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Abstract: Attempts to cultivate sugar beet (Beta vulgaris spp. vulgaris) in the sub-tropical saline
soils are ongoing because of its excellent tolerance to salinity. However, the intrinsic adaptive
physiology has not been discovered yet in the sub-tropical climatic conditions. In this study,
we investigated morpho-physiological attributes, biochemical responses, and yield of sugar beet
under a gradient of salinity in the soil–pot culture system to evaluate its adaptive mechanisms.
Results exhibited that low and high salinity displayed a differential impact on growth, photosynthesis,
and yield. Low to moderate salt stress (75 and 100 mM NaCl) showed no inhibition on growth and
photosynthetic attributes. Accordingly, low salinity displayed simulative effect on chlorophyll and
antioxidant enzymes activity which contributed to maintaining a balanced H2O2 accumulation and
lipid peroxidation. Furthermore, relative water and proline content showed no alteration in low
salinity. These factors contributed to improving the yield (tuber weight). On the contrary, 250 mM
salinity showed a mostly inhibitory role on growth, photosynthesis, and yield. Collectively, our
findings provide insights into the mild–moderate salt adaptation strategy in the soil culture test
attributed to increased water content, elevation of photosynthetic pigment, better photosynthesis,
and better management of oxidative stress. Therefore, cultivation of sugar beet in moderately
saline-affected soils will ensure efficient utilization of lands.
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1. Introduction

Among various abiotic stressors, the phenomenon of global soil salinization is intensifying daily
due to the ongoing climate change-induced sea-level rise, extensive irrigation practices with saline
water, and large-scale soil erosion [1,2]. It has attracted significant attention due to its deleterious
effects on growth, biomass accumulation, and productivity of crop plants [3]. Some estimations show
that the global population will touch 9600 million by 2050 [4]. Therefore, about a 70% increase in food
production is required within 30 years. But, the salinization problem contributes to a loss of 12 billion
US dollar per year [5–7], which ultimately undermines the goal of meeting global food security [8].
Salinity stress provokes a wide array of responses in plants via affecting its morpho-physiological,
biochemical, and molecular processes. It causes ionic imbalance, such as excessive Na+ and Cl− ions
accumulation which causes inhibition of the metabolic enzymes [9–16].

Having an inhibitory role, salinity generates osmotic stress which results in decreased leaf
turgor by hampering water movement across the plant and decrease stomatal conductance (Gs) by
stomata closure [17–19]. Plants accumulate compatible solutes or osmolytes, such as proline, in the
cytosol when exposed to osmotic stress to cope with the decreased water potential. It is well-defined
that the accumulation of proline enhances with salt stress. Moreover, a higher increase in proline
accumulation is a marker of osmotic stress in plants, and it was previously shown that the salt-tolerant
crop species accumulate a lower amount of proline than that of sensitive species [20–22]. However,
the stomatal closure restricts transpiration rate (E) and CO2 availability in the leaves. As a result, the
intercellular CO2 concentration (Ci) declines and causes altered leaf biochemistry which negatively
affects the net CO2 assimilation rate (A) under long-term stress conditions. Moreover, under different
saline environments, Gs and A decrease concurrently which triggers the change in intrinsic water
use efficiency (WUE) of plants [13,17,18]. Furthermore, under lower CO2 concentrations in leaves,
ribulose-1,5-bisphosphate carboxylase/oxygenase favored O2 as a substrate over CO2 that ultimately
leads to the formation of reactive oxygen species (ROS), such as superoxide radical (O2

−), singlet
oxygen (1O2), and hydrogen peroxide (H2O2) [23,24]. It has also been reported that a minimal amount
of ROS (H2O2 and/or hydroxyl radical) acts as a signaling molecule [25]. However, an excessive amount
of ROS displays deleterious effects on plant growth and productivity by causing the photoinhibition
of PSII (photosystem II), degrading the photosynthetic pigments, oxidizing lipid molecules, and
inhibiting gene expression, etc. [19,24,26–29]. To scavenge the deleterious ROS, plants evolved with
efficient detoxification mechanisms, such as non-enzymatic and enzymatic antioxidants, throughout
evolution. The non-enzymatic antioxidants are tocopherols, ascorbate, phenolics, and glutathione,
and enzymatic antioxidants are superoxide dismutase (SOD), peroxidase (POX), catalase (CAT), as
well as the enzymes of the ascorbate–glutathione cycles that detoxify ROS [30–34]. Elevation of these
enzymatic and non-enzymatic antioxidants has been reported in many salt-tolerant plant species, such
as Jatropha curcas [35], Solanum lycopersicum [36], and Calendula officinalis [37] suggestive of a potential
function of antioxidants in alleviating salinity-induced oxidative damage in plant cells.

Sugar beet (Beta vulgaris spp. vulgaris), a member of Chenopodiaceae, is considered as the second
most important sugar crop globally after sugar cane (Saccharum officinarum L.) having a growth period
of about half of sugarcane [38,39]. In addition, the sugar content of the sugar beet is relatively higher
than sugar cane. Furthermore, sugar beet requires less water for its cultivation process than sugar
cane [39]. For the production of one kilogram of sugar from sugarcane, about 4.0 m3 water is required,
whereas, for the production of the same quantity of sugar from sugar beet, about 1.4 m3 water is
required [38]. Sugar beet is a deep rooting crop and shows relatively higher tolerance to water stress
caused by either soil moisture depletion or soil salinity [38,40]. Over time, table beet, fodder beet,
red beet, and sugar beet have been evolved from sea beet which can be cultivated in a wide range of
climatic conditions including saline prone regions [41,42]. Estimations show that the yield components
of sugar beet are enhanced by irrigation with various concentrations of saline water [43,44]. However,
Ghoulam et al. [45], Dadkhah [46], and Wang et al. [47] described the unfavorable effects of salt stress
on growth and yield of sugar beet.
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Bangladesh is encompassed by a colossal coastal and offshore area which covers 2.85 million
hectares. From that massive area, a 0.83 million hectare region is severely devastated by salinity which
is 30% of the entire cultivable land of Bangladesh. Estimation shows that the extent of salt-affected
areas has increased by nearly 26.0% in the coastline of Bangladesh in the last 35 years [8,48]. Moreover,
the soil salinity in the dry season is three times higher than that of the rainy season, and it is possible to
minimize the salinity level of the surface soil by intensifying crop production during this time [49].
Therefore, as a moderate salt-tolerant crop together with its short life cycle compared with sugarcane,
sugar beet can be considered as one of the most promising crops to cultivate in Bangladesh, especially
in the coastal belt where salt-affected land is increasing daily. Taking into account all these facts, the
present experiment was designed to investigate the possibility of sugar beet var. HI-0473 cultivation
in saline soils. Therefore, the objectives of this study are (i) to investigate the response of growth,
yield, and photosynthetic attributes of sugar beet exposed to different levels of soil salinity, and (ii)
to measure the extent of ROS accumulation and the activities of ROS scavenging antioxidants under
salinity stress.

2. Materials and Methods

2.1. Plant Growth, Environment, and Treatments

This experiment was conducted during the 2017 to 2018 growing season in the net house of the
Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University which is
located in a sub-tropical climate with mild winter and hot summer. The sugar beet (var. HI-0473) seeds
were collected from the Bangladesh Sugar Crop Research Institute, Pabna, Bangladesh. The disinfected
seeds were planted in earthen pots having 23.5 cm height and 25.5 cm diameter (upper) and filled
with 8.0 kg soil. The texture of the soil was silty loam including the following characteristics: pH,
6.12; electrical conductivity (EC), 0.25 dSm−1; cation exchange capacity, 8.2%; exchangeable Na+, 0.38
meq 100 g−1 soil; exchangeable K+, 0.15 cmol kg−1 soil; total nitrogen, 0.12%, and organic matter,
1.19%. The soil was formulated by mixing the following manures and fertilizers to each pot: 366 mg
urea, 1.38 g triple superphosphate, 836 mg potassium nitrate, 363 mg gypsum, and 400 g cow dung.
To maintain sufficient nitrogen supply during the lifespan, urea was applied in three installments at
30-day intervals.

At the 60th day after planting, sugar beet plants were treated with 0 mM NaCl (control, C), 75 mM
NaCl (S75), 100 mM NaCl (S100), 150 mM NaCl (S150), and 250 mM NaCl (S250) stress by adding
0 g, 57.0 g, 76.0 g, 114.0 g, and 190.0 g NaCl, respectively [50]. The desired amounts of NaCl were
dissolved in 3.0 L water and applied in the corresponding pot three times at 3-day intervals (each time
1000 mL solution). In the case of 0 mM NaCl treatment, the same amount of tap water was applied.
The pot was a closed system, and to maintain the salinity stress, no leaching of water from the pots was
ensured. From the 75th day, plants were irrigated with 750 mL distilled water at 4 to 5-day intervals.
The experiment was continued until the 155th day, whereas at the 120th day, leaves samples were
collected for different biochemical analyses. This research was executed in a randomized complete
block design with three replications, and each replicate represented a pot with 4 sugar beet plants.

2.2. Measurement of Growth Performances and Yield

At the 155th day, sugar beet tubers were harvested after removing the soil from the base of
the plants and the shoot length (SL), shoot fresh weight (SFW), and tuber fresh weight (TFW) were
determined according to Afrin et al. [51]. The shoots were packed in a paper envelope and kept in the
oven for 7 days at 70 ◦C. When shoots were desiccated fully, shoot dry weight (SDW) was measured.
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2.3. Measurement of Plant Photosynthetic Capacity

A portable photosynthetic machine (LCi-SD System, ADC Bioscientific Ltd., Hoddesdon, UK)
was used to estimate the CO2 assimilation rate (A), stomatal conductance (Gs), transpiration rate (E),
and intercellular CO2 concentration (Ci) in the fully expanded 4th and 5th leaf from the top of each
sugar beet plant. The following conditions were maintained: CO2 concentration, 400 µmol mol−1;
leaf temperature, 28 ◦C; photosynthetic photon flux, 400 µmol m−2 s−1; flow rate, 200 mL min−1; the
area inside the leaf chamber, 5.8 mm3 and time, 10.00 AM to 12.00 AM. These photosynthetic and gas
exchange associated parameters were evaluated on three different plants per replicate at the 119th day.

2.4. Calculation of Instantaneous Carboxylation Efficiency and Water Use Efficiency (WUE)

Instantaneous carboxylation efficiency (A/Ci) and instantaneous WUE (A/E) were calculated as
the ratio between A and Ci, and the ratio between A and E, respectively [52].

2.5. Determination of Total Chlorophyll Content, Relative Water Content, and Proline Content

Total chlorophyll (Chl) content of different salt-treated sugar beet leaves was extracted from
0.05 g of the 4th fresh leaves from the top at 60 days after salt treatment following the method of
Afrin et al. [51] and determined following the protocol established by Lichtenthaler [53].

The relative water content (RWC) of sugar beet leaves was determined on the 120th day according
to Tahjib-Ul-Arif et al. [54], and the proline content was determined according to the method described
by Zhang and Huang [55].

2.6. Determination of H2O2, Malondialdehyde and Ascorbate Content

The H2O2 content of 120-day old sugar beet plant leaves was determined following the method of
Velikova et al. [56], and Malondialdehyde (MDA) content was determined according to the method of
Zhang and Huang [55].

The ascorbate content of sugar beet plants was determined by homogenizing leaf samples, and
2.0 mL of the leaf homogenate was mixed with 1.0 mL 10% trichloroacetic acid and centrifuged at
5500× g for 10 min at 4 ◦C [57]. Then 0.2 mL of supernatant was taken in a test tube and after 10 times
dilution with ddH2O, 0.2 mL folin chiocaltu reagent (10 times diluted) was added to it. After vigorous
shaking on a vortex, the absorption was taken at 760 nm in a UV-VIS spectrophotometer (Shimadzu,
UV-1201, Kyoto, Japan). Ascorbate content was calculated by preparing a standard curve.

2.7. Determination of Enzymatic Antioxidant Activity

The activities of CAT, ascorbate peroxidase (APX), and POX antioxidant enzymes of 120-day old
plants were determined using 0.05 g fresh 4th leaves. The leaf samples were homogenized in a cold
mortar-pestle with 1.0 mL of 50 mM potassium phosphate buffer (pH 8.0) and immediately centrifuged
at 11500× g for 10 min at 4 ◦C temperature. The supernatant was used for enzyme assay using a
UV-VIS spectrophotometer (Shimadzu, UV-1201, Kyoto, Japan). The CAT (EC: 1.11.1.6) activity was
determined from the decrease in absorbance per minute at 240 nm wavelength due to the consumption
of H2O2 [58]. The APX (EC: 1.11.1.11) and POX (EC: 1.11.1.7) activity were assessed following the
method of Nakano and Asada [59].

2.8. Statistical Analysis

The one-way analysis of variance was performed using Minitab 17.0. Different letters indicate the
statistically significant differences between treatments at p < 0.05, according to the Tukey’s honestly
significant difference tests. Data provided in the tables and figures are means ± standard errors of
three individual replications for each treatment. The heatmap and clustering analysis were prepared
from normalized mean values using the MetaboAnalyst 4.0 (www.metaboanalyst.ca) [60]. Hierarchical

www.metaboanalyst.ca
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cluster analysis was conducted using the Euclidean distance algorithm. The principal component
analysis (PCA) was carried out using the OriginLab 10.0 software (OriginLab, Northampton, MA, USA).

3. Results

3.1. Effects of the Concentrations of Saline Water on Growth and Yield of Sugar Beet

The impact of salt stress on the growth and yield of sugar beet was assessed by studying some
growth-related traits, such as SL, SFW, SDW, and TFW, after imposition of saline water for a period of
95 days (Table 1). The SL of the sugar beet plants markedly reduced by 39.0% under 250 mM salt stress
but displayed no significant variation under 75 mM, 100 mM, and 150 mM NaCl when compared with
that of control plants. The SFW was elevated by 50.54%, 47.40%, and 11.42% under 75 mM, 100 mM,
and 150 mM salt stress, respectively, whereas it declined by 21.98% at 250 mM NaCl stress relative
to that of control plants. Consequently, SDW of sugar beet was increased by 40.15%, 21.21%, and
18.94% under 75 mM, 100 mM, and 150 mM salt stress, respectively, whereas it displayed no significant
decrease under 250 mM salt stress when compared with control plants (Table 1). Most importantly,
TFW (yield, the tuber production) of sugar beet plant remained unchanged under 100 mM and 150 mM
salt stress, whereas it reduced significantly by 13.77% at 250 mM saltwater relative to that of non-saline
condition. It should be pointed out that TFW markedly increased by 27.97% under 75 mM salt stress
over the control plants (Table 1).

Table 1. Effects of soil salinity on shoot length (SL), tuber fresh weight (TFW), shoot fresh weight (SFW),
and shoot dry weight (SDW) of sugar beet plant after treatments with various salt concentrations for a
period of 95 days.

Treatments
Shoot Length

(cm)
Tuber Fresh Weight

(g plant−1)
Shoot Fresh Weight

(g plant−1)
Shoot Dry Weight

(g plant−1)

0 mM NaCl 28.83 ± 0.58a 38.50 ± 0.58b 46.22 ± 0.62c 5.28 ± 0.17c

75 mM NaCl 28.73 ± 0.56a 49.27 ± 1.19a 69.58 ± 0.54a 7.40 ± 0.23a

100 mM NaCl 28.61 ± 0.78a 36.08 ± 0.58bc 68.13 ±0.69a 6.40 ± 0.23b

150 mM NaCl 27.33 ± 1.16a 37.18 ± 1.17bc 51.50 ±0.86b 6.28 ± 0.17b

250 mM NaCl 17.33 ± 0.33b 33.20 ± 1.17c 36.06 ± 1.15d 4.70 ± 0.06c

All values in the table are averages of three replicates (n = 3) ± standard errors. Different alphabetic letters within
the same column denote statistically significant differences according to Tukey’s honestly significant differences test
(p < 0.05)

3.2. Effects of the Concentrations of Saline Water on RWC and Proline Content

To figure out the water content and osmolyte related mechanisms in sugar beet plant, we
measured RWC and proline content under several concentrations of saline water (Figure 1). Leaf RWC
of salt-stressed sugar beet plants displayed no significant change at 75 mM and 100 mM saline water
treatments whereas it significantly dropped by 6.11% and 24.53% at 150 mM and 250 mM saline water
treatments, respectively. Unlike RWC, proline content exhibited a distinct increase of 161.15% under
250 mM NaCl stress.
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Figure 1. Effects of soil salinity on leaf proline content (A), and relative water content (RWC) (B) in
sugar beet after exposed to various salt concentrations for 95 days. Each bar represents the average of
three independent replicates (n = 3), and the error bar denotes standard errors. Statistically significant
differences among different treatments are designated by various alphabetic letters based on Tukey’s
honestly significant differences test (p < 0.05). Control (C), 0 mM NaCl; S75, 75 mM NaCl; S100, 100
mM NaCl; S150, 150 mM NaCl; S250, 250 mM NaCl.

3.3. Effects of the Concentrations of Saline Water on Photosynthetic Attributes of Sugar Beet Plants

The effects of several concentrations of saline water imposition on photosynthesis and gas exchange
related attributes of sugar beet plants were evaluated by measuring net CO2 assimilation rate (A),
transpiration rate (E), stomatal conductance (Gs), intercellular CO2 concentration (Ci), instantaneous
carboxylation efficiency (A/Ci), and water use efficiency (WUE) (Figure 2). Net CO2 assimilation rate
(A) significantly increased by 25.49% under 75 mM saline water treatment but decreased notably by
25.33% at 250 mM saline water treatment and displayed no significant change under 100 mM and
150 mM saline water treatments (Figure 2A). Transpiration rate (E) exhibited no significant change
when subjected to 75 mM and 100 mM saline water but decreased gradually by 34.91% and 44.09%
under 150 mM and 250 mM salt stress conditions, respectively (Figure 2B). Similarly, Gs and Ci declined
by 50.0% and 30.09%, respectively, at 250 mM salt stress, whereas it showed no significant changes
under 75 mM, 100 mM, and 150 mM salt stress in comparison with that of control sugar beet plant
(Figure 2C,D).

A/Ci was increased by 29.75% at 75mM saline water treatment while WUE was increased by
38.50%, 110.32%, and 63.01% subjected to 75 mM, 100 mM, and 150 mM saline water treatments,
respectively (Figure 2E,F).
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Figure 2. Effects of soil salinity on net CO2 assimilation rate (A) (A); transpiration rate (E) (B); stomatal
conductance (Gs) (C); intracellular CO2 concentration (Ci) (D); carboxylation efficiency (A/Ci) (E); and
water use efficiency (WUE) (F) in sugar beet after exposed to various salt concentrations for 95 days.
Each bar represents the average of three independent replicates (n = 3), and the error bar denotes
standard errors. Statistically significant differences among different treatments are designated by
various alphabetic letters based on Tukey’s honestly significant differences test (p < 0.05). Control (C), 0
mM NaCl; S75, 75 mM NaCl; S100, 100 mM NaCl; S150, 150 mM NaCl; S250, 250 mM NaCl.



Agriculture 2019, 9, 223 8 of 19

3.4. Alteration of Leaf Total Chl Content, H2O2, and MDA Content by Salt Stress

The impacts of long-term salinity on photosynthetic pigments, cell membrane integrity, and
salinity-induced oxidative stress was evaluated by measuring the levels of total Chl content, H2O2

content, and MDA content in the leaves of sugar beet (Figure 3). The total Chl content exhibited a
significant elevation by 37.61% and 24.79% at 75 mM and 100 mM saline water treatments, respectively,
whereas it markedly declined by 12.05% and 30.77% under 150 mM and 250 mM saline water treatment,
respectively (Figure 3A). The content of H2O2 also remarkably increased by 30.86%, 39.33%, and
82.27% following the treatments of 100 mM, 150 mM, and 250 mM saline water, respectively, whereas
it displayed non-significant increase under 75 mM salt stress (Figure 3B). Similarly, the MDA content
showed a significant elevation by 41.12%, 62.19%, and 106.80% at 100 mM, 150 mM, and 250 mM saline
water treatment, respectively, over water control. In contrast, under 75 mM saline water treatment, a
non-significant change of MDA was observed compared to control sugar beet plants (Figure 3C).

 

 

 

 

 

 

 

 

 

Figure 3. Effects of soil salinity on total chlorophyll (Chl) content (A), H O  content (B), and MDA 

C 

Figure 3. Effects of soil salinity on total chlorophyll (Chl) content (A), H2O2 content (B), and MDA
(malondialdehyde) content (C) in sugar beet after exposed to various salt concentrations for 95 days.
Each bar represents the average of three independent replicates (n = 3), and the error bar denotes
standard errors. Statistically significant differences among different treatments are designated by
various alphabetic letters based on Tukey’s honestly significant differences test (p < 0.05). Control (C),
0 mM NaCl; S75, 75 mM NaCl; S100, 100 mM NaCl; S150, 150 mM NaCl; S250, 250 mM NaCl.



Agriculture 2019, 9, 223 9 of 19

3.5. Differential Effect of Salt Concentrations on Enzymatic and Non-Enzymatic Antioxidants

We measured the activity of enzymatic antioxidants (CAT, APX, and POX) and the content of
non-enzymatic antioxidant (ascorbate) to understand the adaptive salt mechanisms of sugar beet
plant (Figure 4). Ascorbate content significantly decreased by 23.44%, 28.74%, 25.45%, and 22.83%
under 75 mM, 100 mM, 150 mM, and 250 mM salt stress, respectively (Figure 4A). However, the CAT
activity was significantly increased by 200.0%, 213.21%, 220.75%, and 245.28% at 75 mM, 100 mM,
150 mM, and 250 mM saline water treatments, respectively (Figure 4B). A similar trend of an increase
was also displayed in POX by 96.89%, 128.68%, 136.43% and 147.29% in response to 75 mM, 100 mM,
150 mM, and 250 mM saline water treatments, respectively (Figure 4C). Unlike the trend of CAT and
POX, the activity of APX was enhanced by 46.54% and 34.15% at 75 mM and 100 mM saline water
treatment, respectively, while showing no significant change at 150 mM and 250 mM saline treatments,
respectively (Figure 4D).

Figure 4. Effects of soil salinity on ascorbate content (A), catalase (CAT) activity (B), peroxidase (POX)
activity (C) and ascorbate peroxidase (APX) activity (D) in sugar beet after exposure to various salt
concentrations for 95 days. Each bar represents the average of three independent replicates (n = 3), and
the error bar denotes standard errors. Statistically significant differences among different treatments
are designated by different alphabetic letters based on Tukey’s honestly significant differences test
(p < 0.05). Control (C), 0 mM NaCl; S75, 75 mM NaCl; S100, 100 mM NaCl; S150, 150 mM NaCl; S250,
250 mM NaCl.
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3.6. Hierarchical Clustering, Heatmap, and PCA Analysis Unveiled the Connections between Variables
and Treatments

Consequently, the values of all the morpho-physiological and biochemical parameters of different
salt concentrations were employed to construct the heatmap, hierarchical clustering as well as PCA.
Hierarchical clustering grouped all the variables into two clusters (cluster-A and cluster-B) (Figure 5A).
Hierarchical clustering and heatmap revealed that cluster-A was characterized by some biochemical
parameters, such as CAT, POX, Pro (proline), H2O2, and MDA. All the variables of cluster-A showed
minimal values at the control condition, whereas the increase of salinity triggered elevated trends.
On the other hand, cluster-B represents all morphological (SL, RWC, SFW, SDW, and TFW) and
photosynthetic attributes (A, E, Gs, Ci, A/Ci, and WUE) and some biochemical parameters including
Chl, ascorbate, and APX. Compared to non-saline treatment, all the variables of cluster-A showed a
rising trend when treated with 75 mM and 100 mM saline water, but exhibited a decreasing trend
while treated with 150 mM and 250 mM saline water. Interestingly, the maximum values of almost
all parameters (with the exception of ascorbate content) of cluster-B were observed in 75 mM saline
water (S75) treatment and lowest at 250 mM saline water (S250) treatment. The PCA analysis was
subsequently undertaken to uncover the connection of the different parameters with different treatment
groups (Figure 5B). The two elements of PCA (PC1 and PC2) together described 91.33% of data
variability. The results demonstrated an intimate association of cluster-A variables with 75 mM saline
water (S75) and 100 mM saline water (S100) treatments, whereas cluster-B variables were interlinked
with treatments 150 mM saline water (S150) and 250 mM saline water (S250). There was no close
interrelation between the non-saline treatment and other parameters.

Figure 5. Cont.
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Figure 5. Hierarchical clustering and heatmap analysis (A), and principal component analysis (PCA) (B)
to reveal the treatment-variable associations of sugar beet grown under different salt concentrations for a
period of 95 days. At the variable level, two separate clusters (A and B) were recognized. In the heatmap,
the color scale shows the intensity of the standardized mean values of different parameters. In PCA, the
lines starting from the central point of the biplots display negative or positive associations of different
variables, and their proximity specifies the degree of correlation with a specific treatment. Control (C),
0 mM NaCl; S75, 75 mM NaCl; S100, 100 mM NaCl; S150, 150 mM NaCl; S250, 250 mM NaCl. SL, shoot
length; SFW, shoot fresh weight; SDW, shoot dry weight; TFW, tuber fresh weight; RWC, relative water
content; Pro, proline content; Chl, total chlorophyll content; H2O2, hydrogen peroxide content; MDA,
malondialdehyde content; CAT, catalase activity; POX, peroxidase activity; APX, ascorbate peroxidase;
ASC, ascorbate content; A, net CO2 assimilation rate; Gs, stomatal conductance; E, transpiration rate;
Ci, intercellular CO2 concentration; A/Ci, carboxylation efficiency; WUE, water use efficiency.

4. Discussion

In the present study, we have examined the response of sugar beet var. HI-0473 to different
concentrations of long-term soil salinity stress. In this connection, we evaluated plant growth, yield,
i.e., tuber production, photosynthesis, gas exchange attributes, ROS accumulation, and detoxification
mechanisms. Altogether, our findings suggest the moderate salt-tolerance nature of sugar beet var.

HI-0473.
Growth inhibition of most of the plant species under salinity is a common physiological response.

Some glycophyte and almost all halophyte plants usually exhibit stimulated rather than restrained
growth and biomass production under lower levels of salinity treatments. Yet higher salt concentration
inhibits the growth and development of these plants [9,20,61–64]. Thus, a comprehensive evaluation
of salinity-induced growth retardation of sugar beet var. HI-0473 would reveal a reliable rating of its
relative grade of salt tolerance and the possibility of its cultivation in saline-prone areas.

As demonstrated in our experiment, 75 mM and 100 mM NaCl treatment, in general, had no
significant inhibitory effect on sugar beet var. HI-0473’s growth parameters and yield, which is reflected
in SL, SFW, SDW, and TFW (Table 1). Moreover, 150 mM NaCl did not show distinct growth inhibition
of sugar beet. In contrast, 250 mM salt stress retarded the growth parameters and displayed marked
inhibitory symptoms in all the growth parameters (Table 1). These findings made us speculate that low
saline-induced growth improvement might be attributed to the stimulation of several physiological
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attributes, including better photosynthetic capacity (Figure 2), elevation of photosynthetic pigment
(Figure 3A), and stable water uptake (Figure 1B), whereas a high saline concentration disturbed these
attributes (Figures 1B, 2 and 3A). The outcomes of this experiment are in accord with the previous
reports in sugar beet [44,65], Vicia faba [66], Elaeagnus angustifolia [21], Phragmites karka [67], and Spartina

maritime [68] where it was found that the imposition of low concentrations saline water led to enhanced
growth parameters in plants, whereas higher concentrations caused significant inhibition. Mild saline
water can pose favorable effects on the growth of some plants due to the osmotic function of Na+ and
it has been considered as a functional nutrient for some plant species, such as radish, rape, sugar beet,
red beet, wheat (Triticum aestivum), and Zygophyllum xanthoxylum, etc. [63,69,70].

Environmental constraints trigger cellular dehydration which prompts the accumulation of several
osmolytes [22,71]. Proline, a low molecular weight and high water-soluble osmotic adjusting substance,
accumulates in the plant and performs a crucial function in the osmotic balance of plant cells under
stress conditions [22,72]. In the present study, the RWC of sugar beet plant showed no significant
change under 75 and 100 mM salt stress. As a result, a non-significant change in proline content
displayed in these concentrations indicated that mild saline water is not inhibitory for sugar beet plants
(Figure 1). Maintaining an optimal amount of water in the plant helps to maintain the succulence of
leaf that facilitates the plants to avoid saline toxicity [63]. But, under 250 mM salt stress, the RWC of
sugar beet plants significantly dropped (Figure 1B) which might trigger by a sharp accumulation of
proline content (Figure 1A) which inhibited the growth of sugar beet (Table 1). Similar enhancement
of proline under decreased RWC was found in Elaeagnus angustifolia [21], Achras sapota [73], and rice
(Oryza sativa) [74].

In plants, ROS generates in the process of photorespiration and β-oxidation of fatty acids which
is considered as a normal metabolic phenomenon. On the contrary, extreme salinity triggers the
production of a lethal amount of ROS which can affect the structural integrity of the plasma membrane,
functions of enzymes, and the CO2 assimilation apparatus of plants [23,24,64,75,76]. Plant cells possess
an array of enzymatic and non-enzymatic antioxidants that protects plant cells from the adverse
effects of excessive ROS by scavenging it in different steps [77]. In addition, there have been a
plethora of reports of increased activity of antioxidant enzymes under saline conditions in different
plants [33,54,78–80]. CAT, APX, and POX are responsible for the neutralization of excess H2O2 [77].
In our experiment, CAT and POX activity increased with the increasing concentration of saline
water. On the other hand, APX activity increased only under 75 mM and 100 mM saline water but
decreased under 150 and 250 mM salt stress (Figure 4). Our data also showed that the H2O2 content of
leaves was enhanced markedly with the increasing concentration of salt (Figure 3B). Then, in terms
of tolerance, each concentration showed a differential response pattern. We infer that coordinated
action of CAT, APX, and POX might be responsible for tolerance against 75 mM and 150 mM saline
water treated plants and showed lesser accumulation of H2O2 compared to 150 mM and 250 mM
saltwater. On the other hand, dyssynchronous action of CAT, APX, and POX might be responsible for
the highest accumulation of H2O2 in plants and displayed the least tolerance against 150 mM and 250
mM saline water treatments (Figure 4B-D). Similar enhancement of CAT, APX, and POX was found in
olive tree (Olea europaea) [81], soybean (Glycine max) [82], Oryza sativa [83], sugar beet [84] and maize
(Zea mays) [6] under different concentration of salt stress. Thus, high concentrated salinity inhibits
sugar beet var. HI-0473 growth and physiological processes.

Although the growth and yield of crops are regulated by several physiological, biochemical, and
molecular processes, photosynthesis is a vital one. Salt stress usually hampers plant growth and
productivity by disturbing the physiological processes of plants, especially photosynthesis [17,85].
Disturbance in photosynthesis is partly related to the reduced Chl content [52,86]. Although salinity
lessens the chlorophyll pigment, the level of the reduction relies on the salt tolerance capacity of plant
species. In our present study, total Chl content of sugar beet plants was significantly increased under
75 mM and 100 mM saline water but showed marked decreased under 150 mM and 250 mM saline
water treatment demonstrating that photosynthesis in sugar beet plant was improved under low
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salinity then declined under high salinity as reflected in the sugar beet’s growth, biomass, and yield
(Table 1). This finding was supported by the studies on several plants [73,87–91]. These results led us
to speculate that sugar beet plants still retain some halophytic nature of its ancestor see beet [41] and
displayed a tolerance mechanism against low and moderate salinity [92]. The lower salt stress-induced
increase in Chl content might be complemented because of the increased number of chloroplasts in the
leaves of salt-exposed plants [93], whereas the higher salt stress reduced Chl by higher ROS-induced
pigment degradation (Figure 3A).

Regulation of photosynthetic capacity under various biotic and abiotic stress conditions is vital for
a plant’s survival [17], and plants implement this strategy by regulating several gas exchange attributes,
including stomatal conductance (Gs), transpiration rate (E), and intercellular CO2 concentration
(Ci) [92,94]. In the current study, 75 and 100 mM salt stress displayed no deleterious effect on E, Gs,
and Ci which collectively participated to the balanced CO2 assimilation rate (A), whereas 150 and
250 mM salt stress showed the inverse result on E, Gs, and Ci and compromised A (Figure 2A–D).
Similar results were found in the different concentrations of saline affected plants [87,89,95]. At low to
moderate salt stress (75 and 100 mM), sugar beet plants might activate specific mechanisms for salt
avoidance either to reduce the entry of Na+ ions into the cell or decreased the concentrations of Na+ in
the cytoplasm by sequestering the ions into the vacuoles [62,63] which might help plant to protect
its photosynthetic components. Importantly, slightly increased Na+ concentration in 75 and 100 mM
salt treatment in our experiment, increased the net CO2 assimilation rate (A) which might be because
of higher chlorophyll content in sugar beet leaves (Figures 2A and 3A) which ensure more photon
harvesting. A similar result was also reported on Alhagi pseudoalhagi [96]. On the other hand, a high
concentration of salts (150 and 250 mM) might increase the hydraulic root resistance [92] which, in
turn, decreased the RWC (Figure 1B). A similar finding was reported in Triticum aestivum [10]. Thus, to
avoid the loss of this minimal water, sugar beet plants might close its stomata which decreased the
stomatal conductance along with intracellular CO2 concentration that leads to the marked decline in
net CO2 assimilation rate (A) (Figure 2A,C). These salt-induced negative effects were reflected in the
growth and yield of sugar beet (Table 1).

The differential results in WUE (A/E) and carboxylation efficiency (A/Ci) were observed in the
current experiment (Figure 2E,F). This increase in WUE under moderate salt concentrations indicates
that sugar beet plants might utilize the water efficiently, which contributes to elevating the yield.
Alternatively, high saline water decreased the WUE (Figure 2F), which might be a factor for the
compromised growth and yield of sugar beet plants (Table 1). Reports show that high salt stress
accumulates ABA (abscisic acid) in various plants [97], such as Arabidopsis [98] and maize [99]. Thus we
speculate, sugar beet plants may accumulate ABA which induces stomatal closure and leads to lower
Gs and E under osmotic stress conditions [100,101]. Lower transpiration rate leads to a compromised
value of WUE [102]. In addition, a low and moderate concentration of salts showed no significant
effect on carboxylation efficiency. But the carboxylation efficiency was severely reduced in sugar beet
under high saline treatments due to the lowered amount of CO2 assimilation rate (A) (Figure 2A,E).

Under various abiotic stresses, ROS level elevates in the plant tissues due to the anomalies in the
electron transport chain and accretion of photo reducing power. This excess of electrochemical energy
can be dissipated through the Mehler reaction, resulting in ROS generation, including H2O2, and
injure cell membranes, reflected in elevated MDA levels [23,103,104]. In the current experiment, H2O2

and MDA content increased gradually in a concentration-dependent manner where 75 mM salt stress
showed a non-significant increase which is reflected in the growth performance of sugar beet (Table 1).
A similar increase in H2O2 and MDA was also observed in other plants [75,84,105]. This elevation of
H2O2 and MDA occurrence might be due to the impairment of photosynthesis, insufficient activity of
enzymatic antioxidant, and declination of non-enzymatic antioxidant, ascorbate (Figure 4A).

Finally, to validate the concentration-dependent effect of NaCl, the whole dataset was analyzed
using a PCA-based clustering method (Figure 5B). The effects of 75 mM and 100 mM salinity were
intensely and positively correlated with growth, yield, and photosynthetic attributes, whereas under
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higher salinity (150 mM and 250 mM NaCl) conditions, the effects were much closer with enzymatic
antioxidant activities and ROS accumulation. These findings clearly suggest that lower salinity
concentrations do not disturb the growth and photosynthetic attributes and trigger to a higher yield
of sugar beet. In contrast, these correlations vanish at higher salt concentrations and lead to growth
retardation due to excess ROS accumulation which ultimately results in yield loss.

5. Conclusions

In summary, our results revealed that sugar beet can thrive at low to moderate (75–100 mM
NaCl) salinity in soil culture test which was evidenced by the close association of these treatments
with growth, yield, water relation, and photosynthetic parameters in the PCA. Most importantly,
low (75 mM NaCl) soil salinity improved the photosynthesis and yield of sugar beet in this pot
experiment. Although the yield of sugar beet was not impeded by 150 mM NaCl stress, the RWC, gas
exchange parameters, and Chl content were slightly hampered by this salt concentration. Therefore,
we recommended 100 mM NaCl stress as the threshold level of salinity tolerance of sugar beet based
on our soil–pot culture experiment. Altogether these results suggest that sugar beet might possess
salt tolerance attributes. Therefore, it can be a promising crop for cultivation in the saline prone large
coastal regions in Bangladesh. The adapted salt tolerance mechanisms of sugar beet could be attributed
to (i) the abundance of relative water content which increased the succulence of the sugar beet, (ii)
elevated photosynthetic pigment, such as chlorophyll content, (iii) balanced osmolyte content, such as
proline, (iv) increased the net CO2 assimilation rate, stomatal conductance, carboxylation efficiency, and
water use efficiency which contributed to better carbon and mineral management and, (v) increased
antioxidant enzyme, such as CAT, APX, and POX, activity, which detoxifies excess ROS. It is also
revealed that excessive salinity can inhibit the growth, biomass, and yield of sugar beet. However,
further investigations of salinity-adaptive mechanisms of sugar beet at the genetic and molecular
levels are crucial to discover the exact potential of this crop for cultivation in salt-affected areas in the
coastal belt.
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