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Stéphane Tchankouo-Nguetcheu1, Huot Khun2, Laurence Pincet1, Pascal Roux3, Muriel Bahut4, Michel

Huerre2, Catherine Guette4,5, Valérie Choumet1*
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Abstract

Background: Arthropod borne virus infections cause several emerging and resurgent infectious diseases. Among the
diseases caused by arboviruses, dengue and chikungunya are responsible for a high rate of severe human diseases
worldwide. The midgut of mosquitoes is the first barrier for pathogen transmission and is a target organ where arboviruses
must replicate prior to infecting other organs. A proteomic approach was undertaken to characterize the key virus/vector
interactions and host protein modifications that happen in the midgut for viral transmission to eventually take place.

Methodology and Principal Findings: Using a proteomics differential approach with two-Dimensional Differential in-Gel
Electrophoresis (2D-DIGE), we defined the protein modulations in the midgut of Aedes aegypti that were triggered seven
days after an oral infection (7 DPI) with dengue 2 (DENV-2) and chikungunya (CHIKV) viruses. Gel profile comparisons
showed that the level of 18 proteins was modulated by DENV-2 only and 12 proteins were modulated by CHIKV only.
Twenty proteins were regulated by both viruses in either similar or different ways. Both viruses caused an increase of
proteins involved in the generation of reactive oxygen species, energy production, and carbohydrate and lipid metabolism.
Midgut infection by DENV-2 and CHIKV triggered an antioxidant response. CHIKV infection produced an increase of proteins
involved in detoxification.

Conclusion/Significance: Our study constitutes the first analysis of the protein response of Aedes aegypti’s midgut infected
with viruses belonging to different families. It shows that the differentially regulated proteins in response to viral infection
include structural, redox, regulatory proteins, and enzymes for several metabolic pathways. Some of these proteins like
antioxidant are probably involved in cell protection. On the other hand, we propose that the modulation of other proteins
like transferrin, hsp60 and alpha glucosidase, may favour virus survival, replication and transmission, suggesting a
subversion of the insect cell metabolism by the arboviruses.
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Introduction

Arthropod-borne virus (arbovirus) infections cause a number of

emerging and resurgent infectious diseases in humans and animals.

Arboviruses are unusual in that they replicate in both arthropod

and vertebrate hosts. This leads to a persistent lifelong infection in

arthropods and an acute, usually short-duration infection in

vertebrates. Traditional means of controlling the spread of

arbovirus infection include vaccination of susceptible vertebrates

and mosquito control. However, in many cases these measures are

either unavailable or ineffective. To successfully implement the

strategy of blocking the virus at the insect stage, further knowledge

of the virus/vector interactions is required. Studies in this field

may identify new genes and possible targets for altering these

interactions.

There are three stages that determine the efficiency of an

arthropod as an arbovirus vector. The arthropod must ingest a

sufficient amount of viremic blood to infect gut cells. After entering

gut cells, sufficient replication must then occur for the virus to

enter the hemocoel and infect other tissues such as salivary glands,

body fat, ovarian tissue, and central nervous chain [1]. In this

process, the midgut of mosquitoes is the major barrier to pathogen

transmission. This tissue is the environment of viral interaction

and replication before dissemination to other organs and tissues.

Therefore, key virus/vector interactions and host protein modi-

fications must take place in the midgut for viral transmission to

eventually take place [2]. It is now well known that pathogens can

remodel and subvert host pathways to facilitate their own survival

at the expense of the host [3]. Viruses, as obligate intracellular

pathogens with only a limited genome size, are even more

PLoS ONE | www.plosone.org 1 October 2010 | Volume 5 | Issue 10 | e13149



dependent on host-encoded factors for their replication cycle [4,5].

Because some of the host factors are essential for viral growth, they

could be useful targets in an anti-pathogen approach.

Aedes ægypti is a highly anthropophagic and cosmopolitan species

of mosquito. It forms the primary vector of dengue, yellow fever,

Chikungunya, and number of other infectious diseases. The Aedes

ægypti genome of the Liverpool strain has been recently sequenced,

and this further facilitates gene identification in this species [6].

Experimental evidence of mosquito gene function in response to

pathogens is also becoming available through the use of techniques

such as transcriptome analysis by SAGE or microarray, or

knockdown of specific gene activity with double-stranded RNA

[7,8,9,10]. In contrast to mRNA-based approaches, for which

mRNA levels do not always parallel protein levels, proteomics is a

definite tool for detecting changes in protein expression and

modification. Protein-based approaches have already contributed

to the identification of vector proteins reacting to pathogens or

endosymbionts [11,12,13]. The role of these proteins in the

defence of the vector against agression or in the pathogen

transmission has been discussed [11,13]. So far, the only

proteomic analyses that have been performed for Ae. aegypti have

been in larvae brushborder membrane vesicles in response to

dengue infection and in non-infected adult female midguts (blood-

fed or not) [14,15]. For Ae. albopictus, [16] identified a set of

proteins whose expression was increased 24 h after dengue virus

infection. These proteins were supposed to be involved in the

infection process.

Notwithstanding the central role of the midgut in vector

competence, our understanding of how the vector responds to

arbovirus infections is very limited. Chikungunya virus (CHIKV) is

an alphavirus from the Togaviridae family. Dengue 2 virus (DENV-

2) is a flavivirus from the Flaviviridae family. These two arboviruses

are transmitted by Ae. aegypti. Alphaviruses and flaviviruses are

small enveloped viruses containing plus-sense RNA genomes

[17,18]. The structure, entry and membrane fusion mechanisms

have been intensively studied, mainly in vertebrates cells

[19,20,21]. Our study aims to verify how the same vector respond

to different arboviruses at the midgut level and to identify specific

or common molecules in the Ae. aegypti midgut tissue, which could

respond to these two viruses. For this purpose, in the present study

we have used 2-Dimensional Differential in-Gel Electrophoresis

(2D-DIGE) technology to investigate the proteome of Ae. aegypti

midguts infected by chikungunya (CHIKV) or dengue-2 (DENV-

2) viruses. The putative role of these proteins in pathogen life cycle

in the vector will be examined. These results would set a

benchmark to which other pathogen/vector interactions may be

compared but also would provide clues for the progress in the

understanding of the reaction of vectors to pathogens they are able

to transmit.

Results and Discussion

Follow-up of DENV-2 and CHIKV infections in orally
infected Ae. aegypti females: IFA and RT-qPCR
CHIKV and DENV-2 have different extrinsic incubation

periods in Ae. aegypti mosquitoes. Depending on the mosquito

strain, CHIKV is found in the salivary glands 2 to 4 days after

acquisition [22] whereas DENV-2 requires 7 to 14 days to reach

this stage [23,24]. DENV-2 has been reported to reach maximal

fluorescence staining in the midgut 7 days after infection of a

Chetumal strain [23] whereas no data have been published for

CHIKV- infected mosquitoes. To select a time at which the

Liverpool strain Ae. aegypti midguts were similarly infected by both

viruses, we used two different approaches: i) visualization of the

distribution of virion particles using IFA, and ii) quantification of

viral RNA in the midgut. Figures 1A and B show the distribution

of CHIKV and DENV-2 particles in Ae. aegypti 7 days post

infection (DPI). CHIKV particles are in the anterior part of the

midgut whereas DENV-2 particles are in the posterior part.

Generally, the intensity of fluorescence appears similar for the two

viruses. The imunolocalization of CHIKV and DENV-2 viruses at

7 DPI in mosquito’s midgut was determined using histology.

Almost all epithelial cells are infected by CHIKV whereas a few

patches of them remain uninfected by DENV-2 viruses. In the

latter case, however, infected cells are loaded with viral antigens

while the anti-CHIKV staining is more pronounced at the apical

part of the cells (data not shown). RNA copy number was

measured by RT-qPCR for each virus at 2, 7, and 10 DPI

(Figure 2). The RNA copy numbers of CHIKV and DENV-2 are

similar 7 DPI and remain constant until 10 DPI. We also observed

that salivary glands of Ae. aegypti (Liverpool strain) were infected at

11 DPI (data not shown).

At 7 DPI, most mosquitoes have developed midgut infection,

and this time point is therefore a good marker to investigate

modification of mosquito proteins during a persistent infection.

2D-DIGE analysis of differential expression in CHIKV and
DENV-2-infected midgut
2D-DIGE electrophoresis (2-Dimensional Differential in-Gel

Electrophoresis) is the most reliable and reproducible technique

of comparative proteomics [25]. It is based on the special

properties of fluorescent probes: the CyDyes. Two protein

extracts with distinct probes can be loaded on the same gel. In

addition, an internal standard labelled with the third probe is

incorporated to the gel, allowing a normalization of abundance

ratios to provide multivariable experiments with great statistical

power. Virtual elimination of gel variation allows the identifica-

tion of induced biological changes with statistical accuracy

capable of revealing differences in abundance of less than 10%

between samples, thereby allowing a low threshold of significant

fold modulation that we set at 1.3. Three independent infections

were performed with each virus in parallel with six controls where

artificial feeding was performed with non-infected blood. Pools of

100 to 150 midguts were collected after each experiment and the

same amount of protein extracts from each pool (50 mg) were

used for the DIGE experiments. Six gels were run according to

the experimental protocol described in Table S1. Images of the

six gels showing control and CHIKV/DENV-2 infected midgut

extract profiles are shown in Figure S1. Analysis of the gel with

Progenesis SameSpots software (Nonlinar dynamics) allowed the

detection of 860 spots per gel. A control gel is shown in Figure 3.

Four analyses were performed from these gels: i) comparing

control profiles with CHIKV and DENV-2 infected profiles

(control/CHIKV/DENV-2); ii) comparing control with CHIKV

infected samples (control/CHIKV); iii) comparing control with

dengue infected profiles (control/DENV-2), and iv) comparing

DENV-2 and CHIKV infected profiles (DENV-2/CHIKV). A

total of 113 variant spots were excised from the gels, digested by

trypsin and analyzed by MALDI-TOF/TOF mass spectrometry

(Figure S2; Table S2). Thirty-two spots were not identified in the

database. For each of the four comparative analyses, the

following numbers of spots were identified: control/CHIKV, 24

spots (Figure 4), control/DENV-2, 68 spots (Figure 5); control/

CHIKV/DENV-2 comparison, 54 spots (Figure S3); DENV-2/

CHIKV, 42 spots (Figure S4).

A list of the proteins identified in these spots by mass

spectrometry is shown in Table S2. Table S3 indicates the

identification number, the modulation of protein expression

Arbovirus in Mosquito’s Midgut
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observed in the various comparisons, their spot number in the

corresponding gel and the putative localization and function of the

proteins. Table S4 shows the modulation triggered by each virus

for each identified protein from all of the gel data comparisons

listed according to their putative function. The control/DENV-2/

CHIKV, control/DENV-2 and control/CHIKV comparisons

show that 18 proteins are modulated by DENV-2 exclusively

and 12 proteins are modulated by CHIKV exclusively (Table S4).

Both viruses influenced the expression of 11 proteins in the same

manner (up-regulation or down-regulation). However, the level of

9 proteins was influenced differently by each virus. In the DENV-

2/CHIKV comparison, another 9 proteins were differentially

regulated.

We then investigated the modulation of protein expression

related to putative function after CHIKV and DENV-2 infection.

Proteins involved in oxidative stress. Several studies have

reported that viral infections cause oxidative stress through the

release of reactive oxygen species (ROS) [26,27]. In our study, 2-D

gel electrophoresis investigations have shown several spots of

aldehyde oxidase, a ROS-generating enzyme, suggesting post-

translational modeling of this protein, possibly by phosphorylation.

Indeed, the high polymorphism of aldehyde oxidase in Drosophila

has been proposed to be due to posttranslational modifications

[28]. In the present study, expression of aldehyde oxidase was

increased in CHIKV and DENV-2 infected midguts (Table S4).

Increased oxidative stress in the host may cause direct damage to

the viral RNA itself, causing new mutations that may lead to

enhanced pathogenesis. However, under normal conditions, ROS

produced by metabolism are removed by a series of antioxidant

enzymes.

Antioxidant related proteins. Antioxidants are molecules

that neutralize free radicals by accepting or donating an electron

to remove unpaired electrons. The first line of natural antioxidant

defence is provided by three types of primary antioxidant enzymes

that act directly on ROS: superoxide dismutases, catalase, and

peroxidases. In addition, insects have three families of genes that

Figure 1. Distribution within the midguts of Ae. aegypti after oral infection with CHIKV or DENV-2. Ae. aegypti mosquitoes were
dissected at 7 DPI and were assayed by IFA to detect CHIKV viral antigen (red) (A) or DENV-2 viral antigen (green) (B). Actin network was labelled
using Alexafluor 488 (A) (green) or 633 (B) (magenta) phalloidin. The magnification was 25x.
doi:10.1371/journal.pone.0013149.g001

Figure 2. Quantification of CHIKV and DENV-2 RNA by RT-qPCR
in infected midguts. The viral RNA copy number was measured for
each virus at 2, 7, and 10 DPI.
doi:10.1371/journal.pone.0013149.g002
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encode peroxidase antioxidant enzymes [29]: TPXs, also known as

peroxiredoxins [30], phospholipid-hydroperoxide GPX homologs

with thioredoxin peroxidase activity (GTPX) [31], and glutathione

S-transferases (GSTs) [32,33]. Secondary antioxidant enzymes act

indirectly on ROS and include TrxR, which recycles both TRX

and GSH [34].

DENV-2-infected midguts showed increases of TrxR, catalase

and malic enzyme, whereas, CHIKV-infected midguts showed an

increase of peroxiredoxins and GST (Table S4). This indicates that

the responses in the mosquito midgut to each virus were dissimilar.

Malic enzyme catalyzes the interconversion of L-malate and

oxaloacetate with nicotinamide adenine dinucleotide (NAD) as a

coenzyme. This reaction produces reduced nicotinamide adenine

dinucleotide phosphate (NADPH), which is crucial to cellular anti-

oxidative defence strategies in most organisms. Ten days after

DENV-2 infection, Xi et al. [35] observed down-regulation of

several oxidative defence enzymes in midguts on microarray

analysis. These included TPX2, TPX3, TPX4, and catalase. In

contrast, we report an up-regulation of catalase expression, but this

may be explained by the earlier collection of midguts in our

experiments. GST has been implied in the defense of Anopheles

mosquito to parasite infection [36]. According to this study,

silencing homologs of glutathione-S-transferase theta (GSTT) in A.

gambiae has been shown to significantly reduce Pl. berghei infection.

Although anti-parasite and anti-viral defense systems in the

mosquito may differ due to their cell interactions and lifestyles, it

could be of interest to investigate the effects of repressing GST

genes in CHIKV infection.

Proteins involved in cell detoxification. Infection of

midguts was also shown to modulate three enzymes involved in

cell detoxification. Of these, lactoyl glutathione lyase was down-

regulated in CHIKV and DENV-2 infected midguts, whereas

alcohol dehydrogenase and aldo keto reductase were up-regulated

only in CHIKV-infected midguts. Alcohol dehydrogenase

facilitates the conversion of toxic alcohols to aldehydes and aldo

keto reductase is involved in the protection of cells from

endogenously formed reactive carbonyl groups. Both of these

actions are in favour of cell survival.

Proteins involved in energy production. In eukaryotic

cells, several metabolic pathways are involved in energy

production. These include the glycolytic pathway, the

tricarboxylic acid cycle, and the pentose phosphate pathway. We

found that various enzymes participating in these energetic

pathways were modulated by CHIKV and DENV-2 infections.

Several enzymes involved in the glycolytic pathway were up-

regulated by CHIKV or DENV-2 (Table S4), suggesting extensive

glucose utilization during midgut infection. Recent studies have

demonstrated that some of these enzymes are multifaceted

proteins rather than simple components of the glycolytic

pathway. One of them, enolase, is involved in transcriptional

regulation [37] and was shown to stimulate transcription of the

Sendai virus genome [38], but it is unclear whether this is due to

its glycolytic activity or an alternative function.

Proteins involved in carbohydrate metabolism. Alpha-

glucosidase and beta-galactosidase are both involved in

carbohydrate metabolism. While alpha-glucosidase was up-

regulated in DENV-2 infection, beta-galactosidase was up-

regulated in CHIKV infection (Table S4). Alpha-glucosidase

inhibitors have been shown to eliminate the replication of several

endoplasmic reticulum-budding viruses like DENV-2 [39,40],

emphasizing on an important role of this enzyme in DENV-2

infection in mosquito midgut cells.

Figure 3. Two-dimensional profile of non-infected Ae. aegypti midgut protein extract. The proteins were stained with Cy3. The pI and
molecular weight scales are indicated in the Figure.
doi:10.1371/journal.pone.0013149.g003
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Proteins involved in lipid metabolism. Concerning

enzymes involved in lipid metabolism, Acyl CoA transferase was

up-regulated by both types of viruses, whereas 4 hydroxybutyrate

CoA transferase was up-regulated by DENV-2 and 3-hydroxyacyl-

coA dehydrogenase was up-regulated by CHIKV (Table S4). 4

hydroxybutyrate CoA transferase is involved in the butyrate

biosynthetic pathway and butyric acid fermentation is the

preferred energy source in the gut wall of vertebrates [41]. Fatty

acids are also an important source of energy for the cell and Acyl

CoA transferase 4 hydroxybutyrate and 3-hydroxyacyl-coA

dehydrogenase are both involved in mitochondrial fatty acid

oxidation. Samsa et al. [42] have reported that dengue virus

infection increases the number of lipid droplets per cell, suggesting

a link between lipid droplet metabolism and viral replication.

Indeed, interfering with lipid droplet formation/metabolism with a

fatty acid synthase inhibitor (C75) inhibited viral particle

formation by over 1000-fold. Thus, modulation of fatty acid

catabolism could be detrimental to virus formation and could be a

cellular mechanism to both produce energy and fight against a

high replication of DENV-2.

Proteins involved in amino acid and protein

metabolisms. Many proteins involved in protein and amino

acid metabolism and modification were modulated by both

viruses (Table S4). Metalloproteases and aminopeptidases were

down regulated by DENV-2. Glutamyl aminopeptidase, an

enzyme up regulated by both viruses, is thought to be involved

in a major degradation pathway of proctolin, an insect

neuropeptide which acts as a potent stimulator in the

contraction of visceral and skeletal muscles. In Ae. aegypti,

glutamyl aminopeptidase has been reported to be down-

regulated in response to the stress of heat shock treatment [43].

In the present study, the observed down-regulation of glutamyl

aminopeptidase may modify the vector’s behavior by interfering

with the degradation of proctocolin.

Figure 4. 2D-DIGE synthetic gel of Ae. aegyptimidgut extract modulated in the analysis control/CHIKV infected profiles. Protein spots
differentially expressed are indicated by number. The pI and molecular weight scales are indicated in the Figure.
doi:10.1371/journal.pone.0013149.g004
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We showed that protein disulfide isomerase (PDI) was up-

regulated in CHIKV infected midguts and down-regulated in

DENV-2 (Table S4). PDI is a multifunctional protein that

catalyzes thiol–disulfide interchanges underlying the formation,

reduction, and rearrangement of secreted and cell-surface-

associated proteins [44]. PDI has been demonstrated to play a

role in redox control at the cell surface [45]. In response to

increased extracellular reduction, PDI may help to re-establish

redox homeostasis by rearranging and forming disulfide bonds,

thereby protecting the cell against this aggression [46]. PDI is also

an essential component of the endoplasmic reticulum, which is

involved in viral translation, replication, and encapsidation. In

particular, PDI has been located by [47] in the complex I, the

main ribonucleoprotein complex formed with the 39UTR in

dengue 4 virus replication. It is therefore likely that PDI plays a

role in viral replication, translation, or encapsidation, and

modulation of the expression of this protein would interfere with

viral replication.

The level of Hsp60 was up-regulated in Ae. aegypti midguts

infected with DENV-2. In agreement with this observation, [48]

have recently reported that RNA interference mediated silencing

of Hsp60 gene in human monocytic myeloma cell line U937

revealed decreased dengue virus multiplication. This suggests that

Hsp60 protein interferes positively with dengue virus infection. In

contrast, the transcription of Hsp60 was shown to be down-

regulated in midguts infected with an alphavirus, Sindbis virus, 8

DPI, whereas our study did not show any modulation of the

protein level by CHIKV [8]. Once again, these results show a

diferential modulation of protein level by viruses belonging to

different families.

Proteins involved in translation machinery. The level of

elongation factor 1 (EF1) gamma is higher in CHIKV infected

Figure 5. 2D-DIGE synthetic gel of Ae. aegypti midgut extracts showing spots modulated after analysis of control/DENV-2 profiles.
Protein spots differentially expressed are indicated by number. The pI and molecular weight scales are indicated in the Figure.
doi:10.1371/journal.pone.0013149.g005
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midguts than control midguts. It is the most highly modulated

protein of all CHIKV modulated proteins identified in our study.

In eukaryotes, the soluble elongation factor EF1 is composed of

three or four subunits, EF1 alpha,-beta, -gamma, and -delta in

higher eukaryotes and is required for translational elongation. EF1

gamma has been implicated in the innate immune response of

Drosophila and was found essential to cell viability [49,50]. We

can therefore postulate that in Ae. aegypti midgut, increase of EF1

gamma expression may play a role for protecting cell against

CHIKV.

Proteins involved in iron transport and storage. The

protein transferrin is involved in iron transport and was down-

regulated both in CHIKV and DENV-2 infections. Iron transport

and storage proteins have diverse roles in insect physiology. The

host’s ability to sequester iron and hinder pathogen survival is of

interest for innate immunity. There have been several reports,

describing up-regulation of transferrins in insects or insect cells

challenged with bacteria [51], suggesting an antibacterial role of

this protein. The D. melanogaster transferrin gene contains promotor

region sequences known to bind nuclear factor-kappa B–like

transcription factors which are involved in the insect immune

response [52]. Therefore, a down-regulation of transferrin may

favour viral multiplication.

Proteins involved in cell cytoskeleton. Viral infection

altered the expression of some proteins involved in cell

cytoskeleton and cytoplasmic transport (Table S4). Actin

expression was higher in DENV-2 infection than in CHIKV

infection whereas the reverse was observed for moesin, a

cytoskeletal binding protein involved in microtubule

organization. Cofilin, an actin depolymerising factor, was down-

regulated in DENV-2 infection, but up-regulated in CHIKV

infection. Calponin, a shape change sensitive actin binding protein

was down-regulated in DENV-2 infection. It was also down-

regulated in cells infected by cytomegalovirus [53]. These

observations suggest that different cytoskeletal modulations are

occurring after midgut infection by either virus and may explain in

part the pathological changes in mosquito midgut epithelial cells

observed after arbovirus infection [54].

Host protein that may be incorporated into viral

particles. In a previous study performed with influenza virus,

several host proteins were shown to be incorporated into the viral

particle [55], an observation also reported for other enveloped

viruses such as poxviruses, retroviruses, and herperviruses. These

include both cytoplasmic and membrane-bound proteins that can

be grouped into several functional categories, such as cytoskeletal

proteins, annexins, glycolytic enzymes, and tetraspanins.

Therefore, as well as being due to host responses, protein levels

in our study may have changed because of their incorporation into

virus particles, since as reported above, we observed that some of

the previously identified host proteins incorporated into viral

particles (enolase, aldoketoreductase, peroxiredoxin 1, annexin,

actin, cofilin, wild type (WD) repeat containing protein, and

transgelin) were specifically modulated by either CHIKV or

DENV-2 infection (Table S4). These proteins could have also been

included into the viral particles of DENV-2 or CHIKV. Both

viruses are enveloped viruses and must enter the cell via a

membrane fusion event and leave the cell by budding, either from

the plasma membrane or an internal membrane. It is possible that

the incorporated host proteins that are common to enveloped

viruses play a role in these particular stages of the virus life-cycle.

In addition, the host cytoskeletal network is involved in the

transport of viral components in the cell, especially during the

stages of virus entry and exit from the cell [56,57]. Several studies

on RNA viruses have indicated that cytoskeletal proteins such as

actin are also required for viral gene expression. The putative

presence of these proteins in viral particles could reflect their active

participation in moving viral components to the assembly site as

well as cytoskeletal reorganization that occurs during bud

formation. Other proteins associated with a particular virus

included annexins and WD repeat containing protein, both of

which were up-regulated in CHIKV infection. Annexins are

calcium dependent phospholipid-binding proteins and have been

suggested to act as scaffolding proteins at certain membrane

domains. For example, annexin A2 is required for the apical

transport of vesicles in polarized cells, specifically vesicles that

carry membrane raft-associated proteins [58].

In conclusion, our study shows that CHIK and DENV-2 are

both able to modulate the expression of several mosquito’s midgut

proteins belonging to a variety of functional groups. These include

structural (cytoskeleton), redox, regulatory proteins, and enzymes

for several metabolic pathways. Both viruses induce an overex-

pression of proteins involved in cell protection. This is especially

the case for proteins involved in the antioxidant response and in

detoxification. These proteins play an important functional role in

Ae. aegypti, perhaps enhancing survival during infection. On the

other hand, they also modulate the expression of other proteins,

like transferrin (CHIKV and DENV-2), hsp60 and alpha

glucosidase (DENV-2), which may favour virus survival and

replication inside the midgut. These results suggest a subversion of

the insect midgut metabolism by the arboviruses. DENV-2

induced the modulation of more midgut proteins than CHIKV.

This observation might be explained by different virus/host cell

interactions during virus life cycles. However, the different speed

of dissemination of the two arboviruses from the midgut might also

explain the differential modulation observed in this organ after

infection. At 7 DPI, DENV-2 has just started to escape midgut

whereas CHIKV has already reached the salivary glands. The

timing of vector response to the arboviruses may vary as function

of their extrinsic period, a steady state being reached earlier for

those which disseminate more rapidly. These observations give

further emphasis to the interest of studying the interactions

between the arthropod host and the pathogen it transmits.

Investigations using RNAi in the Liverpool strain as well as in

field-collected Ae. aegypti mosquito, should be the next step to assess

the role of these proteins in viral replication and dissemination

within the mosquito Ae. aegypti.

Materials and Methods

Mosquitoes
Aedes aegypti (Liverpool strain) eggs were kindly provided by Prof.

D. Severson (department of Biological Science, Notre Dame

University, Wisconsin-Madison, USA). They were maintained at

2861uC under 80% relative humidity with a light/dark cycle of

16 h/8 h. Larvae were reared in pans containing cat food (beef

and chicken) in 1 L of tap water. Adults were provided with 10%

sucrose solution ad libitum.

Viruses
The CHIKV 06.21 isolated in November 2005 from a new-

born male from La Reunion presenting meningo-encephalitis

symptoms was used for all experiments [59]. This strain contained

the change ARV at the position 226 in the E1 glycoprotein (E1-

226V). Stock virus was produced following passages on Ae.

albopictus C6/36 cells then harvested and stored at 280uC in

aliquots as described by [60]. The titre of the frozen stock virus

was estimated to 109 plaque-forming units (PFU)/mL.
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The dengue 2 virus strain, provided by Leon Rosen (Institut

Pasteur, Paris, France) was isolated in 1974 from a human serum

in Bangkok (Thailand) (D2BN32). Viral stocks were produced by

inoculating Ae. albopictus cells (C6/36 clone) with triturated infected

mosquitoes. The mosquito cells were maintained as described in

[61]. Titration of the virus stock was carried out in Ae. aegypti (Paea

strain) by inoculating serial dilutions of the supernatant intra-

thoracically. Mosquito infection was detected by an IFA assay on

head squashes. Titres were calculated by the 50% endpoint

method [62] and expressed as 50% mosquito infectious doses

(MID50/ml). The titre of the stock virus was estimated to 1010.2

MID50/ml.

Oral infections of mosquitoes and dissections
Seven day-old female mosquitoes were deprived of sucrose 24 h

prior the infectious blood meal. They were then allowed to feed for

15 min through a chicken skin membrane covering glass feeders

maintained at 37uC. The infectious blood meal was comprised of

two thirds washed rabbit erythrocytes, one third viral suspension,

and ATP (as a phagostimulant) at a final concentration of 56

10-3 M. The infectious blood was at a titre of 107.5 PFU/ml

(CHIKV 06.21) or 109 MID50/ml (DENV-2).

Preparation of midgut protein extracts
Pools of 30 entire midguts were dissected in 30 ml phosphate

buffered saline (PBS) containing protease inhibitors (Complete,

Roche Diagnostics) 7 days after feeding. These were kept at -

80uC until use. Midguts were disrupted by ultrasound (Cup

Horn, Sonics & Material) for 30 min with 2 sec pulse on and

2 sec pulse down, at maximum amplitude. Midgut homogenates

were then centrifuged for 30 min at 130,000 g and proteins were

quantified using the BCA protein assay (Pierce). Aliquots of

midgut proteins were then lyophilized and resuspended in 2D-

DIGE buffer.

Reverse transcription quantitative PCR (RT-q PCR)
Total RNA from mosquitoes or midguts was extracted using the

NucleospinH RNA II kit (Macherey-Nagel) according to the

manufacturer’s instructions. RNA was eluted in 40 ml of RNAse-

free H2O by centrifugation at 11,000 g for 1 min.

Synthetic RNA transcripts for CHIKV and DENV-2 were

generated to construct a standard curve. The targeted region in

the CHIKV sequence was amplified by PCR product and ligated

into pCR II TOPO vector (Invitrogen). The plasmid was then

linearized using EcoRI restriction enzyme and purified using

QIAquick PCR purification kit. RNA transcripts were prepared in

vitro using the RiboMAXTM Large Scale RNA Production Systems

(Promega) appropriate for either SP6 or T7 RNA polymerase. The

transcript size was 1,356 bp. Residual DNA was been eliminated

with several DNAse treatments (Turbo DNA-free (Ambion)). After

quantification by spectrophotometer, RNA transcript solution was

stored at 280uC.

The one-step reverse transcription quantitative PCR (RT-qPCR)

was performed using Power Sybr Green RNA-to-Ct one step kit

(Applied Biosystems). CHIKV primers were selected in the E2

structural protein regions: sense Chik/E2/9018/+ (CACCGCCG-

CAACTACCG); anti-sense Chik/E2/9235/- (GATTGGTGAC-

CGCGGCA). DENV-2 primers were selected as described in

Lanciotti et al., 1992: sense CGCCACAAGGGCCATGAACAG,

antisense (TCAATATGCTGAAACGCGCGAGAAACCG).

RT-qPCR was performed using Applied Biosystem’s Fast Real-

Time PCR Systems 7500 with the software 7500 v.2.0.1. The

thermal cycling conditions included: a reverse transcription step at

48uC for 30 min, an inactivation step of RT/RNAse enzyme at

95uC for 10 min followed by 40 cycles of 95uC 15 s, 60uC 1 min,

a final denaturation step where the temperature increases from

60uC to 95uC during 20 min and a step of 15 sec at 95uC. Signals

were normalized to the standard curve using serial dilutions of

RNA synthetic transcripts. Using DCt analysis, normalized data

were used to estimate the transcript copy number in infected

mosquitoes.

Immunofluorescence (IFA)
After dissection, midguts were placed on a slide. PBS was

removed and midguts were fixed in 4% paraformaldehyde (PFA)

for 1 h, dried and kept at 4uC until use. For indirect fluorescent-

antibody (IFA) experiments, midguts were rehydrated in PBS for

365 min, and then incubated for 1 h with Triton X100 (0.2%).

They were then washed again with PBS (365 min) and incubated

for 30 min with PBS containing 5% BSA. The slides were drained

and incubated overnight at 4uC with anti-DENV-2 protein E 3H5

diluted 1:400 in PBS, then washed with PBS (365 min) under

shaking. They were incubated for 1 h with 1:500 Alexafluor 488

goat anti/mouse (Invitrogen), and washed with PBS. Actin

network was stained with Phalloidin Alexafluor 633 or 488

(Invitrogen) (diluted 1/40 in PBS). After washing, a drop of

Prolong gold antifade (Invitrogen) was settled on each slide and a

coverslide was added. All preparations were examined by confocal

microscopy (Zeiss LSM 510 Meta and TCS SP5 Leica

Microsystems).

Histological observations
At 7 DPI, 5 infected and control females were killed and fixed in

Carnoy solution (3 vol. chloroform, 1 vol. absolute ethanol, 1 vol.

acetic acid). Samples were then dehydrated as follows: 8 h in

absolute ethanol, 17 h in solution 1 (55% n-butanol/40,5%

absolute ethanol in H2O), 8 h in solution 2 (75% n-butanol/

22.5% absolute ethanol in H2O) and finally 2–3 days in n-butanol.

Mosquitoes were embedded in paraffin. Sections (5 mm) were

stained with hematoxylin and eosin, periodic acid Schiff, and

Gordon sweet stains according to [63]. Immunohistochemical

analysis was performed by using a anti-CHIKV or DENV-2

polyclonal mouse ascitic fluid at a dilution 1:750. Briefly, tissue

sections were immersed in 200 mL of citrate and incubated three

times for 5 min in a microwave at 650 W before staining. The

streptavidin peroxydase method with AEC (amino ethyl carbozole)

as a chromogen was used to detect the secondary antibody

(Envision system labeled Polymer-HRP antimouse, Dako). Slides

were counterstained with Meyer’s hematoxylin. Slides were

observed with light microscopy.

2D-DIGE
Midgut protein extracts from infected and non-infected

mosquitoes were compared in individual 2D gels to identify

proteins unique to or significantly modulated in presence of

each virus. For this experiment, three distinct infection

experiments were performed with each virus. For each

experiment, control mosquitoes were fed on non-infected red

cells. Extracts were prepared from infected and non-infected

midguts, dissected 7 DPI.

Fluorescent CyDye-labelling of proteins for DIGE was

performed according to the manufacturer’s instructions (GE

Healthcare Bio-Sciences Corp.). Proteins from a pair of protein

extracts (50 mg total proteins/gel) were labeled with Cy3 or Cy5

(4 pmol/mg proteins) and corun on the same gels. A dye swap

was used to normalize for any bias introduced by the dyes, since

different fluorescent CyDyes may have different efficiencies in

labelling different proteins. An internal standard was prepared
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containing a mixture of equal amounts of proteins from each

extract. This standard was labeled with Cy2 (8 pmol/mg

proteins) and was included in each gel for between gel

comparisons on image analysis software. The protein samples

were loaded onto immobilized pH gradient (IPG) strips (pH 3

to 11 nonlinear, 18 cm). The first dimension was run on the

IPGphore III (GE Healthcare Bio-Sciences Corp.) at 20uC with

the following settings: step 1, 500 V, 1 h; step 2, 500 V to,

1,000 V, 4 h; step 3, 1000 V to 8,000 V, 3 h, step 4: 8000 V,

1 h. Before the second dimension was run, the strips were

reduced for 10 min with 64.8 mM of dithiothreitol in sodium

dodecyl sulfate (SDS) equilibration buffer (50 mM Tris-HCl

[pH 8.8], 6 M urea, 30% glycerol, 2% SDS, 0.002%

bromophenol blue) and then alkylated for 15 min with

135.2 mM of iodoacetamide in the same equilibration buffer.

The second dimension was carried out in the Ettan DALT Six

system (GE Healthcare Bio-Sciences Corp.) at 25uC in an

electrode buffer (25 mM Tris, 192 mM glycine, and 0.1% [wt/

vol] SDS) with the following settings: step 1, 2 W/gel, 25 min;

step 2, 17 W/gel, 4 h. The gels used in the second dimension

were 12.5% homogenous acrylamide gels cast in the laboratory.

Immediately after electrophoresis, the gels were scanned with a

Ettan DIGE Imager (GE Healthcare Bio-Sciences Corp.).

Three replicates of each infected sample and 6 replicates for

control extracts (non-infected) were used. The gel images were

initially analyzed by Progenesis SameSpots, V2.0 (Nonlinear

USA Inc., Durham, NC). To identify the proteins associated

with DENV-2 and CHIKV infections, the SameSpots image

analysis software was used. To analyze the numbers of spots

regulated by the viral infection or specific spots were

determined by spot-by-spot and gel-by-gel manual confirma-

tion on all the 2D and 3D images for the group. The spots

reported all had at least 1.3-fold intensity (normalized to

volume) difference, and all were statistically significant, which

was measured with the built-in statistical tool in the SameSpots

software (Anova, p,0.05).

Protein identification
Spots that were unique to or clearly up-regulated or down-

regulated in infected or non-infected mosquitoes were recovered

using the Ettan Spot picker (GE Healthcare) and individually

treated with the Proteoextract All-in-one Trypsin Digestion kit

(Calbiochem) according to manufacturer’s instructions. Peptide

digests were concentrated on C18-Zip Tips (Millipore) and eluted

with 1.5 ml a-cyano-4-hydroxycinnamic acid matrix solution (in

50% acetonitrile, 0.05% trifluoroacetic acid) onto a MALDI-TOF

target plate (Opti-TOF 384 well Insert, Applied Biosystems).

Peptide spectra acquisition was realized on the 4800 MALDI

TOF/TOF Analyzer (Applied Biosystems). After screening the

sample position in MS-positive reflector mode using 1500 laser

shots, the fragmentation of automatically-selected precursors was

performed at collision energy of 1 kV using air as collision gas

(pressure of 2610-6 Torr). MS spectra were acquired between m/z

800 and 4000. Up to 12 of the most intense ion signals having a

signal to noise ratio .12 were selected as precursors for MS/MS

acquisition. Peaklist generation and protein identification were

performed by the ProteinPilotTM Software V 2.0 (Applied

Biosystems) using the Paragon algorithm. Each MS/MS spectrum

was searched for all species against the Vectorbase database. The

searches were run with the fixed modification of iodoacetamide

labeled cysteine parameter enabled. Other parameters such as

tryptic cleavage specificity, precursor ion mass accuracy and

fragment ion mass accuracy are MALDI 4800 built-in functions of

ProteinPilot software. The ProteinPilot software calculates a

confidence percentage (the unused score), which reflects the

probability that the hit is a false positive, meaning that at 95%

confidence level, there is a false positive identification chance of

about 5%.

The preliminary protein identifications obtained automatically

from the software were inspected manually for conformation prior

to acceptance.

Supporting Information

Table S1 Experimental procedure for 2D-DIGE.

Found at: doi:10.1371/journal.pone.0013149.s001 (0.03 MB

DOC)

Table S2 List of proteins identified by mass spectrometry.

Found at: doi:10.1371/journal.pone.0013149.s002 (0.88 MB

DOC)

Table S3 Summary of proteins identified as being modulated

after midgut infection by CHIKV or DENV-2.

Found at: doi:10.1371/journal.pone.0013149.s003 (0.32 MB

DOC)

Table S4 Differential expression of midgut proteins according to

their role after infection by CHIKV or DENV-2 viruses.

Found at: doi:10.1371/journal.pone.0013149.s004 (0.15 MB

DOC)

Figure S1 2D-DIGE gels run with control, CHIKV- and

DENV-2- infected Ae. aegypti midgut extracts. Pools of 50 mg of

control blood-fed, CHIKV blood-fed and DENV-2 blood-fed

midgut extracts were processed by 2D-DIGE. The gels were

performed according to the protocole described in Table S1.

Found at: doi:10.1371/journal.pone.0013149.s005 (7.66 MB

TIF)

Figure S2 2D-DIGE synthetic gel of Ae. Aegypti midgut extracts.

Protein spots differentially expressed by both viruses are indicated

by number.

Found at: doi:10.1371/journal.pone.0013149.s006 (6.04 MB

TIF)

Figure S3 2D-DIGE synthetic gel of Ae. aegypti midgut extracts

showing spots modulated after analysis of control/CHIKV/

DENV-2 profiles. Identification numbers (ID) and the range of

each spot is shown on the gel. The pI and molecular weight scales

are indicated in the Figure.

Found at: doi:10.1371/journal.pone.0013149.s007 (5.45 MB

TIF)

Figure S4 2D-DIGE synthetic gel of Ae. aegypti midgut extracts

showing spots modulated after analysis of CHIKV/DENV-2

profiles. Identification numbers (ID) and the range of each spot is

shown on the gel.

Found at: doi:10.1371/journal.pone.0013149.s008 (5.24 MB TIF)

Acknowledgments

We are thankful to Dr. Marie Vazeille for technical advices. We are
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