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Abstract 

Background: The rhizosphere is the narrow zone of soil immediately surrounding the root, and it is a critical hotspot 
of microbial activity, strongly influencing the physiology and development of plants. For analyzing the relationship 
between the microbiome and metabolome in the rhizosphere of tea (Camellia sinensis) plants, the bacterial composi-
tion and its correlation to soil metabolites were investigated under three different fertilization treatments (unfertilized, 
urea, cow manure) in different growing seasons (spring, early and late summer).

Results: The bacterial phyla Proteobacteria, Bacteroidetes, Acidobacteria and Actinobacteria dominated the rhizo-
sphere of tea plants regardless of the sampling time. These indicated that the compositional shift was associated 
with different fertilizer/manure treatments as well as the sampling time. However, the relative abundance of these 
enriched bacteria varied under the three different fertilizer regimes. Most of the enriched metabolic pathways stimu-
lated by different fertilizer application were all related to sugars, amino acids fatty acids and alkaloids metabolism. 
Organic acids and fatty acids were potential metabolites mediating the plant-bacteria interaction in the rhizosphere. 
Bacteria in the genera Proteiniphilum, Fermentimonas and Pseudomonas in spring, Saccharimonadales and Gaiellales in 
early summer, Acidobacteriales and Gaiellales in late summer regulated relative contents of organic and fatty acids.

Conclusion: This study documents the profound changes to the rhizosphere microbiome and bacterially derived 
metabolites under different fertilizer regimes and provides a conceptual framework towards improving the perfor-
mance of tea plantations.
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Introduction
The composition of the microbiota inhabiting the 
rhizosphere is a major determinant of plant growth and 
productivity. More specifically, soil microbial commu-
nities provide critical services to plants, such as nutri-
ent bioavailability and suppression of phytopathogens, 
and may directly influence crop quality [1–3]. Complex 
and dynamic interactions between plants and networks 
of microorganisms are intricate and challenging to 
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study [4, 5]. Several specific benefits have been iden-
tified, including the presence of secretory systems, 
adhesion, metal detoxification and iron dissolution, all 
of which were associated with the rhizosphere enrich-
ment [6]. Studying plant–microbe interactions will not 
only provide a better understanding of the relationship 
between soil metabolites and microbiomes, but it will 
inform management of such relationships for sustain-
able agricultural production.

Tea plant [Camellia sinensis (L.) O. Kuntze] is an 
evergreen leafy shrub whose leaves are used in the 
manufacture of beverages. Edaphic conditions are fun-
damental to the resource capture and productivity of 
tea plants. Traditionally, the supplement of inorganic 
or organic fertilizers for tea plantations increases soil 
fertility and tea quality [7]. Organic fertilizers can pro-
mote higher biomass and soil-borne bacteria and fungi 
diversity than chemical fertilizers [8]. Soil microbes 
and the yield and quality of plants show a strong posi-
tive correlation with each other [9]. In turn, plants 
support microbial communities by transferring 5–20% 
of photosynthetic carbon to the rhizosphere through 
the roots [10]. Our previous research has presented a 
detailed characterization of the rhizosphere microbi-
omes under two different fertilizer/manure applica-
tions and the important environmental properties in 
the rhizosphere soil were identified affecting the soil 
bacterial community structure in tea plantation [11]. 
However, the mechanism among the plant–microbiome 
interaction based on the metabolic level and the chemi-
cal driver under different fertilizer/manure applications 
is not well understood.

Here, based on our previous study in which the bacte-
rial composition in the rhizosphere soil were identified, 
we further analyzed the metabolome of rhizosphere soil 
under three different fertilizer treatments (T1, unferti-
lized; T2, urea; T3, cow manure) applied in March, June 
and August (spring, early summer, late summer) using 
gas chromatography-mass spectrometry (GC–MS). The 
objectives were to: 1) identify the differential metabolites 
in the rhizosphere soil influenced by two different ferti-
lizer/manure applications in three different growing sea-
sons (spring, early and late summer), and 2) evaluate the 
relationship between the composition of bacterial com-
munities and differential metabolites. The ultimate aim 
is to optimize the soil microbiome and identify specific 
compounds linking the rhizosphere with improved devel-
opment and performance of tea plantations.

Results
Influence of treatment and sampling time on chlorophyll 
content of tea leaves
For evaluation of effect on the tea plant growth under 
the different fertilizer/manure treatments, the relative 
content of chlorophyll in tea leaves was analyzed. Similar 
trends were observed in young shoots (YS) and mature 
leaves (ML) with the same treatment (Fig.  1). In addi-
tion, the content of chlorophyll in ML was approximate 
double that of their YS counterparts. There was a slight 
increase of the content of chlorophyll in T3 from spring 
to late summer, while the content of chlorophyll in T1 
and T2 increased in early summer and then decreased 
by late summer regardless in YS and ML. In spring and 
early summer, the content of chlorophyll in tea leaves in 

Fig. 1 SPAD values of the young shoot (YS) and mature leaf (ML) under three different treatments in spring, early summer, and late summer
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S2 was higher than that in S1 and S3.. In late summer, 
the content of chlorophyll in S3 increased to the maxi-
mum, which was higher than their counterparts in S1 
and S2. Chlorophyll content was not significantly differ-
ent between S1 and S2 in late summer.

Soil microbiome composition under different fertilizer 
treatment s
Our previous study has shown that all of the samples 
shared the same taxa composition but differed in their 
relative abundances at the phylum level [11]. All samples 
were dominated (> 65%) by four phyla: Proteobacteria, 
Bacteroidetes, Acidobacteria and Actinobacteria (Figure 
S1, Table S2, S3). Here, to further determine the simi-
larities and dissimilarities of soil microbial communities 
under different fertilizer treatment and different sampling 
time, beta diversity was calculated using Non-metric 
Multidimensional Scaling (NMDS) and Principal Coor-
dinate Analysis (PCoA). All the stress values of NMDS 
were less than 0.01. The analysis revealed that the com-
position of soil microbial communities was influenced by 
different fertilizer/manure treatments, and the microbial 
community of T3 was statistically distinct from those of 
T1 and T2 (Fig. 2a, b and c). To further elucidate patterns 
of separation between microbial communities, uncon-
strained principal coordinate analyses were performed 

with the Weighted UniFrac (WUF) and the Unweighted 
Unifrac (UUF) (Fig.  2d and e). These indicated that the 
compositional shift was associated with different ferti-
lizer/manure treatments as well as the sampling time. 
Both of the WUF and UUF PCoA described sampling 
time as having the second-largest source of variation 
(PC1:12.06%, WUF; PC1:16.29%, UUF; R > 0.7, P = 0.001) 
in rhizosphere microbial communities following the 
type of treatment (PC1:56.36%, WUF; PC1:30.04%, UUF; 
R > 0.7, P = 0.001). Consistently, the Permutational mul-
tivariate analysis of variance (PERMANOVA) corrobo-
rated that fertilizer/manure treatments contributed a 
larger source of variation within the microbiome when 
using a Bray Curtis distance metric (R2 = 0.312, P < 0.001; 
Table S4), compared to the contribution of sampling time 
(R2 = 0.246, P < 0.001; Table S4).

Bacterial communities were analyzed at the genus level 
to determine which genera of the Proteobacteria and 
Actinobacteria in T3 changed during the three sampling 
times. Thirty-two genera belonging to Proteobacteria 
significantly (P < 0.05) changed (Table S5). For example, 
the abundance of Haliangium, Steroidobacter and Acidi-
bacter in T3 increased from spring to late summer, while 
Pseudomonas sharply decreased in the same period. 
Nine genera belonging to Actinobacteria significantly 
changed. For example, the abundance of Acidothermus, 

Fig. 2 Differences in microbial community composition in the soil samples using NMDS and PCoA. (1) NMDS using the WUF metric indicates show 
separations at (a) spring (Sp), (b) early summer (ES), and (c) late summer (LS); (2) PCoA were performed with the Weighted UniFrac (WUF, d) and the 
Unweighted Unifrac (UUF, e)
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Nocardioides and Mycobacterium in T3 reached maxi-
mum abundance in early summer and then declined into 
late summer.

Analysis of soil metabolites under different fertilizer 
treatments
Supervised Partial least Squares-discriminant Analysis 
(PLS-DA) was performed to investigate changes in soil 
metabolites with each fertilizer/manure treatment. PLS-
DA score plots showed that the metabolites in T1, T2 
and T3 were statistically separated from each sampling 
season (Figure S2). GC–MS analyses revealed 75 metabo-
lites detected in spring, 73 in early summer and 62 in late 
summer (Table S6). All metabolites present in all three 
treatments, but the abundance of them has significant 
differences. The identified compounds included organic 
acids, polyols, amino acids, sugars, fatty acids, phos-
phoric acids, amines, nucleotides, and others (Fig.  3a1, 
b1 and c1). Specifically, organic acids showed the greatest 
changes in spring and early summer, accounting for 26% 
and 27% of the totals, respectively, followed by a decrease 
to 19% in late summer. Polyols and fatty acids increased 
from spring to late summer, while amino acids decreased 
over that period.

A heatmap with Hierarchical clustering analysis 
(HCA) was used to visualize and group differentially 
expressed metabolites among the three fertilizer/
manure treatments. Thirty-eight differential metabo-
lites were identified at the spring sampling, 28 in early 
summer, and 39 in late summer (Fig.  3a2, b2 and c2). 
In addition, all T3 samples clearly clustered together 
from the three different growing seasons, while T1 and 
T2 did not cluster in one group separately. It demon-
strated that the application of cow manure consider-
able stimulated major changes in metabolism in the 
rhizosphere soil. Specifically, in comparison with T1 
and T2, cow manure can mainly drive the accumula-
tion of fatty acids (nonanoic acid, oxalic acid, tetrade-
canoic acid and octadecadienoic acid), organic acids 
(trihydroxy pentanoic acid, benzoic acid, glycolic acid, 
glyceric aicd, gluconic acid, erythronic acid and ribo-
nic acid), alcohols (xylitol, mannitol, arabitol and ribi-
tol) and mannose in spring; fatty acids (dodecanoic 
acid, octadecadienoic acid and hexenoic acid), organic 
acids (hydroxy propanoic acid, gluconic acid and ribo-
nic acid), sterols (stigmasterol and campesterol) and 

mannose in early summer; sugars (fructose, maltose 
and trehalose), organic acids (glyceric aicd, threonic 
acid, and erythronic acid) and stigmasterol in late 
summer. Interestingly, the alanine had the lowest rela-
tive concentration in T3 compared with T1 and T2 in 
spring and early summer, while it could not be detected 
in late summer regardless of the different treatments.

Analysis of metabolic pathway in the rhizosphere soil 
under different fertilizer treatments
To further analyze the variation of the metabolites in the 
rhizosphere soil treated with different fertilizer treat-
ments, the metabolic pathway was proposed in reference 
to the Kyoto Encyclopedia of Genes and Genomes data-
base (KEGG). Several significantly enriched pathways 
(Impact > 0.1) were identified among different fertilizer 
application. As shown in Fig.  4, the enriched metabolic 
pathways in T3 compared with T1 were starch and 
sucrose metabolism in spring, alanine, aspartate and 
glutamate metabolism, pentose phosphate pathway and 
tropane, piperidine and pyridine alkaloid biosynthesis 
in early summer, galactose metabolism and starch and 
sucrose metabolism in late summer. In comparison to T2, 
the differential metabolic pathways in T3 were beta-ala-
nine metabolism in spring, linoleic acid metabolism and 
caffeine metabolism in early summer, starch and sucrose 
metabolism and galactose metabolism in late summer. 
Notably, compared T3 with the other treatments, the 
most differentially enriched pathways were sugars and 
fatty acids related metabolisms. In addition, the metabo-
lites in T3 showed considerable differences in late sum-
mer in starch and sucrose metabolism and galactose 
metabolism.

Correlations between microbiota and metabolites 
under different fertilizer treatments
To decipher the potential regulation effects between the 
microbiota and the metabolites in rhizosphere soil, the 
correlations between the soil microbial communities at 
the phylum level and metabolites were analyzed by Pear-
son correlation coefficients method and were visualized 
as a heatmap (Fig. 5). Based on the correlation analysis, 
six apparent groups were clustered between soil microbes 
and metabolites from three different growing seasons.

In spring (Fig.  5a), 10 bacterial phyla (Proteobacteria, 
Bacteroidetes, Cyanobacteria, etc.) clustered together 

Fig. 3 Metabolomics analysis of different fertilizer treatments in spring, early summer and late summer. a1, b1 and c1 (the pie chart) represent the 
categories and the percentages of soil metabolites based on the number of compounds; a2, b2 and c2 (the heat map) represent the differential 
relative content of common metabolites under different fertilizer treatments in spring, early summer and late summer, respectively. Six biological 
replicates for each soil type are displayed in separate stacked bars in each heat map

(See figure on next page.)
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Fig. 3 (See legend on previous page.)
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Fig. 4 The enriched metabolomic pathways in the three rhizosphere soils were analyzed based on the KEGG dataset between T1 and T3, T2 and T3 
in spring (a1 and a2, respectively), early summer (b1 and b2, respectively) and late summer (c1 and c2, respectively)
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Fig. 5 Correlation analyses of soil microbiome and metabolome. Hierarchical clustering of the soil metabolites based on the microbes of a 
phylum-level in spring (a), early summer (b), and late summer (c). Positive and negative correlations are represented by red and blue, respectively
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showing a similar correlation. Specifically, they showed 
a positive correlation with most organic acids (threonic 
acid, 2-keto-L-gluconic acid, ribonic acid, etc.) and poly-
ols (mannitol, digalactosycerol, arabitol, etc.), while there 
was a negative correlation to most phosphoric acids 
(phosphoric acid, monomethylphosphate, myo-inositol-
1-p, etc.). In addition, 11 phyla (Saccharibacteria, Acido-
bacteria, Chloroflexi, etc.) showed similar patterns. They 
had positive correlations with most phosphoric acids, but 
negative correlations with all fatty acids (including nona-
noic acid, hexadecanoic acid, octadecanoic acid, tetrade-
canoic acid, 9-(Z)-octadecenoic acid and heptadecanoic 
acid), all nucleotides (including adenosine and uridine) 
and most organic acids. In addition, the remaining bacte-
rial phyla showed a similar correlation pattern but with-
out obvious distinction among differential metabolites.

In early summer (Fig.  5b), 11 phyla (Proteobacteria, 
Bacteroidetes, Absconditabacteria, etc.) were clustered 
together showing a similar correlation profile. The metab-
olome associated with these bacteria included 13 metab-
olites with positive correlations, the three strongest of 
which were campesterol, beta-sitosterol and stigmasterol, 
and eight metabolites (1-monohexadecannoylglycerol, 
arabinose, erythrose, etc.) had a negative correlation with 
these bacteria. On the lower right of Fig.  5b, 12 phyla 
(Cyanobacteria, Chloroflexi, Berkelbacteria, etc.) clus-
tered together showing a similar profile. The metabolome 
associated with these bacteria included 13 metabolites 
with positive correlations, the three strongest of which 
were putrescine, 1,3-di-tert-butylbenzene and alanine, 
and 29 metabolites had negative correlations, the three 
strongest of which were campesterol, beta-sitosterol and 
stigmasterol.

In late summer (Fig.  5c), 11 phyla (Chlorobi, Acido-
bacteria, Actinobacteria, Cyanobacteria, etc.) were clus-
tered together showing a similar correlation profile. The 
metabolome associated with these bacteria included 22 
metabolites with positive correlations, the three strongest 
of which were 1-monohexadecanoylglycerol, 1-monooc-
tadecanoylglycerol and xylitol. Fifteen metabolites nega-
tively correlated with these bacteria, the three strongest 
of which were fructose, maltose and trehalose. On the 
lower right of Fig.  5c, 11 phyla (Proteobacteria, Chloro-
flexi, Bacteroidetes, etc.) were clustered together showing 
a similar profile. The features of metabolome associated 
with these bacteria included 12 metabolites (maltose, tre-
halose, erythronic acid, etc.) with positive correlations, 
and 29 metabolites had a negative correlation with these 
bacteria, the three strongest of which were pentadeca-
noic acid, gentibiose and glucose.

Based on the above analyses and the close relation-
ship with other metabolites (Figure S3), differential 
metabolites classified as organic acids and fatty acids 

were selected for further analysis. Variance Inflation 
Factor (VIF) was employed to remove the VIF value of 
metabolites higher than 10 (Table S7). Subsequently, 
the relationship between the rhizosphere bacterial com-
munity composition at the genus level, and each affected 
metabolite was analyzed by RDA (Fig. 6) and the top-10 
bacteria were selected based on abundance. The RDA 
revealed that most of the differential metabolites were 
positively affected by cow manure treatment. In spring, 
the abundances of Proteiniphilum, Fermentimonas and 
Pseudomonas were positively correlated to organic acids 
(Benzoic acid and Erythronic acid) and fatty acids (Dode-
canoic acid and 9,12- (Z, Z)-Octadecadienoic). In early 
summer, abundances of the top-10 bacteria showed no 
correlation with the content of organic acids and fatty 
acids, and Saccharimonadales and Gaiellales showed a 
significantly negative correlation. In late summer, abun-
dances of Acidobacteriales and Gaiellales depended 
on the variation of organic acids and fatty acids, which 
exhibited positive correlations with organic acids 
(2,4-Dihydroxybutanoic, Oxalic acid and Quinic acid) 
and the fatty acids (Heptanoic acid and Eicosanoic acid). 
They showed negative correlations with organic acids 
(Erythronic acid, Threonic acid and Glycolic acid).

Discussion
Our previous study revealed that bacterial communities 
in the rhizosphere were influenced by both application 
of fertilizer/manure and the growing season. Soil pH, 
organic matter and available potassium were the vital 
environmental properties contributing to bacterial vari-
ation [11]. This study focused on how the cow manure 
brought more benefits based on the metabolic profiling 
and the relationship between microbiome and metabo-
lites was further investigated in the rhizosphere.

Cow manure increased the chlorophyll content of tea 
leaves
Plants provided carbon resources (photosynthetic prod-
ucts) for microbial activities in the rhizosphere through 
root exudates [10]. Leaf chlorophyll is a vital factor in the 
process of photosynthesis, which helps plants harvest 
light and transduce energy [12]. Chlorophyll biosynthesis 
was reported to be associated with the growth tempera-
ture, with the chlorophyll content being increased with 
the temperature rising [13]. This could explain the result 
that the content of chlorophyll in control and in cow 
manure treatment increased from spring to late summer. 
Interestingly, it was observed that chlorophyll content 
in urea treatment increased from spring to early sum-
mer but then decreased in late summer, while the con-
tent of chlorophyll in cow manure treatment increased 
to the maximum in late summer. The possible reason 
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is that chlorophyll synthesis is a complex process that 
is influenced by many factors. Not only the tempera-
ture, the application of nitrogen fertilizer also increased 

leaf chlorophyll contents [14]. Cow manure released the 
nutrients over a longer period, which can continually 
supply the synthesis of chlorophyll, whereas the nitrogen 

Fig. 6 Redundancy analysis (RDA) analysis of MiSeq data and the metabolites of organic acids and fatty acids (arrows) in different growing seasons 
(a, spring; b, early summer; c, late summer). The values of axes 1 and 2 are the percentages explained by the corresponding axis
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in urea was probably fully exhausted in late summer 
resulting in decreased chlorophyll content. Moreover, 
the higher abundance of microorganisms affected by 
cow manure altered the network structure and converted 
the critical nutrient into a more absorbable form before 
assimilation by plants, which could also increase the bio-
synthesis of Chlorophyll in tea leaves [11].

The effect of dominated bacteria on the rhizosphere soil
Exogenous bacterial input through the application of 
manures changed the soil characteristics that caused 
by variation in bacterial composition [15]. The bacterial 
phyla Proteobacteria, Bacteroidetes, Acidobacteria and 
Actinobacteria dominated the rhizosphere of tea plants 
regardless of the sampling time, which could play an 
important role in the plant-rhizosphere interaction. Pro-
teobacteria is a major phylum of gram-negative bacteria. 
In the tea plantation, the soil microbiota associated with 
cow manure application was dominated by Proteobacte-
ria, especially Alpha- and Gammaprotrobacteria. The 
presence of Proteobacteria in soils of various plant sys-
tems, such as clover, maize, soybean and grasslands, was 
attributed to high nutrient content [16]. Belliturk et  al. 
(2017) reported that cow manure increased N uptake in 
curly lettuce [17]. In this research, the increasing abun-
dance of Proteobacteria had a close relationship with the 
compounds classified as organic acids and fatty acids. 
Bolan et  al. (1994) indicated that organic acids could 
increase the availability of soil nutrient [18]. This finding 
was further exemplified by a long-term fertilizer treat-
ment study, which showed that increased nutrient avail-
ability in the soil favored growth and the abundance of 
Proteobacteria [19]. Acidobacteria, as one of the most 
abundant bacterial phyla found in terrestrial ecosystems, 
is involved in the degradation of plant polysaccharides 
[20]. Moreover, the ratio between Proteobacteria and 
Acidobacteria is considered an indicator of soil nutrient-
content, as Proteobacteria were recruited in nutrient-rich 
soils while Acidobacteria were recruited in nutrient-
poor soils [4, 16]. Our data provided a glimpse at these 
two phyla, showing the relative abundance of Proteobac-
teria was higher than Acidobacteria under cow manure 
treatment during three different sampling time (Table 
S3; about tenfold, threefold and threefold, respectively.). 
Therefore, our data showed that the plant-associated bac-
terial microbiota in the manured soil was enriched for 
species in the phylum Proteobacteria.

Bacteroidetes were much more abundant under the 
cow manure treatment than other treatments over the 
three sampling times. The role of Bacteroidetes in the 
rhizosphere has not yet been deeply elucidated, but they 
are known as important contributors to nutrient turno-
ver in the rhizosphere [20, 21]. Nakayama et  al. (2021) 

found that bacterial species belonging to Bacteroidetes 
contain genes involved in denitrification, which indicated 
a possible involvement in N cycling [22]. Additionally, 
Actinobacteria exhibited the same abundance order of 
T2 > T1 > T3 in the three different seasons. Actinobacte-
ria are associated with disease-suppressive soils, which 
indicated that the application of cow manure may reduce 
soil pathogens [20].

The presence of Cyanobacteria and Chloroflexi in T3 
samples peaked in early summer. Cyanobacteria inhabits 
moist soils and can carry out photosynthesis and N-fixa-
tion [23], and thus provide N to the colonized plant roots 
[24, 25]. In addition, N-fixing Cyanobacteria may express 
genes at precise stages of plant growth [20]. Our results 
suggest that tea plants recruited Cyanobacteria in early 
summer as demand for N supply increased, driven by 
the growth of new tea shoots. Chloroflexi was the phy-
lum containing nitrite-oxidizing bacterium, which gen-
erally dwell in habitats enriched by high ammonium, 
promoting plant growth [2, 26]. These studies supported 
our observation to some extent that Cyanobacteria and 
Chloroflexi brought benefits to the development of tea 
plants under the cow manure treatment, especially in 
early summer.

Correlation between the composition of soil microbiota 
and soil metabolites
Changes in developmental processes in plants resulted in 
changes to the composition of root metabolites exuded 
into the rhizosphere, in turn altering the microbial com-
munity structure [27]. As an exogenous amendment, ini-
tially, cow manure (Table S1) can affect the composition 
of compounds in different treatments, but it tended to be 
same after a long time’s degradation or transformation 
(Table S6). To investigate the composition and poten-
tial functions of the bacterial microbiota of the rhizos-
phere soil of tea plants, the metabolic pathway and the 
correlation between the composition of microbes and 
metabolites of the rhizosphere soil were analyzed over 
the growth period from spring to late summer. According 
to the metabolic pathway analysis, the enriched pathways 
related to sugars, amino acids and alkaloids metabolism 
significantly contributed to the proudly changes among 
the rhizosphere soils treated with different fertilizers.

Sugar metabolism is essential in the interaction 
between plants and rhizosphere microbes [28–30]. 
Fructose, maltose and trehalose in the T3 soils had a 
significant positive correlation with the presence of 
Deinococcus-Thermus, and there was a significant nega-
tive correlation with Chlorobi in late summer (Fig.  5c). 
This result indicated that Deinococcus-Thermus and 
Chlorobi can facilitate changes in sugar metabolism. 
That plants influence the rhizosphere microbiome is well 
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described [20], as is the capacity of the microbiome to 
influence the metabolome and development of plants. 
Trehalose is the key molecule in the trehalose signal-
ling network mediating the development of tea flowers 
[30]. The metabolome of Arabidopsis thaliana leaf tis-
sues (such as sugars and sugar alcohols) was significantly 
changed by diverse soil microbiome treatments, which 
specifically increased shoot biomass without inducing 
changes in the root biomass [1]. It seems likely, therefore, 
that the growth and quality of tea were influenced by at 
least some degree by microbiome-generated metabolites 
in the rhizosphere.

Amino acids coupled with sugars synergistically regu-
lated many pathways and cycles such as glycolysis and 
the citric acid cycle [31], which were involved in various 
activities of microbiota. The application of cow manure 
provided not only the C resource for bacterial activities, 
but also the N in the form of proteins. Some of the pro-
teins were easily breakdown by microbiota in soil such 
as amino acids and short peptides that were able to be 
utilized by plants [32]. Moreover, the cow manure could 
also improve the development of tea plants by increas-
ing the abundance of the bacteria in the surrounding soil 
and raising the level of chlorophyll and other beneficial 
factors [11], which caused the enhancement of nutrition 
consumption. These phenomena could explain the low 
concentration of alanine.

Additionally, a significant positive correlation was 
observed between three polyols (i.e. beta-sitosterol, 
campesterol and stigmasterol) and Tenericutes in early 
summer. Over 40 phytosterols, including sitosterol, 
campesterol and stigmasterol occurred in all higher 
plants, while others such as brassicasterol, were family- 
or species-specific [33]. Cereals and oilseed plants had 
significant levels of phytosterols, while levels in vegeta-
bles or nuts were considerably lower [34]. Cow manure 
may contain phytosterols derived from cereals or oilseed 
plants eaten by the animal. Previous research revealed the 
significant relationship between phytosterols and various 
bottom-up, top-down and plant primary and secondary 
metabolites [35]. Tenericutes is a phylum of bacteria that 
contains the class Mollicutes. However, the specific roles 
that Tenericutes species play in the soil ecosystem and, 
more specifically their roles in the rhizosphere, are little 
known. Our results indicated that Tenericutes may have a 
role in the synthesis of polyols.

Correlation between rhizosphere bacteria and organic 
and fatty acids in the rhizosphere
Application of the fertilizer/manure treatment may medi-
ate the composition and content of organic acids and fatty 
acids in the rhizosphere, thereby influencing composition 
of rhizosphere bacteria [36], although the specifics of the 

relationship between the bacterial diversity and organic 
and fatty acid compounds in the rhizosphere is not well 
understood. Organic acids are major water-soluble alle-
lochemicals in soil and can enter root cells to influence 
plant growth and development. Organic acids released by 
roots mediated composition of bacterial and fungal com-
munities of wheat [37]. Veach et al. (2019) demonstrated 
that the concentration and identity of organic acids in 
the rhizosphere correlated with microbial diversity [38]. 
In our study, rhizosphere organic acids were more abun-
dant in late summer samples than in earlier summer, and 
most of them (Benzoic acid and Erythronic acid) showed 
a significant correlation with manure application in T3 
(Fig. 6). Erythronic acid, a signalling molecule from plant 
roots that attracts microorganisms [39], showed positive 
correlations with the presence of Fermentimonas, Pro-
teiniphilum and Pseudomonas, and negatively correlated 
with the presence of Gaiellales and Saccharimonadales 
in spring and late summer.

Fatty acids are key components of cellular membranes, 
suberin, and cutin waxes. They are of primary impor-
tance in communications between the cell and the envi-
ronment [3]. The specialized triterpenes (thalianin, 
thalianyl fatty acid esters, and arabidin) produced by a 
triterpene biosynthetic network in the roots of A. thali-
ana plants modulated the profiles of its root microbiota 
[36]. Dodecanoic acid has activity against certain plant 
pathogenic fungi by reducing mycelial growth [40, 41]. 
Our results showed that dodecanoic acid and 9,12- (Z, 
Z)-octadecadienoic acid exhibited a positive correlation 
with the presence of Fermentimonas, Proteiniphilum and 
Pseudomonas in spring, and were negatively correlated 
with the presence of Gaiellales and Saccharimonadales 
in summer.

Conclusions
In summary, our results reveal that manure application 
was the main stimulant of diversity of rhizosphere-asso-
ciated bacterial communities, while the time of sampling 
played a smaller, yet significant role. Furthermore, the 
differential metabolites of soils were enriched in organic 
acids, fatty acids, sugars and polyols, and most of them 
showed positive or negative correlations with the com-
position of microbial communities. In particular, there 
was a correlation between the presence of certain soil 
microbes and organic acids and fatty acids in the soil. 
Application of manure induced apparently beneficial bac-
teria and metabolites. Our study showed that the applica-
tion of cow manure can shape the assembly and activity 
of the rhizosphere bacterial community toward a higher 
abundance of specific rhizosphere competent bacterial 
taxa that may provide complementary compounds that 
benefit the growth of tea plants.
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Materials and methods
Field trial
The tea plantation studied was located in Qingdao, on 
the northern China plain (36°19′N, 120°23′E, elevation 
54.88  m). The soil at the site was classified as brown 
loamy soil. More than 2000 tea plants of cultivar ‘Huang-
shanzhong’ were growing in the plantation. Plants were 
eight years old and maintained at 0.45 m in height. Three 
different treatments were applied: T1 was unfertilized, 
T2 was treated with urea, N: 46.7%, and T3 was treated 
with composted cow manure, N: 1.5%. Each treatment 
had three randomly replicated blocks. Each block was 90 
 m2 under a unified management regime. In T2 and T3, 
the application of total N was the same (300  kg∙ha−1). 
Urea and cow manure was applied to the field plots once 
on the same day. Briefly, a ditch was dug to a depth of 
20 cm and a width of 20 cm under the tree canopy along 
the root side and covered with 5  cm soil after applying 
the urea or cow manure. Initial soil parameters before the 
experiment were described in our previous paper [11]. 
The chemical properties of the cow manure were: organic 
matter (OM) 71.20%, total nitrogen (TN) 1.50%, total 
phosphorus (TP) 0.81% and total potassium (TK) 0.98%. 
The compositions of metabolites and microbes of cow 
manure are provided (Table S1).

Sampling of rhizosphere soil
The rhizosphere samples in the field were collected in 
three different growing seasons: spring (March), early 
summer (June), and late summer (August) with six bio-
logical replications. Ten soil cores (0–1 cm from the root) 
from the middle of the fertilizer ditch were collected to 
a depth of 20 cm. Soil samples were homogenized. Fifty-
four samples were collected randomly, and large plant 
residues and stones were removed by sieving. Samples 
were frozen quickly in liquid nitrogen and stored at 
-80 °C until analyses.

Plant chlorophyll sampling
Relative contents of chlorophyll in young shoots (YS) 
and mature leaves (ML) were determined using a port-
able chlorophyll detector Micro Controller Unit (SPAD-
502plus, Konica-Minolta, Japan) at each sampling time 
[42]. Samples of tea leaves collected from the three soil 
treatments (T1, T2 and T3) on the same day were named 
S1, S2, and S3, respectively.

16S rDNA amplicon sequencing analysis
The method of soil DNA extraction was as described in 
our previous paper [11]. Library preparation and Illu-
mina MiSeq sequencing were done at Smart Nuclide 
(Suzhou city, Jiangsu province, China). DNA samples 

were quantified using a Qubit 2.0 Fluorometer (Invitro-
gen, Carlsbad, CA, USA). DNA (30–50 ng) was amplified 
from the V3 and V4 hypervariable regions of prokaryotic 
16S rDNA. The regions were amplified using forward 
primers 5’- CCT ACG GRRBGCASCAGKVRVGAAT-3’ 
and reverse primers 5’-GGA CTA CNVGGG TWT CTA 
ATC C-3’ [43]. An Agilent 2100 Bioanalyzer (Agilent 
Technologies, Palo Alto, CA, USA) was employed to vali-
date DNA libraries, which were multiplexed and loaded 
on an Illumina MiSeq instrument according to the manu-
facturer’s instructions (Illumina, San Diego, CA, USA). 
Sequencing was performed using a 2 × 300 paired-end 
configuration; image analysis and base calling were con-
ducted by the MiSeq Control Software (MCS) embedded 
in the MiSeq instrument [43]. Analysis of 16S rRNA data 
was conducted using the QIIME2 data analysis package 
as described [30].

GC–MS analysis
Five grams of frozen-dried rhizosphere soils were dis-
solved in 50 mL 80% methanol (pre-cooled at -20 °C) to 
extract the soil metabolites. Samples were subsequently 
centrifuged at 20  g at 4  °C for 10  min. Then, 100 μL of 
15 mg∙mL−1 methoxyamine pyridine solution was added 
to the resulting supernatant, followed by vortexing for 
30 s and incubation for 120 min at 37 °C. An aliquot of 60 
μL N, O-bis-(trimethylsilyl) trifluoroacetamide (BSTFA) 
reagent containing 1% Trimethylchlorosilane (TMCS) 
was added to the mixture, then incubated for 90 min at 
37 °C. Derivative samples were centrifuged at 20 g at 4 °C 
for 10  min. The resulting supernatant was injected into 
an Agilent 7890A/5975C GC–MS system (Agilent, USA) 
for profiling analysis. Samples were injected into the 
apparatus in random order. Quality control (QC) sam-
ples were used to ensure the stability of the system and 
monitor deviations of the analytical data. Gas chroma-
tography was performed on a HP-5MS capillary column 
(5% phenyl/95% methylpolysiloxane 30  m × 250  μm i.d., 
0.25 μm film thickness, Agilent J & W Scientific, Folsom, 
CA, USA). Six biological replicates were run twice on the 
GC–MS as technical repeats.

Raw GC–MS data were converted into NetCDF files 
by G1701 MSD ChemStation software and subsequently 
processed by XCMS 3.5 (www. bioco nduct or. org). Peak 
detection and deconvolution were performed with the 
automated mass spectral deconvolution and identifi-
cation system (AMIDS) and peak lists compiled with 
National Institute of Standards and Technology (NIST) 
and Wiley libraries. The resulting data matrix was sub-
jected to multivariate analyses and significant feature 
identification using MetaboAnalyst 4.0 (http:// www. 
metab oanal yst. ca) [44].

http://www.bioconductor.org
http://www.metaboanalyst.ca
http://www.metaboanalyst.ca
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Statistical analysis
Leaf chlorophyll content was analyzed by the least-
significant difference (P < 0.05) using DPS software. 
Other statistical analyses were performed in R soft-
ware (version 3.2.1, Vienna, Austria). Hierarchical 
clustering analysis (HCA) and heat map were carried 
out using R to visualize and group metabolite pro-
files [45]. The Non-metric Multidimensional Scaling 
(NMDS) was used to visualize changes in bacterial 
composition [46]. Clustering of the microbiome and 
metabolome was performed by partial least squares-
discriminant analysis (PLS-DA) and Orthogonal Pro-
jections to Latent Structures Discriminant Analysis 
(OPLS-DA) using Soft Independent Modeling of 
Class Analogy (SIMCA)-P (version 13.0, Umetrics AB, 
Umea, Sweden) and R package ropls. To investigate 
patterns of separation between microbial communi-
ties Principal Coordinate Analysis (PCoA) were calcu-
lated with Phyloseq package (v.1.10) [47]. According to 
pathway analysis on Metaboanalyst and KEGG meta-
bolic database (http:// www. kegg. jp/), metabolic path-
way was analyzed. ANOVA was used to examine the 
significant differences among the different treatments 
with a P-value < 0.05 being considered as statistically 
significant. The redundancy analysis (RDA, " vegan" 
in R software) was employed to identify the relation-
ship between bacterial community composition and 
metabolites in the rhizosphere [48]. The correlation of 
metabolite–metabolite was calculated by R language 
and the statistical test was adjusted by p-values. The 
corresponding p-values were also calculated using the 
cor.test function. Pearson correlation coefficient (r2≥ 
0.49 and P ≤ 0.05) was also used to analyze the correla-
tion between the composition of microbial communi-
ties and metabolites in the rhizosphere.
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