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In the present work, laminates having two opposite edges simply supported are con­
sidered. The boundary conditions at the other two opposite edges may be general, and 
between these two edges, the thickness of the plate may be nonuniform. The theory 
used for the vibration analysis of such laminates includes shear deformation and 
rotatory inertia. The solution approach of the problem is semianalytical. By using the 
trigonometric functions describing the mode shapes between the simply supported 
edges, the governing plate equations are reduced to ordinary differential equations. 
The solution of the reduced equations is then sought by the differential quadrature 
method. The results reported in this article serve two objectives of the present investi­
gations. One, it is demonstrated that the proposed semianalytical quadrature method 
offers a numerically accurate and computationally efficient technique for the title 
problem. Two, the relative effects of shear deformation and rotatory inertia are ana­
lyzed in a quantitative manner. © 1995 John Wiley & Sons, Inc. 

INTRODUCTION 

In the classical thin plate theory (CPT), the as­

sumptions of the neglect of (transverse) shear de­

formations and rotatory inertia are consistent 

with the underlying assumption of the plate being 

thin. These assumptions can no longer be consid­
ered to hold true for thick plates. However, the 

inadequacy of the CPT in practical applications 

where the plate systems may even be thin in con-

notation of the theory, is now well recognized. In 

a vibrating plate, for example, the neglect of 

shear deformation and rotatory inertia may not 

be justified due, respectively, to the wavelengths 

becoming so small to be comparable to plate 

thickness and the high frequency of vibration. 

The other example is of plates made of aniso­

tropic materials, such as fibrous composites, in 

which the shear moduli of rigidity may be quite 

small relative to the in-plane elastic moduli and 
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the consideration of resulting large transverse 

shear deformations may by itself be necessary. 

The very first vibration theory of isotropic 

plates with transverse shear deformation was set 

forth by Mindlin (1951). There have been some 

additions in the shear deformable plate theories 
(No or and Burton, 1989); however, Mindlin plate 

theory has been the basis of most developments 

in the analysis of both isotropic and anisotropic 

plates with shear deformation and inertia effects. 

The Mindlin theory was extended to laminated 
anisotropic plates by Yang et al. (1966). Later, 

Whitney and Pagano (1970) used the theory of 

Yang et al. for application to plates comprised of 

an arbitrary number of monoclinic layers and 

made some modification in the theory. A com­

parison of the two theories was made by Wang 

and Chou (1972) who observed that the modified 

theory of Whitney and Pagano produced more 

accurate results than that of Yang et al. The mat­

ter of shear deformation and rotatory inertia ef­

fects has also been investigated in an exact man­

ner via three-dimensional elasticity solutions of 

simply supported isotropic and laminated com­
posite plates; see, for example, the contributions 

of Lee and Reismann (1969), Pagano (1970), 

Srinivas and Rao (1970), and Iyengar and Raman 

(1977). Exact solutions of the Mindlin equations 
for simply supported plates and for plates having 

two opposite edges simply supported and the 

other two free were provided by Mindlin et al. 

(1956). The Mindlin plate analyses with other 

boundary conditions have been considered by 

many investigators and various techniques have 

been employed for the solution of the Mindlin 

equations. One may see for example, the iso­

tropic plate solutions based on the Rayleigh-Ritz 

method (Dawe and Roufaiel, 1980; Liew et al., 

1993), the finite element method (Greimann and 

Lynn, 1970; Hinton and Bicanic, 1979), the finite 

strip method (Benson and Hinton, 1976; Dawe, 

1978; Roufaiel and Dawe, 1980), the collocation 

method (Mikami and Yoshimura, 1984), the finite 

difference method (Aksu and AI-Kaabi, 1987), 

and the spline strip method (Mizusawa, 1993). 

On the analysis of anisotropic and laminated 

plates, one may find the exact (Bert and Chen, 

1978) and the finite element (Reddy, 1979) solu­
tions for simply supported anti symmetric angle­

ply laminates, the finite strip method solution for 

laminates with two opposites edges simply sup­

ported (Hinton, 1976), and the Rayleigh-Ritz 

and finite strip analyses of symmetric laminates 

(Craig and Dawe, 1986). 

The present study concerns the free vibration 

analysis of symmetric cross-ply laminates includ­

ing the effects of shear deformation and rotatory 

inertia. The laminate configurations considered 

in this work are the ones having two opposite 

edges simply supported and with general bound­

ary conditions at the other two edges between 

which the plate thickness may be varying. The 

study was undertaken with a few objectives. It 

presents the very first application of the differen­

tial quadrature method (DQM) for the problem 

under consideration. During recent years, re­

search interests in plate vibration problems have 

reactivated. The major interests are in the evalu­

ation of free vibration characteristics of plates 

with complicating effects, such as thickness non­

uniformity, shear deformation and rotatory iner­
tia, general polygonal boundaries, nonclassical 

boundary conditions, material anisotropy, and so 

on. However, with inclusion of one or more com­
plicating effects, the task of generating vibration 

characteristic data for all possible combinations 

of geometric and/or material parameters may be­

come boundless. From a practical viewpoint, the 

database generated for some limited values of de­
sign parameters often serves little purpose be­

cause the interpolated characteristics for the pa­

rameters of the actual problem may not be 

sufficiently accurate and the interpolation pro­
cess itself may be time consuming. Further, the 

data base may need substantial computer stor­

age. A better alternative to handle this situation 

is to have computer codes based on accurate and 

efficient numerical solution techniques that may 

be used for real time analysis and design. The 

problem undertaken in the present work, even 

with a few limitations on the laminations and the 

boundary conditions, can have unlimited combi­

nations of the geometry and material parameters. 

As shown by the results of the present work, the 

DQM offers a highly accurate technique and due 

to the small computation times required in the 

evaluation of vibration characteristics data, it has 

the potential for real time analysis and design 

purposes. 
It is known that of the two complicating ef­

fects, the shear deformation is a dominating ef­

fect compared to the effect of rotatory inertia. 

This study presents a comprehensive quantita­

tive comparison of the effects of shear deforma­

tion only vis-a-vis shear deformation with rota­

tory inertia vibration characteristics. The results 

conform to the known facts; however, more im­

portantly, it is shown that the neg!ec t of rotatory 



inertia can be advantageous for efficient evalua­

tion of the vibration characteristics. 

The article includes results on tapered spe­

cially orthotropic laminates. To the knowledge of 

the present investigators, tapered orthotropic 

plates with shear deformation and rotatory iner­

tia effects have not been analyzed earlier, and as 

such, the analysis and the results should be new 

to the plate vibration literature. 

As mentioned earlier, in this work, DQM is 

used for the solution of the title problem and, 

therefore, a brief review of the method would be 

in order. The DQM was proposed in the early 

1970s (Bellman and Casti, 1971; Bellman et al., 

1972) as a technique for the rapid numerical solu­

tion of nonlinear differential equations. Bert et 

al. (1988, 1989) and Jang et al. (1989) introduced 

the method as a tool for structural analysis. Dur­

ing recent years, there have been many publica­

tions on the development of the method itself, 
such as the techniques for implementation of 

boundary conditions (Wang and Bert, 1993), the 

use of harmonic test functions (Bert et aI., 1993), 

and on the new applications of the method (Wang 

et aI., 1994; Malik and Bert, 1994; Laura and 
Gutierrez, 1993, 1994). These published works 

have placed the DQM on a strong footing and the 

method is fast developing to be a potential alter­
native to the conventional numerical techniques. 
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In the following, the relevant governing equa­

tions, solution details, and results of the investi­

gations are presented. 

THE GOVERNING EQUATIONS 

Consider a symmetric cross-ply laminate having 

sides of lengths a and b along the x and y axes, 

respectively, and let its thickness h be varying in 

the y direction, that is, h = h(y). The governing 

equations of free vibrations of the laminate may 

be derived following the analysis of Whitney and 

Pagano (1970), recalling, however, that in the 

case of a symmetric cross-ply laminate, all cou­

pling stiffness coefficients vanish, that is, 

Bu=O; i,j= 1,2,6; 

Al6 = A 26 = Dl6 = D26 = 0; A45 = A54 = 0 

where Au, Bu, and Du used here and in the later 
equations, are the symbols for the plate stiffness 

coefficients as commonly employed in the lami­

nate theories (Whitney, 1987). Further, due to 

nonuniform thickness in the y direction, the non­

zero stiffness coefficients of the laminate are also 

varying in the y direction. The derived equations 

may be written in dimensionless form as: 

2 2- a2w 2 2 2- (a2W dH aW) 
-12k 5(3 A55 aX2 - 12k4(3 A A44 a y2 + dY a Y 

(1) 

2 3 - a<l> 2 3 - (a'l' 1 dH ) 
+ 12k 5(3 A55 ax + 12k4(3 AA44 a Y + H dY 'I' = 0,2W 

k 2 3 - 1 a W 2 - a2<1> 2 2 - (a2<1> 3 dH a<l» 
-144 5(3 A55 H2 ax - 12(3 DI1 aX2 - 12(3 A D66 ay2 + H dY aY, 

(2) 

2 - 1 - - a2'1' - 1 dH a'l' 
+ 144k5(34A55 H2 <I> - 12(32A(DI2 + D66) axaY - 36(32AD66 H dY ax = 0.2<1> 

k 2 3 - 1 a W 2 - - a2<1> 2 - 1 dH a<l> 
-144 4(3 AA44 H2 a Y - 12(3 A(D 12 + D66) axa Y - 36(3 ADl2 H dY ax 

(3) 

-12(32D66 a2'1' _ 12(32A2D22 (a2'1' + 1. dH a'l') + 144k~a4A44 _1_ 'I' = 0.2'1' 
ax2 a y2 H dY a Y f-' H2 

where it is further assumed that the plies of the 

laminate are of the same orthotropic material and 

that the vibratory motion of the laminate is har­

monic. In these equations, X = xla and Y = ylb 

are the dimensionless coordinates, A = alb is the 

aspect ratio, H = H(Y) = hlho is the dimension-

less thickness function, ho is some reference 

plate thickness, and (3 = alho • Further, W = 
W(X, Y) = w(x, y)lho is the lateral-displacement 

mode function, <I> = <I>(X, Y) and 'I' = 'I'(X, Y) 

are the mode functions of cross-sectional rota­

tions in the x and y directions, respectively, and 
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k~ and k~ are shear correction factors that ac­

count for the nonuniformity of the transverse 

shear strain distributions through the laminate 

thickness. The dimensionless frequency n is de­

fined as 

(4) 

where w is the circular frequency of free vibra­

tions (in rad/s), p is the density of the laminate 

material, and Do is the characteristic flexural 

stiffness: 

(5) 

in which the subscripts Land T refer, respec­

tively, to the directions parallel and perpendicu­

lar to the fibers in the plane of the laminate. The 

symbols E and v denote the elastic modulus and 

Poisson's ratio, respectively. 

The dimensionless flexural stiffnesses of the 

plate are defined as: 

- 1 Iho/2 I 
Dij = D- -h 12 QijZ 2 dz; 

o 0 

i,j= 1,2; 

(6) 

-_ 1 Iho /2 I 
A44 - 12D _ Q 44Z dz, 

o ho/2 

-_ 1 Iho/2 I 

Ass - 12Do -ho/2 Qssz dz 

where I designates the layer-wise coefficients; 

Q~l' Q~2' Qb, and Q~6 are plane-stress reduced­

stiffness coefficients; and Q~4 and Q~s are shear­

stiffness coefficients. In general, these coeffi-

cients are different for each ply of the laminate 

and the layer-wise integrations in Eqs. (6) are 

implied. Expressions for these coefficients in 

terms of orthotropic elastic constants are given 

in Table 1. Note that the plies are transversely 

isotropic so that GLz = GLT where z is the 

through-thickness coordinate. 

Equations (1), (2), and (3) are applicable to 

isotropic material plates with 

Dll = D22 = 1, D12 = v, 

D66 = A44 = Ass = (1 - v)/2. 

For isotropic materials, the shear correction fac­

tors in the two transverse directions are of 

course the same, that is, k~ = k~ = k2• A com­

monly used value of k2 for isotropic materials, 

following the work of Mindlin (1951), is 1T2/12. 

For laminated plates, the shear correction fac­

tors would generally be different in the two trans­

verse directions; the two factors depend on the 

properties of the individual layers and the lami­

nate construction. The matter of the shear cor­

rection factors of laminated constructions has 

been considered and procedures for their evalua­

tion under static bending have been given by 

some authors; see for example, Chow (1971), 

Whitney (1973), and Bert (1973). 

The particular plate configurations under con­

sideration are the ones having two x edges, X = 0 

and 1, simply supported. In that case, one may 

represent the mode functions in the following 

well-known forms: 

W = W(y)sin m1TX, <I> = <1>(y)cox m1TX'(7) 

'I' = W(Y)sin m1T X 

where m is an integer and represents the number 

of half-waves between the two x edges of the 

vibrating laminate. Also, the functions W, <1>, and 

Table 1. Plane Stress Reduced Stiffness and Shear Stiffness Coefficients in Terms 

of Elastic Constants of Orthotropic Ply 

Stiffness 
Coefficient 

Expressions in terms of Elastic Constants for 

0° ply 

Ed(l - VLTVTL) EAl - J)LTVTL) 

ET/(l - VLTJ)TL) Ed(l - J)LTVTL) 

VLTET/(l - VLTVTL) = vTLEd(l - VLTVTL) 

~T ~T 
Grr GLT 

GLT GTT 



'P define the mode shapes between the two y 

edges. 

Equations (7) satisfy the boundary conditions 

of the two x edges. Further, using Eqs. (7), the 
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eigenvalue partial differential equations (1), (2), 

and (3) are reduced to the following ordinary dif­

ferential equations: 

- (d 2W dH dW) 2 - -
-12k~p2A2A44 dy2 + dY dY + 12k5p2A55(m7T)2W 

(8) 

2 - 2 3 - ('d'P 1 dH -) _ 2 -
-12k5p3A55(m7T)<P + 12k4P AA44 dY + H dY 'JI - ilmn W 

2 3 - _1_ - _ 2 2 - (d2<1> i dH d<l» 
-144k5P A55(m7T) H2 W 12P A D66 dy2 + H dY dY 

+12p2 [D 11 (m7T)2 + 12k~p2A55 ~2J <I> - 12p2A(D12 + D66)(m7T) ~t (9) 

- 1 dH - 2-
-36p2W66(m7T) H dY 'JI = ilmn<P 

2 - 1 dW 2 - - d<l> 
-144k4p3AA44 H2 dY + 12P A(D12 + D66)(m7T) dY 

2 - 1 dH - 2 "- (d2'P 3 dH d'P) 
+36P W!2Cm7T) H dY <P - 12P A~D22 dy2 + H dY dY (10) 

+12p2 [D66(m7T)2 + 12k~p2A44 ~2J 'P = il~n'P 

where the dimensionless frequency is now de­

noted by ilmn as one associated with the m n 

mode; n being the number of half-waves in the y 

direction of the vibrating laminate. 

The boundary conditions considered at the 
two y edges are the combinations of simply sup­

ported (SS), clamped (C), and free (F) edge con­

ditions. These conditions, in terms of W, <1>, and 

'P functions, are given as: simply supported edge 

- - d'P 
W = 0, <P = 0, dY = 0; (11) 

clamped edge 

W = 0, <I> = 0, 'P = 0; (12) 

free edge 

dW -
A dY - p'JI = 0, 

d<l> -
A dY + (m7T)'JI = 0, (13) 

- d'P - -
AD22 dY - Ddm7T)<P = O. 

Thus, it may be seen that, at either of the two 
y edges, Y = 0 and 1, three boundary conditions 

exist for a given edge condition. As usual, with 

dual combination of the three type of edge condi­
tions at the two y edges, six types of plate config­

urations exist. The total number of boundary 
conditions for any plate type are six. It may also 

be noted that the solution domain of the govern­

ing equations, (8), (9) and (10), is 0 :5 Y:5 1. 

The solution of the eigenvalue differential 

equations, (8), (9), and (10), in conjunction with 

the boundary conditions is sought by the differ­

ential quadrature method; the details of the quad­

rature formulation are given in the following sec­

tion. 

DIFFERENTIAL QUADRATURE 

FORMULATION 

Consider a set of N sampling points Y;(i = 1, 

2, ... , N) in the domain 0 :5 Y:5 1. Let the 

values of a function F(Y) (representing the mode 

functions W, <1>, and 'P) at an ith point be F; = 
F(Y;). An rth-order function derivative at a point 

Y; may be expressed by the quadrature rule as 
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(14) 

where B~) are the weighting coefficients of the 

rth-order derivative associated with the ith sam­

pling point. These weighting coefficients may be 

obtained by having appropriate approximations 

(the test functions) of the function F(Y). 

Using the quadrature rule, Eq. (14), for vari­

ous derivatives in Eqs. (8), (9), and (10), one ob­

tains the quadrature analog of the three differen­

tial equations at an ith point of the solution 

domain as the following sets of linear algebraic 
equations: 

-12k2f3h 2A- ~ (B(2) dH B(l)) W- 12k2f32A- ( )2W-
4 1\ 44 f. ii + dY ii j + 5 55 m1T i 

(15) 

+ 12f32 [D II (m1T)2 + 12k~f32A55 ~2] <l>i - 12f32A(D 12 + D66)(m1T) ~ B U)1rj (16) 

- IdH- 2-
-36f32AD66(m1T) H dY 'l'i = nmn<l>i 

where, in these equations, i = 2, 3, ... , (N -

1), that is, in obtaining the quadrature analog 
equations (15), (16), and (17) from the eigenvalue 

differential equations, the end points i = 1 and N 

are omitted. Thus, Eqs. (15), (16), and (17) yield 

(3N - 6) equations for 3N discrete values of the 

mode functions. The remaining six equations are 

obtained from the quadrature analog equations of 

the total of six boundary conditions at the two 

end points and, thereby, the boundary conditions 

are invoked. The quadrature analogs of the 

boundary conditions for the three types of edges, 

obtained from Eqs. (11), (12), and (13) are: sim­

ply supported edge 

Wi= 0, <l>i = 0, (18) 

clamped edge 

Wi = 0, <l>i = 0, 1ri = 0; 

free edge 

N 
~ (I) - -

A L.J B ii lVj - f3'1'i = 0, 
j~1 

(17) 

(19) 

(20) 

where, in the above equations, i = 1 for the end 

Y = 0 and i = N for the end Y = 1. 



SOLUTION OF QUADRATURE ANALOG 
EQUATIONS 

The set of quadrature analog equations from the 
differential equation and the boundary conditions 

yield a system of 3N algebraic equations that 
may be arranged in matrix form as: 

in which {Fd} is a (3N - 6) x 1 column vector 

comprising three sets of (N - 2) values, one each 

of the three mode function values Wi, <l>i' and ~i 
at the sampling points i = 2, 3, ... , (N - 1). 

The column vector {Fb} is of the six function val­

ues, Wi, <l>i' and Wi at the boundary points i = 1 
and N. By eliminating the {Fb} column from Eq. 

(21), one obtains the following eigenvalue equa­
tion: 

in which the matrix [S] is of the size (3N - 6) x 

(3N - 6). The eigenvalues, the frequency 

squared values, of the [S] matrix are obtained by 

inverse iteration with shifting (Bathe, 1982). The 

solution yields, along with the eigenvalues, the 
. corresponding eigenvector {Fd} from which the 

number of half-waves n in the y direction become 
known. Obviously, one needs to specify the half­

waves m in the x direction as input data for the 

construction of the quadrature analog equations. 

Thus, at the end of the solution, one gets to know 

the free vibration characteristics in terms of the 

frequency Omn and the corresponding mode pat­

tern m n of the vibrating laminate. 

In the foregoing analysis and solution proce­

dure, shear deformation and rotatory inertia are 

accounted together. As mentioned in the intro­

duction, for quantitative comparison of the ef­

fects of shear deformation and rotatory inertia, 

the results being presented in the following sec­

tion have been obtained in two ways: one with 

the inclusion of shear deformation and rotatory 

inertia together, and the other, by the neglect of 

rotatory inertia and with shear deformation 

alone. The rotatory inertia may be neglected by 

taking simply the right sides of Eq s. (16) and (17) 

equal to zero. In that case, {Fd} in Eq. (21) be­

comes a (N - 2) x 1 column comprised of the 

mode function values Wi, i = 2, 3, ... , (N - 1). 

On the other hand {Fb} becomes a (2N + 2) x 1 

vector comprised of 2N values <l>i' Wi, i = 1, 
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2, ... ,N, and the two end values WI and WN. 
After the elimination of the {Fb} vector, the size 

of the eigenvalue matrix [S] in Eq. (22) with 
shear deformation only will be (N - 2) x (N - 2) 

compared to the size of (3N - 6) x (3N - 6) for 

the case of both shear deformation and rotatory 

inertia. The evaluation of frequencies for shear 

deformation only would obviously be less time 

consuming than those for both shear deformation 

and rotatory inertia. It should be noted that the 

time saving cannot be directly related to the re­

duction in the size of the eigenvalue matrix be­

cause elimination of the {Fb} vector in the case of 
shear deformation only would be much more 

time consuming than in case of shear deforma­

tion and rotatory inertia. However, overall time 

saving should be expected because evaluation of 
the frequencies is by an iteration process. 

Two extensively decisive factors for the suc­

cessful application of the differential quadrature 

method are: one, the accuracy of the weighting 

coefficients, and two, the choice of sampling 

points. For the usual polynomial test functions, 

the weighting coefficients are determined most 

accurately from the explicit formulae developed 
by Quan and Chang (1989) and Shu and Richards 

(1992); the same are used in the present work. 

A natural, and often convenient, choice for 
the sampling points is that of the equally spaced 

points; these are given by 

i-I 
Y i = N _ l' i = 1,2, ... , N. (23) 

Quite frequently, the differential quadrature so­

lutions exhibit better convergence and deliver 

more accurate results with unequally spaced 
sampling points. Although such points may be 

selected by trials (Sherbourne and Pandey, 

1991), a rational basis for the sampling points is 

provided by the zeros of the orthogonal polyno­

mials such as the Legendre and Chebyshev poly­

nomials. The sampling points used in the present 

work are given by 

1 ( (i - 1)7T) 
Yi = 2 1 - cos N - 1 ' i = 1,2, ... , N 

(24) 

RESULTS AND DISCUSSION 

The results based on the analysis and the solution 

method proposed are now produced to meet the 
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set objectives of the present study. It should be 

mentioned here that a similar quadrature solution 

has been used by the present investigators (Bert 

and Malik, 1994) to analyze isotropic and spe­

cially orthotropic plates using the CPT. The 

plates considered were of a similar type, that is, 

those having two opposite edges simply sup­

ported and with general boundary conditions at 

the other two edges between which the thickness 

may be varying. Excellent comparisons have 

been established with the published analytical so­

lution results of uniform thickness isotropic 

(Leissa, 1973) and specially orthotropic (Huf­

fington and Hoppmann, 1959) plates and numeri­

cal solution results of isotropic tapered plates 

(Bhat et aI., 1990). Furthermore, the solution 

method has been found to be highly efficient with 

respect to computational time. 

At the outset, the primary issue that needs to 

be resolved is the convergence analysis of the 

solution method with respect to the number of 

sampling points N and, consequently, determin­

ing the type and the number of sampling points 

that could be used uniformly in all calculations. 

Comprehensive convergence studies were car­

ried out for isotropic and specially orthotropic 

plates and symmetric cross-ply laminates, all of 

which could be analyzed by the same computer 

program. In all the cases of different types of 

plates, at least nine modes, given by m, n = 1, 2, 

3, were considered. Both equally and unequally 

spaced points, given by Eqs. (23) and (24), re­

spectively, were considered and the number of 

sampling points varied from 7-23. Some selected 

results of these studies, obtained by the une­

qually spaced sampling points, are given in Table 

2. These results pertain to the mode m = 2, n = 3 

of six isotropic plates. Shear deformation and ro­

tatory inertia are accounted for with a shear cor­

rection factor of rr2/12. The plates have linearly 

varying thickness of the type: 

H = 1 + aY (25) 

where a is the taper ratio (hi - ho)/ho, ho and hi 

being thicknesses of the plate at the ends y = 0 

and y = b, respectively. It may be observed from 

Table 2 that with increasing number of sampling 

points, the proposed method leads to converged 

solutions. The convergence of the eigenvalues 

indeed depends on how accurately the eigenvec­

tor represents the vibration mode shape. This in 

tum depends on the number and distribution of 

sampling points. Consequently, the convergence 

behavior may not exhibit clear monotonic pat­

tern for smaller numbers of sampling points. This 

is clearly seen from Table 2 that for the plate 

cases 1-4, the convergence is not really mono­

tonic for sampling points up to approximately 

N = 13. 

As a matter of illustration of the dependence 

of the convergence behavior of quadrature solu­

tions on the distribution of sampling points, the 

frequencies of SS-C-SS-F and SS-F-SS-F plates 

obtained from equally spaced sampling points are 

given in Table 3. It may be seen that the quadra­

ture solution with equally spaced sampling points 

does not really exhibit a stable convergence be-

Table 2. Semianalyticai DQ Solution Convergence: Free Vibration Frequency of Thick Isotropic Rectangular 

Plates vs. Number of Sampling Points 

Mode 
Number of y Direction Sampling Points, N 

Sequence 7 9 13 17 21 23 

1. SS-SS-SS-SS Plate: A = 0.5 

8 32.818404 33.055088 33.054339 33.054359 33.054359 33.054359 

2. SS-C-SS-C Plate: A = 1.0 

8 89.025162 90.500521 90.508339 90.508329 90.508329 90.508329 

3. SS-C-SS-SS Plate: A = 2.0 

11 300.62062 307.33162 307.38560 307.38650 307.38651 307.38651 

4. SS-SS-SS-F Plate: A = 0.5 

8 30.144783 30.161505 30.166019 30.165950 30.165949 30.165949 

5. SS-C-SS-F Plate: A = 1.0 

6 72.123917 71.864308 71.862195 71.861323 71.861308 71.861308 

6. SS-F-SS-F Plate: A = 2.0 

8 146.50125 146.41820 146.33942 146.33630 146.33625 146.33625 

Plates are designated by edge conditions in the order x = 0, y = 0, x = a, and y = b. m = 2, n = 3 (a = 1.0, v = 0.3, hofb = 0.2). 
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Table 3. Semianalytical DQ Solution with Equally Spaced Sampling Points for Thick Isotropic Rectangular 

Plates 

SS-C-SS-F SS-F-SS-F 

Plate: A = 1.0 Plate: A = 2.0 

N D,23 

7 78.147257 146.25772 

9 71.776217 147.60372 

11 71.999825 146.86918 

13 71.910492 146.53280 

15 71.877602 146.39679 

17 71.865722 146.35226 

a = 1.0, v = 0.3, h)b = 0.2. 

havior. On the other hand, similar to what is ob­

served from Table 2, in all the cases studied, full 

convergence could always be achieved with N = 

19-21 unequally spaced sampling points in that 

for a larger number of sampling points, there was 

no further change in frequency values rounded to 

eight digits. 
Identical trends were found for uniformly 

thick symmetric cross-ply and tapered specially 

orthotropic laminates (of the materials for which 

detailed results are given later). Having assured 

the convergence for both isotropic and compos­

ite plates, the results, as reported in succeeding 

tables, were obtained with an N = 21 unequally 
spaced sampling point. It should be remarked, 

however, that for the fundamental (m = n = 1) 

and two or three higher modes, the same level of 

accuracy could be obtained with smaller sam­

pling points of N = 9 or 11. 

Subsequent to the convergence analysis was 

the issue of establishing the numerical accuracy 

of the proposed quadrature solution, and results 

to this effect are given in Tables 4 and 5. In Table 

4, the comparison is given with some of the 

results of Mizusawa (1993) who provided free vi­

bration characteristics data for the first eight 

modes of six tapered isotropic plates having two 

opposite edges simply supported. In his work, 

Mizusawa (1993) used the spline strip method 

and compared his results with those of Mikami 

and Yoshimura (1984). The shear correction was 

taken as 1T2/12. The results were provided to five 

significant digits. To keep the comparison mean­

ingful, the quadrature solution results in Table 4 

are given to six significant digits. It may be seen 

that the results of the present calculations, when 

rounded off to five significant digits, become 

identical to those of Mizusawa (1993). 

In Table 5, the comparison is given with the 

SS-C-SS-F SS-F-SS-F 

Plate: A = 1.0 Plate: A = 2.0 

N D,23 

18 71.859188 146.33538 

19 71.862351 146.33998 

20 71.860834 146.33606 

21 71.861529 146.33703 

22 71.861212 146.33621 

23 71.861351 146.33640 

vibration characteristics of symmetric five-layer 
0°/90%°/90%° cross-ply laminates reported by 

Craig and Dawe (1986). In these laminates, the 

thickness of each 0° layer was taken to be two­

thirds of each 90° layer and the elastic properties 
of the orthotropic material, typical of a high­

modulus-fiber composite, were chosen as: 

EdET = 30, VLT = 0.25, GLTiET = 0.6, 
GTT/ET = 0.5. 

Further, Craig and Dawe have defined the di­

mensionless frequency in the following form: 

where 

and is related to dimensionless frequency of the 
present work, Eq. (4), as: 

Craig and Dawe (1986) used two methods for the 

laminate vibration analysis: the Rayleigh-Ritz 

method and the finite-strip method. In Table 5, 

the results of both of these methods are included 

where the results of the finite strip method are 

those obtained by running the strips between the 

pair of simply supported edges; see Craig and 

Dawe (1986) for further details. Also the values 

of the shear correction factors were found, based 

on the procedure of Chow (1971) and Whitney 
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Table 4. Accuracy of Semianalytical DQ Solution: First Eight Free Vibration Frequencies of Thick Isotropic 

Rectangular Plates Compared with Published Data 

1. SS-SS-SS-SS Plate: A = 0.5, a = 0.25 

1 l a 1 2 1 3 2 1 1 4 2 2 2 3 1 5 

1O.1865b 14.5489 20.4970 24.4999 27.2432 27.2522 31.3669 34.3650 

1O.186b 14.549 20.497 24.500 27.243 27.252 31.367 34.365 

2. SS-C-SS-C Plate: A = 1.0, a = 0.5 

1 1 2 1 1 2 2 2 3 1 1 3 3 2 2 3 

25.2103 44.4435 48.3282 63.4006 71.4409 74.8192 85.9908 87.1065 

25.210 44.444 48.328 63.401 71.441 74.819 85.991 87.107 

3. SS-C-SS-SS Plate: A = 2.0, a = 0.75 

1 1 2 1 3 1 1 2 4 1 2 2 3 2 5 1 

69.6385 95.2485 134.573 172.110 183.003 190.163 219.231 236.880 

69.638 95.248 134.57 172.11 183.00 190.16 219.23 236.88 

4. SS-SS-SS-F Plate: A = 0.5, a = 0.5 

1 1 1 2 1 3 1 4 2 1 2 2 1 5 2 3 

9.65360 12.1572 16.9038 22.7456 24.7841 26.1564 28.6409 29.3136 

9.6536 12.157 16.904 22.746 24.784 26.157 28.641 29.314 

5. SS-C-SS-F Plate: A = 1.0, a = 0.75 

1 1 1 2 2 1 2 2 1 3 2 3 3 1 3 2 

14.9347 29.7546 41.1024 51.5365 53.9251 70.6787 71.0678 78.3017 

14.935 29.755 41.102 51.537 53.925 70.679 71.068 78.302 

6. SS-F-SS-F Plate: A = 2.0, a = 1.0 

1 1 1 2 2 1 2 2 3 1 1 3 3 2 2 3 

14.1787 35.2551 50.2759 76.3358 97.8341 116.422 125.560 146.336 

14.179 35.255 50.276 76.336 97.834 116.42 125.56 146.34 

(v = 0.3, h)b = 0.2.) 

"Two digit numbers indicate the m n values corresponding to each mode. 

bFirst line values are of DQ solution; second line values are of Mizusawa (1993). 

Table 5. Accuracy of semianalytical DQ Solution: Frequencies of Five Free Vibration Modes of Five-Layer 

Cross-Ply Square Laminates Compared with Published Data 

Solution 
Mode Pattern m n 

hofa Method 1 1 1 2 2 1 2 2 1 3 

1. SS-SS-SS-SS Plate 

0.10 DQ 3.6035 7.0928 8.8375 10.7977 11.7133 

EXACT 3.60353 7.09284 8.83751 10.79772 11.71327 

FSM 3.604 7.093 8.838 10.799 11.715 

RRM 3.604 7.093 8.838 10.799 11.714 

2. SS-C-SS-C Plate 

0.10 DQ 4.4889 7.9089 9.2127 11.3256 12.2011 

FSM 4.489 7.910 9.213 11.327 12.203 

RRM 4.489 7.911 9.213 11.328 12.202 

0.01 DQ 6.1836 14.3675 14.4989 19.8256 27.1312 

FSM 6.184 14.382 14.500 19.835 27.168 

RRM 6.184 14.369 14.500 19.828 27.134 

4. SS-SS-SS-SS Plate 

0.10 DQ 2.9067 4.3948 8.5411 9.2475 8.5081 

FSM 2.907 4.396 8.541 9.249 8.510 

RRM 2.908 4.402 8.542 9.255 8.515 

0.01 DQ 3.4076 5.1948 13.3883 14.2909 12.1139 

FSM 3.408 5.197 13.389 14.294 12.125 

RRM 3.408 5.197 13.390 14.294 12.117 

DQ, present quadrature solution; FSM, finite strip method SS-series solution; and RRM, Rayleigh-Ritz method solution. FSM 

and RRM results are of Craig and Dawe (1986). 
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(1973), to be k~ = 0.87323 and k3 = 0.59139; the 

same values are used in the present calculations 

for Table 5 and for the later results of cross-ply 

laminates. i . 

For the case of a laminate simply supported on 

all four edges, the mode functions may be taken 

as: 

W = W sin m7TX sin n7TY, 

'I' = <i> cos m7TX sin n7T Y, (26) 

'I' = q, sin m7TX cos n7T Y, 

which satisfy all the simply supported boundary 

conditions. In addition, if the laminate is of uni­

form thickness (h = ho, H = 1), then by substitu­
tion ofEq. (26) in Eqs. (1), (2), and (3), only may 

obtain in a usual manner a cubic equation in D2. 
The least root of this equation, corresponding to 

the dominant transverse mode, gives the desired 

frequency. In Table 5, these values, which are 

the exact frequencies of a simply supported lami­

nate calculated for the present comparisons, are 

also included. 
The dimensionless frequencies in Table 5 are 

from the definition of Craig and Dawe (1986). It 

may be observed that all the quadrature solution 

results compare very well with the results of 

Craig and Dawe for the three types of symmetric 

five-layer cross-ply laminates, namely, SS-SS­

SS-SS, SS-C-SS-C, and SS-SS-SS-F laminates. 

For the case of an SS-SS-SS-SS laminate, the 

quadrature solution results were found to match 

with exact solution results to at least six decimal 

places (in Table 5, values are given to a smaller 

number of decimal places). It may be remarked 

here that, as mentioned by Craig and Dawe, the 

Rayleigh-Ritz method results of a simply sup­

ported laminate ought to be exact. However, 

there is some discrepancy in the Rayleigh-Ritz 

method values of Craig and Dawe and the pres­

ently calculated exact values for '2 2' and '1 3' 

modes. In view of very close matching of the 

frequencies from the quadrature solution with 

the exact solution frequencies for the case of 

simply supported laminates, it may be antici­

pated that for other boundary conditions (at the 
two opposite y edges), the quadrature method 

yields results of higher accuracy than those of 

Craig and Dawe. 

The results of Tables 4 and 5 establish one of 

the objectives of the present study, that is, the 

proposed quadrature solution method is a highly 

accurate technique; a related issue of computa­

tional efficiency will be taken up later. 

The results of further investigations are now 

presented for uniform thickness symmetric 

cross-ply laminates in Table 6 and for tapered 

specially orthotropic laminates in Table 7. It 

should be noted that the dimensionless frequen­

cies given in these tables are from Eq. (4). The 

basic issue that is considered in these results is 

the quantitative comparison of the effects of the 

shear deformation and rotatory inertia on the 

free vibration frequencies. For this purpose free 

vibration frequencies were calculated by the in­

clusion of both shear deformation and rotatory 

inertia and then by neglecting rotatory inertia. 

The quantitative comparison of these two effects 

is then expressed as 

%diff = 100 x (Dmn)so - (fimn)sORI (27) 
(Dmn)SORI 

where, (Dmn)so and (Dmn)sORI denote, the shear 
deformation only and shear deformation with ro­

tatory inertia frequencies, respectively. Note 
that the comparison in Eq. (27) is with respect to 

(Dmn)SORI because within the confines of the thin 
and thick plate theories, the shear deformation 

with inertia frequencies are most exact. 

The results in Table 6 are given for nine 

modes; m, n = 1, 2, 3. Note that these are not 

meant to be the values in the particular order of 
increasing magnitudes of the frequencies. These 

results are for six combinations of the boundary 

conditions at the y edges and for one aspect ratio 

A = 1.0. Also included in Table 6 are the results 

of the thin plate theory, that is, the frequencies 

without shear deformation and rotatory inertia. 
These have been obtained using an earlier analy­

sis of the present investigators (Bert and Malik, 

1994). 

The results of Table 6 are for the 0°/90% °/90°/ 

0° symmetric laminate of Craig and Dawe (1986) 

that was used for accuracy analysis in Table 5. 

The results in these tables are for two values of 

the thickness parameter hoi a = 0.1 and 0.2. 

The dimensionless stiffnesses, needed for the 

calculation of frequency data of Table 7, are ob­

tained using the following values of the orthotro­

pic elastic constants (Pagano, 1974): 

EL = 30 X 106 psi, ET = 3 X 106 psi, 

VLT = 0.25, GLT = 1.5 X 106 psi, 

GTT = 0.6 X 106 psi. 

Following Whitney (1987), the shear correction 

factors for the orthotropic laminate are taken as 



Table 6. Comparison of Classical (CPT), Shear Deformation (SD) only, and Shear Deformation with Rotatory 

Inertia (SDRI) Solutions for Nine (m, n = 1,2,3) Free Vibration Frequencies of Five-Layer Cross-Ply Square 

Laminates 

ho/a = 0.1 ho/a = 0.2 

m n CPT SD SDRI %diff SD SDRI %diff 

1. SS-SS-SS-SS Laminate 

1 1 10.49076 9.01441 8.97271 0.465 6.76397 6.72153 0.631 

1 2 24.47284 17.76853 17.66102 0.609 11.53297 11.47727 0.485 

1 3 51.40165 29.32437 29.16581 0.544 17.05818 16.99902 0.348 

2 1 34.45915 22.11374 22.00523 0.493 13.44912 13.38681 0.465 

2 2 41.96304 27.05589 26.88610 0.631 16.36243 16.30256 0.367 

2 3 62.81008 35.78356 35.57863 0.576 20.61488 20.56131 0.260 

3 1 76.03202 36.78848 36.63974 0.406 20.41150 20.33985 0.352 

3 2 80.59362 40.02376 39.80668 0.545 22.42911 22.36387 0.293 

3 3 94.41684 46.36951 46.13707 0.504 25.68154 25.62984 0.202 

2. SS-C-SS-C Laminate 

1 1 15.47442 11.21195 11.17721 0.311 7.46229 7.43922 0.310 

1 2 36.23460 19.78893 19.69303 0.487 11.78776 11.72251 0.557 

1 3 69.08506 30.53144 30.38049 0.497 17.17941 17.11388 0.383 

2 1 36.37969 23.02042 22.93939 0.353 13.76561 13.74030 0.184 

2 2 49.93278 28.34633 28.20055 0.517 16.54137 16.47295 0.415 

2 3 78.13026 36.73205 36.53763 0.532 20.71379 20.65403 0.289 

3 1 76.98888 37.28994 37.18611 0.279 20.58731 20.56336 0.116 

3 2 85.18969 40.85706 40.68013 0.435 22.56012 22.48898 0.316 

3 3 105.4558 47.07750 46.86225 0.459 25.76199 25.70434 0.224 

3. SS-C-SS-SS Laminate 

1 1 12.48319 10.04074 10.00031 0.404 7.08658 7.05014 0.517 

1 2 29.96464 18.84519 18.74546 0.532 11.67625 11.61814 0.500 

1 3 59.88165 29.94210 29.78697 0.521 17.11417 17.04904 0.382 

2 1 35.17842 22.52221 22.42422 0.437 13.59516 13.54646 0.359 

2 2 45.49168 27.72944 27.57469 0.561 16.46060 16.39936 0.373 

2 3 70.02581 36.26703 36.06709 0.554 20.66151 20.60216 0.288 

3 1 76.40268 37.01507 36.88434 0.354 20.49395 20.44115 0.258 

3 2 82.58066 40.45308 40.26010 0.479 22.49913 22.43418 0.289 

3 3 99.48636 46.72933 46.50538 0.482 25.72031 25.66313 0.223 

4. SS-SS-SS-F Laminate 

1 1 8.50107 7.26170 7.23773 0.331 5.40807 5.37173 0.676 

1 2 12.96556 11.04067 10.94301 0.892 8.22030 8.10472 1.426 

1 3 30.33351 21.40161 21.18493 1.023 13.66263 13.50303 1.182 

2 1 33.58823 21.34529 21.26719 0.377 12.81146 12.75377 0.452 

2 2 35.85317 23.22663 23.02598 0.871 14.32471 14.16517 1.126 

2 3 46.45286 29.74191 29.44340 1.014 17.98280 17.81025 0.969 

3 1 75.40230 36.27492 36.17151 0.286 19.98676 19.92717 0.299 

3 2 77.08523 37.59186 37.31559 0.740 21.06124 20.88049 0.866 

3 3 83.75997 41.99945 41.62588 0.897 23.68471 23.50157 0.779 

5. SS-C-SS-F Laminate 

1 1 8.78726 7.52005 7.49383 0.345 5.62613 5.59553 0.547 

1 2 15.82988 12.17559 12.07389 0.842 8.40582 8.28328 1.479 

1 3 36.58569 22.37723 22.17315 0.920 13.81210 13.67234 1.022 

2 1 33.69610 21.43959 21.35946 0.375 12.88798 12.84335 0.347 

2 2 37.15355 23.75981 23.56481 0.827 14.43201 14.26617 1.162 

2 3 50.91804 30.40007 30.12122 0.926 18.08288 17.93099 0.847 

3 1 75.46748 36.33050 36.22633 0.287 20.02468 19.98074 0.220 

3 2 77.81567 37.90567 37.64215 0.700 21.13417 20.94964 0.881 

3 3 86.47633 42.43588 42.09089 0.820 23.75221 23.58861 0.694 

332 
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Table 6. (Continued) 

hola = 0.1 hola = 0.2 

m n CPT SD SDRI %diff SD SDRI %diff 

6. SS-F-SS-F Laminate 

1 1 8.36225 7.14542 7.12978 0.219 5.31183 5.29754 0.270 

1 2 8.90796 7.58940 7.53837 0.677 5.67410 5.56668 1.930 

1 3 16.39039 13.86514 13.68169 1.341 10.26315 10.08588 1.758 

2 1 33.45027 21.24755 21.19036 0.270 12.72168 12.70388 0.141 

2 2 34.00426 21.63226 21.48694 0.676 13.07466 12.88900 1.440 

2 3 37.93464 24.91153 24.59559 1.284 15.62732 15.40136 1.467 

3 1 75.26498 36.18405 36.11162 0.201 19.89884 19.88413 0.074 

3 2 75.81571 36.54763 36.34410 0.560 20.25112 20.04605 1.023 

3 3 78.63580 38.79070 38.36082 1.121 22.00639 21.74674 1.194 

Table 7. Comparison of Classical (CPT), Shear Deformation (SD) only, and Shear Deformation with Rotatory 

Inertia (SDRI) Solutions for Nine (m, n = 1,2,3) Free Vibration Frequencies of Specially Orthotropic Square 

Laminates (hoi a = 0.1) 

Uniform Thickness, (X = 0.0 Linearly Varying Thickness, (X = 0.5 

m n CPT SD SDRI %diff CPT SD SDRI %diff 

1. SS-SS-SS-SS Laminate 

1 1 11.46213 10.44713 10.38388 0.609 14.21632 12.40573 12.30506 0.818 

1 2 18.71325 16.56853 16.35865 1.283 23.28259 19.46681 19.15850 1.609 

1 3 33.23398 27.21053 26.71773 1.844 41.22467 31.08570 30.45832 2.060 

2 1 40.80697 30.44006 30.20851 0.767 49.04088 33.69347 33.40438 0.865 

2 2 45.84854 34.11515 33.67508 1.307 57.67455 38.10351 37.56124 1.444 

2 3 56.74379 41.34589 40.62477 1.775 70.90599 45.84041 45.00482 1.857 

3 1 90.09968 53.96555 53.59763 0.686 104.8637 57.32893 56.91440 0.728 

3 2 94.43670 56.61606 55.98151 1.133 118.0174 60.71355 60.03708 1.127 

3 3 103.1592 61.72825 60.79009 1.543 130.4246 66.13560 65.14101 1.527 

2. SS-C-SS-C Laminate 

1 1 13.31412 11.79968 11.73451 0.555 16.48777 13.85874 13.76385 0.689 

1 2 24.29512 19.57263 19.36591 1.067 30.11453 22.31616 22.04195 1.244 

1 3 42.44674 30.57575 30.12834 1.485 52.56532 33.90934 33.36550 1.630 

2 1 41.52746 30.87875 30.66047 0.712 50.59943 34.23029 33.97364 0.755 

2 2 48.82050 35.46590 35.07309 1.120 60.94076 39.33267 38.87756 1.171 

2 3 63.14191 43.31286 42.68022 1.482 78.53128 47.46986 46.76259 1.512 

3 1 90.52119 54.17505 53.83139 0.638 107.2114 57.64336 57.28829 0.620 

3 2 96.21140 57.30633 56.75210 0.977 120.3243 61.31743 60.75035 0.933 

3 3 107.3018 62.85289 62.04560 1.301 134.6444 67.06875 66.24190 1.248 

3. SS-C-SS-SS Laminate 

1 12.20512 11.02307 10.95713 0.602 15.29843 13.10593 13.00009 0.814 

1 2 21.26436 18.04254 17.83122 1.185 26.30711 20.89058 20.58202 1.499 

1 3 37.61563 28.92230 28.44974 1.661 46.42943 32.62189 32.02063 1.878 

2 1 41.11500 30.63549 30.40775 0.749 50.52808 34.10714 33.83782 0.796 

2 2 47.17973 34.76393 34.34435 1.222 59.59860 38.75201 38.22882 1.369 

2 3 59.72090 42.32816 41.65024 1.628 74.64873 46.72361 45.93101 1.726 

3 1 90.28892 54.06227 53.70351 0.668 107.2110 57.61258 57.24982 0.634 

3 2 95.24617 56.94851 56.35054 1.061 120.1846 61.06408 60.41812 1.069 

3 3 105.0844 62.28572 61.41221 1.422 133.1513 66.64896 65.71058 1.428 
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Table 7. (Continued) 

Uniform Thickness, ex = 0.0 Linearly Varying Thickness, ex = 0.5 

m n CPT SD SDRI %diff CPT SD SDRI %diff 

4. SS-SS-SS-F Laminate 

1 1 10.14732 9.25742 9.22159 0.389 13.46366 11.59213 11.53561 0.490 

1 2 13.35100 12.04930 11.91423 1.134 17.02222 14.42901 14.19950 1.616 

1 3 22.50955 19.57338 19.16805 2.115 28.04295 22.82142 22.17133 2.932 

2 1 39.74475 29.66236 29.48618 0.597 49.03453 33.56579 33.32081 0.735 

2 2 42.44787 31.60062 31.24021 1.154 56.14699 35.79822 35.40541 1.109 

2 3 49.33046 36.44576 35.74760 1.953 62.98033 40.73878 39.77650 2.419 

3 1 89.07874 53.36078 53.06749 0.553 104.8637 57.28341 56.89772 0.678 

3 2 91.64108 54.89126 54.35388 0.989 117.9785 59.36845 58.93081 0.743 

3 3 97.57935 58.44134 57.49900 1.639 128.1650 62.79764 61.68823 1.798 

5. SS-C-SS-F Laminate 

1 1 10.29045 9.37604 9.33811 0.406 13.89485 11.83837 11.78002 0.495 

1 2 14.59329 12.92350 12.77320 1.177 18.46903 15.29812 15.03819 1.728 

1 3 25.52595 21.16723 20.75021 2.010 31.58284 24.33216 23.66730 2.809 

2 1 39.80947 29.70544 29.52819 0.600 50.49967 33.88279 33.67236 0.625 

2 2 43.08072 31.95637 31.59330 1.149 57.11930 36.12672 35.70240 1.188 

2 3 51.15664 37.22608 36.54171 1.873 65.20886 41.47495 40.51721 2.364 

3 1 89.11944 53.38310 53.09013 0.552 107.2110 57.53727 57.21493 0.563 

3 2 92.04695 55.07857 54.55013 0.969 120.0765 59.54243 59.09216 0.762 

3 3 98.76855 58.86525 57.95632 1.568 129.7116 63.20684 62.11060 1.765 

6. SS-F-SS-F Laminate 

1 1 9.85561 9.00207 8.97610 

1 2 10.97089 9.95198 9.88164 

1 3 15.76809 14.06844 13.81359 

2 1 39.44848 29.45209 29.29937 

2 2 40.58928 30.25211 29.99717 

2 3 44.72430 33.15738 32.59684 

3 1 88.78037 53.18459 52.92410 

3 2 89.91682 53.86106 53.45789 

3 3 93.81413 56.16227 55.36611 

k~ = k~ = 516. Also, the results in Table 7 are for 
a uniform thickness (ex = 0.0) and tapered (ex = 

0.5) laminate; the thickness parameter in both 

cases is hoi a = 0.1. 

It may be seen that both shear deformation 
and rotatory inertia lower the CPT frequencies, 

and, thus, the shear with inertia frequencies are 

actually less than the shear only frequencies. 

However, in conformity to the known results, 

the effect of shear deformation clearly outweighs 

the effect of rotatory inertia. Consider, for exam­

pie, two extreme cases of m = n = 1 and m = n = 
3 in, say, SS-C-SS-C laminate with hoi a = 0.2 

(Table 6). The reduction in frequencies due to 

shear deformation only, relative to the CPT fre-

0.289 

0.712 

1.845 

0.521 

0.850 

1.720 

0.492 

0.754 

1.438 

11.50187 10.26708 10.21436 0.516 

14.37243 12.23503 12.13312 0.840 

19.78447 16.71872 16.30231 2.554 

43.36480 31.32266 31.07080 0.811 

52.20670 34.53303 34.24238 0.849 

58.10979 37.20051 36.49345 1.937 

95.31040 55.07612 54.66605 0.750 

110.4058 58.34068 57.89406 0.771 

122.2703 60.41269 59.61535 1.337 

quencies are 51.78% in ,0,11 and 75.57% in ,0,33. 

On the other hand, with the inclusion of rotatory 

inertia together with shear deformation, the rela­

tive reductions are changed only slightly to 

51.93% in ,0,11 and 75.63% in ,0,33. The relative 

effects are further exemplified by the %diff val­

ues in these results (Tables 6); these values sig­

nify the overestimate in using the shear deforma­

tion only frequencies with the respect to more 

exact shear with inertia frequencies. It should be 

interesting to note that these overestimates are 

small and are of such magnitudes that, possibly, 

the shear deformation values can be used with 

some appropriate correction or safety factor 

without the fear of design conservatism. Also, in 



general terms, one may talk of the effect of shear 

deformation only, rather than the effect of both 

shear deformation and rotatory inertia. 

The relative reduction in CPT frequency due 

to inclusion of shear deformation (or the overes­

timation by the CPT due to the exclusion of this 

effect) is indicative of the significance of the ef­

fect of shear deformation. The effect of shear 

deformation increases with an increase in thick­

ness. However, more significant is the effect of 

the number of half-waves. The larger the number 
of half-waves (i.e., higher mode), the more effect 

of shear deformation. This may be seen by taking 

once again the example of an SS-C-SS-C lami­

nate. The reductions in nIl values relative to the 

CPT value are 27.55% and 51.78% for ho/a equal 

to 0.1 and 0.2, respectively. On the other hand, 

the relative reductions in n33 values are 55.36% 

for ho/a = 0.1 and 75.75% for hola = 0.2. 

The CPT overestimates free vibration fre­

quencies due to neglect of shear deformation in 

both cross-ply (Table 6) and specially orthotropic 

(Table 7) laminates. However, the overestimates 

in specially orthotropic plates are not as large as 

in the cross-ply laminates. This implies that the 

shear deformation effects in the orthotropic lami­
nates are not as large as in the cross-ply lami­

nates. This is simply verified by the values of 

shear stiffness coefficients that are ...144 = ...155 = 

0.018295 for cross-ply laminate, and ...144 = 

0.019875 and ...155 = 0.049687 for the orthotropic 
laminate. These values indicate that for the cho­
sen materials, the specially orthotropic laminates 

are stiffer in transverse shear than the cross-ply 

laminates. In fact, if the material of the orthotro­

pic laminates is taken to be the same as that of 

the cross-ply laminates, then the shear stiffness 

coefficients would be ...144 = 0.016632 and ...155 = 

0.019958 and it has been checked that, in that 

case, the shear deformation effects are much 

greater than those in Table 7 for the chosen mate­

rial. 

The computer programs for the present work 

were developed and executed on DEC stations 

5000/25 (operating system: Ultrix 4.2a) at the 

University of Oklahoma. With the inclusion of 

both shear deformation and rotatory inertia, the 

average CPU time for obtaining 25 different 

mode frequencies (nmn ; m, n = 1,2, ... ,5) of a 

given laminate with N = 21 was found to be 

2.54 s. This CPU time is of course quite small 

and shows the high computational efficiency of 

the proposed method. However, with the exclu­

sion of rotatory inertia, the CPU time required 

Free Vibration of Symmetric Cross-Ply Laminates 335 

for the evaluation of 25 shear deformation only 

frequencies (nmn ; m, n = 1, 2, . . . , 5) is re­

duced to only 0.52 s. In view of the earlier dis­

cussion on the shear deformation only frequen­

cies, it is obvious that neglect of rotatory inertia 

can be used quite advantageously in terms of sav­

ing on computer time for evaluation of vibration 

characteristics that may be good enough for de­

sign purposes. In fact, if one has to determine 

only the fundamental and a few higher mode fre­

quencies, calculations can be much faster be­
cause for the same level of accuracy, fewer sam­

pling points (N = 9 or 11) are needed. 

CONCLUSION 

The analysis of this article was applicable to iso­

tropic plates as well as the specially orthotropic 

and symmetric cross-poly laminates. The plate 

configurations considered in this work were of 

the type in which two opposite edges were sim­

ply supported and the other two edges could 

have general boundary conditions along with 

thickness variation between those two edges. 
This permitted reduction of the governing partial 

differential equations to ordinary differential 

equations. The solution of the reduced equations 
was sought by the differential quadrature 

method. This was in fact a semianalytical ap­
proach for the quadrature solution. 

The present study was undertaken with some 

definitive objectives. It is believed that this is the 

very first application of the differential quadra­

ture method to the isotropic and laminated com­

posite plate vibration problem that includes the 

effects of shear deformation and rotatory inertia. 

The accuracy of the proposed method was 

checked extensively by comparison of its calcu­

lations with the available results and the method 

was found to yield results of very high numerical 
accuracy. 

The free vibration frequencies of several 

modes of the symmetric cross-ply and specially 

orthotropic laminates were determined in two 

ways: one including both shear deformation and 

rotatory inertia and the other by neglecting rota­

tory inertia and including shear deformation 

only. The vibration frequencies so obtained pre­

sented a clear quantitative comparison of the rel­

ative contributions of shear and inertia as well as 

the effect of the two on the frequencies of classi­

cal plate theory. The effect of rotatory inertia is 

considerably smaller in comparison to that of 
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shear deformation. The shear deformation fre­

quencies are small overestimates on the frequen­

cies from the more exact case of shear deforma­
tion with rotatory inertia; however, these 

overestimated values can possibly be used for 

design purposes. Needless to say, the frequen­

cies of classical plate theory may be very high 

overestimates of the frequencies based on shear 

deformation only or shear deformation with rota­

tory inertia and as such, outside the confines of 

CLP, the use of CLP frequencies ought to be 

unacceptable. 

The proposed solution method is found to be 
computationally efficient as shown by small CPU 

times. The computational efficiency can be 

greatly enhanced by neglect of rotatory inertia. 

The high numerical accuracy of the proposed so­

lution method coupled with computational effi­

ciency indicate that it may be used for develop­

ment of computer codes for use in real time 
analysis and design. 

The article also included the results on tapered 

specially orthotropic thick laminates that pro­

vided new additional data in the plates literature. 

Although, in this study the matter of the nu­

merical accuracy of the quadrature solution for 

solution of the title problem was considered in 

detail, no attempt was made to evaluate the com­

putational efficiency of the method in relation to 

the other numerical methods. The evaluation of 

the numerical accuracy of the method has been 

done by comparisons mainly with the available 
semianalytical finite solutions and the latter part 

was not the goal of the present work. The supe­

rior computational efficiency of DQM over the 

numerical solution methods such as the finite dif­

ference and finite element methods and the ap­

proximate methods is indeed well established 

and has been dealt with in detail in other works; 
see for example, Malik and Bert (1994) and Malik 

and Civan (1995). 
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