lateral (LO) orbital cortices. La-

beling was heaviest in ventral FPm and PL and

largely restricted to layers 1 and 5/6 of these regions.

The primary olfactory targets were the anterior ol-

factory nucleus (AONm) and the dorsally adjacent

dorsal tania tecta (TTd) (layers 2– 4), with some ex-

tension to the ventral tania tecta (TTv) (Fig. 2A).

Labeling was considerably stronger ipsilaterally (left

side) than contralaterally.

Further caudally (Fig. 2B), labeled fibers continued to

occupy most of the medial wall of mPFC, mainly confined

to the anterior cingulate (AC), PL, and medial orbital

cortices. Although labeling spread to all layers of cortex, it

was most densely concentrated in layers 1 and 5/6 of

mPFC. A few labeled fibers were observed laterally in

VLO. The AONm and TTv were moderately labeled.

Like rostrally (Fig. 2A,B), the principal destination

of labeled fibers at the site of injection (Fig. 2C) was

regions of the cortex and olfactory structures. The

AC, PL, and IL were heavily labeled; the dorsal

agranular insular cortex (AId), rostral endopiriform

nucleus (EN), and anterior ventral olfactory nucleus

(AONv) were moderately labeled. As depicted (Fig.

2C), there was a notable absence of labeling in nu-

cleus accumbens (ACC).

Labeled fibers descended from the site of injection

primarily through dorsomedial aspects of cortex and

through the medial one-third of the striatum (C-P) to

distribute strongly to AC, IL, TTd, and anterolateral

regions of the septum, and less heavily to the olfac-

tory tubercle (OT), ventral agranular insular cortex

(AIv), and EN (bilaterally) (Fig. 2D,E). The ACC was

lightly labeled ipsilaterally. Further caudally, la-

beled fibers, grouped in small bundles, descended

through the medial striatum (Fig. 2E,F), distributing

en route to dorsal and ventral parts of medial C-P,

and beyond the striatum to the lateral septum (LS),

OT, EN, the posterior agranular insular cortex (AIp),

and the horizontal limb of diagonal band nucleus

(DBh). Labeled axons appeared to mainly traverse

the medial ACC bound for caudal regions of the basal

forebrain (Fig. 2E,F).

At the mid-septum (Fig. 2G), labeled fibers spread

widely over the basal forebrain, strongly targeting an-

terior regions of the bed nucleus of stria terminalis

(BST), the substantia innominata (SI), DBh, and EN,

and, moderately, the medial C-P, AC, and LS. At the

caudal septum (Fig. 2H,I), labeling was mainly con-

fined to structures of the medial basal forebrain and

anterior hypothalamus. Major sites of termination

were BST (all divisions), EN, lateral aspects of the

medial preoptic area (MPO), and the lateral preoptic

area (LPO), with extensions caudally to the lateral

hypothalamus (LHy) (Fig. 2I). This pattern of labeling

is depicted in the photomontage of Figure 3. Labeled

fibers surrounded but did not appear to terminate in

the magnocellular preoptic nucleus (MA), while some

distributed to the medial preoptic nucleus (MPN) (Fig.

2H). Only scattered labeling was observed in the cor-

tex, essentially restricted to AC.

The main route of descent of labeled fibers through

the diencephalon was the medial forebrain bundle

(MFB). A major contingent of labeled axons coursed

dorsomedially from the MFB into the thalamus to ter-

minate massively in the paratenial nucleus (PT), me-

dial and central divisions of the mediodorsal nucleus

(MDm and MDc) and nucleus reuniens (RE) (Fig.

2J,K). Others continuing to descend with the MFB

distributed terminally in transit to lateral (LHy) and

perifornical (PFx) regions of the hypothalamus. The

anterior amygdala was fairly uniformly labeled (Fig

2J-L); labeling was densest in the medial, cortical (an-

terior and posterolateral parts), and central (medial

and capsular regions) nuclei (Fig. 4). The caudal pole of

BST, zona incerta (ZI), EN, and the rhomboid (RH) and

central medial (CEM) nuclei of thalamus were moder-

ately labeled (Fig. 2J,K).

Further caudally in the diencephalon (Fig. 2L,M),

labeling was largely confined to the midline thalamus,

hypothalamus, and amygdala; that is, 1) to the MD

complex, dorsally, and RE, ventrally, of the thalamus;

2) to the perifornical region, LHy, and dorsomedial

nuclei of the hypothalamus; and 3) to the medial, ba-

somedial, and central (medial and capsular divisions)

nuclei of the amygdala.

Labeling thinned considerably at caudal levels of

the diencephalon (Fig. 2N,O). Moderately dense

numbers of labeled fibers, however, were present in

the posterior paraventricular (PVp), intermediodor-

sal (IMD), and medial aspects of the parafascicular

(PF) nuclei of thalamus, as well as in the lateral,

posterior, and supramammillary (SUM) nuclei of the

hypothalamus. Caudal regions of the amygdala were

sparsely labeled. Figure 5 shows significant labeling
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Fig. 1. A,B: Low-magnification lightfield photomicrographs show-
ing the locations of Phaseolus vulgaris-leucoagglutinin (PHA-L) injec-
tions in the infralimbic (A) and prelimbic (B) cortices in the rat.
Rectangles indicate the areas of PHA-L-filled cells in the respective
injections. C: High-magnification lightfield photomicrograph showing

PHA-L filled cells in the prelimbic cortex (corresponds to rectangle in
B). Note PHA-L labeled fibers coursing from the sites of injection to
respective contralateral fields (A,B) and particularly prominent fibers
from the prelimbic cortex (B) to the anterior olfactory nucleus, ipsi-
laterally and contralaterally. For abbreviations, see list.
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along the midline within PVp, IMD, and PH (Fig. 5A)

as well as caudally in SUM (Fig. 5B,C).

Labeling continued to decline at the level of the

brainstem (Fig. 2P–R). Main brainstem targets were

medial/ventromedial regions of the periaqueductal

gray (PAG), the substantia nigra-pars compacta

(SNc), the interpeduncular nucleus, and the medial

and lateral parabrachial nuclei (Fig. 2P,Q). The ven-

tral tegmental area (VTA), dorsal raphe nucleus,

Barrington’s nucleus, the nucleus ambiguus (not

shown), and nucleus of the solitary tract (not shown)

were lightly to moderately labeled. Finally, at caudal

levels of the cortex labeling was essentially confined

to the lateral entorhinal cortex (bilaterally) (Fig. 2P–

R).

Differences in rostral and caudal IL projections

Although patterns of projections from the rostral

and caudal IL were largely similar, there were some

notable differences. Rostral regions of IL distribute

Fig. 2. Schematic representation of labeling present in selected sections through the forebrain and
rostral brainstem (A–R) produced by a PHA-L injection (dots in C) in the infralimbic cortex (case 701).
Sections modified from the rat atlas of Swanson (1998). For abbreviations, see list. (Figure 2 continued
p. 38–39).
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more heavily than caudal regions to the posterior

insular cortex, the shell of ACC, BST, the central and

basomedial nuclei of the amygdala, MDm, and EC.

On the other hand, the caudal IL projects more

heavily than the rostral IL to the lateral septum and

DBh, the anterior hypothalamus, the supramammil-

lary nucleus, and the diencephalic and mesence-

phalic periventricular gray.

Prelimbic cortex: case 668

Figure 6 schematically depicts the distribution of

labeled fibers throughout the brain following a

Figure 2 (Continued).
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PHA-L injection in the prelimbic cortex. As shown

(Fig. 1B,C), PHA-L-filled cells were restricted to lay-

ers 5 and 6 of PL.

Labeled fibers coursed forward from the site of injec-

tion (Fig. 6B,C) to distribute to the medial orbitofrontal

cortex and olfactory structures of the anterior forebrain

(Fig. 6A). Main terminal sites were FPm, anterior PL

and MO of the medial prefrontal cortex, and the dorsal

and ventral tania tecta, anterior piriform cortex, and

anterior olfactory nucleus of the olfactory forebrain

(Fig. 7A,B). Layer 1 of VO and VLO was lightly to

moderately labeled.

Labeled fibers spread in several directions from the

site of injection (Fig. 6B); that is, locally to PL, AC, and

IL, ventrally to the anterior olfactory nucleus, TTd,

TTv, and VO, and laterally to AId. Labeling was fairly

uniform throughout all layers of AC, PL, and IL, but

restricted to layers 5/6 of VO. Figure 8 depicts labeling

in the contralateral mPFC, mainly localized to PL, at

two levels of the anterior forebrain.

Further caudally (Fig. 6C), labeling remained pro-

nounced in PL and IL, mainly concentrated in layers

1–3 and 6, bilaterally. A prominent bundle of labeled

axons coursed laterally from PL to densely innervate

the dorsal and ventral agranular insular cortices,

stronger contralaterally (right side) than ipsilaterally.

In addition, a dense array of labeled fibers capped the

anterior commissure, localized to AONv and to the

anterior part of nucleus accumbens. The OT was mod-

erately labeled. This pattern of labeling is depicted in

the photomontage of Figure 9.

Labeled fibers descended from the site of injection

mainly through dorsomedial aspects of the cortex and

through the medial striatum, distributing en route to

AC and to dorsomedial parts of C-P, respectively, and

beyond the striatum to ACC, OT, the claustrum (CLA)

and AId (Fig. 6D,E). Both the shell and core of ACC

were densely labeled. Figure 10 depicts pronounced

labeling contralaterally in ACC, CLA and deep layers

(5 and 6) of AId.

The primary targets of labeled fibers at the level of

the septum (Fig. 6F,G) were AC, medial C-P, substan-

tia innominata, CLA, OT, and DBh. C-P and CLA were

heavily labeled; the other sites were lightly to moder-

ately labeled. Unlike pronounced labeling rostrally in

ACC, there was a virtual absence of labeled fibers in

the caudal pole (medial shell) of ACC.

At the rostral diencephalon (Fig. 6H,I), a large con-

tingent of labeled axons swept dorsomedially from the

internal capsule into the thalamus to distribute heavily

to the anterior PT, RE, and the medial division of MD,

and lightly to the paraventricular nucleus of thalamus;

a second group took a more ventral course terminating

lightly to moderately in LHy, CLA, and the basolateral

nucleus of the amygdala. SI and ZI were sparsely la-

beled.

At mid-levels of the diencephalon (Fig. 6J,K), label-

ing was mainly restricted to MD and RE of thalamus

and parts of the amygdala. Medial and lateral divisions

of MD were heavily labeled; MDc was essentially de-

void of labeled fibers. Within the amygdala, labeling

was virtually confined to the central nucleus (dorsal

capsular and lateral parts) and the basolateral nucle-

us—stronger contralaterally (right side) than ipsilater-

ally. Figure 11 depicts labeling contralaterally in CE

and BLA at three levels of the amygdala. At these same

levels, ZI, LHy, and CLA, were lightly to moderately

labeled.

The virtually exclusive targets of labeled fibers at the

caudal diencephalon (Fig. 6L,M) were the midline thal-

amus and the hypothalamus; that is, the lateral habe-

nula, posterior PV (PVp), IMD, medial PF, and the

central medial nucleus (CEM) of the thalamus, and

LHy, the posterior nucleus (PH), the dorsal premam-

millary nucleus and SUM of the hypothalamus. The

most heavily labeled sites were PVp, IMD, CEM, and

PH.

Labeled fibers primarily reached the brainstem via

the mammillary peduncle (MP) (Fig. 6M–P). Signifi-

cant numbers exited laterally from MP to moderately

innervate SNc, while others continued caudally with

MP to distribute to VTA, IP, the supralemniscal nu-

cleus (B9), and the median raphe nucleus. A branch of

this latter bundle arched dorsolaterally through the

pontine tegmentum to fairly densely innervate ventro-

medial and lateral regions of PAG (including the pre-

Figure 2 (Continued).
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commissural nucleus) and the dorsal raphe nucleus.

Finally, moderate labeling was observed in the piri-

form, perirhinal, and entorhinal cortices at caudal lev-

els of the cortex.

Differences in rostral/caudal and

dorsal/ventral PL projections

There were distinct differences in projections from

the rostral and caudal PL. The rostral PL distributes

more heavily than the caudal PL to the agranular

insular cortex (deep and superficial layers), the ento-

rhinal cortex, the core of ACC, the basolateral and

central nuclei of the amygdala, MDm, SUM, PVp, and

the dorsal raphe nucleus. On the other hand, the cau-

dal PL projects more heavily than the rostral PL to the

anterior cingulate cortex (supracollasal part), lateral

septum, the anterior nucleus of the hypothalamus, the

anteromedial and interanteromedial nuclei of the thal-

amus, MDl, RE, and the supralemniscal nucleus (B9).

In addition, the rostral PL distributes fairly selectively

to ventrolateral regions of the PAG and the caudal PL

to the dorsolateral PAG.

Differences in dorsal and ventral PL projections

largely depended on the proximity of injections to

adjacent regions of the mPFC (AC for the dorsal PL;

IL for the ventral PL); that is, the closer injections

were to neighboring regions the stronger were com-

mon projections with respective regions. For in-

stance, dorsal PL fibers distributed heavily to the

posterior cingulate/retrosplenial cortex and the lat-

eral MD (mirroring AC), while the ventral PL pro-

jected heavily to the DBh, MPO, and medial MD

(mirroring IL). Based on previous reports of differ-

ential dorsal and ventral PL projections to the ven-

tral striatum (nucleus accumbens) (Berendse et al.,

1992; Groenewegen et al., 1999), we carefully exam-

ined PL projections to ACC and found only a slight

tendency of dorsal PL fibers to distribute more

heavily to the core than shell of ACC and ventral PL

fibers to distribute more densely to the shell than

core of ACC, rather than a clear separation of dorsal

and ventral PL projections to parts of ACC as previ-

ously described (Berendse et al., 1992).

DISCUSSION

We compared and contrasted projections from the

infralimbic and prelimbic cortices in the rat. With

the exception of projections to the thalamus and

Fig. 3. Darkfield photomicro-
graph of a transverse section
through the forebrain showing
patterns of labeling in the basal
forebrain produced by an injection
in the infralimbic cortex (case
701). Note dense terminal labeling
in the bed nucleus of the stria ter-
minalis (BST), the ventral part of
the lateral preoptic area (LPO),
and the medially adjacent medial
preoptic area. Scale bar � 600 �m.
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Fig. 4. Darkfield photomicrograph of a
transverse section through the forebrain show-
ing patterns of labeling in the amygdala pro-
duced by an injection in the infralimbic cortex
(case 701). Note pronounced labeling in the cen-
tral (A), medial (A,B), and basomedial (A,B)
nuclei, and an essential absence of labeling in
the lateral and basolateral nuclei, lateral to the
central nucleus. Scale bar � 600 �m.
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parts of the olfactory forebrain and cortex, IL and PL

distribute very differently throughout the brain.

These differential patterns of projections undoubt-

edly reflect functional differences between IL and

PL. The projections of IL are consistent with its

involvement in visceromotor functions, functionally

homologous to the orbitomedial PFC of primates

(Neafsey, 1990; Barbas, 1995, 2000; Groenewegen

and Uylings, 2000), whereas those of PL are consis-

tent with a role in cognitive processes, functionally

homologous to the dorsolateral prefrontal cortex of

primates (Kolb, 1984; Goldman-Rakic, 1987, 1995;

Groenewegen and Uylings, 2000).

Projections of the infralimbic cortex

The primary targets of IL fibers were: 1) the medial

prefrontal (FPm, AC, PL, IL), orbital (mainly MO), insu-

lar, and entorhinal cortices; 2) the anterior piriform cor-

tex, dorsal and ventral tania tecta, and anterior olfactory

nucleus of the olfactory forebrain; 3) LPO, lateral aspects

of MPO, SI, BST, LS, DBh, and endopiriform nucleus of

the basal forebrain; 4) the medial, basomedial, cortical

and central nuclei of the amygdala; 5) the PT, PV, MD,

IMD, IAM, CEM, and RE of the thalamus; 6) the dorso-

medial, lateral, perifornical, posterior, and supramam-

millary nuclei of the hypothalamus; and 7) the SNc, PAG,

PB, and NTS of the brainstem (Table I, Fig. 12A).

Fig. 5. Darkfield photomicrographs of transverse sections through
the diencephalon showing patterns of labeling in caudal regions of the
thalamus and hypothalamus. A: Pronounced labeling dorsoventrally
along the midline in the paraventricular nucleus (PV) and intermedio-
dorsal nucleus of thalamus (ventral to PV) and the posterior nucleus

(PH) of the hypothalamus. B,C: Labeling rostrally (B) and caudally
(C) in the supramammillary nucleus (SUM), densest in the medial
nucleus of SUM. Note absence of labeling in all parts of the mammil-
lary complex (A–C) including the dorsal premammillary nucleus
(PMd). Scale bar � 600 �m.
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Projections of the prelimbic cortex

The main targets of PL fibers were: 1) FPm, IL, AC,

MO, AI (dorsal and ventral divisions), and EC of the

cortex; 2) the anterior PIR, AONm,v, and TTd of the

olfactory forebrain; 3) medial C-P, the nucleus accum-

bens (shell and core), OT, and CLA of the basal fore-

brain; 4) PT, PV, AM, IAM, CEM, MD-IMD, and RE of

the midline thalamus; 5) the central and basolateral

nuclei of the amygdala; and 6) VTA, SNc, PAG, su-

pralemniscal nucleus (B9), DR, and MR of the brain-

stem (Table I, Fig. 12B).

Common IL and PL projections

Despite largely separate patterns of projections, IL and

PL distribute commonly to some sites, mainly to the mid-

line/medial thalamus. Both IL and PL project heavily

(and bilaterally) to the paratenial, paraventricular, MD/

IMD, IAM, CEM, and nucleus reuniens of the midline

thalamus. In addition, IL and PL project commonly to the

anterior PIR, AONm,v, and dorsal and ventral tania tecta

of the olfactory forebrain, and to parts of the orbitomedial,

insular, and entorhinal cortices. PL distributes much

more heavily than IL to the insular cortex.

IL and PL projections: comparisons

with previous studies

mPFC and adjacent regions of the prefrontal

cortex

We showed that IL and PL distribute significantly to

other subdivisions of the orbitomedial PFC; that is,

densely to IL, PL, and AC and moderately to AGm and

parts of the orbital cortex (MO, VO, and VLO).

Fig. 6. Schematic representation of labeling present in selected sections through the forebrain and
rostral brainstem (A–P) produced by a PHA-L injection (dots in B,C) in the prelimbic cortex (case 668).
Sections modified from the rat atlas of Swanson (1998). For abbreviations, see list. (Figure 6 continued
p. 44).
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With few exceptions, previous studies have similarly

demonstrated pronounced IL/PL projections to neigh-

boring regions of the orbitomedial PFC. For instance,

Takagishi and Chiba (1991) reported that IL fibers

distribute widely throughout the mPFC; that is, to the

medial precentral, PL, and dorsal peduncular cortices,

as well as to rostral pole of VO and VLO. Hurley et al.

(1991) demonstrated comparable results for IL, and

further noted that “control” injections in PL resulted in

“extensive projections to all cortical areas located along

the medial surface of the frontal lobe including layers I,

II, III, and V of the medial orbital cortex, the tania

tecta, the dorsal peduncular cortex, the ILC, and the

anterior cingulate cortex.” Consistent with this, Sesack

et al. (1989) found that PL fibers distribute to several

regions adjacent to PL, including the rostrocaudal ex-

Figure 6 (Continued).
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tent of the prelimbic and dorsal anterior cingulate cor-

tices as well as to the medial precentral and infralimbic

cortices. In contrast to the foregoing, Fisk and Wyss

(1999) recently described fairly limited interconnec-

tions among subdivisions of the mPFC. It appears,

however, that the injections of Fisk and Wyss (1999)

were quite small, possibly resulting in a more re-

stricted distribution of IL and PL fibers than shown in

previous reports.

Insular cortex (INC)

We showed that IL and PL project very differently to

the INC. PL distributes much more heavily than IL to

INC, and PL fibers are mainly directed to the rostral

agranular insular cortex (dorsal and ventral divisions),

and IL fibers to the posterior agranular INC.

In accord with the present findings, Hurley et al.

(1991) reported that the IL projection to INC was a

relatively minor pathway, and remarked, in fact, that a

reexamination of their earlier work (Saper, 1982a) re-

vealed that mPFC cells retrogradely labeled from INC

were “actually just beyond the border of IL, in the

prelimbic cortex.” A comparison of IL and PL projec-

tions in cats (Room et al., 1985) demonstrated consid-

erably stronger PL than IL projections to INC, and

further showed that PL fibers selectively target the

rostral agranular INC. PL also distributes fairly selec-

tively to AId in rats (Beckstead, 1979; Sesack et al.,

1989). Finally, Shi and Cassell (1998) recently demon-

strated that the agranular INC distributes to PL and

the posterior INC to IL, indicating topographically or-

ganized reciprocal projections between IL/PL and INC.

Claustrum (CLA) and endopiriform

nucleus (EN)

We showed that IL projects to the endopiriform nu-

cleus and PL to the claustrum of the claustrum/en-

dopiriform complex. The claustrum consists of two

main zones—the dorsal (or insular) claustrum and the

ventral (or piriform) claustrum, also termed the en-

dopiriform nucleus. It is well documented that CLA/EN

is reciprocally linked to virtually all areas of the cortex

(Markowitsch et al., 1984; Sloniewski et al., 1986;

Sherk, 1988; Witter et al., 1988; Kowianowski et al.,

1998; Majak et al., 2000; Zhang et al., 2001).

Although a few reports have described projections

from the PFC to parts of the claustrum (Markowitsch

et al., 1984; Witter et al., 1988; Majak et al., 2000), to

our knowledge none have examined possible differen-

tial IL and PL projections to CLA/EN. Despite this, an

early anatomical analysis of IL (Hurley et al., 1991)

demonstrated terminal IL labeling in EN, but interest-

ingly, none in CLA (see their fig. 3A, p. 254), while an

examination of PL (Sesack et al., 1989) showed the

reverse: PL projections to CLA but not to EN (see their

fig. 4, p. 220). In accord with the foregoing, Levesque

and Parent (1998) recently showed that a subpopula-

tion of PL cells project, via collaterals, to the claustrum

and striatum, while Zhang et al. (2001) demonstrated

that injections of retrograde tracers in the anterior

CLA produced significant labeling in PL but virtually

none in IL.

Nucleus accumbens (ACC)

We showed that IL and PL project very differently to

ACC. PL fibers distribute massively throughout the

core and shell regions of ACC. By contrast, IL fibers

project fairly selectively to the caudo-medial sector

(shell) of ACC.

PFC projections to ACC have been well documented

(Beckstead et al., 1979; Newman and Winans, 1980;

Groenewegen et al., 1982; McGeorge and Faull, 1989;

Sesack et al., 1989; Hurley et al., 1991; Berendse et al.,

1992; Brog et al., 1993; Phillipson and Griffiths, 1985;

Fig. 7. Darkfield photomicrographs of transverse sections through
rostral forebrain showing patterns of labeling in the anterior olfactory
complex produced by an injection in the prelimbic cortex (case 668).
Note pronounced labeling in the anterior medial olfactory nucleus
(AONm), rostrally (A) and the dorsal tania tecta (TTd) and the ante-
rior ventral olfactory nucleus (AONv), caudally (B). Scale bar �
600 �m.
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Room et al., 1985; Wright and Groenewegen, 1995,

1996; Montaron et al., 1996; Gorelova and Yang, 1997;

Ding et al., 2001; French and Totterdell, 2002).

In accord with present findings, mPFC projections to

ACC appear to primarily originate from PL of PFC

(Beckstead et al., 1979; Sesack et al., 1989; Berendse et

al., 1992; Brog et al., 1993; Montaron et al., 1996). For

instance, Sesack et al. (1989) described a pattern of PL

projections to ACC virtually identical to that shown

here; that is, pronounced labeling throughout ACC,

excluding the caudal shell of ACC. In like manner, a

comprehensive analysis of PFC-striatal projections in

rats (Berendse et al., 1992) showed that IL fibers

mainly target the medial shell of ACC, whereas PL

fibers distribute throughout extent of ACC, terminat-

ing more heavily in the core than shell of ACC. The

PL-ACC projections described by Berendse et al. (1992)

were, however, less robust than shown by others (Beck-

stead et al., 1979; Sesack et al., 1989, present results).

Differences probably involve relative locations of injec-

tions across studies, as suggested by Sesack et al.’s

(1989) demonstration of marked variations in the den-

sity of labeling in ACC with injections in different parts

of PL.

BST and other structures of the medial basal

forebrain

We found that IL and PL project very differently to

the basal forebrain. IL distributes significantly to the

anterior part of the lateral septum, DBh, BST, SI,

lateral MPO and LPO, whereas PL projects sparingly

to each of these sites.

Consistent with this, an early comparison of IL/PL

projections in cats (Room et al., 1985) demonstrated

dense IL, but minimal PL, projections to the rostral

septum, medial, and lateral preoptic area, diagonal

band nuclei, BST, and SI. In like manner in rats, Tak-

agishi and Chiba (1991) showed that IL distributes

heavily to medial aspects of the lateral septum, the

diagonal band nuclei, LPO, BST, and SI, while Hurley

et al. (1991) described virtually the same, drawing

Fig. 8. Darkfield photomicrographs of transverse sections through the rostral forebrain depicting
labeling contralaterally in the medial prefrontal cortex produced by an injection in the prelimbic cortex
(case 668). Note pronounced labeling in all layers of the contralateral prelimbic cortex (PL), most heavily
concentrated in layers 1/2 and 5/6, as well as significant labeling in the frontal polar (FPm) cortex (A) and
the anterior cingulate (AC) cortex (B), dorsal to PL. Scale bar � 600 �m.
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particular attention to strong IL projections to MPO

and BST.

Unlike IL, Sesack et al. (1989) showed that injections

of PHA-L into various regions of PL produced an es-

sential absence of labeling within the basal forebrain.

For instance, they described a minor PL input to the

medial septum, DBv, ventral pallidum, and SI and

noted that only “sparse fibers-of-passage were visible

in the bed nucleus of the stria terminalis.”

Finally, injections of retrograde tracers in BST (Hurley

et al., 1991), SI (Russchen et al., 1985; Grove, 1988a), and

the horizontal and vertical limbs of the diagonal band

(Carnes et al., 1990) have been shown to produce signif-

icant cell labeling IL but virtually none in PL.

Amygdala

We showed that IL and PL project very differently

to the amygdala. IL fibers distribute widely through-

Fig. 9. Darkfield photomicrograph of a transverse section through
the rostral forebrain showing labeling contralaterally in the forebrain
produced by an injection in the prelimbic cortex (case 668). Note dense
collection of ventrolaterally oriented labeled fibers terminally bound

for the dorsal agranular insular cortex (AId). Note also massive la-
beling throughout the extent (shell and core) of the anterior pole of
nucleus accumbens (ACC) as well as significant labeling in the ven-
trally adjacent olfactory tubercle (OT). Scale bar � 600 �m.
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out the anterior two-thirds of the amygdala, mainly

to rostral MEA, the capsular and medial subdivisions

of CEA, and to the basomedial nucleus. By contrast,

PL fibers selectively target the central nucleus (cap-

sular portion) and the basolateral nucleus of the

amygdala.

Hurley et al. (1991) described moderately dense IL

projections to the central (medial aspects), medial, ba-

somedial and anterior cortical nuclei of the amygdala,

and a virtual absence of projections to the lateral and

basolateral nuclei, while McDonald et al. (1996) re-

ported that IL fibers distribute to “all major portions of

the amygdala.” They noted particularly heavy IL pro-

jections to the lateral capsular portion of CEA, BMA,

and medial part of the lateral nucleus (McDonald et al.,

1996).

An early study in rats (Beckstead, 1979) demon-

strated significant PL projections to the lateral and

basolateral nuclei of amygdala and to the region sur-

rounding, but not in, CEA (i.e., to capsular CEA), while

one in cats (Room et al., 1985) showed that PL projec-

tions were “restricted to the basolateral and central

Fig. 10. Darkfield photomicrograph of a transverse section through the rostral forebrain depicting
labeling contralaterally in the forebrain produced by an injection in the prelimbic cortex (case 668). Note
dense terminal labeling in the claustrum (CLA), dorsal agranular insular cortex (AId), ventromedial
striatum (C-P), and the shell and core regions of nucleus accumbens (ACC). Scale bar � 600 �m.
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nuclei.” More recently, Sesack et al. (1989) reported

that PL fibers distribute selectively to the zone sur-

rounding CEA (capsular CEA) and to the lateral, baso-

lateral, and intercalated nuclei of amygdala, while Mc-

Donald et al. (1996) demonstrated that PL targets the

anterior amygdaloid area, medial/dorsomedial BLA,

and the capsular (mainly lateral capsular) CEA.

In summary, previous findings support the present

demonstration that IL distributes widely throughout

the amygdala; by contrast, PL fibers primarily project

to the capsular CEA and BLA, and less so to the ante-

rior, lateral, and intercalated nuclei of amygdala.

Thalamus

Unlike most other regions of the brain, we showed

that IL and PL distribute commonly to the thalamus,

predominantly to structures of the midline/medial thal-

amus. Both IL and PL project heavily to the paratenial

(PT), paraventricular (PV), anteromedial (AM), inter-

anteromedial (IAM), mediodorsal (MD), intermediodor-

sal (IMD), reuniens (RE), and central medial nuclei

(CEM) of thalamus, and moderately to the parafascicu-

lar and rhomboid nucleus.

Our findings are consistent with previous antero-

grade analyses of IL and PL projections to the thala-

mus (Beckstead, 1979; Room et al., 1985; Sesack et al.,

1989; Hurley et al., 1991; Takagishi and Chiba, 1991;

Buchanan et al., 1994; Vertes, 2002), as well as with

retrograde examinations of afferents to PT-PV (Chen

and Su, 1990; Hurley et al., 1991; Risold et al., 1997),

IMD-MD (Groenewegen, 1988; Cornwall and Phillip-

son, 1988; Hurley et al., 1991), RE (Herkenham, 1978;

Hurley et al., 1991; Risold et al., 1997), and AM (Seki

and Zyo, 1984).

Hypothalamus

We showed that IL and PL project very differently to

the hypothalamus. IL projects significantly to the dor-

somedial hypothalamic nucleus/area, the lateral hypo-

thalamus, perifornical region, posterior and supra-

mammillary nuclei. By contrast, PL fibers mainly

traverse the hypothalamus en route to the brainstem,

distributing lightly in transit to PH, SUM, and parts of

LHy.

Hurley et al. (1991) described significant IL projec-

tions to LHy, PFx, DMH, PH, and SUM of the hypo-

thalamus, and further noted that “control” injections in

PL produced relatively scant labeling in the hypothal-

amus, sparsely distributed to the lateral hypothala-

mus. In like manner, Room et al. (1985) showed for cats

that IL distributes densely, PL lightly, to the septum,

medial preoptic area, and dorsomedial and lateral hy-

pothalamus. In slight contrast to the foregoing, Sesack

et al. (1989) reported that a PHA-L injection in the

rostroventral PL produced moderate labeling in LHy,

SUM, and medial MB. They pointed out, however, that

this injection spread to the underlying IL and medial

orbital cortices, which could have contributed to the

hypothalamic labeling observed with this case. Injec-

Fig. 11. Darkfield photomicrographs of transverse sections
through the forebrain showing patterns of labeling contralaterally at
three rostrocaudal (A–C) levels of the amygdala produced by an in-
jection in the prelimbic cortex (case 668). Note dense labeling predom-
inantly restricted to the capsular part of the central nucleus (CEAc)
and the basolateral (BLA) nuclei of amygdala. Scale bar � 600 �m.
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tions in other parts of PL resulted in an essential

absence of labeling in the hypothalamus (Sesack et al.,

1989). Consistent with these findings, we observed a

similar dorsal-ventral gradient in PL projections to the

hypothalamus from an essential absence of hypotha-

lamic projections with dorsal injections to light (and in

some cases) moderate hypothalamic labeling with ven-

tral PL injections, bordering IL.

Finally, Floyd et al. (2001) recently demonstrated

that the rostroventral IL/PL projects to the dorsal hy-

pothalamic area, LHy, lateral PFx, and PH, while the

caudoventral IL/PL projects to these sites as well as to

the dorsolateral AHN, the dorsal hypothalamic nucleus

and medial PFx.

Brainstem

With some overlap, IL and PL largely distribute to

separate sites in the brainstem. IL mainly targets SNc,

dorsal aspects of IP, ventrolateral regions of the pon-

tomesencephalic PAG, the medial and lateral parabra-

chial nuclei and NTS. PL primarily distributes to VTA,

SN (pars compacta and reticulata), precommissural

nucleus (PCO), the lateral and ventrolateral pontine

PAG, the supralemniscal nucleus (B9) (Vertes and

Crane, 1997), and the dorsal and median raphe nuclei.

PL distributes more heavily than IL to common tar-

gets: VTA, SNc, and ventrolateral PAG. PL fibers

spread mediolaterally throughout SNc, whereas IL fi-

bers predominantly terminated in the medial one-third

of SNc.

Several early reports (Ross et al., 1981; Saper, 1982b;

Terreberry and Neafsey, 1983, 1987; van der Kooy et

al., 1984; Neafsey et al., 1986b; van Bockstaele et al.,

1989; Moga et al., 1990a) showed that IL fibers strongly

(and fairly selectively) target autonomic/visceral-re-

lated nuclei of the brainstem; specifically, the ventro-

lateral PAG, PB, Barrington’s nucleus, NTS, and the

rostral ventrolateral medulla. Hurley et al. (1991) con-

firmed these results, and further demonstrated IL pro-

jections to the nucleus ambiguus (NA) and to the dorsal

motor nucleus of the vagus (DMV). In partial contrast

with the foregoing, we demonstrated moderate IL pro-

jections to “autonomic-related” nuclei of the upper

brainstem (e.g., parabrachial nucleus), and sparse pro-

jections to those of the lower brainstem including NA,

NTS, and DMV.

By comparison with IL, PL fibers distribute more

widely throughout the pons and midbrain, and with the

exception of PAG, largely avoid autonomic nuclei of the

brainstem (Beckstead, 1979; Sesack et al., 1989; Floyd

et al., 2000). In general accord with present findings,

Beckstead (1979) described prominent PL projections

to SNc and the adjoining VTA and significant but less

dense ones to DR and MR, while Sesack et al. (1989)

traced PL fibers to SNc, VTA, IP, dorsolateral PAG,

SLN (B9), DR, and MR.

Finally, other (mainly retrograde) reports have doc-

umented PL projections to VTA (Sesack and Pickel,

1992; Au-Young et al., 1999; Carr and Sesack, 2000),

PCO (Canteras and Goto, 1999), DR (Peyron et al.,

1998; Hajos et al., 1998; Varga et al., 2001), MR (Be-

hzadi et al., 1990), and PAG (Beitz, 1982, Mantyh,

1982, Hardy, 1986; Neafsey et al., 1986b; Terreberry

and Neafsey, 1987; Shipley et al., 1991).

Overview of IL and PL projections and

functional considerations

IL: visceromotor circuitry

It is well recognized that IL modulates visceral/au-

tonomic activity. A number of early reports (Smith,

1945; Wall and Davis, 1951; Delgado, 1961) as well as

recent ones (Terreberry and Neafsey, 1983; Burns and

Wyss, 1985; Hurley-Gius and Neafsey, 1986; Verberne

et al., 1987; Hardy and Holmes, 1988, Neafsey, 1990;

Frysztak and Neafsey, 1991, 1994) have shown that IL

significantly affects various visceral functions includ-

ing heart rate, blood pressure, respiration, and gastro-

intestinal activity. It is equally well demonstrated

(Cechetto and Saper, 1990; Neafsey, 1990; Hurley et

al., 1991; Takagishi and Chiba, 1991; Buchanan and

Powell, 1993; Verberne and Owens, 1998) that IL

projects to forebrain and brainstem sites controlling

autonomic/visceromotor activity (see Fig. 12A).

Further, it has been shown that most of the major

forebrain targets of IL fibers project to, and influence,

autonomic nuclei of the brainstem (Saper et al., 1976,

1979; Hopkins and Holstege, 1978; Schwaber et al.,

1982; Veening et al., 1984; Moga and Gray, 1985;

Grove, 1988b; Moga et al., 1989, 1990a,b; Loewy, 1991;

Rizvi et al., 1991, 1992, 1996; Allen and Cechetto, 1992;

Vertes and Crane, 1996; Petrovich and Swanson, 1997;

Murphy et al., 1999; Floyd et al., 2001), indicating

direct as well as indirect IL actions on a network of

interconnected nuclei subserving autonomic/visceral

functions. IL is viewed as a “visceral motor cortex”

(Hurley-Guis and Neafsey, 1986; Neafsey, 1990).

Related to the involvement of IL is visceral motor

control, Milad and Quirk (2002) recently demonstrated

the important findings that cells of the infralimbic cor-

tex, but not those of the adjacent PL and medial orbital

cortices, fired selectively during the extinction phase of

fear conditioning, and were thought to mediate learned

fear extinction. The authors proposed that the effect

involves the suppressive action of IL on the central

nucleus of the amygdala and a consequent dampening

of autonomic/visceral centers contributing in fear re-

sponses (Milad and Quirk, 2002).

PL: “limbic-cognitive” circuitry

By contrast with IL, recent evidence suggests that

PL serves a direct role in limbic/cognitive functions,

homologous to the dorsolateral prefrontal cortex of pri-
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TABLE I. Density of labeling in nuclei of the brainstem and forebrain produced by PHA-L injections
in the infralimbic and prelimbic cortices*

Structures

Labeling

Structures

Labeling

IL PL IL PL

Telencephalon substantia innominata ��� �
cortex tania tecta

cingulate ��� ��� dorsal �� ��
ectorhinal � �� ventral � ��
entorhinal �� �� ventral pallidum � ��
frontal polar Diencephalon

medial part ��� ��� Thalamus
lateral part �� �� anterodorsal n. �� ��

infralimbic ��� ��� anteromedial n. � ��
insular anteroventral n. �� ��

dorsal agranular � ��� central lateral n. �� �
ventral agranular �� ��� central medial n. �� ��
posterior agranular � �� interanteromedial �� ���
dysgranular �� �� intermediodorsal n. ��� ���
granular �� �� lateral geniculate n. �� ��

lateral agranular (motor) �� �� lateral habenula � �
medial agranular (motor) � � laterodorsal n. � �
occipital �� �� lateroposterior n. � �
orbital medial geniculate n. �� ��

lateral part � � medial habenula �� ��
medial part ��� ��� mediodorsal n.
ventral part �� � medial division ��� ���
ventrolateral part � � central division �� ��

perirhinal � �� lateral division � ���
piriform paracentral n. �� ��

anterior part �� � parafascicular n. � �
posterior part �� �� paratential n. ��� ���

prelimbic ��� ��� paraventricular n.
retrosplenial � � anterior part ��� ���
somatosensory I �� �� posterior part ��� ���
somatosensory II �� �� posterior n. �� ��
temporal �� �� reticular n. �� ��

accumbens n. reuniens n. ��� ���
shell � ��� rhomboid n. �� �
core � ��� submedial n. �� ��

amygdala ventral anterior-lateral n. �� ��
anterior area �� �� ventral basal complex �� ��
basolateral � ��� Hypothalamus
basomedial ��� � anterior n. �� ��
central dorsal hypothalamic area �� �

capsular part �� ��� dorsomedial n. ��� �
medial part ��� �� lateral n. ��� ��

cortical mammillary bodies � ��
anterior part �� �� paraventricular n. �� ��
posterior part � �� perifornical area ��� ��

medial ��� �� posterior n. ��� �
lateral � � premammillary n.
posterior � �� dorsal �� ��

anterior olfactory nucleus ventral � ��
medial part ��� �� supramammillary n. �� ��
ventral part ��� ��� ventromedial n. ��

bed n. of stria terminalis ��� �� Subthalamus
caudate-putamen �� �� fields of Forel � ��
claustrum �� ��� zona incerta � ��
diagonal band n. Brainstem

horizontal limb ��� � anterior pretectal n. �� ��
vertical limb �� �� Barrington’s n. � �

endopiriform n. ��� �� cuneiform n. �� �
globus pallidus �� �� dorsal motor n. vagus � ��
hippocampal formation dorsal raphe n. � ���

Ammon’s horn �� �� dorsal tegmental n. �� ��
dentate gyrus �� �� interpeduncular n. �� �
subiculum �� �� laterodorsal tegmental n. � �

lateral septum locus coeruleus � ��
dorsal n. �� �� mesencephalic reticular formation � �
intermediate n. � �� n. ambiguus �� ��
ventral n. ��� � n. incertus � ��

lateral preoptic area ��� � n. gigantocellularis �� �
magnocellular preoptic n. � � n. pons �� ��
medial preoptic area ��� � n. pontis caudalis �� ��
median preoptic n. �� �� n. pontis oralis �� ��
medial septal n. � �� n. posterior commissure
olfactory tubercle �� ��� n. solitary tract � ��
septofimbrial n. �� �� parabrachial n.
septohippocampal n. �� �� medial part �� ��
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mates (Kolb, 1984; Barbas, 2000; Ongur and Price,

2000). The dorsolateral PFC of primates serves a well-

recognized role in higher order processes, including

decision-making, goal-directed behavior, and working

memory (WM) (Goldman-Rakic, 1987, 1994; Fuster,

1989; Petrides, 1995, 1998). The function most com-

monly associated with the prefrontal cortex, and the

one most extensively examined, is working memory;

that is, the temporary storage and utilization of infor-

mation over short delays (Goldman-Rakic, 1987, 1995).

An accumulating body of evidence indicates that the

prefrontal cortex of rats is similarly involved in tasks

requiring the maintenance of information over time

including delayed alternation (Larsen and Divac, 1978;

Silva et al., 1986; van Haaren et al., 1988; Brito and

Brito, 1990; Bubser and Schmidt, 1990; Kesner et al.,

1996; Delatour and Gisquet-Verrier, 1996, 1999) and

delayed matching and nonmatching to sample tasks

(Kolb et al., 1994; Granon et al., 1994; Broersen et al.,

1995; Seamans et al., 1995; Harrison and Mair, 1996;

Shaw and Aggleton, 1993; Young et al., 1996; Porter

and Mair, 1997). Evidence further suggests that PL is

the critical mPFC region involved in delayed respond-

ing; that is, lesions restricted to ventral mPFC (or PL)

have been shown to produce the same disruptive effects

on delayed response tasks as lesions of the entire me-

dial wall of the mPFC (Brito and Brito, 1990; Seamans

et al., 1995; Delatour and Gisquet-Verrier, 1996, 1999,

2000; Floresco et al., 1997; Ragozzino et al., 1998). For

instance, Phillips and co-workers (Seamans et al.,

1995) initially demonstrated that bilateral inactivation

of PL, but not of the dorsally adjacent anterior cingu-

late cortex, produced severe deficits in the delayed ver-

sion of an eight arm maze task, and subsequently

showed that these same deficits were produced by dis-

connecting the hippocampus from PL (Floresco et al.,

1997).

As with IL projections and visceromotor activity, PL

projections support its involvement in cognitive func-

tions. As shown (Fig. 12B), PL distributes to a rela-

tively restricted number of sites and largely those

known to affect cognition—or limbic influences on cog-

nition. These include the agranular insular cortex, the

claustrum, ACC (and extended ventral striatum), ba-

solateral amygdala, the paraventricular, RE and MD of

thalamus, VTA/SNc, and raphe nuclei of the midbrain

(SLN, DR, and MR).

PL-striatal-thalamocortical circuitry

Similar to sensorimotor regions of cortex (Alexander

et al., 1986, 1990; Gerfen, 1992, Gerfen and Wilson,

1996; Strick et al., 1994), the prefrontal cortex forms

reentrant “loops” with the basal ganglia (BG) and thal-

amus; that is, parallel, functionally segregated, corti-

cal-BG-thalamocortical circuits (Groenewegen et al.,

1990, 1999).

In an early report in cats, Room et al. ( 1985) de-

scribed pronounced projections from PL to the ACC,

and further noted that the PL-ACC projection was the

first leg of a cortical loop from PL; that is, according to

them, a loop “from the prelimbic area via the ventral

striatum, ventral pallidum, and the mediodorsal nu-

cleus back to the prelimbic area.” As discussed below,

several subsequent studies have provided additional

details on this system of connections that has been

referred to as the “PL circuit” (Groenewegen et al.,

1990).

The ACC is the major point of convergence of in-

puts from various structures comprising the “PL cir-

cuit”; that is, in addition to PL, ACC receives affer-

ents from the insular cortex, basal nucleus of

amygdala, VTA, midline thalamus, ventral pallidum,

and hippocampus (Groenewegen et al., 1990). The

output of ACC is predominantly directed to the ven-

tral pallidum (VP) and SNr (Groenewegen and Russ-

chen, 1984; Zahm and Heimer, 1990, Heimer et al.,

1991; Deniau et al., 1994; Zahm et al., 1996; Maurice

et al., 1997; O’Donnell et al., 1997; Usuda et al.,

1998; Dallvechia-Adams et al., 2001) which, in turn,

project to parts of the medial/midline thalamus

(mainly MD) that give rise to projections to PL, thus

completing the PL-ventral striatopallidal-thalamo-

cortical circuit (Haber et al., 1985; Groenewegen,

1988; Zahm, 1989; Ray and Price, 1992; Ray et al.,

1992; Groenewegen et al., 1993, 1999; Miyamoto and

Jinnai, 1994; Kuroda et al., 1995; Maurice et al.,

1997; O’Donnell et al., 1997).

Two parallel (but segregated) PL-ventral BG-tha-

lamic circuits have recently been identified: one origi-

nating from the ventral PL targeting the shell of ACC,

and the other from the dorsal PL feeding the core of

ACC (O’Donnell et al., 1997; Groenewegen et al., 1999).

The ventral PL circuit, then, involves: ventral PL �

ACC shell � VPm � medial subdivision of MD

(MDm) � PL; and the dorsal PL circuit involves: dorsal

PL � ACC core � VPl and/or dorsomedial SNr � cen-

tral nucleus of MD/ventromedial nucleus of thala-

TABLE I (CONTINUED).

Structures

Labeling

IL PL

lateral part �� ��
pedunculopontine tegmental n. � �
periaquaductal gray, midbrain ��� ���
periaquaductal gray, pons � ���
peripeduncular n. �� �
reticular tegmental n. pons �� ��
retrorubral area �� �
rostro-ventrolateral medulla �� ��

pars compacta � ���
pars reticulata �� �

surpalemniscal n. (B9) �� ��
superior colliculus �� ��
ventral tegmental area �� ��
ventral tegmental n. �� ��

*�, light labeling; ��, moderate labeling, ���, dense labeling; ��, absence of
labeling; n, nucleus; PHA-L, Phaseolus vulgaris-leucoagglutinin; for other ab-
breviations, see list.
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Fig. 12. Schematic sagittal sections summarizing the main projection sites of the infralimbic (A) and
prelimbic (B) cortices. Note that IL projections are much more widespread than PL projections, partic-
ularly to the basal forebrain, amygdala, and hypothalamus. Sections are modified from the rat atlas of
Paxinos and Watson (1998). For illustrative purposes, several sagittal planes are collapsed onto single
sagittal sections. For abbreviations, see list.
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mus � PL (O’Donnell et al., 1997; Groenewegen et al.,

1999). As described (see Results), we carefully exam-

ined PL projections to the ACC but were not able to

confirm selective dorsal PL projections to the core of

ACC and ventral PL projections to the shell of ACC. By

contrast, we observed considerable overlap in dorsal

and ventral PL projections to the core and shell of ACC

with only a slight tendency of dorsal PL to distribute

more heavily to the core and the ventral PL more

strongly to the shell. This difference in degree may not,

however, negate the fact that there are segregated PL

circuits—to the striatum and to other parts of the

brain.

Finally, a direct role for the “PL circuit” in cognition

gains support from recent demonstrations that manip-

ulations of nuclei of the circuit (like those of PL itself)

affect delay response tasks—or working memory

(WM). For instance, lesions/disruption of ACC (Flo-

resco et al., 1999), VP (Kalivas et al., 2001), and MD

(Harrison and Mair, 1996; Floresco et al., 1999; Ro-

manides et al., 1999; Kalivas et al., 2001) have been

shown to alter tasks requiring working memory, but

not those without a WM component.

Other “limbic” structures connecting with the

PL circuit

Groenewegen et al. (1990) initially reported that the

PL circuit has significant ties with other parts of the

limbic system, most notably, the paraventricular nu-

cleus of thalamus (PV) and the basolateral nucleus of

amygdala (BLA). This has been substantiated by the

demonstration that: 1) PV and BLA reciprocally con-

nect with PL (Krettek and Price, 1977; Macchi et al.,

1978; Beckstead, 1979; Room et al., 1985; McDonald,

1987, 1991a; Cassell et al., 1989; Sesack et al., 1989;

Kita and Kitai, 1990; Berendse and Groenewegen,

1991; Shinonaga et al., 1994; Moga et al., 1995; Bacon

et al., 1996; McDonald et al., 1996; Vertes, 2002); 2) PV

and BLA distribute heavily to ACC (Groenewegen et

al., 1980; Russchen and Price, 1984; Phillipson and

Griffiths, 1985; Berendse and Groenewegen, 1990; Mc-

Donald, 1991b; Brog et al., 1993; Shinonaga et al.,

1994; Moga et al., 1995; Wright and Groenewegen,

1995; Wright et al., 1996; Mulder et al., 1998); and 3)

BLA afferents to thalamus selectively target midline

nuclei of the thalamus (Krettek and Price, 1974, 1977;

McDonald, 1987; Kuroda and Price, 1991; Ray and

Price, 1992).

We confirmed pronounced PL projections to PV and

BLA, and further showed that PL distributes strongly

to several other structures that, in light of the notion of

a “PL circuit,” might be considered part of an extended

PL circuitry. They primarily include the agranular in-

sular cortex, the claustrum, the nucleus reuniens of

thalamus, SNc/VTA, and raphe nuclei (MR, DR, SLN)

of the brainstem (Fig. 12B).

Integration of IL and PL circuitry

As described, IL and PL project very differently

throughout the brain (Table I, Fig. 12). IL mainly dis-

tributes to autonomic/visceral-related sites, supporting

its role in visceromotor activity, whereas PL primarily

projects to limbic sites that reportedly affect cognition.

It is obviously the case, however, that the complex

goal-directed behaviors entail an integration of visceral

and cognitive elements. It seems likely that this inte-

gration may largely occur at the level of the mPFC,

involving interactions between IL and PL. As de-

scribed, IL and PL strongly interconnect. In the rat,

then, the IL/PL complex may exert significant control

over emotional-cognitive aspects of behavior.

In summary, the mPFC of rats appears functionally

homologous to a fairly widespread region of the pre-

frontal/frontal cortex of primates subserving motor,

emotional, and cognitive elements of behavior; that is,

the dorsal mPFC appears homologous to supplementa-

ry/premotor area, PL to dorsolateral PFC, and IL to the

orbitomedial cortex of primates.
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